USER INTERFACES FOR DECISION SUPPORT SYSTEMS:

AN OVERVIEW

Edward A. Stohr
and

Norman H. White

September 1983

Center for Research on Information Systems
Computer Applications and Information Systems Area
Graduate School of Business Administration
New York University

Working Paper Series

CRISs #42

GBA #82-63(CR)

Published in: International Journal of Policy Analysis and Information
Systems, Special Issue on Decision Support Systems, Vol. 6, 1982.

Page 2

1. INTRODUCTION

Heavy involvement by managers in the wuse of computers for
decision-making was an early dream of the MIS profession that has
rarely been realized. Recently however VISICALC [1981] and a number
of similar micro-computer-based accounting spread-sheet programs have
defied the odds and been broadly used by managers. How did Da.vid
succeed where Goliath failed? There can be'little doubt that the
answer lies in the 'user interface' provided by these
programs--certainly they are not as powerful functionally as many
software products available on mini or maxi-computers. The term 'user
interface' covers all aspects of the communication between a user and
a program including ergonomic, effectiveness and psychological
factors. The study of wuser interfaces has recently emerged as an
impeortant area of concern for commercial software developers, computer
scientists and researchers in the area of Decision Support Systems
(DSS). Several books, (Mehlmann [1981], Shneiderman [1980]), and
conferences (User Interfaces [1982] and Human Factors [19821])

highlight progress in this hitherto neglected area.

Our purpose in this paper 1is to discuss the wuser interface
requirements for DSS software. In particular, we are interested in
how generalized software systems can be designed to provide managers
and their staffs with software tools that can be used to build DSS's
that are pleasant and effective to use and'readily modifiable to meet
changing needs. Our discussion will concentrate on features that have
been well-proven in a number of applications. However we will also

mention some more futuristic possibilities to provide a longer range

Page 3

perspective.

We will be concerned with the following roles:
Designers: the developers of the generalized DSS software.

Builders: the technical personnel within an organization who
use the DSS generator to build databases and models.

Intermediaries: staff personnel who perform data retrievals
and create models to support managers in their decision-making.

Managers: the decision-makers; managers who may or may not use

the DSS in a hands-on mode.
In general we will adopt the point of view of the designers. Note
that the builders, intermediaries and managers may be one and the same
person or that group decision-making may be involved. The point here
is that different users will have different levels of: (1) syntactic
knowledge of the software (how to use it) and (2) semantic knowledge
of the application (what should be done)--Shneiderman [1980]. A DSS
should provide tools such as access to general purpose languages, and
full-screen editors for the builder as well as menu-driven displays,
on line documentation and a wide range of defaults for a managerial

user.

We are interested in providing good interface characteristics in
a general-purpose, transportable DSS software package. An
architecture for such a package is outlined in Section 2. In Section
3 we describe some user interface alternatives together with a number
of principles of good design that appear to have some empirical
validity. In Section 4 we develop a set of detailed DSS interface
requirements. Section 5 describes some generalized software for

meeting these requirements. In Section 6 we provide an overview of

Page U

the role of languages in DSS; however we are mainly concerned in this
paper with non-language aspects of user interfaces. Language

facilities are covered in a companion paper (Stohr and White [19821]).

2. ARCHITECTURE FOR A DSS GENERATOR

Historically the first examples of DSS software were 'Specific
DSS' that were built from scratch to provide computerized support in a
particul ar decision situation. Many such systems are described in
Alter [1980). The disadvantages of this approach are that the systems
were difficult to build and could not be wused in other contexts.
Recently however, a number of software systems have appeared with
quite similar capabilities and structure. These 'DSS Generators'
provide tools that can be used to build a wide variety of corporate
DSS. Some commercial examples include EMPIRE [1982], EXPRESS [19821],

IFPS [1982], PLATO [1982], SIMPLAN [19821, and XSIM [1982].

A 1list of different types of software that may be included in a
DSS generator 1is given in Table 1. Cbviously no current system
contains all of these features. Nevertheless all of them have been
used (or in some cases proposed). From Table 1 one can see that a
versatile DSS generator requires a great diversity of software
components. These might be invoked in any sequence and must be able
to communicate with each other and with external data sources
including the organization's operational information system. An even
more important message of Figure 1 is that there are a large number of
potential points of contact between users and the DSS. 1In fact, the

interface software may comprise the greatest part of the system (over

DATA-ORIENTED MODEL ORIENTED LANGUAGE
GENERAL INTERFACE TOOLS COMPONENTS COMPONENTS TOOLS
Data-Entry Report Data Query Model Command Command
Subsystem Generator Language Language Processor
Screen Forms Help/Training Data Definition Model Definition High Level
Generator Aids Language Languages Language Compilers/
Interpreters
Graphics Graphics Data Base Model Management Parser-Generator
Input Output Management System Compiler-Compiler
System
Menu Full-Screen Data Conversion Model Library:
Generator Editor Facility (MIS - Data Analysis
Interface) - Forecasting

- Simulation

- Financial Function

- Mathematical

Programming
- Simultaneous
Equations

Voice Voice Data Dictionary Model Dictionary
Input OQutput

POSSIBLE SOFTWARE COMPONENTS FOR A

DSS GENERATOR

ey a8eqg

Page 5
60% in the GADS system--Carlson and Sutton, [1974]).

There are two possible approaches to building a DSS generator
with very general capabilities. The first strategy is exemplified by
some commercial generators that focus on a particular function (say
financial planning) but allow the user to link to other software when
necessary. An extreme example of this approach 1is advocated ‘by
Donovan, [1976] whose GMIS system provides a framework in which many
different software systems can be integrated using data base
technology and a system of communicating virtual machines. In this
way languages and modeling tools (APL, PL/1, TSP, EPLAN and Editors)

were united with data base facilities (SEQUEL, IMS, QUERY-BY-EXAMPLE).

The second approach to building a general purpose DSS generator
is to attempt to integrate a broad range of the capabilities shown in
Table 1. This seems to be the approach of some commercial DSS

packages such as XSIM, EXPRESS, and PLATO.

A design philosophy somewhere between these two extremes seems to
us to be both desirable and feasible. Thus we believe that a DSS
Generator should provide: (1) 'prepackaged software' in the form of
modeling and data retrieval 1languages that can be used as--is by
builders, intermediaries and managers; (2) tools that allow the
builders to extend the capabilities of the generator and to interface

it with other software as needed.

To focus our discussion we will use the framework depicted 1in
Figure 1 (adopted from Ginzberg and Stohr [1981], see also Sprague and

Watson [1976] and Bonczek et al [1980]). In a sense all DSS

Page 5a

DATA DATA BASE
-
EETERS po+ CONVERSION |p——Pt MANAGEMENT
ENVIRONMENT SYSTEM SYSTEM
SCREEN
MANAGER
g GRAPHICS
g HMRHACER SYSTEM
ANGUAG
‘f LANGUAGE DIRECTORY
M INTERFACE
= REPORT SYSTEM
USER <¢-—>=4 & MANAGER
[A]
=
-
E'g HELP
i MANAGER
FULL SCREEN MODEL
L_EDITOR MANAGEMENT DSS
= SYSTEM MODEL
BASE
MENU
MANAGER
FIGURE 1

MAJOR COMPONENTS OF DSS GENERATORS

Page 6

generators have the major areas of functionality shown in the figure
to some degree. However our viewpoint is that each component 1is an
independent software sub-system possessing a high degree of
functionality. The Data Base Management System (DBMS), User Interface
System (UIS), Language Interface System (LIS) and Model Management
System (MMS) communicate with each other to integrate the different
features in Table 1. Each of these four components can be regarded as
an abstract machine that hides physical implementation details from
the other components. Thus: the UIS is responsible for aspects of
user-system communication; the DBMS manages logical and physical data
access paths; the MMS manages the accessing and execution of
procedures and programs that reside in the 'Model Base' library; the
LIS consists of a number of language translators that interpret user
requests directed to the DBMS, MMS and System Directory. The latter
contains meta-knowledge about the data and procedures available within
the planning system and their interrelationships. It provides
information for the DBMS and MMS as well as online documentation, help
and training aids for the user., Finally, the Data Conversion System
allows communication between the resident data base of the DSS

generator and external data bases and files.

Figure 1 does not necessarily represent a software architecture
(for example the System Directory might reside in the DBMS and/or
MMS). However it does represent a convenient functional grouping of
the software that resembles some existing prototype systems. We will
discuss the UIS and LIS in some detail here. For explanations of the
roles played by the DBMS and MMS see Donovan [1976], Bonczek et al

[1980] and Sprague and Carlson [1982].

Page 7

3. INTERFACE DESIGN ISSUES

In this section we will discuss some general objectives for
interface design, survey the available hardware and software design
choices and finally describe research concerning how the design
alternatives «can be wused to meet the design objectives. The
discussion will be brief since we intend only to provide a background
for the more detailed development of DSS interface requirements in the

remainder of the paper.

Objectives for DSS Interface Design

In general a user interface should:

(1) Be easy to learn, use and remember

(2) Be helpful when problems arise

(3) Be suitable for both novice and expert use

(4) Be efficient in the use of system resources

(5) Promote efficient usage

(6) Promote effective usage--better decision-making

(7) Provide for a range of different media and interaction

styles

More detailed 1lists of objectives for interactive interface
design have been proposed by various authors and are reviewed in
Shneiderman [1980],Ch.10. The major injunction for designers is 'know
thy user'. The designed system should also know itself in the sense
that it has sufficient knowledge to instruct the user and to prevent

erroneous usage.

Page 8

For DSS software the general objectives listed above can be
sharpened somewhat. First, recalling Keen, [1980] we note that DSS is
characterized by an evolutionary development process involving three
dialogues between: the user and the builder, the user and the system,
and the builder and the system. Since the objective of a DSS
Generator is to speed this prototyping process we must support:

(1) The builder - by providing useful interfaces to programming

and other development facilities. Since the builder will
be a frequent user with high syntactic knowledge a compact

and efficient style of discourse should be provided.

(2) The users - by providing help facilities and a range of
interface styles. Managers may be infrequent users with
low syntactic knowledge. They will need an easy-to-use
"big picture' interface that allows rapid access to
important prepackaged information. Intermediaries will
be frequent users: after a brief period of learning they
will wish to progress to more complex applications and
will be willing to learn more advanced system features

and to stream-line their interaction.

Secondly, since a DSS is used to enhance problem solving
processes it is important to provide support at the semantic level:
(1) A nunber of different external representations of the same
information (e.g., tables and graphs).
(2) Methods for aggregating, grouping and filtering information,
and for operating on grouped and aggregated objects.

(3) Short-term memory aids that help users know their current

Page 9

position and the available alternatives.
(4) Longer-term memory aids that help users track and record
intermediate calculations and trial results (an audit

trail).

Finally, since the use of a DSS is often voluntary, we need to
make the interface functionally useful and enhance the productivity
and enjoyment of users. The latter requires an understanding of
cognitive processes and of the determinanmts of user satisfaction.
Empirical research (Zmud [1979]) has established the existence of
persistant perceptual and cognitive patterns of problem solving among
individuals. To support these different 'cognitive styles' we must
provide interfaces that adapt rapidly to different information demands

and sequences of processing steps.

Physical Design Alternatives

An initial physical design consideration involves the choice of a
suitable combination of information mode, input/output device and
mechanism for controlling operations. Some common alternatives are
shown in Table 2. A DSS Generator may support several combinations
such as (Character, Dumb CRT, Typing) and (Graphies, Graphics CRT,
light-pen). A further hardware/software design consideration involves
the number of 'information channels' (physical or 1logical terminals)
available at any one site: (1) a single interface (2) multiple
interfaces with only one interface active at any one time or (3)

multiple simultaneously active interfaces. As an example of (2) one

Page 9a

Mechanism for

Information Input/Qutput Controlling
Mode Device Operations
Character (includ- Hard Copy Terminal Typing

ing numeric data)

Dumb CRT
Semi-smart
Smart CRT
Large Screen
Line Printer

Function keys

'Picking' Device:
Light-pen, touch-
screen, mouse,

Joystick
Graphics Graphics Terminal :
CRT and Remote Plotter 1
Voice Voice Synthesizer Voice Command

Voice Recognizer

PHYSICAL INTERFACE DESIGN CHOICES

TABLE 2

Page 10

might have a graphics CRT and plotter; as examples of (3) one might
have several 'windows' on one screen run by different application
programs (Buneman et al [1977]) or several CRT's displaying spatial
and other information at different levels of detail (Herot [1982]).
Finally, for cooperative decision-making as in teleconferencing (Hiltz
and Turoff [1981]), the design might involve multiple sites

interacting using one or more information channels.

For a single information channel an interface design starts with
the choice of one or more alternatives from within each of the three
categories shown in Table 2. However many more design choices are
required. Thus if the physical design involves (Character, dumb CRT,
typing) the designer must still choose: the screen formats and
interaction sequence for both input and output, the command language
syntax, and so on. These alternatives will be considered in more

detail in Section 4.

The range of technology available is very broad and expanding
rapidly presenting interface designers with difficult challenges and
interesting possibilities. For future reference, Tables 3A and 3B
link the physical characteristics of various types of device to the

interface applications that they enable.

Interface Design Principles

We turn now to a brief consideration of the major factors that
should be considered in attempting to produce a cost-effective design.
These are shown in Table 4 together with references to some related

literature. They fall into four groups: user-oriented,

Page 10a

Physical Interface Additional
Device Attributes Stylesl Feature
Hard-copy 80 to 132 characters Query/ Response,
Terminal Upper/Lower case Command
Dumb CRT 24 x 80 characters Menu 2

Semi-smart
CRT

Smart
Program-
mable
CRT

CRT
Attach-
ments

(up to 65 x 132)

Block Transmission
Protected fields
Insert/delete line/
character

Clear Screen

Cursor Positioning

Seroll Up/Down

Blinking, color, in-
tensity, reverse video

Send modified fields
only

Printer port

Video output

Multiple input ports

Down/Loadable
Disk storage

Light pen
Digitzer
Cross=hair
Mouse

Screen Forms 2
Full Screen
Editing 2

Split Screens

Highlight impor-
tant information

Reduce transmis-
sion cost

local hardcopy

Drive monitors for
peer presentations

Connect to multiple

systems simul ta-
neously

local edit checks
local storage of Forms

Picking, pointing
alternatives to
typing

1., Cumulative (earlier interface styles are also supported).
2. Tranamission speeds > 1200 baud required.

TABLE 3A

CHARACTER-ORIENTED DEVICE CHARACTERISTICS

AND USER INTERFACE APPLICATIONS

Page 10b

Physical Mditional
Device Attributes Features
Black & Bit-mapped Allows hardware
White raster fill & other features
& Color
Graphics Vector Very fast for line
CRT's drawing
Segmentation and Rapid reorganization
rotation of a chart
Zooming Blow up portions of
chart
Color 16 + colors possible
CRT Light pen Direct manipulation
. Attach- Digitizer systems possible
ments Cross hair
Mouse
Black & Matrix Fast, inexpensive
White low resolution
Graphics hard copy
Printer
Electrostatic Very fast, high
resolution hard
copy
Color Matrix Medium fast, inex-
Graphics pensive, low re-
Printer solution color
Laser Fast, expensive,
medium resolution
color
Photographic Very fast, expen-
sive, slides and
points (same res-
solution as monitor)
TABLE 3B

GRAPHICS DEVICE CHARACTERISTICS

AND USER INTERFACE APPLICATIONS

~Page 10c

CATEGORY

ISSUE/VARIABLE

REF ERENCES

USER

Cognitive styles

Naming conventions
Attitude - anxiety - enthusiasm
Syntactic vs semantic knowledge

Mason & Mitroff [1973]
Zmud [1977]

Schneider [1982]
Walther & O'Neil [1974]
Sneiderman [1980] -

TASK

Data retrieval
Interactive problem solving

Multi-attribute decision-making

Intelligence, design, choice
phases

Vassiliou & Jarke [1982]
Meador & Ness [1974]
Holloway & Mantey [1975]
Carlson & Sutton [1974]
Jacob & Sprague [1980]
Sprague & Carlson [1982]

EFFICIENCY

Response times
Screen-forms for data entry
Screen-forms for data query

Text editors: line vs full secreen

Menu Drivers

Prompt/response interface
Command languages vs menus

Miller [1973]

Mehlmann [1981]
Greenblatt & Waxman[1978]
Roberts [1982]

Robertson et al [1981]
Savage et al [1982]
Gaines [1982]

Gilfoil [1982]

EFFECTIVE=~
NESS

Graphic versus Tabular output

Remus [1982]
Keen & Scott Morton [1978]

TABLE 4

SOME MAJOR DESIGN CONSIDERATIONS

Page 11

task-oriented, efficiency and effectiveness. Although there does not
seem to be an overall theory of interface design there are a number of
design principles and empirical findings, some of which are shown 1in
Table 5. However, many intriguing questions remain unanswered and
there is as yet little guidance for cost-benefit analysis of the
various interface choices such as color versus black-and-white

graphics.

Before 1leaving this section we should mention the 'ROMC?
methodology for DSS interface design (Sprague and Carlson [1982]).
According to this technique, the design should proceed by finding (1)
a suitable Representation (algebraic, tabular or graphic) of user
concepts, (2) a set of Operations on those representions that are
useful for problem-solving, (3) a set of Memory aids to overcome human
memory limitations and (4) a set of Control mechanisms that allow the
user considerable freedom in wutilizing the three preceding sets of
tools. The representations and operations part of this paradigm is
similar to an observation by Shneiderman [1982] concerning the
property of 'direct manipulation' that he feels characterizes good
(and exciting) computer interfaces. Their basic characteristics are
that the object of interest should be visible, that it should be
manipulable directly rather than via a command language, and that all
operations should be rapidly and easily reversible. As examples of
good interface designs he cites the many successful video games that

are now flooding the market.

Page 1lla

General Principles:

o Provide sufficient functionality and efficiency to make the
system useful.

o Reduce the number of actions and effort required to achieve a
result (e.g., minimize keystrokes, eye movement and muscle fatigue).

o Provide consistency of command formats and other conventions-—-
announce rules to users.

User Control of the System:

o Commands that change the state of the system should be easily
reversible (e.g., allow users to back-out erroneous updates).

o Provide immediate feedback—announce errors or confirm succesful
actions.

o Provide information on current state--position in a menu
hierarchy, progress on a lengthy procedure execution.

o Allow the user to stop processing at any response point without
jeopardizing system integrity.

Assistance for Inexperienced Users:

o Simple interfaces that don't require learning command language
syntax.

o Provide sensible defaults to avoid the necessity for learning and
typing complex specifications (e.g., graphs and reports should
have default formats).

o Provide access to online 'help' documentation from all response
points (e.g. by typing 'HELP').

o Provide hard copy as well as online documentation.

Efficient Interfaces for Experienced Users

o Provide short-cuts across menu-levels and in prompt/response
interfaces.

o Provide concise command languages with full functionality.

o Allow abbreviations of commands.

Response-Times/Displays Rates

o Tailor the efficiency of the interface to the task situation--
reduce unpredictability.

TABLE 5

SOME PRINCIPLES OF INTERACTIVE INTERFACE DESIGN

Page 12

We will return to these concepts of good design a number of times
as we attempt to derive a set of software features that should be

provided by a DSS generator.

4, REQUIREMENTS FOR A DSS INTERFACE

We first discuss three related topics: 'dialogue style',
response-time/display rate requirements and help features. This is
followed by more specialized treatments of each of the three
information modes--character, graphics and voice that were originally

introduced in Table 2.

Support for Dialogue Styles

The dialogue component of the interface is concerned with the
two--way flow of control information that allows the user to direct
the execution of the data base and model components, to receive help
information and to perform data entry or programming tasks. The major
styles of dialogue are shown in Table 6 together with the functions
for which each appears most suited, the level of syntactic knowledge
needed and the software and hardware requirements for effective usage.
Useful discussions of the various techniques are contained in Martin,

[1973] while Shneiderman [1980] summarizes some experimental results.

Prompt/Response - The computer prompts and wusers respond in a
sequential conversational style. Some syntactic knowledge is required
in order to choose an appropriate response. This can be provided
conveniently by 'Help' features (e.g., the user types a question mark
and receives a menu of permissible choices). This dialogue style is
appropriate for inexperienced users who must be led through a number
of different paths in order to specify their requirements. However,
the large number of interactions makes a prompt-response interface
cumber some--especially if the user can anticipate the question path

Page 12a

Dialogue Style

Command Languages

Functions Prompt/ Menu Screen
Performed Response Selection Forms Formal Natural
Direct Simple Discrete Possible Complex Vefy
Operations Operations Choices, Operations Simple
or Hierarchy Applications
Alternatives| Structures
Enter Small N.A. Bulk Data Possible N.A
Data Quantities Entry
Retrieve Low Low Good Usual Future
Data Selectivity | Selectivity
Define Data Cumbersome Possible Possible Usual N.A.
Base Schema for Simple
Report Choices
Formats
Define N.A. N.A. N.A, Usual N.A.
Models
Syntactic Medium Low Low High Low
Knowledge
Required
Special None > 1200 Baud | Semi-Smart | None None
Hardware Transmission Terminal,
Required > 1200 Baud
Special None None (Menu | Screen Interpreter/ | Natural
Software (Dialogue Generator Forms Compiler/ Language
Required Manager Possible) Generator | Parser Translators
Possible)
TABLE 6

COMPARISON OF DIALOGUE STYLES

Page 13

and the communication medium is slow. Prompt/Response interfaces can
be made more useable by allowing users to "save" past request
sequences sSo that the system does not repeat all the queries. The
prompt/response style can be implemented without special equipment or
software and can be wused with both CRT and hardcopy terminals.
However, to achieve uniformity of interface style and reduce
application programming costs, special dialogue software has been
proposed (e.g. Gaines [19811]).

Menu-Selection: Users are given a 1list of options from which to
choose. Menus reduce user input to a minimum and show the user -all
possible responses. This makes them excellent interfaces for naive
users, since the system is providing considerable structuring. Menu
choices can also be made using light pens and other picking devices
thereby eliminating keyboard input entirely. Unfortunately , a menu
system involves a large amount of data transfer from the DSS system to
the wuser's display device. Hence it requires CRTs and a high speed
link to the computer system. Some DSS generators may soon use 1local
micro-computers to store and display menus thereby reducing
communication costs. Menus are often designed and managed as screen
forms (see below). Special menu management software may also be used
to provide a uniform interface to users across applications and to
perform the special processing involved with hierarchies of menus
(Robertson et al [19781]).

Screen Form: A complete screen of information is displayed in a
2-dimensional lay-out resembling a paper form. Users fill in blank
fields using local terminal functions to move the cursor, edit, etc.
Screen forms are suitable for both naive and expert users and offer
speed advantages for tasks such as data entry. Al though this is a
standard interface in transaction processing applications it is not
often provided by DSS Generators because they must be able to run in
many different environments. Provision of a full-screen interface
under these conditions requires 'Screen Manager' software to provide
device independence. Most major computer manufacturers provide
software for screen management (although this may be inaccessible from
a DSS Generator). A high (at least 1200 baud) line speed and a
"semi-smart' terminal is required.

Command Language: Users enter language statements that direct the
system to execute a specified sub-system, specify data to be
retrieved, models to be run and so on. A common formal language
syntax consists of a keyword followed by one or more parameters.
Often this takes the form of a verb-noun pair (e.g. PRINT PROFIT).
However more complex forms are also common especially for online data
retrieval. Command languages are difficult for inexperienced users to
learn and remember. They are appropriate for expert users because
they minimize the amount of data transmitted. They are especially
useful when the processing task is complex. Natural language command
interfaces are currently under research and development. Users enter
requests in a natural, English-like language. These are transformed
into the appropriate DSS command and executed. The pitfalls in this
approach include increased overhead, possible translation errors and
lack of structure for the user. However natural 1language opens the
door to two long-awaited possibilities: the wuse of the DSS by

Page 14

non-trained personnel and the extension to voice input. Either or
both of these would significantly change the way organizations use
computers.

Table 6 shows that no single dialogue style dominates the others
across all applications and all user classes. Command languages are
best for expressing compl ex data retrievals or processing
requirements. Menus are useful for helping users through a finite
list of alternatives but can not handle complex requirements well.
Futhermore there 1is a natural trade-off between the expressive power
of the dialogue style and syntactic knowledge requirements. Gilfoil
[1982] provides empirical evidence showing that wuser preferences
migrate from menu interfaces towards command language interfaces over
time. Combining these observations with the earlier prescription that
a DSS should support different 'cognitive styles' we see that a DSS
Generator should help the DSS builder tailor different interfaces to

fit the various application areas and users.

Before being more specific about DSS Generator requirements
however we note that the dialogue styles of Table 6 are generally
intermixed. Thus, menus are often designed as screen forms and
conversely screen forms are often designed with a menu section that
shows how to select special functions to be performed and toc move from
screen to screen. Again, a formal command language interface is often
overlaid upon query-response (Gaines, [1978]) and menu selection
(Mehlmann, [1980]) interfaces to speed the interaction process for
more experienced users. This allows users to move directly through a
series of prompts or down several levels of menus by typing multiple

responses on a single line in a command language style.

Page 15

In summary, a DSS Generator should provide a number of different
dialogue styles and the ability to switch between them. These
capabilities can be designed into the 'prepackaged software'. However
the builder must also be able to use the language facilities and/or
procedures of the DSS Generator to construct special interfaces for
each DSS application. It should at 1least be possible to build
prompt/response and menu selection interfaces. Screen forms software
would seem to be the next most desirable feature in a DSS generator
because of its desirable interface properties and because the ability
to rapidly generate formatted screens aids the DSS prototyping

process.

Response Time and Display Rate Requirements

Response time requirements vary with the nature of the task.
Command and Control systems may require instant response. For DSS
applications greater variability is permissible. Typing and cursor
control commands require 0.1 second response times; for simple data
retrievals response times in the range of 0.2 to 3 seconds are
reasonable; major computations and file loadingsbmay take longer (up
to 15 seconds) without disturbing users (R. Miller [1968]). It has
been found that predictability of response time is an important design
goal (L. Miller [1977]). Users need predictability to organize their
time optimally between thinking and doing. Some experiments involving
problem-solving tasks show that the total time to solve a problem may
be fairly invariant to changes in response times over low ranges but

may increase after that (Shneiderman [1980], Ch.10).

Page 16

We have already indicated that faster display rates (>1200 baud)
enable effective use of full screen interfaces. Faster display rates
are also beneficial for scanning(rather than reading) text and for

graphics applications.

Help Features

A user interface should be informative but not verbose, friendly
but not 'human' and forgiving but not unmindful of human errors. In
this section we briefly survey interface features that can help convey

this impression.

We begin with the informative aspect. Users need assistance both
in learning a system (what can I do?, how can I do it?) and in using
it (where have I been?, where am I now?, what can I do next?).
Learning can be facilitated by online documentation (although hardcopy
manuals can not be dispensed with - Dunsmore [19801]). Some features

that might be supplied are now described.

Online System Documentation: 'Help Files' describing major system
concepts, facilities and commands should be accessible from all
command levels of the DSS. In some systems users type 'HELP name' 1in
response to a prompt to receive instructions about the named object.
Omitting the name gives a list of the objects for which help can be
requested. Other systems provide menu access to documentation or
special help screens. Hierarchical documentation in which successive
requests for help produce more detailed information provides less
detailed information for more experienced users who may need only a
reminder but also accomodates the more detailed requirements of novice
users.

Online Data and Model Dictionaries: Users must be encouraged to
document their data and models by supplying labels and explanations.
The system should automatically supply contextual information such as
time and date and user identification. At a minimum, variable and
data item lists for currently running models and attached files are

Page 17

supplied on demand by most current systems. More comprehensive
'knowledge bases' utilizing artificial intelligence techniques are
being developed (Elam, et al [19801).

Naming Conventions: Human factors research has shown that command
language naming conventions can affect learning and retention. For
example, 'congruent' command pairs such as ('get' and ‘'put') rather
than ('get' and 'store') are helpful (Schneider [1982]). The modeling
language should also allow the builder to use meaningful names.

Current Status Information: An online interface can be confusing -
especially when used for exploratory problem solving tasks as in DSS
applications. It is important to keep users informed of their
position in menu hierarchies and on the status of currently executing
commands. The latter can be done by supplying progress reports for
long operations and confirmatory messages for all non-trivial
operations.

Defaults: Useful defaults should be provided for most operations to
reduce the need for learning and typing detailed specifications.
Experienced users should be able to override thes defaults easily.

We turn now to the friendly (lending-a-hand) features that assist
users in executing commands. The following techniques can aid

short-term memory and reduce the impact of clerical errors:

Command Syntax Prompts: Users can 'discover'! the syntax for a command
line by typing a part of the command followed by a '?'; the system
responds with a list of options from which the wuser chooses. This
process can then be repeated for the next part of the command.

Recognition:' Users type part of a command or data name and press an
"escape' key; if the typed portion uniquely identifies an item that
is valid in the current context the system responds by typing the rest
of its name. A combination of syntax prompts and recognition can be a
particularly useful feature.

command language statements both prior to submission for execution and
subsequently if a mistake was made or if a similar command 1is to be
typed. The current command string should always be saved for this
purpose. Users should also be given the option to name and save
commands for future use - thereby building their own private language.
Automated editing by the DSS using flexible parsers and a spelling
checker is also very useful.

Editing and Saving Command Strings: It should be possible to edit

Page 18

Finally, a system should be forgiving and helpful when mistakes

are made. Some useful system features are:

Error Messages: These should have a uniform format, should state what
went wrong and, more importantly they should indicate how to correct
the error. The tone of the messages should be neutral and informative
rather than hostile or jocular (Shneiderman [19801).

Reversible Actions: The DSS must protect the user against severe
mistakes such as destroying a file. Automatic file back-up is one
technique. Providing temporary workspaces during user sessions can
help make actions taken by the user reversible. For example if data
is deleted it should also be possible to 'undelete' it. Many editors
provide this capability by automatically storing the most recently
deleted text.

Judicious use of the above techniques can encourage the
acceptance and increase the effectiveness of the DSS. User-friendly
features should be built-in to the prepackaged portion of the DSS (via
the Help Manager of Figure 1). DSS builders should also be able to
document their models and store help messages for later online access
by users. Assistance in doing this is not usually provided by DSS
Generators. Model and data dictionary software should definitely be
available. Al so the modeling language should provide direct access
files and language input/output facilities that enable the builder to
provide useful help and error messages. Command syntax prompts and
recognition require complex programming that might be provided by the

UIS component (see later).

Character-Oriented Input and Output

A DSS must allow for ad hoc entry and display of data. The ease
and flexibility of these processes can greatly influence user

acceptance and effectiveness.

Page 19

Considering first the input side, bulk data-entry into the DSS
data base will wusually be performed through the Data Conversion
System. However data-entry and editing functions should also be
available through the DSS interface. Screen forms displaying field
labels and blank fields (or current values) that can be overwritten by
cursor positioning and typing are probably the best means for doing
this, (Mehlmann [1981]). Depending on the system being used the model
definition statements must also be entered - preferably using a
full-screen character-oriented editor that is accessed directly from

the DSS (rather than from the operating system command level).

The data entry and model definition tasks will wusually be
performed by a system builder or intermediary; the retrieval and
display of data and model results however may be performed by managers
and in any case the results must be suitable for their consumption.
Regarding data retrieval we note from Table 6 that both screen forms
and formal language techniques are possible. Query-By-Example (Zloof,
[1977]) is the major example of a screen forms oriented 1language.
Data base relations are displayed as tables on the screen and users
specify queries by typing 'examples' of the results they wish to
obtain in the appropriate rows and colunns of the tables.
Experimental results seem to indicate that users can learn QBE more
rapidly than a formal query language, are faster in formulating
queries and have at least as high a success rate (Greenblatt and

Waxman, [19781).

Page 20

Turning now to the display of character-oriented information,
Table 7 contains a summary of desirable report generator capabilities.
Note that the first half of these are concerned with formatting
features and space 1limitations while the latter half are concerned
with different ways of arraying and transforming the information.
Thus a good report generator will have capabilities that overlap those
of a DBMS Query Language together with some modeling capabilities
(hence the popularity of FOCUS [1981], RAMIS[1981] and other
combination report writer/data management systems in DSS). The report
manager accepts the outputs of DBMS retrieval requests and model
executions and allows them to be tailored to the demands of the
moment . This reduces the complexity of the query and model software
and at the same time makes the task of coding retrieval requests and

model definition statements easier.

The report generator should be able to produce online and offline
hard-copy reports and interactive CRT displays. The latter present a
special challenge because of the limited display sizes of current
screens - usually 24 1lines of 80 characters. There are several
approaches to overcoming this limitation and (perhaps) even turning it
to an advantage. Al require a 'semi-smart' terminal (see

characteristies in Table 3).

Moving Window: The information to be displayed is 1laid-out on a
(virtual) two-dimensional surface, the user can rapidly move the
viewing area (CRT screen) relative to the surface in a vertical or
horizontal direction by pressing function keys (up, down, left,
right).

Split Screen: Similar to the above except that the screen can be
split into two or more 'windows' that can be independently scrolled.
For example as a memory aid, one may wish to hold row labels in the
left-half screen while moving columns (and column labels) horizontally

Page 20a

(1) Formatting of numeric data - rounding, commas, dollar signs, etc.

(2) Labeling - substitution of informative descriptions for variables
and computed information.

(3) Pagination and wrapping - wrapping avoids problems with reports
that are too wide to fit on the page or screen.

(4) Rows/Columns transposition - used to overcome page width
limitations or simply to provide another view of the data.

(5) Interactive editing - swap or delete rows and columns, improve
headings.

(6) Sorting - numeric, alphabetic, multiple fields.

(7) Aggregation - imbedded data hierarchies often need to be displayed
together with totals and subtotals. Some report writers allow
this to be done both down-the-page and across it.

(8) Computed rows and columns - the ability to compute new rows and
colunns as functions of existing rows and columns.

(9) Invisible rows and columns that can be used for computations
but not printed.

(10) Output to external files - both to store the report and
communicate with other systems.

(11) Device independence - ability to format reports for different
CRTs and printers

TABLE 7

DESIRABLE REPORT GENERATOR FEATURES

Page 21

into view in the right half screen. Similarly one can alter input
parameters in one half-screen and view their impact on variables of
interest in the other half-screen.

The great popularity of the micro-computer-based accounting
spread sheet packages is in large part due to their use of the moving
window and split-screen devices. bviously even unsophisticated
computer users find these forms of direct manipulation natural-and
easy to use. This idea might be extended to allow all data base

objects (model definitions, data files and reports) to be viewed

through windowing techniques.

As a final example of an innovative interface for character data
the following technique seems to qualify as an easy-to-use 'big

picture' interface for managers.

Hierarchical Reports: A variant of the 'zooming' idea that will be
mentioned 1later in the section on graphics - however it is useful for
character displays and does not require graphics terminals. The idea
is illustrated in Figure 2 (adapted from Mehlmann [1981]). To obtain
more information about an aggregated data item one simply chooses it
by placing the cursor (or a picking device) over it. This process can
potentially proceed down to the individual transaction level.

To summarize our discussion concerning character information in a
DSS we note: (1) the emerging importance of full-screen-oriented
interfaces 1in _data entry, data retrieval, problem-solving and
reporting applications and (2) the necessity for providing a powerful
report generator that can add variety and flexibility to the wuser

interface and also reduce programming requirements.

Graphics Input and Output

XYZ Consolidated Income Statement, 19XX Page 2la

Sales XXX
Cost of Goods XXX
Other Expenses XXX
Net Profit XXX

Income Statement by Division, 19XX

Division A Division B Division C
Sales XXX XXX XXX
Cost of Goods XXX XXX XXX
Other Expenses XXX XXX XXX
Net Profit XXX XXX XXX

Sales by Division and Product, 19XX

Division A Division B Division C
Division A Division B Division C
Fidgets XX XX XX
Widgets XX XX XX
Gidgets XX XX XX
Total XXX XXX XXX
FIGURE 2

EXAMPLE OF HIERARCHICAL REPORTS

Page 22

The advent of cheaper graphics &isplay terminals and plotters
together with more sophisticated graphics software has opened the door
to new modes of man-machine interaction in problem solving tasks (for
an overview see Newman and Sprowll [1979]). In this section we review
some successful uses of graphies in DSS and identify desirable
features that might be included in a DSS Generator. Careful
cost/benefit analysis should precede the selection of any of the more
advanced techniques we will be discussing. This is particularly true
since empirical evidence does not always favor the wuse of graphics.
Remus [1982] reviews some seemingly contradictory research concerning
the relative merits of graphic and tabular presentation methods in
problem solving and suggests that the choice of method depends on the

task situation.

We distinguish six classes of graphics applications: (1) data
analysis, (2) Dbusiness presentation graphics, (3) information
retrieval graphics, (4) design graphics (including CAD), (5) problem
solving graphics, (6) interactive interface graphics. Referring to
Simon's[1965] three phases of decision-making we would say that
applications (1) through (3) above are mainly used in the intelligence
phase; applications (4) and (5) are mainly used in the design and
choice phases respectively, while application (6) involves the use of
graphics techniques to improve the user interface itself and so could

be used in any phase.

There are several areas in whieh the wusefulness of computer

graphics is beyond question. These include data analysis applications

in statistics, marketing and forecasting. Some graphical tools wused

Capabilities

Data Analysis Graphics Tools
Histograms
Line Graphs
Scattergrams
Contour Plots
Exploratory Data Plots
Chernoff's 'Faces' (Wilkinson [19821)

Business Presentation Graphics
As for data analysis plus
Pie Charts
Kiviat Star, [op cit]
Bubble graph, [op cit]

Information Retrieval Graphics (SDMS)']

Design Graphics d—I__
Interactive Problem Solving Graphics

TABLE 8

Page 22a

Necessary Resources

High level
graphics
software

CRT

Black & White or
Color Plotters.

Screen Projection
Slides & Hardcopy
(Color-enhanced)

Interactive graphics
terminals with
input devices,
special software and
data base software

GRAPHIC CAPABILITIES AND NECESSARY RESOURCES

Page 23

in the data analysis phase are shown in Table 8. The first three of
these would be included as a matter of course in ény DSS. Early
computer systems produced these graphs using character-oriented
terminals and printers. Although such plots are useful their 1low
resolution can be inconvenient. It is now common to use either a
graphics CRT, a plotter or both. The CRT is wuseful for exploratory
analysis while the plotter 1is used for more permanent records or
communication to groups since plots are time consuming to produce.
Although color graphics may seem appealing we are not aware of any
solid evidence that would justify its cost in all data analysis
applications. Data analysis graphics does however require: (1) a
highly interactive system with short (< 10 seconds) response times,
(2) powerful defaults for selection of axes; scales, labels, etc., (3)
device independence, and (4) a simple and powerful command language

for overriding defaults.

The use of business presentation graphics is expanding rapidly.

This involves the automated production of color slides and
transparencies for oral presentations and high quality illustrations
for business reports. Table 8 1lists some common formats. Here
aesthetics is very important. Sometimes there is a marketing flavor
to this - but often it is just a means for providing a good
'interface' to a busy or otherwise reluctant decision- maker or group
of decision-makers. Thus presentation graphics may be generated by an
intermediary with the real decision-making performed offline. Keen
and Scott Morton [1979, p20] and Nash [1977] describe the benefits of
simply replacing numerical tabular output by the equivalent

information in the form of pie charts, histograms and time series

Page 24

plots. One major advantage was increased interpersonal communication.
A good presentation graphics system will need all the features of the
data analysis system (except possibly rapid online response). Usually

color graphics will be required.

Direct manipulation of visual images has been shown to be an

effective data retrieval interface for both novice and expert users.

A prototype 'Spatial Data Management System' (SIMS) 1is described by
Herot [1981, 1982]. Users are given a graphical view of the data base
on three color terminals. Entities may be represented on the screens
by icons (e.g., images of oil wells or ships). The positions of the
icons on the screen may reflect a real world spatial relationship
(e.g., maps showing oil leases) or classificatory relationships (e.g.,
classes of ships by country). To query an SIMS data base users
manipulate a joy-stick to position themselves on a 'world-view' of the
data on one screen and receive a more detailed view of the object of
interest together with textual information from a symbolic data base
on another screen. By twisting a knob they can 'zoom-in' to obtain
yet more detailed views or return to a higher level overview. SIMS
also provides a formal query language for conventional data base
queries. Another example of spatial data management is deseribed by
McDonald [1982]. In this case both motion and still pictures are used
to find objects of interest (for example items on a supermarket

shelf).

The SIMS concept offers exciting possibilities since it reduces
learning requirements and provides users with an easily controllable

interface. Further research on the advantages and disadvantages

Page 25

relative to conventional data base query systems in different task

environments is needed.

Most examples of design graphics occur in specialized areas such

as CAD (Computer Aided Design) in manufacturing. Systems analyst
'work benches' are another area of great potential (Ivie [19771]).
Workbench systems allow analysts to interactively construct graphiaal
portrayals of information systems (data flow diagrams, HIPO charts
ete.) and to link them to a data dictionary. CAD and Workbench
applications require facilities for graphics input and software to
manipulate and store the resulting representations. These are highly
sophisticated and specialized DSS's that will not be discussed further
here. However graphical automated analysis tools might be significant
in DSS since they can help in the rapid development of reliable

prototypes.

Most uses of graphics in DSS are passive in the sense that they
display information that could otherwise be presented numerically.
This may greatly enhance user acceptance and decision-making
capability. However conversational graphics is now being used in

interactive problem-solving applications, to replace or augment more

traditional management science algorithms. . Here the pattern
recognition and intuitive problem-solving capabilities of humans are
combined with the computational and retrieval capabilities of
computers. Jacob and Sprague, [1979] cite several possibilities and
give an example of optimal facility location using human geometric
intuition. Another example is provided by the GADS (Geodata Analysis

and Display System) which has been used in a number of situations

Page 26

including the redesign of police beats (Carlson and Sutton, [19741])
and school districting (Holloway and Mantey, [1976]). Different
operations research models for solving spatial problems are utilized
but the key characteristic of the system is its ability to display
alternative problem solutions as overlays on maps. This was wused
successfully by novice users to resolve difficult multiple criterion

allocation problems.

Interactive interface graphics involve the use of graphic symbols

and techniques to increase the efficiency, effectiveness and
satisfaction of the man-computer interaction. Generally 'direct
manipulation' of simulated real-world objects is involved. Some
interesting examples are found in the area of automated office systems
where, for example, the CRT displays a desk-top complete with 'papers'
that can be withdrawn from an 'in-basket', read and then stored in
'file cabinets'or forwarded to others (Smith et al, [1982]). As a
long-range trend it seems 1likely that office automation and DSS
applications will merge into a more general 'Management Support

System'.

Graphics capabilities are rapidly becoming a definite requirement
for an effective DSS. A DSS generator should encompass the usual
business presentation graphics as well as allow the DSS builder to
develop their own specialized graphic formats. Future DSS's should
allow the system full access to interactive graphical input as well,
so that wusers can communicate using light-pens, mouses, and other

interactive graphic input devices.

Page 27

Voice Communication

Voice output from computers is now a common phenomenon in stock
exchange and telephone applications where it reduces the cost of human
operators. It can also be useful in command and control systems as an
alerting mechanism. We are not aware of any applications in problem
solving DSS applications. On the other hand, voice input of commands,
text and data could be of great use in DSS especially for
inexperienced users. However voice recognition systems currently work
only with 1limited accuracy on restricted vocabularies. For the
present it may be possible to use voice input for data or commands
such as menu choices to eliminate typing. Eventually voice
recognition systems and natural language parsers should be perfected
giving an entirely new type of interface. For an overview of voice

input applications see T. Martin, [19761].

Summary

The extensive array of desirable user interface capabilities that
has just been presented provides a formidable challenge to the
implementors of a DSS Generator. This is compounded by the fact that
it must provide builders with tools to build their own interfaces.
For the purpose of this section we will assume that the DSS GCenerator
contains prepackaged data management, modeling, report writing and
graphics facilities. Two questions arise (1) What kind of interfaces
should be built into the prepackaged software? (2) What tools should
be provided for DSS builders to allow them to build their own

interfaces? We now address these questions.

Page 28

Prepackaged Software Interfaces: At a minimum the DSS Generator

should provide:
(1) A low selectivity prompt/response or menu choice interface
that will allow experts and novices to initially invoke the

major components of the DSS. Extending this interface further

will allow novice users to access predefined reports and graphs

and run existing models. Thus managers will be able to do

useful work with a minimum of learning.

(2) Concise formal languages with high expressive power to allow more

expert users to perform data retrievals define models, carry-out

sensitivity analyses, define reports and produce graphs for data

analysis and presentation purposes.

(3) Online help features that explain major concepts and commands and

access data and model dictionaries.

Requirements (1) and (2) above should conform to a kind of
'sandwich' principle. The prompt/response or menu interfaces should
be grown downwards (say up to three menu 1levels) until wuseful
prepackaged functions can be performed by novice users. On the other
hand the formal command languages should Tcover! the full
functionality of the DSS Generator and be built upwards in terms of
scope and span of control so that they overlap with the simpler forms
of interface. In this way the system can accomodate learning and also
satisfy any preferences of users to migrate from verbose %to more

concise interfaces over time (Gilfoil, [19821]).

Page 29

While the above requirements seem to us to be minimal we believe
that commercial DSS3 Generators will soon support full secreen input and
output and some of the more advanced graphics interfaces described

above.

Tools to Build Interfaces: The DSS Generator should at least pr‘ovi&e

the builder with the following two capabilities:

(1) The modeling language should have the input-output and
formatting capabilities of a modern high-level language
such as FORTRAN or PL/1; this will allow the builder to
provide simple forms of the query/response and menu
interfaces.

(2) Access to the prepackaged software components should be
provided via procedure calls or the syntax of the
modeling language. This will allow builders to provide
specialized interfaces for standard queries, reports and

graphs.

In addition it would be desirable to be able access general
programming languages and operating system utilities via procedure
calls from the modeling language. This would facilitate extension of
the tools available to model builders (i.e., the Model Base) and also
allow access to useful software packages such as screen forms
generators or graphics packages that are available on the host

computer but not provided by the DSS Generator.

Page 30

5. THE USER INTERFACE SYSTEM

The UIS (see Figure 1) is a separate 'layer' of software that
provides many interface functions and isolates users from variations
in physical device characteristics and configurations. Thus the UIS
provides: (1) deviée independence, (2) a uniform interface for the
users to state their requests, (3) elimination of the need for special

application programming to generate displays and reports.

Until quite recently programmers built user interfaces using the
I/0 and formatting facilities of high-level languages such as COBOL,
PL/1 and APL. Each program contained a complete specification of the
communication to and from users--complete in the sense that the
operating system and device managers needed no further information in
order to execute the communication process. The advent of smart
terminals, graphics devices and input-output mechanisms that rely on
other senses (touch and sound) has changed this picture. The program
still produces and consumes information in a 1logical sense but the
input and presentation formats may require other specialized software
systems and/or access to a data base. Full screen formats for example
are usually difficult to define in a host programming language because
the logic and character codes involved are device-dependent. Screen
Manager software can relieve the programmer of much of this burden by
monitoring transmission between the program and terminal and accessing
a library of screen definitions when invoked by the program. Note
that the screen definitions are stored in the library by a separate
process. Once stored, they can be used by many programs independently

of the language in which they are written. The Screen Manager

Page 31

contains information on individual device characteristics and the
ability to map logical device identifiers to physical devices. Thus
it acts as a buffer between the interface device and the program
providing what might be called 'interface independence'. All of this
is reminiscent of a data base management system which provides shared
access to data by many different programs together with 'data

independence', (Date, [19811]).

The other major components of the UILS as depicted in Figure 1
(Graphics, Help, Report and Menu Managers) also provide the
possibility for interface independence. Again 1libraries of graph
formats, help messages, report and menu definitions can be built up
and shared by different application programs and subsystems of the DSS
Generator. To produﬁe a report for example, an application program
can write the relevant information as a series of logical records and
invoke the Report Manager passing it the identifier of a stored report
definition. The BReport Manager can handle formatting details
automatically taking into account both the characteristics of the
device used to produce the report (CRT, printing terminal, 1line
printer or voice synthesizer) and the identity of the user. The
latter information can be used to customize the report or perhaps to
mask certain fields for security reasons. A similar sequence of
events would take place if the report was requested interactively by
the user. In this case the user rather than the application program

would identify the report definition and data file.

Page 32

Continuing the analogy between the UIS and a DBMS we see a
similar distinction between host-language and self-contained systems.
A host- language system provides specific capabilities that can be
invoked by an application program either by enhancements to the source
language in which the program is written or through sub-program
calling procedures. Self-contained systems are not designed to be
called by other programs. They therefore control the user interface
and environment mofe closely at the expense (usuzally) of generality
and the ability to communicate with other applications. A Screen Form
Manager designed as described above is an example of a host-language
system. On the other hand some Presentation Graphics packages provide
examples of self-contained systems. Results of other programs must be
transfered to such systems via files or even by data-entry. Generally
self-contained systems evolve into more general purpose systems over
time by providing more programming language and file communication
capabilities. The UIS should be a host-language system from the point
of view of the DSS—that is it would be callable from both the command

and modeling language levels.

The GADS system described above provides a go;:ad example of a UIS
(see also Sprague and Carlson, [1982, ch.7] and Yonke and Greenfield
[1980]). Before leaving this section we describe one attempt to build
a UIS in more detail, The DAISY system (Buneman et al,[1978]) allows
multiple logical terminals or 'windows' to be displayed on the wuser's
CRT. Each window provides a separate independent information channel
for input and output enabling the wuser simultaneously to work on
several tasks or to view different information groupings. For Command

and Control systems one window can be devoted to an 'alerter' function

Page 33

that monitors a data base and/or incoming messages fo} a change in
system state requiring immediate attention. In aﬁ office support
system different windows can be devoted to reminders, phone and mail
messages, imminent meetings and so on. The DAISY system also supports
a large screen for group decision- making, veoice output and graphics.
The windows can be moved, overlaid and expanded and contracted by the

user. Input devices include the mouse and trackball.

6. THE ROLE OF THE LANGUAGE INTERFACE SYSTEM

Languages provide the 'glue' that allows DSS builders to assemble
individual components into an integrated model to solve particular
problems. They also form an important part of the interface for
intermediéries and (possibly) managers. However our placement of the
UIS between the user and the LIS in Figure 1 serves to emphasize that
eQen the most powerful and user- friendly of languages may seem
obscure and difficult to users if other aspects of the interface such
as communication speed, error rates and help features are inadequate

(Turner et al, [1982]).

The UIS and LIS jointly perform many complex transformations:
(1) Between the issue of a command by the user and its translation
into a language statement that will activate (say) the DBMS or MMS,
(2) Between the output format of the DBMS or MMS and its displayed
format as viewed by the user. On the input side for example the
command may be quite English-like. Alternatively it may not initially
be a language statement in any traditional sense but rather a touch of

a light-pen on the wuser's screen, a hand gesture or even an eye

Page 34

movement (Bolt [1982]). All of these inputs must be transformed into
operations which are executed at the machine level. On the output
side, as we have seen, the raw output from the DSS may be passed
through screen forms, report generators or even voice synthesizers on
its way to the user. The LIS role in these transformations is to

perform the language translations required.

In terms of system architecture the DBMS and MMS may each contain
powerful user-friendly language interfaces. In this case the UIS and
LIS might serve more in the role of a communications front-end
although they should also allow the builder to integrate the languages
with special screen formats, help features, and menu displays.
Al ternatively the DBMS and MMS languages might be mathematically based
and more suitable for expert users. In this case the LIS would
contain more English-like, user-friendly language translators. These
would translate to the DBMS and MMS 'target' languages. This approach
is used by a nunber of data base retrieval systems. For example the
'restricted natural language' system USL (Lehmann [1978]) translates

to the formal keyword language SQL (Astrahan et al, [19751).

As a more advanced feature the LIS might allow DSS builders to
construct their own languages specially tailored to fit particular
applications or par*ticuiar user styles. To do this the LIS would
contain a parser-generator (Aho and Ullman, [1978]). Note that some
natural language interfaces contain this feature to allow application

specific vocabulary and grammar rules to be defined (Stohr et.al.

[19821).

Page 35
7. CONCLUSION

Our discussion of user interfaces for DSS was conducted within
the framework of an architecture for a DSS Generator. We surveyed the
physical design alternatives and some design principles that have
evolved as a result of both practical experience and research. Q{r
discussion of interface features was broadly based and included some

techniques that are still under development in various laboratories.

The commercial success of a DSS Generator is strongly related to
the quality of its user interface. However as we have seen there are
a bewildering number of features that might be provided. These two
facts 1lead us' to believe that current piecemeal approaches to the
provision of interface capabilities will be replaced by more organized
approaches employing generalized software and based on 'logical
models'! of user interface requirements. The recently developed CORE
Graphics standard (Michener and van Dam [1978]) exemplifies a movement
toward a theory of user requirements and standard graphics operations
for the implementation of user interfaces. We expect this trend to
continue and that software resembling the UIS described in this paper
will be developed. Providing user interface services in this way will
allow the DBMS, MMS and user developed models to share the same
interface program logic. Device independence at the physical level
and what we have called interface independence at the logical level
will be a natural outcome of this separation of software functions.
Finally, and most importantly, the UIS will present a uwniform and

coherent interface to the user.

10.

11.

12.
13.
4.

15.

Page 36

REFERENCES

Aho, A.V. and J.D. Ullman, Principles of Compiler Design,
Addison-Wesley Reading, Mass., 1978.

Alter, S.L., Decision Support Systems: Current Practices and
Continuing Challenges, Addison-Wesley, Reading, Mass., 1980.

Astrahan, M.M. and Chamberlin, D.D., 'Implementation of a
Structured English Query Language', Communication of the ACM, 18,
October, 1975.

Bolt, Richard A., 'Eyes at the Interface', Proceedings Human
Factors in Computing Systems, Gaitherburg, Maryland, March, 1982.

Bonczek, Robert H., Clyde W. Holsapple and Andrew B. Whinston,
'The Evolving PRoles of Models in Decision Support Systems',

Decision Sciences, pp. 337-356, Vol. 11, 1980.

Buneman, 0, Peter, Howard L. Morgan and Michael D. Zisman,
'Display Facilities for DSS Support: The Daisy Approach',
Database, Vol. 8, No. 1, Winter, 1977.

Carlson, E.D. and J.A. Sutton, 'A Case Study of Non-Programmer
Interactive Problem Solving', San Jose, Calif., IBM Research
Report, RJ1382, 1974..

Date, C.J., An Introduction to Data Base Systems, Addison-Wesley,
Reading, Mass., 1981.

Donovan, John, J., 'Database System Approach to Management
Decision Support', Transactions on Database Systems, Vol. 1, MNo.
4, pp. 344-369, December, 1976.

Dunsmore, Herbert, 'Designing an Interactive Facility for
Non-Programmers', Proc. ACM National Conference, 1980, pp.
475-483.

Elam, Joyce J., John C. Henderson and louis W. Miller, 'Model
Management Systems: An Approach to Decision Support in Complex
Organizations', Proc. 1st International Conference on Information
Systems, Pniladelphia, PA, December, 1980.

EMPIRE: Applied Data Research, Inc., Princeton, NJ, 1982.
EXPRESS: Management Decision Systems, Waltham, Mass., 1982.
FOCUS: Information Builders Inc., New York, NY, 1982.

Gaines, Brian R., 'The Technology of Interaction--Dialogue
Programming Rules', Int. Journal o_f‘_ Man-Machine Studies, 20,
1981, pp. 133-150.

16.

17.

18.

19a

20.

21.

22.

23.

24,

25‘

26.

27

28.

29.

30.

Page 37

Gilfoil, D., '"Warming Up to Computers: A Study of Cognitive and
Affective Interaction over Time', Proceedings Conference on Human
Factors in Computer Systems, Gaithersburg, Maryland, March, 1982.

Ginzberg, M.d. and E.A. Stohr, 'Decision Support Systems:
Issues and Perspectives' in Ginzberg, M.J., W. Reitman and E.A.
Stohr (Eds), Decision Support Systems: Proceedings of the NYU
Symposiun, 1981, North-Holland (forthcoming). o

Greenblatt, D. and J. Waxman, 'A Study of Three Database Query
languages', in B. Shneiderman (Ed.) Databases: Improving
Usability and Responsiveness, Academic Press, New York, 1979.

Herot C.F., 'Spatial Management of Data', ACM Transactions on Data
Base Management Systems, 5, 1981, pp. U493-513.

Hiltz, S.R. and M. Turoff, The Network Nation: Hum an
Communication via Computers, Addison-Wesley, Reading, Mass., 1978.

Holloway, C.A., and P.E. Mantey, 'An Interactive Procedure for
the School Bound ary Problem with Declining Enrollments',
Operations Research, Vol. 23, M. 2, pp. 191-206, March-April,
1975.

Human Factors: Proceedings of Conference on Human Factors in
Computer Systems, Gaithersburg, Maryland, March, 1982.

Huysmans, J.H.B.M. 'The Implementaion of Operations Research',
New York: Wiley-Interscience, 1970.

IFPS:EXECUCM Systems Corporation, Austin, Texas, 1982.

Ivie, E.L., 'The Programmer's Workbench - A Machine for Software
Development', Communications of the ACM, 1977, 20, pp. T46-T53.

Jacob, Jean-Paul and Ralph H. Sprague, Jr., 'Graphical Problem
Solving in DSS', Data Base, Vol. 12, Nos. 1 and 2, Fall, 1980.

Keen, P.G.W. and M.S. Scott Morton, Decision Support Systems:
An Organizational Perspective, Addison-Wesley, Reading, Mass,
1978.

Keen, Peter G.W., 'Adaptive Design for Decision Support Systems',
Database, 12, Fall, 1980.

lehmann, H., 'Interpretation of Natural Language in an Information
System', IBM Journal of Research and Development, 22, September,

1 978'

Mantey, P. and E. Carlson, 'Integrated Data Bases and Muncipal
Decision-Making', Proc. AFIPS 1975 NCC, AFIPS Press, Montvale,
NJ, 1975.

31.

32.

33.

34,

35.

36.

37.

38.

39.

Lo.

B,

42.

43.

u4,

us.

46,

Page 38

Martin, J., Designo_f_ Man-Computer Dialogues, Englewood Cliffs,
NJ, Prentice-Hall, 1973.

Martin, T.B., 'Practical Applicatons of Voice Input to Machines',
Proceedings of the IEEE, 64, 1976, pp. 487-500.

Mason, R.O. and I.I. Mitroff, 'A Program for Research on
Management Information Systems', Management Science, Vol. 19, No.
5, 1973, pp. H475-487.

McDonald, N.H., 'Multi-media Approach to User Interface', Proc.
NYU Symposium on User Interfaces, New York, 1982.

Meador, C.L. and D.N. Ness, 'Decision Support Systems: An
Application in Corporate Planning', Sloan Management Review, Vol.
15, Winter, 1974,

Mehlmann, M., When People Use Computers: An Approach to
Developing an Interface, Prentice-Hall, Englewood Cliffs, NJ,
1981.

Michener, J.C. and A. van Dam, 'A Functional Overview of the
Core System with Glossary', Computing Surveys, 10, December, 1978.

Miller, L.H., 'A Study in Man-Machine Interaction', Proc, National
Computer Conference, 46, AFIPS Press, Montvale, NJ, 1977.

Miller, Robert B., 'Response Time in Man-Computer Conversational
Transactions', Proc. Spring Joint Computer Conference 1968, 33,
AFIPS Press, NJ, pp. 267-277.

Nash, David R., 'Building EIS, A Utility for Decisions', Database,
8, Winter, 1977.

Newnan, W.S. and Sprowll, R.F. Principles of Interactive
Computer Graphics, McGraw-Hill, New York, 1979.

PLATO DSS Reference Manual, OR/MS Dialogue, New York, 1982.
RAMIS: Mathematica Inc., Princeton, New Jersey, 1982.
Remus, William, 'An Empirical Study of Graphical and Tabular

Displays and Their Interaction with Demand Variability', Proc.
15th Hawaii International Conference on System Sciences, 1982.

Roberts, T.L., 'Evaluation of Computer Text Editors', Pn.D.
Dissertation, Department of Computer Science, Stanford University,
1980.

Robertson, G., D. McCracken and A. Newell, "The ZOG Approach to
Man-Machine Communication', Int. Journal of Man-Machine Studies,
14, 1981, u61-488.

u?o

48.

kg.

50.

51.

52.

53

54.

55.

56.

57.

58.

59.

60.

61.

Page 39

Savage, R.L., J.K. Habinek and T.W. Barnhart, 'The Design
Simulation, and Evaluation of a Menu Driven User Interface',
Proceedings Conference on Human Factors in Computer Systems,

Gaithersburg, Maryland, March, 1982.

Schneider, M., 'Ergonomic Considerations in the Design of Control
Languages', Proc. NYU Symposium on User Interfaces, New York,
May, 1982.

Shneiderman, B., Software Psychology: Human Factors in Computer
and Information Systems, Winthrop Publishers Inc., 1980.

Shneiderman, B. 'The Future of Interactive Systems and the
Emergence of Direct Manipulation', Proc. NYU Symposium on User

Interfaces, New York, May, 1982.

Simon, H.A., The New Science of Management Decisions, Harper and
Row, New York, 1960.

SIMPLAN: Simplan Systems Inc., Chapel Hill, North Carolina, 1982.

Smith, C., C. Irby, R. Kimball, B. Verplank and E. Harsten,
'Designing the Star User Interface', Byte, 7, April, 1982, pp.
242-282.

Sprague, R.H., Jr. and E.D. Carlson, Building Effective Decision
Support Systems, Prentice-Hal Inc., Englewood Cliffs, NJ, 1982.

Sprague, R.H., Jr. and H.J. Watson, 'A Decision Support System
for Banks', OMEGA Vol. 4, pp. 657-671, 1976.

Stohr, E.A., J.A. Turner, Y. Vassiliou and N,H. White,
'Research in Natural Language Retrieval Systems', Proc. 15th
Annual Hawaii International Conference on System Sciences, Hawaii,

1982.

Stohr, E.A. and N.H. White, 'Languages for Decision Support: An
Overview!' Working Paper #64, Graduate School of BEusiness
Administration, New York University, September, 1982.

Turner, J., M. Jarke, E.A. Stohr, Y. Vassiliou and N.H. White,

'Using Restricted Natural Languages for Data Retrieval: A
Laboratory and Field Evaluation', Proc. NYU Symposiun on User

Interfaces, New York, May, 1982.

User Interfaces: Proceedings NYU Symposium on User Interfaces,
Graduate School of Business Administration, New York University,
May, 1982.

Vassiliou, Y. and M. Jarke, 'Query Languages: A Taxonomy' in
Proc. NYU Symposium on User Interfaces, New York, 1982.

VISICALC: Software Arts Inc., Cambridge, Mass., 1982.

62.

63.

6u.

65.

66.

Page 40

¥XSIM: Interactive Data Corporation, Waltham, Mass, 1982.

Wilkinson, leland, 'An Experimental Evaluation of Miltivariate
Graphical Point Representations', Proceedings Buman Factors _iﬂ
Computing Systems, Gaithersburg, Maryland, March, 1982.

Yonke, Martin D. and MNorton R. Greenfield, 'An Information
Presentation System for Decision Makers', Data Base, Vol. 12,
Nos. 1 and 2, Fall, 1980.

Zloof, M., 'Query by Example: A Data Base language', IBM Systems

Journal, 44, 1977.

Zmud, Robert W., Individual Differences and MIS Success: A Review
of the Empirical Literature, Management Science, 25, 1979.

