FUNCTIONAL DEPENDENCIES AND
INCOMPLETE INFORMATION

Yannis Vassiliou

Center for Research on Information Systems
Computer Applications and Information Systems Area
Graduate School of Business Administration
New York University

Working Paper Series

CRIS #16
GBA #81-08 (CR)

Published in VLDB '80 Conference Proceedings, Montreal, October 1980.

Funeciicnal Dependencies and Incomplete Information

Yannis Vassiliou |

Computer Systems Research Group
University of Toronio
Toronto, Canada M5S 1A1

Abstract

Functional dependencies play an important role in
relational database design. They are defined in the con-
text of a single relation which at all times must contain
tuples with non-nuil entries. In this paper we examine
an extension of the functional dependency interpreta-
tion to handle null values, that is, entries in tuples that
represent incomplete information in a relational data-
base. A complete axiomatization of inference rules for
extended functional dependencies is also presented.
Only after having such resuits is it possible to talk about
decompositions and normalization theory in a context of
incomplete information. Finally, we show that there are
several practical advantages in using nulls and a weaker
notion of constraint satisfiability.

1. Introduction

Work on relational database design started soon
after the publication of the pilet papers on the rela-
tional model [Codd 70], [Codd 72]. Normalization, which
is a relational schema design process, centers around
the notion of data dependencies, a purely syntactic
notion, that has been introduced to capture semantics
in a relational database. These dependencies are used
as guidelines for the design of a relational schema which
is conceptually meaningful and is free of certain update
anomalies [Date 77]. The theory of dependencies, in
particular of the functional cnes, has been studied in
depth [Beeri et al 78].

Data dependencies are defined between attributes
that belong to & single relation. As a starting point
then, we need to assume that the portion of the real
world that we wish to represent via the relational model
can be modelled with one relation which contains all the
attributes. This relation is called the universal relation.
Sound and complete rules from which other dependen-
cies are logically inferred may be considered only under
this condition. Furthermore, at the instance level, any
multi-relation database produced by a normalization
process can be thought of as a coilection of projections
of a universal relation. The above is called the U'niver-
sal Relation Assumpiion and is present, implicitly or
explicitly, in any work on relational database design
which uses the theory of dependencies. We note that
the assumption has two aspects. First, we have the
requirement of the existence of a universal relation
which can meode! the real world. The second aspect is

t+ Author's current address: Graduate School of Bumness Adminis-
tration, Camputer Applications and Information Systems, New Yark

University.

the requirement that any instance of a multi-relaticn
database which also models the real world corresponds
in a precise and restrictive way to an instance of ths
universal relation.

The walidity of this fundamental assumption has
been guestioned both on practical and recently [Bern-
stein and Goodman 8C] on theoretical grounds. Ths
theoretical attacks concentrate on the second aspect of
the assumption where it is shown that the benefits o
nermalized schemas (e.g. no update anomalies) are iost
when the assumption is made. From a practical point, it
is not realistic to assume that a universal relation
instance will have all rows filled with values, either in its
initial instance or after being recovered (via joins) from
decompositions. It is therefore necessary to fll th=
"gaps" which are created in the universal reiation
instance with some special values, called nuill values.
These values are forms of incomplete information and
ways to treat themn range from rudimentary ones {=.g.
zeros, values like any other) to more zophisticated ones
[Coda 79], [Lipski 79]. An overview of our work on ths
subject [Vassiliou 79] appears in section 2. Ii is notes
that all the above reported research considers only the
retrieval aspects of the problem. That is, how queries
behave when null values are present in the database.
The general approach is to extend existing functions
and operalions in order to have them defined on nulis.
Often, the classical two-valued logic is abandoned for
more appropriate n-valued logics and/or modal iogics.

The semantic rules of a database (in our case the
data dependencies) are defined in a context of no nulis.
In order to allow for nulis we must carefully redefine
dependencies (more precisely, their interpretations)
together with their requirements of satisfiability arz
inference rules. The salisfiability requirements give us
a pattern of allowable nulls in a (universal) relation.

In this paper, we extend the nction of a funetional
dependency (FD) interpetation to apply to nulls. We
then present satisfiability requirements and give neces-
sary and sufficient conditions under which these
requirements are met. Finally, the properties of FDs
are examined and inference rules, which are shown o
be sound and complete are presented. We claim that
only after having such results is it conceivable to safely
talk about decompositions and normalization thecry
when nulls are aliowed in relation instances.

The next section briefly overviews the framework of
our work. Functional dependencies are discussed in
section 3. In the fourth section, the interpretations of
the dependencies are redefined to apply to nulls, and
conditions are presented for the FDs to mest
satisfiability requirements. Section 5 examines proper-
ties of FDs, specifically inference rules. In this section

we depart from our system to work with an equivalent
but well-axiomatized propositional logic system. The
technique is the same as the one used in [Fagin 77].
Ways of efficiently testing for FD-satisfiability are
presented in section 6. In addition, the notion of a
"minimally incomplete"” relation instance is introduced,
and the rules for reaching such an instance are shown
to constitute a finite Church-Rosser system. In our con-
cluding remarks we discuss the impertance of our
results and outline our on-going research aimed at
extending these results to include modification opera-
tions. The connection with the wuniversal relation
assumption is also discussed.

2. A Treatment of Null Values

A formal treatment for two of the manifestations of
a null value was presented in [Vassiliou 79]. One can use
null to represent a value which exists, but is presently
unknown to the database. This type of null is called
missing. Null may also be interpreted as a value which
is inconsistent - it is known to the database as more
than one value. We note that, even though the latter
null may in general appear in a database, it has no place
in a database where certain semantic rules are required
to be valid. Therefore, we do not discuss the incon-
sistent null in the present context, concentrating on the
missing null which we call simply nuil.

The inclusien of null in domains of database values
presents complications when we consider the behavior
of functions or operations on these domains. We use a
uniform rule to extend &ll the functions which has a sim-
ple intuitive explanation. Since a null is an existing
value, although unknocwn at present, it must represent
one of the regular values in the domain. Any function,
which is evaluated on the null, will take a particular
value in its range only if for every non-null in the
domain, the function evaluates to the same value. That
is, for all values in the domain in turn, we substitute the
nul! with one value and evaluate the function as usual.
If all evaluations have the same result, it means that our
incomplete knowledge is not essential for this function -
it does not matter what the value represented as null
is. Otherwise, we are not able to give a precise evalua-
tion for the function.

The above intuitive idea is supported theoretically
by Scott's mathematical theory of computation [Stoy
77]. 1t is shown in [Vassiliou 79] that the introduction of
the null in a database domain makes the domain a lai-
tice with an approximation ordering. ANwull carries less
information than all other domain values. Thus, it
approximates all the other values. The extensions of all
functions defined on these domains must be centinuous
according to the theory. One of these continuous exten-
sions, called the least exiension, is the theoretical for-
mulation of our intuitive rule. All values that the funec-
tion takes, when evalualed on domain values, are col-
lected and, according to the least extension rule, the
best possible approximation to the correct value (least
upper bound in the lattice of values) is returned.

As a simple illustration, consider queries (functions
from relation tuples to truth-values) on the reiation
R{name, marital-status). Assume that the domain of
marital-status has only two values "married" and "sin-
gle", and that there is a tuple ("John", null) in an
instance of R. If the query Q is "ls John marrizd?, we
evaluate the query for each of the marilel-sicius
values and we return the ieast upper bound of the two

answers. In this case: Q{"Jchn",
rwil)=lub fyes,no}=unknown. On the other hand, fo-
the query Q' "Is John either married or single?", accord-
ing to our rule: Q' ("John", null)=lub jyes, yes i=yes.

We note that the use of such an evaluation rule has
an unacceptable complexity for practical considera-
tiens. In [Vassiliou 72]. algorilhms were presented for
syniaciic query transformations so that no substitutions
are necessary for the evaluation.

3. Functicnal Dependencies and their Interpretations

Let R be a relation scheme and XY be sets of
attributes in R (not necessarily distinct). A functinna
dependency (FD) denoted by f: X - Y, or simpiy f, is =
statement about R. For example, consider the relation
scheme in figure 1.1 and the statement: "Employees
have only one salary and work in oniy cne department.”
The expression of this semantic rule is the functicna!
dependency: £# - SL,Dg. Accordingly, the interpreta-
tion of an FD is a predicate on instances of R defined
ast:

true if for everyt,t' inT, either t[X]=¢[X],
or, if t[X]=¢'[X], then¢[Y]=¢[Y]
f@r)=

alse in any other case

We say that f holds {or is satisfied, or is true) in a
relation instance r if f{r) is equal to true. Further-
more, f is valid for R if it holds in all its instances. It is
trivial to verify that the functional dependencies
E# - SLD# and Dg - CT hold in the instance 7 of
figure 1.2.

For convenience, we now modify our notation to
have f defined as a function with two arguments, a
tuple and a relation instance. Hence,

(
true if for every ¢’ inr, either ¢[X]=¢'[X]
or, if t[X]=¢'[X], theni[Y]=¢t'[V]
flur)=

alse in any other case

and say that f helds in r
Flt7r) = true.

When a set of FDs hold in a relation instance 7,
there are usually some other dependencies that also
hold in r. More formally, a functional dependency f is
implied by a set of FDs F ={ fy,fs,....f:} if there is no
counterexample relation 7', such that F holds in 7" but f
does not hold in 7'. A very important result which con-
stitutes the basis for much research on FDs is
Armstrong’s inference rules which are sound and com-
plete for functional dependencies.

We now make two observations commonly used for
proofs about FDs (sometimes implicitiy). Let
2T ={s |scr |s|=2] (i.e. 2T is the set of all the
two-tuple subrelations of a relation instance 7).

if for every ¢ in r

7 The symbzl 7 denoles a relation instance or simply relation, gt
denote tuplesin T, and £[X] is the projection of ¢ on the values of
the attribulesin X,

w Digital Econom
Stern School ol Busine

Working Paper IS-81-(R

Ej.gu.r.e 1.1 An example relation scheme and functional
dependencies.

R(Eg SL, Dg CT)
Attribute explanation

E# - employee serial number

SL - salary
D# - department number of the employee
CT - contract type.

Functional dependencies defined, fy: E# - SL.D#. and
f2:D# - CT

Figure 1.2 An instance of the relation scheme &.

T

E# | SL | D# | CT
1 10k a T

2 30k b y
3 20k a z

4 15k c Y

Figure 1.3 An instance of R with nulls.

-
F# | SL | D¢ | CT
1 - a T
2 30k - Y
3 20k a z
4 15k [Y

Figure 2 Exan:xples of FDs with nulls

Consider the relation scheme R{4, B, C), the FD
f :AB - C, and the following four instances of & (a "="
means null).

T Tg
A B | C A B|C
ay | by | — ay | = | €1
az | bz | €z az | bz | cp
an - Ca an ba C
T3 T4
A B 5 A B [
ay | = | ¢t = | by | ez
ay | by | oy ay | by | ez
ap = = az | by Ca

We use Proposition 1 (ty represents the first tuple in
each instance).
Fty m1) = true
f(ty 72) = true because of [T3]

f(ty, 73) = true because of [T3]

Assume that for the instance 74 the domain of 4 has only
two values: ¢, az.
£ty 74) = false

because of [T2]

because of [F2]

{1] The functional dependency f bolds in 7 iff f holds in
every (two-tuple) relation in 27T.

[2] The functional dependency f is implied by a set of
functional dependencies F' iff f is implied by F in
the world of two-tuple relations.

These observations allow us to consider only two-
tuple relations in proofs about functional dependencies
without loss of gererality. We will see, however, that
these observations are not always correct when nuii
values are allowed.

4. Functional Dependencies in Relations with Null
Values

From this point on, we assume that nulls are
allowed in relation instances. An example of such an
instance is figure 1.3. To extend the notion of a funec-
tional dependency (more precisely, its interpreiation as
a function) we use the least extension rule. Same
definitions are needed first. Let ¢ be a tuple which may
have null values. We define a completfion of ¢ as a tuple
t' in which we substitute for all nuil values and ¢ agrees
with ¢ in all the values excepl where a value in ¢ is nuli
The set of all completions AP of a tuple t on a set of
attributes R is weli-defined. ¥

AP(L.R) = {t' | t' is a completion of ¢}

Similarly, we define AP (r.R), the set of all completions
of r projected on R.

AP(r,R) = {r | t€r if ' is a completion of ¢, ter |

We are now ready to present the extension of the
interpretation of a functional dependency f: X-Y. Letr
be a relation and ¢ a tuple.

(t.7) if all values in
t[xY) r[x7]

are not nuli

Foltr) =

lub {f(t'.7)| otherwise

t'€AP (t.XY), 7 €AP (r,.XY)}

We use f° to denote the extension of f, but from now cn
we wili drop the "®" for simplicity. The above definition
is refined on a case-by-case basis (considering the null
as one of the {[X'] values or as one of the ¢[¥] values) to
establish necessary and sufficient conditions for an FD
to take a particular truth value. Before we present
these conditions formaily, we give an informal explana-
tion. Recall that the value of f(t7), with a null appear-
ing in t[XY]. is false (true) only when it evaluates to
false (true) for zll substitutions of the null value. For
the discussion below, the concept of an attribute
domain and its size is important. Demains are finite and
are assumed known. Further restrictions on domains
will be presented and justified.

Assume first that the null appears in ¢[¥] and thzt
Y has only one attribute. Trivially, 7{¢.7) = fruc when-
ever ¢[X] appears uniguely in 7. When t[X] is not
unique in 7, say £{[X] = ¢'[X] for some tuple ¢ in 7, we
may not claim that f(f,r) = true. It is possible to sub-
stitute the null in ¢[Y] so that f(¢7) is False with the

t The name AP is not arbitrary. t comes frem the fact that the

completicns of { are the non-nuil tuples that ¢ epprozimaties in the
lattice of tuples.

enter for Digital Economy Researcl

ng Paper [S-81-08

substituted wvalue (e.g. any value that makes
TY]=¢[Y]). However, we also may not claim that
f(t.7)=false since we can make it {rue if we substitute
t[Y] with ¢'[Y]. Hence, depending on how we substitute
for the null the I'D is either true or false. Since we do
not know what the actual value of the nuil is we take the
lub {true, false |=unknown as the value of the FD on ¢
and 7.

Assume now that the null appears in ¢[X] (X can
consist of more than cne attribute). The dependency
will evaluate to {rue in two cases. First, there is no
tuple in 7 whose projection on X is a completion of £[X]
(i.e. anytime we substitute for the nuil we end-up with a
unique ¢[X] among the tuples of 7). In this case,
f(t.7)=true trivially. Second, for each tuple t' in r such
that #'[X] is a completion of t[X]. we also have
t'[Y]=t[Y]. There is exactly one case where the value
of the FD on { and 7 is false because of a null in £[X].
This case arises when we run out of domain values, while
attempting substitutions of this null, while at the same
time trying to keep the dependency not false, i.e. a sub-
stitution for which the dependency is ¢{rue. For this to
happen, it must be the case, first, that all completions
of ¢t appear in 7. (Otherwise, we may substitute for the
niull and create a completion that does not appear in 7,
thus ensuring that f ({7)= False.) In addition, since for
all such completions we must ensure that the depen-
dency is false, it is required that the ¢{[Y] value is
unique among all the #[Y] values where ¢'is a comple-
tion of ¢ that appears in 7. This is the only case where a
nuil in a tuple ¢t makes the value of f(f,7) identically
equal to false. Formally:

Proposition 1
Let R be a relation scheme, X, YCR, such that
XnY=¢ and Xu¥=R, f:X-+Y be a functional
dependency in R, 7 be an instance of R, and £ a tuple of
7. Assume that r—{i{{ has no nulls. Alternatively, con-
sider all completions of r—{t] iteratively.
f(t.7) = true iff one of the following conditions holds
[T1] ¢[XY'] has no nulls and there exists no #' in 7 such
that £'[X]=¢[X] and ¢ [V]=t[Y].
[T2] t[Y] has a null, ¢[X] has no nulls and there exists
no ¢ in 7 such that ¢[X]=¢#[X].
[T3] ¢[X] bas a null, ¢[Y] has no nulls and either no
completion of t[X]is in 7, or if a completion of £ [X]
isin7, say £'[X], then t[Y]=¢'[V].

f(t,r) = false iff one of the following conditions holds
[F1] ¢[XY] has no nuils and there exists a tuple ¢' in =
such that ¢[X]=t'[X] and ¢t [Y]=t'[Y]
[F2] t[X] has a nuil, t[¥] has no nulls and both:
a.- all completions of ¢[X] appear in7,
b.- ¢[¥] is unique among all those completions.

f(t.7) = unknoun in all the other cases.

Examples of the above are given in figure 2. We say
that a functional dependency f (sirongly) holds in an
instance 7 if f{{,7)=frue for every tuple ¢{ in . In addi-
tion, we say that a functional dependency f
weakly holds in an instance 7 if f ({7)= false for every
tuple ¢ in 7. The second notion of salisfiability is
justified intuitively since, in a framework of incomplete
information, it is natural to weaken our expectations
and allow for a margin of uncertainty in our semantic
rules (as long as this does not lead to a certain denial -
contradiction - of the constraint).

We now come to a separate issue which is the con-
sideration of rules under which uncertain situations
take specific interpretations when the requirement of
satisfiability is enforced. That is, rules that guide us in
substituting nulls. In this section we only informally
discuss the rules. Their formalization and the examina-
tion of their properties is presented in section 8. A nul!
may be substituted only if there is exactly one option
making the dependency {rue. For instance, if the nuil
appears among the £[Y] values, £[X] has no nulls and
there is a tuple ¢ in 7 with ¢[X]=¢'[X], we may substi-
tute the ¢[¥] wvalue with the ¢[Y] value. The
justification of this substitution is two-fold. First, the
resulting tuple has more information than the previous
one. Second, and most important, this new information
is not arbitrary - it is the only piece of information that
makes the dependency érue. The value which is substi-
tuted is the only value that a user can insert without the
creation of an inconsistency. For substituting nulils in
t[X] the rule is more complicated and, unfortunately, is
domain-dependent. One of the following two conditions
must be met for such a substituticn to take place.

(1) All completions of t[X] appear in 7, £[Y] is not nuli,
and there exists exactly one completion of t[X] in
7, say £'[X], such that £#[Y]=¢t[Y]. The null in £[X]
may be substituted with the corresponding value in
¢ [X].

(2) All completions of ¢t{X] appear in 7 except one, ¢[¥]
is not nulil, and for all tuples #' in 7, such that ¢'[X]
is a completion of t[X], ¢'[Y] has no nuils and is
distinct from ¢[Y]. The null in £[X] may be substi-
tuted with the value of the domain of X that does
not appear in 7.

Both conditions are not easy to test. In addition
they seem unlikely to occur. For practical reasons, it
may be better to leave the database incompiete, that is,
prohibit substitutions of nulls in £[X].

Before the conclusion of this section, we discuss
the two observations we made in the previous secticn
about two-tuple relations. The observations allow us to
determine whether a dependency holds or is inferred by
just looking at two-tuples. It can be trivially verified
that both observations are valid when we consider the
strong version of FD satisfiability. On the other hand,
they are both false when the weak notion is considered.
A counter-example of the first observation is given in
the last instance 74 which appears in figure 2. Note that
any two-tuple combination in r,, considered indepen-
dently, makes the FD f not false. But the dependency
is false in the whole relation. To ensure that the obser-
vations are valid for both notions of satisfiability we
require that tuples containing nuils, which make a
dependency false for every possible substitution, do not
appear in 7. The test to find these tuples is verv hard.
being domain-dependent. On the other hand, we now
argue that, in practice, it is unlikely that such tuples
will appear in a database. For the simple case, where X
has only one attribute, this argument is intuitively
justified. The "bad” case [F2] of proposition 1 reguires
all the domain values of the X attribute to be in r and
any tuple which has a null for X to disagree in the I
values with all tuples in . This amounts to the require-
ment that the number of actual determining objects is
smaller than the number of determined objects. That
is, a company gives more salaries than the number of
employees it actually has! In a carefully designed data-
base we would expect the domain of employee numbers
to be sufficiently large - say, larger than the number of

iter for Diettal Economy Research

the maximum number of tuples that may be inserted in
the relation. Unfortunately, we can not apply our intui-
tion as smoothly when X has more attributes. After con-
sidering inference rules for FIs in the next section, we
present in section 6, ways for tesling efficiently weak
and sirong satisfiability for a set of I'Ds in a relation 7.

5. Inference Rules for Functional Dependencies

One of the major applications of FDs is in the theory
of normalization and schema design. In this section we
will show how normalization theory and relational
schema design can be applied in the presence of incom-
plete information. The examination of inference rules
between FDs and in particular the establishment of
sound and complete inference rules are of prime impor-
tance for this purpose. For the sake of simplicity in
proofs (especially completeness proofs) we will obtain
our results by reduction to a system which is equivalent
to our system of extended FDs. We will first show an
equivalence between our system and a well-axiomatized
propositional logic system. The equivalence is between
functional dependencies in cur system and implication
statements in the propositicnal iogic. This equivalence
will allow us to conclude that rules which are sound and
complete for the implication statements have the same
property for functional dependencies. Our approach is
similar to that of [Fagin 77], but in a different environ-
ment.

System-C is a propositional logic system for unk-
nown outcomes [Bertram 73]. It is a modal system
which is not truth-functional. A unary operator, V,
which reads as "necessarily true” is added to the tradi-
tional operators of negation, disjunction, etc. C has
been axiomatized. A detailed justification and explana-
tion of the axioms is beyond the scope of this paper. We
only note that some of the axioms comprise a set of
axioms for classical two-valued logic, thus ensuring that
everything provable in two-valued logic is also provable
in C. The rest of the axioms give to C the modal
interpretation and, in particular, the last axiom res-
tricts C to a system of "logical necessity".

C has an unusual evaluation scheme { that uses the
notion of two-valued tautologi=s. Let P{p, pa ..., D)
be a well-formed formula (wff) in C, expressed in
terms of its atomic terms, and a = {a; | i=1,2,...,n} an
assignment of truth values to py P2 ..., Pn. The
evaluation of P under a, denoted by V(P «) or simply
V(P) where a is understood, is defined by the following
recursive rules:

1.- If P is a tautology in the classical two-valued logic
then V(P) = true
2.- if P=p; for some i, Lthen V{P)=a

3.- if P=-=@Q then
true if V(Q)= false

V(P) = false if V(@)= true
nknoun otherwise

t An evaluation scheme is a function ¥ from the set of propositional
variables to the set of truth values {fTue, false, unknouni.

4- fP=g A S ibken

true if ¥{Q) and V(S) ere true
V(P) = \false if V(Q)or V(S)1is false
nknown otherwise

5.- if P =V@Q tihen

true if V(Q) = true
alse otherwize

V(P) =
Rule.1 is always applied first and it is the reason
why C is not truth-functional. The example here is p\/—
p. It is a two-valued tautology, thus having the value
true in C. But if evaluated without rule.1 it has the value
unknoun. We now present a series of lemmas. The
proofs are very similar tc the one's in [Fagin 77] and
they all appear in [Vassiliou 80].

Lemma 1 [Vassiliou 80]

The function V¥ can be derived as the
least exrtension of the evaluation function ¥ in a classi-
cal two-valued logic system.»

Corgllary
The system we are using and C are equivalent in
tkat they have the same evaiuaticn scheme. «

A C-tautology is a C wifl which takes only the value
true (under V). A C-theorem is a wff that is derived frem
the axioms cf C. In {Bertram 73] it is proven that, given
the particular evaluation scheme V, every C-tautology is
a C-theorem and vice-versa (soundness and complete-
ness). The reason for introducing C will now become
apparent.

Implication is defined in the regular way: P => § :=
— Pv/ Q. We will consider a special type of implicational
statement. Let A, B, A; denote propcsitional variables,
X, Y, Z denote conjunctive terms of propositicnel vari-
ables, i.e. X =4 A B or simply X = AB. The implica-
tional statements of interest (denoted by f) have the
form: X=>Y. Notice the similarity with functicnal
dependencies. From now on we will use the terrmn "impli-
cational statement” for any statement of this form. An
implicational statement f is logically inferred by a set
of implicational statements F = {fy, fa ..., fa} if for
every assignment of truth values a that gives to all f; in
F the value true a(f) is also true. Similarly, we can
define the notion of weak logical inference where we
relax our requirements by having a{f) = - false.

Lemma 2 [Vassiliou 80] {(Implicational Cempleteness)

The following inference rules are sound and com-
plete for implicational statements in C.

[11] if YSX then X=>Y

[12] f X=>Y and Y=>Z then X=>Z
[13] f X=>¥ and X=>Z then X=>YZ
[14] if ¥=>YZ then X=>Y and X=>Z

As we noted befeore, implicational statements
resemble, syntactically, functional dependencies. With
the above lemma we establish a set of inference rules
that produce all and only implicational statements. We
now proceed to the major result, which is to show that
the resemblance with functional dependencies is nol
coincidental. Rather, it is an equivalence.

Lemma 3 [Vassiliou 80]

Let o be an assignment of truth values, s = {t'] a
two-tuple relation, X—Y a functional dependency and
X=>Y the corresponding implicational statement. For
every A in X Y suppose the following holds:

t[al=¢[A] iff a{d)=true
t[A] = t'[A] iff ald)= false
t[4] or t'[4]=null iff e(d4)=unknown

then: X—Y strongly holds in s ifl a(X=>Y)= frue

Lemma 4 [Vassiliou 80]

Consider the worid of two-tuple relations. A fune-
tional dependency X =V is inferred from a set of ['Ds F
ifi X=>Yis alogical inference of /. =

The above two lemmas show that there is an
equivalence between funectional dependencies (with null
values) and strong satisfiability in two-tuple relations
and implicational statements in C. As we have shown
from the previous section the restriction "two-tuple
relations” is only necessary for technical reasens in the
case cof sirong satisfiability. Because of this equivalence
and lemme 2, the following is a trivial conseguence.

Theorem 1

Armstrong's inference rules are sound and com-
plete for functional dependencies defined on relations
with nuils and the requirement of strong satisfiability. =

With this result we may safely talk about decompo-
sitions and the theory of normalization applying even
when nulls are allowed in relation instances. As was
demonstrated in section 4, we canncot claim theoreti-
cally the same result in the case of weakiy satisfiable
dependencies {(where we accepl a dependency as long as
it is guaranteed not to be false). On the other hand, if
we impose the state and domain-dependent condition on
allowable nulls, we show in the next section that the
result holds for weak satisfiability in relation instances
which we call "minimally incomplete”.

6. Satisfiability for a Set of Functional Dependencies

In section 4 we discussed satisfiability for a single
functional dependency. When we have a set of depen-
dencies F, no dependency in F can be tested for weak
satisfiability independently from the others. Conse-
quently, Armstrong's inference rules do not hold. The
foliowing example illustrates this fact. Consider the

relation scheme R{A4, B, C). the FDs:
f1:A=B, fz:B-C, and the instance r:
T
Al B | C
21| — | &1
@ - Co

The functional dependencies f, and f, evaluated

e jently on 7 take the value unknown (they are
weakly satisfied). This is not the case when the depen-
dencies are evaluated simulianeously. For B-C to

hold in 7, it must be that the two B-values in 7 are dis-
tinct. Therefore, A=H8 is false. Informally, when an
FD is satisfied in 7, something more may be known about
the possible values that the nulls in 7 represent. Hencec,
the assumption that a null can be substituted with any
domain value is not valid. This section deals with the
above shortcomings.

A parenthesis concerning our notation. While X
may have several atiributes, say X={X Xz - X1 we
compare X-values directly with nu!ll. For a tuple ¢,
t[X]=null implies that one of the X; values is null
Similarly, ¢[X]#nuwll implies that no X; attribute value is
null. We introduce a new type of constraint.

Definition 1

A Null-Equality —Constraint, (NEC), is a state-
ment to the effect that two null values are equal (i.e.
must take the same value in any substitution). For tu-
ples ¢;, {;, and attributes 4, B, a NEC is denoted as:
NEC: t{AJ=t,(B]. «

Null equality constraints introduce eguivalence
classes for null values. We now formalize the rules that
allow for non-arbitrary increase of knowledge about null
values in a relation where FDs are defined.

Definition 2

Given a relation R, a functional dependency XY
embedded in R, and an instance r of R, the
Null —Substitution —Rule (NS-rule} corresponding to the
FD X-Y is: If for two tuples ¢, {; in 7 we have
4IX]=t;[X]#null or the NEC: t,-[X}:'-—*t,-fX:[, then:

(a) if only one of [Y], ¢[¥]is null, then this null is sub-
stituted with the non-null value of the other;

(b) if both &{Y] and t;[Y] are null, then the null equality
constraint NEC :4[Y Ji=t;[Y] is introduced. =
Proposition 2

The NS-rules can only be applied a finite number of
times on a relation instance 7. To apply all rules takes
time polynomial on the size of the relation instance.

Proof

(a) Finiteness

Initially, 7 has a finite number of constant values and a
finite number of null values with each null participating
in a distinct equivalence class. The application of a rule
never introduces a mnew constant value. Also, it may
reduce but will never increase the number of
equivalence classes (i.e. when a NEC is introduced). In
the sequence of instances 7' produced after an NS-rule
application, all elements are distinct. This suffices to
show that the rules are a finite system.

(b) Complexity Analysis

The NS-rules are applied in several passes. In each
pass, all NS-rules are applied for as many tuples as pos-
sible. In applying the NS-rule A=Y the instance r may
first be sorted in time O(z-n-logn) where z is the
number of attributes in X and n is the number of tuples
in r. When sorting, null values have the lowest pre-
cedence and are always distinet unless they belong to
the same egquivalence class. In this last case they
appear together in the sorted relation. To apply X-»Y in
a pass requires the equation of Y-values in possibly
more than one tuple (seame equivalence class). Hence, a
pass over the Y-values must be made for each change.
This takes time 0{(n®). Since all rules are applied in
each pass, the time required for a pass is
O(|F | (n?+z-n-logn)) or, O(|F |-n?) for z substantially
smaller than n. When we start in an instance with p
attributes we have at most n-p distinet symbols (cen-
stant values and nulls). Every pass reduces the number
of distinct symbols, hence we have at most n'p passes.
Therefore, no rule can be applied after O0(|F|-n%p)
time. t»=

t According to a recent resuit by [D?wm:y et al BO] the time com-
plexity of the test is O (| F |'n-log(| F |'m)).

enter for Digital Economns

Working Paper 18-81-08

Given a relation R and a set of FDs 7 embedded in
2, we say that an ,instance 7 of R is
minimally —incompicie if no NS-rule can be applied on
r. The intuitive miezning of a minimally innomziete reia-
tion state is that nothing more can be said about the
nulls in thnis state. The importance of such states is
demcnstrated with the theorems that follow. The first
two theorems presenl methods for Ltesting FD-
satisfiability. The test is done with an algorithm that
works on relation instances where no nulls are present
(Figure 3) and runs in time O(F |'n-logn}. The third
theorem makes the connection between "unigueness” of
a minimally incomplete state and satisfiability of FDs.
Thiz shows that the set of NS-rules is a finite Church-
Rosser system.

Theorem 2

Let R be a relation scheme, F a set of F'Ds embed-
ded in R, and r an instance of R. Consider the applica-
tion of the algorithm TEST—FDs with the following con-
vention for null values:
Convention: Any equeality comparison where a null is
involved is positive. Also, any inequality comparison
where a null is involved is positive, unless both values
compared are null and they belong to the same
equivalence class.
Fis strongly —satis fred in 7 iff TEST-FDs(T F) = yes

Proof.

The convention made implies that when testing an FD
X =Y on Lwo tupics {; and {; we have the folicwing: if one
of £,[X]. ¢;[X] is nuil then the comparison (¢,[X |=t,{X])
is true. If the previous comparison is true then so is the
comparison (£[V]=#£[Y]), unless there exists a
NEC:;[T]:=¢;[Y] (again we assume that at least one of
4[Y) &[Y] is null). It may seem that with the above
convention we have a problem in applying Lhe algorithm
TEST-FDs. Two values that at some point were com-
pared and found equal may at another point be found
not equal. For I' not to be strongly satisfied, it suifices
to find @ completion of 7 where the FDs are violated. In
cornparisons we consider all possible compietions.
Since Armstrong's rules are sound and complets we can
test FDs for strong satisfiability independently. But
notice that for the same dependency X-—=! the same
attribute values are never compared both for equality
and for inequality when TEST —FDs is applied.

if-part

The assumption here is that TEST-FDs{r F) = yes. We
show that & is strengly satisfied in 7. Assume that there
is an FD X~=Y which is viclated in 7. Thal is, for two
tuples ¢,, ¢; in 7, there exist completions ¢, t';- such
that t"[X]J:t',-[X] and £;[Yi=t;[Y]. Trivially, when
TEST-FDs is applied on 7, the comparisons between the
non-completed X and Y values of i; and {; are both posi-
tive, thus TEST -FDs{r,7) = no. A contradiction.
only-if part

Suppose that F is strongly satisfied in r and that
TEST-FDs returns with a no when applied on 7 with our
coeaveniion for nulls. The centradici i clear. Any
time the eqralily comparison for the XK-values of two
tuples and Lhe inequalily comparison for the Y-vaiues of
the same tuples arc found positive, a complztion of 7 is

7 Another problem iz sorting the null values under the abeve con-
vention. Alternatively, another version of TEST--#0s may be
used, where the relalion is not sorted and each tuple is Le
zgainst every other tuple in the relation. The running lirme iz now
O(IFin®).

Figure 3 Testing for FD-satisfAability

Test a set of FDs F in T for consistency.

TEST_FDs (pararmeters: ,) returns(boolean)

begin
comment: comparison is based on
lexicographical order
comment: read_ nezrt_tuple(r) readsthe next
tuple in crder from 7 and returns E0F
if no more tuples.

for each XY in £ do
begin
sort relation 7 on X
tpsg+Tead_next _tuple(r)
while t.ﬁ”“ e EOF do
begin
byezt +ead_mnezt_fupie(r)

begin
if dopnt [Y]# it [V]
then return{no)
else f,,.:+read_nezi_tuple(r)
end
L pirst * Enast
end
end
return{yes)
end

while tnp=t [X [#Z0F and énaz[X 1580 [X] do|

Complexity Analysis

The algorithm runs in 0(1F |-n-logn) time, where n
is the size {number of tuples) of » and !F| is the
number of dependencies. Each FD is tested in time
nilogn., the time to sort the relation.

Additional Assumpticns. If bucket sort is used, sorting
takes time O(n p) where p is the number of attributes
in X for a dependency X-VY. Furthermore, if there is
only one dzpendency (s.g. BCNF with one key), and tke
relation is alregdy sorted, the test reguires time linear
on the relation size.

Center for Digital Eco
Stem School

MO

it Bus

Working Paper IS-8

tesearch

illustrated where the FD X -+Y is violated. =
Theorem 3
Let R be a relation scheme, F a set of FDs embed-
ded in R, and v a minimally —incomplete instance of R.
Consider the application of the algorithm TAEST-FDs
_ with the following convention for null values:

Conwvention: Any ineguality comparison where a null is
involved is negative. Also, any equality comparison
where a null is involved is negative, uniess both values
compared are null and they belong to the same
equivalence class.

F is weakly —satisfied in 7 iff TEST-FDs(7,F) = yes
Proof.

As in the previous theorem, we consider the problem
that may be introduced with our convention for null
values. It may be that the same two values are com-
pared and found egual at some point and at another
point not equal. We show that when TEST-FDs is
applied in a minimelly incomplete state of 7 this never
happens. Consider two tuples { and #; in 7. Suppose
that £,[X] is null and ¢[X] is not. If X appears only on
the left of dependencies, we have no problem
(TEST-FDs makes only equality comparisons on X
values). Similarly for X appearing only on the right of
dependencies. Consider the case where X appears con
the left of a dependency X -} and on the right of a
dependency Z-X. In testing X-+Y we assume that
t;[X]=¢;[X]. In testing £-X, we wiil only consider X-
values when ¢;[Z]={,[Z]. If the state is minimally
incomplete, we wouldn't have ¢,[X] null {(by application
of the NS-rule). The case of both 4[X] and £[X] being
null is treated with similar arguments. In this case the
outcome of the evaluation depends on whether or not
the nulls belong to the same equivalence class. We also
note that the convention allows for sorting. Null values
are considered distinet and their order is not impor-
tant. (They are never equated unless they are in the
same equivalence class in which case they appear
together.)

if-part
The substitution of nulls with different values from the
one's appearing in 7 illustrates a completion of r where
all FDs are satisfied.
only-if-part
We show that if there is a completion of » where the FDs
are satisfied, then TEST—FDs(r.F') = yes. Suppose 7’ is
such a completion. If 7'8ST—FDs has a no answer there
must exist two tuples £ and {; in 7 such that for a func-
tional dependency X-Y the comparisons (;[¥ |=t,[X])
and (#[Y]=¢;[Y]) are both positive. The first compari-
son is positive under our convention when both #[X],
t;[X] are equal constants, or, both are nulls in the same
equivalence class. In this last case, they both have the
same completions in 7' (as in any other completion of 7).
Similarly, for the second comparison to be positive it
must be that both ¢;[Y] and ¢,[Y] are distinct constant
values. It follows immediately from the above argu-
ments that the FD X -1 is violated for the two tuple
completions in 7. A contradiction. =

Note that the test for strong satisfiabilily is less
expensive than the one for weal satisfiability sinece it
does not require a minimally incomplete instance. This
comes as no surprise - very few relation instances are
strongly-consistent.

The NS-rules applied in a different order may result
in different minimally incomplete states. This is

illustrated with an example. Consider a relation R with
three attributes, the dependencies 4 +5, C~5, and the
instance 7 (figure §). Applying the rule A -8 first we get
a minimally incomplete state . On the other hand if we
first apply C—+5 we get a different minimally incomplete
state 7.

T i 2l
A B | C A E | C A B c
ay by C € b: C1 @y by Cy
ag b Cg az b2 Ca Ta ba Ca
2| - Ca ay| by | ¢z ay | b2 c2
Figure 5

From definition 2, an NS-rule for an FD X~Y is
applied if there exist tuples ¢ w such that ¢[X]=u[X]
and one or both of £[Y], u{Y] is null. We now extend
the notion of an NS-rule application and we assume that
a rule may be applied even if none of ¢[Y], w[Y]is null,
but as constants they are distinct. In this case they are
both replaced by the inconsistent element (the nofthing
data value). This triggers the replacement with nothing
of all constants that are equal to them. In our example,
if A=A is applied first producing r', then =2 can be
applied en 7' resulting in an instance with all values in
the B column equal to notaing. It is easily observed
that the application of the rules in reverse order will
produce the same instance. The theorem below is pro-
ven in [Graham B0]

Theorem 4 [Graham B0]
Given a relation scheme R, a set of FDs F, and an

instance 7 of . Then,

(2) The application of the NS-rules will produce a
unigue minimally incomplele instance (the NS-
ruies constitute 2 Church-Rosser system).

(b) F is weakly-satisfied in r iff there is no nolhing

value in the resulting minimally incomplete in-
stance. =

For the procf of the thecrem the notion of
congruence closure is vsed [Downey et al 80]. The con-
slruction of the graph from the instance r for the pur-
pose of applying congruence closure 1s reversed. The
result is a relation instance (possibly with nothing
values). This instance is unigue z2né is exactly the
minimally incomplete instance preduced from the NS-
rule applications. The thecrem above verifies that in
any minimally incompletie instance, produced from NS-
rules application, the test for satisfiability will deter-
mine correctly whether the FDs are satisfed.

7. Concluding Remarks

Functional dependencies were examined in the
light of incomplete information in a database. Our
results are both encouraging and. in some respeci,
discouraging concerning the possibilily of aliowing nuiis
with no restrictions in relations. Two notions of TD
salisfiability were iniroduced. The first is the regular
one which requires that an FD takes the truth-vaiue frue
when it is interpreted as a predicate on relation
instances. In addition, a weak notion of satisfiability was
defined which allows for uncertainty akbout the validity
of an FD as long as this uncertainty does not introduce

/0 Center for Digital Economy Researcl

ng Paper [S-81-08

contradictions. It was shown that a null value does not
have an impact on the validity of an FD if it appears in
speecial places. This is because there exists a substitu-
tion of this null {possibly all substitutions) which results
in having the dependency satisfied. Furtherrnore, to
find these cases of satisfiability is not computationally
hard.

On the other hand, there are some extreme cases
where all substitutions of the null result in inconsistent
states. This oceurs with Lhe weak notion of satisfiability
and domain-size restrictions. The test to find such
cases is domain and state-dependent, thus having an
unacceptable cemplexity for practical consideralions.
It was argued that in practice the above extreme cases
are unlikely to appear, provided that the dependencies
are carefully defined (e.g. on attributes with large
domains).

Weak satisfiability seems to be the more important
and interesting notion from a praclical peint. Data-
bases are usually "overconstrained”. That is, there is a
large number of semantic constraints (rules) which
would make sense for a database. However, database
systerns do not usually have the ability {o maintain all
these constraints. The test of constraint validity n a
database instance, apart from being prohibitively
expensive, results mainly in verifying that most of Lhe
data is "cirty”. On the other hand, null values and weali
satisfiability allow consiraints to be valid in more
instances.

A basic result of this paper is the verification for
extended FDs of the soundness and completeness of the
same inference rules that were sound and complete for
FDs with no nuils. This allows us to conclucde that all
work on normalization, decomposiiion, eic. where [Ds
are involved can be applied directly in our {ramework of
incomplete infermation.

We now discuss the importance of our results taken
together with on-going research. As was mentioned in
the introduction, the universal relation assumption is
questioned both on practical and theoretical grounds.
With our work we have preovided a partiael reply to the
practical attacks on the possibiliiy of a universal rela-
tion instance. More realistic instances may now be per-
ceived; the ones where nulls are zllowed. In [Bernstein
and Goodman 80] it is shown that the requirement of
having the universal relation assumption defeats the
purpose of normalization, which is to avoid update
anormnalies. [Bernstein and Goodman 80] attempted the
use of nulls te overcome the anomalies, but decided
that for each semantic they tried, certain bizarre
behavior was forced, It is our conjecture that a mure
careful approach to null interpretation and treatment,
like the one we presented hers, contributes to tne
atternpts to bridge the gap between Lhe static (normali-
zation) and the dynamic (medification) properiies of the
database [Graham and Vassiliou 80]. A "weaker” versicn
of the universal relalion assumption is conceivable that
allows for universal instances (with nulls) where the
dependencies are cnly weakly-satisfied. In addition to
the work reported here, more research iz nesded on the
semantics of the ways a database acquires information.
This acquisition may be internal (non-ambiguous substi-
tution of nulls), or external {modificaticn operalicins by
the users).

/!

References

[Beeri et al 78]
Beeri C., Bernstein P.A.,, and N.Goodmzn, A
Sophbisticate’s Introduction to Data Eeze Normali-
zation Theory, Froceedings, 4th Initernaiioncl
Conference on Very Large Date Bases, iWesi Berlin,
Germany, September 1978, pp. 173-124.

[Bernstein and Goodman 80]
Bernstein P.A., Goodman N., What Does Boyce-Codc
Normal Form Do?, Proceedings, 6ih Internationcl
Conference on Very Large Data Bases, Montreal, Ca-
nada, October 79305,

[Bertram 73]

Bertram B., A Logic for Unknown Outcomes, Dept.
of Computer Science, Rutgers, The State University
of N.J., CBEM-TM-35, December 1973.

[Codd 70]

Codd E.F., A Reiational Model of Data for Large
Shared Data Banks, Comm. ACM 13, &, July 19765,
Pp.377-3.

[Codd 72)

Codd E.F., Further Normalization of the Data Base
Relational Model, in Daia PBase Systems, Courant
Computer Science Symposium §, Prentice-Hall, En-
glewoed Clijffs. N.J., 1972, pp. 33-64.

[Codd 73]
Codd E.F., Understanding Relations, (insiallment
no.7), ACM SICMUD FDT Bulletin 7, 3-4, 1975,
pR.23-28.

[Date 77]

Date C.J., An Introduction to Data Base Systems,
2nd ed., Addison-i¥esiey, Reading, M4, 1977.

[Downey et al BO]

Downey P., Sethi R., Tarjan P.E., Variatiors on the
Common Subexpression Froblem, J. ACM (to ap-
pear,, 1950.

[Fagin 77]
Fagin R., Functional Dependencies in a Relational
databasc and Propositional Logic, {BM J. of Res.
and Dev., Val. 271, No. 6, Nov. 1977, pp. 534-344.

[Graham 80]

Graham M., On the Church-Rosser Property of the
Tableau Chase unpublished manuscripé, 19380.

[Graham and Vassiliou 80]

CGraham M., Vassiliou Y., Weakening tke Universal
Relation Assumption, (working paper), 1530

Center for Digital Eco
Sterm School of Bus

Working Paper I5-8]-08

MO

tesearch

[Lipski 79]
Lipski W. Jr., On Semantic Issues Connecled with
Incomplete Information Databases, ACYM Transac-
tions On Database Sysiems, Vol 4, No. 3, Sep-
termber 1979, pp. 262-286.

[Stoy 77]
Stoy J.E., Denotational Sercantics, the Scolt-
Straychey Appreach in Programmiog Language
Theory, MIT press, 1377.

[Vassiliou 79]
Vassiliou Y., Nuil Values in Database Management -
A Denotational Semantics Approach, ACH,SIGH 0D
International Symposium on Management of Dale,
May-June 1977, pp. 162-1539.

[Vassiliou 80]
Vessiliou Y., A Formal Treatment of Imperfection
in Database Managementi, Ph.0. thestis, Universily
of Toronto, 1380,

{ &

Center for Digital

Stern School of Business

W

18

3

