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Abstract 
Functional dependencies play an important role in 

relational database design. They are defined in the con- 
text of a single relation which a t  all times must contain 
tuples with non-null entries. In this paper we examine 
an extension of the functional dependency interpreta- 
tion t o  handle null values, that is, entries in tuples that  
represent incomplete information in a relational data- 
base. A compiete axiomatization of inference rules for 
extended functionai dependencies is also presented. 
Only after having such results is it possible to  taik about 
decompositions and normalization theory in a context of 
incomplete information. Finally, we show that there are 
several practical advantages in using nulls and a weaker 
notion of constraint satisfiability. 

1. Introduction 
Work on relational database design started soon 

after the publication of the pilot papers on the rela- 
tional model [Codd 7C]. [Codd 721. Normalization, which 
is a relational schema design process, centers around 
the notion of data dependencies, a purely syntactic 
notion, that  has been introduced t o  c a p t ~ r e  semantics 
in a relationa! database. Tnese dependencies are used 
as  guidelines for the design of a relational schema which 
is conceptually meaningful and is free of certain update 
anomalies [Date 771. The theory of dependencies, in 
particular of the functional ones, has been studied in 
depth [aeeri e t  a1 781. 

Data dependencies are defined between attributes 
that  belong to a single relation. As a starting point 
then, we need to assume tha t  the portion of the real 
world that  we wish to  represent via the relational model 
can be modelled with one relation which contains all the 
attributes, This relation is called the unive?-scl relation. 
Sound and complete ruies from which other dependen- 
cies are logically inferred may be  considered only under 
this condition. Furthermore, a t  the instance level, any 
multi-relation database produced by a normalization 
pracess can be thought of as a coilection of projections 
of a universal relation. The above is called the Unavw- 
s a l  Relation Assumption and is present, implicitly o r  
explicitly, in any work on relational database design 
which uses the theory of dependencies. We note that  
the assumption has two aspects. First, we have :he 
requirement of the existence of a universal relation 
which can mode! the real world. The second aspect is 
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the requtrement that  any instance of a multi-reiatian 
database which also models the real world corresp3ncs 
in a precise and restrictive way to an lnstjtnce of :he 
unlrersal relation. 

The validity of this fundamental assumption has 
been questioned both on practicai and recentiy [Bern- 
stein and Goodmac 891 on theoretical grounes. Tat 
theoretical attacks concentrate on the second cspect of 
the assumption where it ia  shown that  the benefits cf 
normalized schemas ( e . ~ .  no update anomalies) tl?e icst 
when the assumption is made. From a practicai point, ir 
is not realistic to assume that  a universal reiarior, 
instance will have ail rows filled with vaiues, either in its 
initial instance or after being recovered (via joins) fror. 
decompositions. I t  is therefore necessary to  fill t :?~ 
"gaps" which are created 'in the universal xelation 
instance with some special values, called null vaiues. 
These values are forms of iqcomplete information end 
ways to  t rea t  thern range from ru6imentary ones j e . ~ .  
zeros, values like any other) to more sophisticated ones 
[Codd 791. [Lipski 79j .  An overview of our work on the 
subject [Vassiiiou 791 appears in section 2. I t  is noted 
that  a!; the above reported. research considers only the 
retrieval aspects of the problem. That is, how q u e r i ~ s  
behave when nvil values are present iii the database. 
The general approach is to extend existing functiann 
and operations in order to have them defined on ~ ~ 1 1 s .  
Often. tke classical two-valued logic is abandoned f o r  
more appropriate n-valued logics and/or modal iogics. 

The semantic rules of a database (in our case the 
data depe~denc ie s )  are defined in a context of no nrrlis. 
In order to  allow for n7;lls we must careful* redefze 
dependencies (more precisely, tiieir interpretations) 
together with their requirements of satisfiaSility a112 
inference rules. The sat'sEability requirements give us 
a pattern of allowable nulls in a (universal) relation. 

In this paper, we extend the nction of a functional 
dependency (F3) interpetation to app!y to nzlis. We 
then present  satisfiability requirements and give neces- 
sary and sutficient conditions under which these 
requirements are  met. Finally, the properties of E'Ds 
are examined and inference rilies, w.hich are  s h ~ a n  t 3  
be sound and complete are  presented. We claim thaL 
only af ter  having such results is it conceivable to safely 
talk about deco~pos i t i ons  and normalization theory 
when nulls a re  allowed in relation instances. 

The next section briefly overviews the framework of 
our work. Functional depenciencies are  discussed ir 
section 3. In the fourth section, the interpretations of 
the dependencies are  redefined to apply to nulls, and 
conditions a re  presented for the FDs to meet 
satisfiability requirements. Section 5 examines proper- 
ties of FDs, specu7cally inference rules. In this section 
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we depart from our system to work with an equivalent 
but well-axiomatized propositional Iogic system. The 
technique i s  t he  same as the one used i;i [Fagin 771. 
Ways of efficiently testing for FD-satisfiabiiitjr are 
presented in section 6. In addition, the notion of a 
"minimally incomplete" relation instance is introduced, 
and tine rules for reaching such an instance are shown 
to constitute a finite Church-Rosser system. In our con- 
cluding remarks  we discuss the importance of our 
results and outline our on-going research aimed a t  
extending these results to include modification opera- 
tions. The connection with the universal relation 
assumption is also discussed. 

2. A Treatment of Null Values 

A formal treatment for two of the manifestations of 
a null value was presented in [Vassiliou 791. One can use 
null to represent  a value which exists, but is presently 
unknown t o  the  database. This type of null is called 
missing. Null may also be interpreted as  a value which 
is inconsistent - it  is known to the database a s  more 
than one value. We note that. even tho-ugh the latter 
null may in general appear in a database, it has no place 
in a database where certain semantic rules are reqzired 
to be valid. Therefore, we do not discuss the incon- 
sistent null in the present context, concentrating on the 
missing null which we call simply null. 

The inclusion of null in domains of database values 
presents complications when we consider the behavior 
of functions or operations on these domains. We use a 
uniform rule to  extend all the functions which has a sim- 
ple intuitive explanation. Since a null is an existing 
value, although unknown a t  present, it must represent 
one of the regular values in the domain. Any fu~c t ion ,  
which is evaluated on the null, will take a particular 
value in its range & if, for every non-null in the 
domain, the function evaluates to the same value. That 
is, for all values in the domain in turn, we substitute the 
null with one value and evaluate the function as usual. 
If all evaluations have the same result, it  means that  our 
incomplete knowledge is not essential for this function - 
it  does not mat ter  what the value represented as  null  
is. Otherwise. we are not able to  give a precise evalua- 
tion for the function. 

The above intuitive idea is supported theoretically 
by Scott's mathematied theory of computation [Stoy 
771. It is shown in [Vassiliou 791 that the introduction of 
the null  in a database domain makes the domain a Ed- 
t ice with an  approximation ordering. Null carries less 
information than all other domain values. Thus, it 
approximates all the other values. The extensions of all 
functions defined on these domains must be continuous 
according to the theory. One of these continuous exten- 
sions, called the least e z l a s i o n ,  is the theoretical for- 
mulation of our intuitive rule. Al l  values that the func- 
tion takes, when evaiuated on domain values, are col- 
lected and, according to the least extension rule, the 
best possible approximation to the correct value (least 
upper bound in the lattice of values) is returned. 

As a simple illustration, consider queries (functions 
from relation tuples to  truth-values) on the reiation 
R(name, marital-status). Assume that  the domain of 
marital-status has only two values "married" and "sin- 
gle", and that there is a tuple ("John", null) ir an 
instance of R. If ti:? query C: i:; "Is John merri,-.d?", r e  
evaluate the query for each of the rnarilal-status 
values and rve retirrn the least u p e r  bound of the two 

answers. In this case: Q("John'.. 
null)=tub fyes,nc j=u&noum. On the other hand, fs r  
the query Q' "Is John either n w r i e d  or single?", accord- 
ing to our rule: Q'("John".nullj=L~b !yes, yes {=yes. 

We note that  the use of such an evaluation rule has 
an unacceptable cornpiexity for practical cons~dera- 
tions. In [Vassiliou 791. algoriLhrns were presented fo: 
syntac: LIC - query transformations so that no substit~it;or.: 
arc necessary for the evaluation. 

3. Func t i cud  Dependencies and their  Interpretations 

Let I? be a relation schelne and .Y,Y be sets  O: 
attributes in 19 (not necessarily distinct) A f : 1 - - - 7 - ) - ?  

(FD) denoted by f X -, Y ,  or s~mp-j -  f As : 
statement about R For example, cons~der  the r e  at19- 
scheme 1n figure 1.1 and the statement 'Employees 
have only one salary and work in only one department 
The expresslon of this semantic rule ts t2e funzttond 
dependency E# -r SL,D+. kccord~ngly, tne interpreta- 
tton of an FD is a predzcate on Instances of R define; 
as? 

I jtme if for every t . t '  in r, either I [Xjr t ' [ ~ ] .  
or, if t [ X ] = t S [ X j ,  then f [ Y ] = i Z i Y ]  

p s e  in any other case 

P;e say that  f holds (or is sa t i s f i ed ,  or is true) in rl 

relation instance r if f (7) is equal to t m e .  Furtner- 
more, f is valid for R if it holds in all its instances. I t  is 
trivial to verify that  the functional dependezcies 
E# -+ SL,D# a ~ d  D# -, CT hold in the instance T of 
figure 1.2. 

For convenience, we now modify our notation to 
have f defined as a function m t h  two arguments, a 
tuple and a relation instance. Hence, 

( 

if for every t' in r, either t [ X l t t '  [XI, 
or, if f [ X ] = t ' [ X ] ,  then t [ Y ] = t ' [ Y ]  

f ( t . 7 )  = 
l a k e  in any other case 

and say that  f holds in r if for every i! in r 
f ( t , r )  = Lme. 

When a set  of FDs hold in a relation instance r, 
there are usually some other dependencies tha t  arso 
hold in r. More formally. a functional dependency f is 
implied by a set  of F T s F  = [ f l , f 2 ,  ....fi] if there is r,o 
counterexample relation T' ,  such that F holds in T' bat f 
does not hold in T ' .  A very important result which con- 
stitutes the basis for much research on FDs is 
Armstrong's inference rules which are  sound and com- 
plete for functional dependencies. 

We now make two observations commonly used for 
proofs about FDs (sometimes implicitiy). Let 
2 T = { s  IsCr, / s / = 2 ]  (i.e. 2T is the se t  of all the 
two-tuple subrelations of a relation instance T ). 

i 'I?lc ryrrl;:! r denotes a rclation mstanze or simply re!-tlor?, t ,  f '  
dcnntc t ~ p f c s  in r. a d  t [XI is the projecbon of t on the velues of 
thc attnbuics In X. 
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Egux 1.1 An exwnple relation scheme h id  functional 
dependencies. 

R (I?#. SL, D#, CT ) 

Attribute explanation 

E# - employee serial number 
SL - salary 
D - department number of the employee 
CT - contract type. 

Functional dependencies defined, f : E# -t SL,D#, and 
f2:D# -tCT 

Fieure 1.2 An instance of the relation, scheme R. 

Egax= 1.3 An instance of R with nulls .  

FiPure 2 Examples of FDs with nulls 

Consider the relation scheme R(A, B, C),  the FD 
f : AB -, C, and the following four instances of R ( a "-" 
means nul l ) .  

We use Proposition 1 ( t i  represents the first tuple in 
each instance). 

f ( t r ,  r l )  = t rue  because of [T2] 

f ( t l ,  rz) = t rue  because of [T3] 

f ( t l ,  r3) = t m e  because of [T3] 

Assume that  for the instance r q  the domain of A has only 
two values: a 1, az. 

f  ( t  r4) = false  because of [FZ] 

[I] The functional dependency f holds r r ,  r  LC. f holdi- 
every (two-tuple) relatlon in 2T. 

[Z] The functional dependency f is implied by a set of 
functional dependencies F iff f is implied by F in 
the world of two-tuple relations. 

These observations allow us t o  consider only tpi2- 
tuple relations in proofs about functional depzndenc e s  
vvlthout loss of gecerahty. FVe will see, however, that. 
these observat~ons are not always correct  when nu.! 
values are allowed. 

4. Functional Dependencies in  Relations with Null 
Values 

From this point on, we assume tha t  n u l l s  are 
allowed in relation instances. An example of scch ari 
instance is figure 1.3. To extend the notion of a fur,=- 
tional dependency (more precisely, i ts  in terprz tc t ion  as 
a function) we use the least extension r u l e .  5 m c  
definitions are needed first. Let t  be a tuple which rnsy 
have null values. We define a completion sf t as a tup:c 
t' in which we substitute for all n z l l  values and t' agrees 
with t  in all the values except ;vhere a value in i is nz:i 
The se t  of all completions ilP of a tupie t  on a set  sf 
attributes R is xveli-defined. f 

AP(t ,R)  = f t '  j t '  1s a completion of t j 
Similarly, we define AP(r,R),  the se t  of all completior,~ 
of T projected on R. 

BP(r,R) = {T' / t ' E r '  if t i  is a completion o f t ,  t c r  1 
We are  now ready t o  present the extens!on of the 
interpretation of a functional dependency f :  X-Y .  Let r  
be a relation and t a tuple. 

if all values in 
f [xy], T [ X ~ ]  
are  not null  

L?lb [ f ( t ' , ~ ' )  i otherwise 

t' E - ~ P  (is=), r' EAP (r,XY)] 

We use f" to denote the extension o f f ,  but from now c r  
we will drop the "'" for simplicity. The above de5ni t i r .  
is refined on a case-by-case basis (considering the n- i i i  
as  one of the t [XI values or as  one of the  t [Y ]  vaiuesj t o  
establish necessary and sufficient conditions for an 73 
to take a particular truth vaiue. Eefore we precer.: 
these conditions formaily, we give an informal esplana- 
tion. Recall that  the value o f f  ( t , ~ ) ,  with a n?;!l appear- 
ing in t [ X Y ] .  is false ( t rue)  only when it evaluates to  
false ( t m e )  for n?l substitutions or' the n u l l  value. Fcr 
the discussion below, the concept of an  attribute 
domain and its size is important. Domains are  Enite and 
are assumed known. Further restrictions on d0rnair.s 
will be presented and justified. 

Assume first that the nul l  appears in t  [I-] and tb.2: 
Y has only one attribute. Tribially, f ( t . ~ )  = f r d e  xnen- 
ever t [ X ]  appears uniquely in T. \Then t [X]  is r . 0 ~  
unique in T, say t [ X ]  = t ' [ X ]  for some tuple f' in r ,  15--e 

may not claim that  f ( t , r )  = trtie. It is possible to su5- 
stitute the null in t [ Y ]  so that f ( t , r )  is jaise w i t h  the  

f Thc name AP is not. arbitrary. it comes from the fect thzt f i e  
completicns of t arc the non-null tupics that i apprcztmatcs m t h e  
latiicc of tuplcs. 
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substituted value (e.g. any value that makes 
: r Y ] + t ' [ Y j ) .  Sowever, we also may not c l a ~ m  that 
f ( t . r ) = f a l s e  since we can make ~t t r u e  ~f we substitute 
t [ Y ]  m t h  t ' [ Y ] .  Hence, depending on how we subshtute 
for the nu11 the FD is e ~ t h e r  t7-7x3 or f a l s e .  Sincc we do 
not know what thc actual value of the n u l l  is we take the 
l u b  I t rue ,  f a l s e  j = u n k n o u n  as the value of the TD on t 
and r. 

Assume now that  the n u l l  appears in t [ X ]  (X can 
consist of more than one attribute). The dependency 
will evaluate to  t r u e  in two cases. F i s t ,  there is no 
tuple in r whose projection on X  is a completion of t [ X I  
(i.e. anytime we substitute for the n u l l  we end-up with a 
unique t [ X ]  among the tuples of r ) .  In this case. 
f ( t , r ) = t r u e  trivially. Second, for each tuple t'  in T such 
that  t ' [ X ]  is a completion of t [ X ] ,  we also have 
t ' [ Y ] = t [ Y ] .  There is exactly one case where the value 
of the FD on t and r is f a l s e  because of a n u l l  in t [ X I .  
This case arises when we run out of domain values, while 
attempting substitutions of this n u l l ,  while a t  the same 
time trying t o  keep the dependency n o t  fa lse ,  i.e. a sub- 
stitution for which the dependency is t m e .  For this to 
happen, it must  be the case, first, that all completions 
of t  appear in r. (Otherwise, we may substitute for the 
nu11 and create a completion that  does not appear in T ,  
thus ensuring tha t  f  ( t , r  )* fa lse . )  In addition. since for 
all such completions we must ensure that the depen- 
dency is f a l s e ,  it is required that the t [ Y ]  value is  
unique m o n g  ail the f ' [ Y ]  values where t '  is a comple- 
tion of t that  appears in r. This is the only case where a 
n u l l  in a tuple f makes the value of f ( t , r )  identically 
equal to  f a l s e .  Formally: 

Proposition 1 
Let R be a relation scheme, X, Y S R ,  such tha t  

XnY=qi  and X V Y = R ,  f :  X  -+ Y  be a functional 
dependency in R.  r be an instance of R. and t a tuple of 
r. Assume that  T -  t t  j has no nulls. Alternatively, con- 
sider all completions of r -It { iteratively. 

f ( t . 7 )  = t r u e  ift one of the following conditions holds 

, [ T I ]  t [ X Y ]  has no n u l l s  and there exists no t' in r such 
tha t  t l [ X ] = t  [XI  and t 8 [ Y ] * f  [ Y ] .  

[T2] t  [ Y ]  has a n u l l ,  t [ X ]  has no n u l l s  and there exists 
no t' in r such that  t  [ X ] = f i [ X ] .  

IT31 t [ X ]  has a n u l l ,  t [ Y ]  has no n u l l s  and either no 
completion of t  [ X I  is in r ,  or if a completion of t  [ X I  
is in 7 ,  say t ' [ X ] ,  then t  [ Y ] = t ' [ Y ] .  

f ( t , r )  = f a l s e  ift one of the following conditions holds 

[Fl] t [ X Y ]  has no n u i l s  and there exists a tuple t '  in r 
such that  t [X]=t '  [ X I  and t  [ Y  j# t '  [ Y !  

[F2]  t  [ X I  has a n u l l ,  t  [ Y ]  has no n u l l s  and both: 

a.- all completions of t  [ X I  appear in r ,  

b.- t [ Y ]  is unique among all those completions. 

f ( t , ~ )  = u n k n o w n  in all the other cases. 

Examples of the above are given in figure 2. We say 
that  a functional dependency f  ( s t r o n g l y )  ho lds  in an 
instance T i f f  ( t . r ) = t r u e  for every tuple t in r. In add?- 
tion, we say that a functional dependency f 
weakly ho lds  in an instance r if f  ( t ,r)* f a l s e  for every 
tuple t  in r. The second notion of satisfiability is 
justified intuitively since, in a framework of incomplete 
information, it is natural to  weaken our expectations 
and allow for a margin of uncertainty in our semantic 
rules (as long as this does not lead to a certain denial - 
contradiction - of the constrailt).  

We now c o n e  to a separate issue which is th, con- 
sideration of rules under which uncertain situatioils 
take spzcific interpretations when the requirement of 
satisfiability is enforced. That is, r-ales that  guide us ir; 
substituting n u l l s .  In this section we on!y informally 
discuss the rules. Their formalization and the examina- 
tion of their properties is presented in section 6. A n u l l  
may be substituted only if there  is exactly one option 
making the dependency : m e .  For instance, i f  the n u l l  
appears among the f [ Y ]  values, t  [ X I  has no n u l l s  ar.d 
there is a tuple t' in r with t [ X ] = t ' [ X ] ,  we may su-bstl- 
tute the t [ Y ]  value with the t ' [ Y ]  value. The 
justification of this substitutior. is two-fold. First, the 
resulting tuple has more information than the previous 
one. Second, and most important, this new information 
is not arbitrary - it is the only piece of information that 
makes the dependency t r u e .  The value which is substi- 
tuted is the only value that  a user can insert without the 
creation of an inconsistency. For substituting n u l l s  in 
t [ X ]  the rule is more complicated and, u n f ~ r t ~ a t e l y ,  is 
domain-dependent. One of the foilowing two conditions 
must be met for such a substitution to  take plsce. 

(1) All  completions of t  [XI appear in r, t [ Y ]  is not n u l l ,  
and there exists exactly one completion of t [XI  in 
r ,  say t l : X j ,  such that  f ' [ Y ] = t  [ Y j .  The n u l l  in t [XI 
may be substituted with the corresponding value Lz 
1x1. 

( 2 )  All completions of t  LX] appear in r except one, f [ Y J  
is not n u l l ,  and for all tuples t' in r ,  such tha t  t  [XI  
is a completion of t [ X I ,  t ' [ Y ]  has no n?rlls and 1s 
distinct from t [ Y ] .  The n u l l  In t [ X I  may be substl- 
tuted wlth the value of the d o m a n  of X that  does 
not appear In T. 

Both conditions are not easy t o  test. In addition 
they seem unlikely to  occur. For practical reasons, it 
may be better  to leave the database incomplete, chat is, 
prohibit substitutions of n u l l s  in f [ X I .  

Before the conclusion of this section, we discuss 
the two observations we made in the previous section 
about two-tuple relations. The observations allow US to 
determine whether a dependency holds or is inferred by 
just looking a t  two-tuples. It can be trivially verified 
that  both observations are  valid when we consider the 
strong version of FD satisfiability. On the other hand. 
they are  both f d s e  when the weak notion is considered. 
A counter-example of the first observation is given in 
the last instance 7-4 which appears in figure 2. Note that 
any two-tuple combination in r4, considered indepen- 
dently. makes the F7? f not f a t s e .  But the dependency- 
is f a l s e  in the whole relation. To ensure tha t  the  obser- 
vations are  valid for both notions of satistiability we 
require that  tuples containing n u l l s ,  which make a 
dependency f a l s e  for every possibie substitution, do not 
appear in r. The test  to find these tuples is very hard. 
being domain-dependent. On the other hand, we now 
argue that, in practice, it is unlikely that  such tupies 
will appear in a database. For t&e simple case, where X 
has only one attribute, this argument is  intuitiveiy 
justified. The "bad" case [FZ] of proposition 1 requires 
all the domain values of the X  attr ibute to  be in r and 
any tuple which has a n u l l  for X  to  disagree in the Y 
values with all tuples in r. This amounts t o  the require- 
ment that  the number of actual determining objects is 
smaller than the number of deterinined objects. %at 
is, a company gives more salarizs than the n ~ r n b e r  of 
employees it actua!ly has! In a carefully designed data- 
base we would expect the domain of employee numbers 
to  be sufficiently large - say, larger than the number of 
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the maximum number of tuples that  may be Inserted in 
the relation. Unfortunately, wc can not apply our intul- 
tion as  smoothly when X has more attributes. Nter con- 
s~derlng inference ruies for FLs m the next s~ctxor,, SP 

present in sectton 6, ways for t e s t~ng  effic~ently weak 
and strong sa t~s f i ab~h ty  for a set  of FDs In a relation r 

5. Inference Rules for Functional Dependencies 
One of the major applications of FDs is in the theory 

of normalization and schema design. In this section we 
will show how normailzation theory and relational 
schema design can be applied in the presence of incom- 
plete information. The examination of inference ruies 
between FDs and ir, particular the establishment of 
sound and complete inference rules are oi prime impor- 
tance for this purpose. For the sake of simplicity in 
proofs (especially completeness proofs) we will obtain 
our results by reduction to a system which is equivaient 
to our system of extended FDs. We will first show an 
equivalence between our system and a well-axiomatized 
propositional logic system. The equivalence is between 
functional dependencies in cur system and implication 
statements in the propositional logic. This equivalence 
will allow us to conclxds that rules which are sound an3 
compiete for the impiicati.j:l statements have the same 
property for functional dependencies. Our approach is 
similar to that  of [Fagin 771, but in a different environ- 
ment. 

System-C is a propositional logic system for unk- 
nown outcomes [Bertram 731. It is a modal system 
which is RQL truth-functional. A unary operator, V, 
which reads as "necessarily true" is added to the tradi- 
tional operators of negation, disjunction, etc. C has 
been axiomatized. P. detailed justification and explana- 
tion of the axioms is beyond the scope of this paper. We 
only note that  some of the axioms comprise a set  of 
axioms for classical two-valued logic, thus ensuring that 
everything provabie in twovalued logic is also provable 
in C. The rest  of the axioms give to  C the modal 
interpretation and, in particular, the last axiom res- 
tricts C to a system of "logical necessity". 

C has an unusual evaluation scheme t that  uses the 
notion of two-valued tautologi8s. Let P ( p l ,  pz .  . . . , p x )  
be a well-formed formula (wff) in C, expressed in 
terms of its atomic terms, and a = {a, 1 i=1 .  2 ,..., n ]  an 
assignment of truth values to PI, p2 .  . . , p,. The 
evaluation of P under a, denotes by V(P,  a) or simply 
V ( P )  where a is understood, is defined by the following 
recursive rules: 
1.- If P  is a tautology in the classical two-valued logic 

V(P)=  true 

2.- ~f P=p,  for some i, Lhen V ( P )  = a, 

1 m e  

if V(Q ) = false 
V ( P )  =. false if V ( Q )  = t 7 - 7 1 ~  

bnknown otherwise 

t An evaluation scheme is a function Vfrom the set of prcrpariitional 
variables to  the set of tmth values i t m e ,  false, unknsunj. 

if V ( Q )  and V ( S )  are frue 
V ( P )  = alse if V ( Q )  rr V ( S )  is false  

b ~ ~ t m  otherwise 

5.- if P = VQ, 1-i~~ if v(Q ) = t rue  
= aEse othemise 

Rule.1 IS always appl1e6 first and ~t IS the reason 
why C is not truth-functxonal Tne examcle here  is p v -  
p. It is a two-valued tautology, t h ~ s  havlng the  value 
l m e  m C. But d evaluated wthout rate 1 it h3s the value 
unknown. %e now present a serles of ferr~rnas The 
proofs are very slmllar to  the one's m [Fagln 771 and 
they all appear in [Vass~liou 801 

Lemma 1 iVassi11ou 901 

The function 'v' can be derived as the 
least eztensicm of the es-aiuation function V in a classi- 
cal taro-valued logic system. = 

The systenx we are using and C &re equivalaf  in 
that  they have tne s a x e  ev+luatizn scheme. ' 

A C-tautology IS a C wf: which takes only the value 
t m e  (under V).  A C-theorerr, is a wff that is derived from 
the axioms of C In [Bertram 731 it is proven tha t ,  given 
the particular evaluation scheme V ,  every C-tautoiogy 1s 
a C-theorem and vlce-versa (soundness and cornplete- 
ness). The reason for tntroduclng C will now become 
apparent. 

Implication is defined in the reguiar way: P => Q  := - PV Q. We w i l l ~ o ~ s i & e r  a special type of imp1ica:ional 
&a@rn-ent. Let A, 3, A, denote propssitiona! vai-iables, 
X, Y ,  Z den-ote ccnjgnctive terms _of pwosit ior .al  vari- 
ables, i.e. X .= A A B or  simply X = -48. m e  implica- 
tional s t a t e ~ e n t s  of interest (denoted by f ) have the 
form: X=>Y. Xotice the similarity with functionai 
dependencies. From now on we  ill use the  t e rm "impli- 
eational statement" for a n y  statement of this form. An 
implicational statement f is &gicaLly i n f  erred-by a set  
of implicational statements F = ff 1, f 2, . . . , Jdnj ififor 
Every assignment of Lruth values a that gives t o  all f, in 
F the value true a ( f )  is also tme.  Similarly, we can 
define the notion of weak logical infe~ence where we 
relax our requirements by having a(f j = -false. 

Lernma 2 [Vassiliou 801 (ImpLicationai Completeness) 

The following inference rules are sound mi: com- 
plete for implicational statements in C. 

[I l l  if y~k '  then F=>y 
[I21 i f y = > y  and F=>z then X=>Z 
1131 i f z = > F  - - and X=>Z - - then X = > E  - - 
r!.?.] ifX=>YZ then X = > Y  and X=>Z 

As we noted before, implicational statements 
resemble, syntactrcally, functions! depende2cles. Wlth 
the above lemma we establish 3 set of inference rules 
that  produce all and only irnpiicat~onzl staterfients. We 
now proceed to  the major result. which IS to show that 
the resemblance with iunctxonal dependencies IS not 
coincidental. Rather, it is  equivalence. 
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Let a- be an  assignment of truth values, s = j t , t ' ]  a 
two-tuple relation. X - t Y  a frinctional depezclency and 
X=>Y the corresponding implicatlonal statement. For 
every A in Y suppose tne following holds: 

t [ A ] = t l [ A ]  i f f  a ( a = t m e  
f [ A ]  ir t ' [ A ]  i f f  a ( A )  = f a l s e  
t [-41 o r  t ' [ A  ] = n u l l  i f f  a ( A  ) = u n k n o w n  
- - - - 

then: X + Y  s t r o ~ ~ g t y  holds in s a(Xk'=>'i") = t w e  . 
Consider the  worid of two-tuple relations. A func- 

tionaJ degendency X - t Y  is inferreafrom a set of FDs F 
iff X=>Y is a logical inference of F. 8 

The above two lemmas show that  there is an 
equivalence between functional dependencies (with null 
values) and strong satisfiability in two-tuple relations 
and ilnplicational statements in C. As '.re have shown 
from the previous section the restriction "two-tuple 
relations" is only necessary for technical reasons in the 
case of strong satisfiability. Because of this equivale~lce 
and lemma 2, the foliowing is a trivial consequence. 

Theorem 1 
Armstrong's inference rules arc sound and com- 

plete for functional dependencies defined on relations 
with n u l l s  and the requirement of strong satisfiabllity. a 

With this result we may safely talk about decompo- 
sitions and the theory of normalization applying even 
when n u l l s  are allowed in relation instances. As was 
demonstrated in section 4, we cannot claim theoreti- 
cally the same result in the case of iveakiy satisfizble 
dependencies (where -,ue accept a depcndency as  long as  
it is guaranteed not to bc fatss). O n  thc other hand, if 
we impose the state and domain-dependent condition on 
allowable nulls, we show in the nest  section that  the 
result holds for weak satisfiability in relation instances 
which we call "minimally incomplete". 

6. Satisfiability for a Set  of Functional Dependencies 
In section 4 we discussed satisfiability for a single 

functional dependency. When we have a set of depen- 
dencies E', no dependency in F can be tested for weak 
satisfiability i n d e p e n d e n t l y  from the others. Conse- 
quently. Armstrong's inference rules do not ho!d. The 
following example illustrates this fact. Consider the 
relation scheme R ( A ,  a, C), the FDs: 
f : A  -B, f  : B +C, and the instance 7: 

The functional dependencies f  and fz evaluated 
n P u-: on T take the value u n k n o w n  (the:< are 

weakly satisfied). This is not the case when the depen- 
dencies are eva!uated simultan~o:l-iv. For B -+C to  
hold in r ,  it must  be that  the two B-values in T are dis- 
tinct. Therefore, A - 3  is f a l s e .  Informally, when an 
FD is satisfied in T ,  something rnorc may be k n o ~ n  about 
the possiblr? values that the n u l l s  in T represent. Iqencc, 
the assumption that a n u l l  can be substitutcd with any 
domain value is not valid. This section deals with thc 
above shortcomings. 

A parenthesis concerning our notation. Whrle X 
may have several attributes. say X = [ X I , X r ,  . , X t ] ,  we 
compare X-values d:rectly wl th  n u ! i .  For a tupie t, 
t [X]=nu lL  implies that  one of the X, values is n u l l .  
Similarly, t [X]*nuZl  implies that  no X, attribute value is 
null. We introduce a new type of constramt. 

Definition 1 
A Nu l l -Equa l i t y -Cons t ra in t ,  (NEC), is a state- 

ment  to  the effect that  two null values are equal (i.e. 
must take the same value in any substitution). For tu- 
ples t,, t - ,  and attributes A. 8, a NEC is denoted as: 
NEC:  t , [ ~ j : = f , [ ~ ] .  = 

Null equality constraints introduce equivalence 
classes for null values. We cow formalize the rules that  
allow for non-arbitrary increase of knowledge about null 
values in a relation where FDs are defined. 

Definition 2 

Given a relation 3, a functional dependency X - Y  
embedded in R, and an instance r of t?, the 
Nul l  - S u b s t i t u t i o n  -Ru le  (NS-rule) corresponding to the 
F'D X + Y  is: If for two tuples t i ,  ti in r WE: have 
~ f X ] = t j [ X ] # - n u l t  or the NEC: L i [ X ] : = f j i X ] ,  then: 

(a) if only one of ti[Y], t j [ Y ]  is nuli, then this nuli is sub- 
stituted with the non-null value of the other; 

(b) if both t,[Y] and f,[Y] are null, then the nul! equality 
constraint NEC:f,[Yj:=t,[Y] is introduced. m 

The NS-rules can only be applied a finite number of 
times on a relation instance r. To apply all rules takes 
time polynomial on the size of the relation instance. 

(a) Finiteness 

Initially, r has a finite number of constant values and a 
finite number of null values with each null participating 
in a distinct equivalence ciass. The application of a rule 
nevtrr iritroduces a n e w  constant value. Also, it  may 
reduce but will never increase the number of 
equivalence classes (i.e. when a NEC is introduced). In 
the sequence of instances r' produced after an SS-ruie 
application, all elements are d i s t i ~ c t .  This suffices to 
show that  the rules are a finite system. 

(b) Complexity Analysis 

The NS-rules are applied in several passes. In each 
pass, all NS-ruies are  applied for as marry tuples as pos- 
sible. In applying the  NS-rule X-+Y the instance T may 
first be sorted ir time O ( z - n , l o g n )  where z is the 
number of attributes in X and n is the numbzr of tupies 
in r. When sorting, null values have the lowest pre- 
cedence and are alwzys distinct unless they belong to  
the same equivalence class. In this last case they 
appear together in the sorted relation. To appiy X+Y in 
a pass requires the equation of Y-values in possibly 
more than one tuple (same equivzlence class), Eence. a 
pass over the Y-values must be made for each change. 
This takes time 0 ( n 2 j .  Since all rules are applied in 
each pass, the time required for a pass is 
O f l F  I . ( n 2 i z . n . l o g n ) )  or. 0 ( IF  /.z2) for z substantially 
smaller than n When we s t a r t  in an instance with p 
attributes we have a t  most n . p  distinct symbols (con- 
stant  values and nulls). Every pzss reduces the number 
of distinct symbols. hence we have at most n . p  passes. 
Therefore, no rule can  be applied zfter O ( j F  / . n 3 . p )  
time. t 
t According to a recent resuit b y  P o m e y  et a1 801 the t i c  corn- 
p ~ e r l ? y o f t h e t e s t ! s O ( ~ F  l .n.log(iF 1.n)). 
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Ghen a re la t ioc  E and a s e t  of ms P ernbcdsed in 
,?, i.cCe s a y  t h a t  a n  ,instaneo r of R is 
rninimalEy-in,complete i f  no N3-rule -an be applied on 
r. The illtuitive n;eeclr-ig of a minimally incomslete reia- 
tion s t a t e  is t h a t  not.hing rnore can be srild a b o u ~  the 
nulls in  this s ta te .  The importacce of such ztates  is 
demcnstrated with t h e  theorems  t h a t  fo?!>i.i. The first 
two theorems  presen t  methods for testing FD- 
satisfiability. The tes t  is done 35th an algorithm tha t  
works on raidtion instances where no nulls a re  present  
(Figure 3) and  r u n s  in time 0 (1 F j.n.logn). Tne third 
theorem makes  t h e  connection between "uniqueness" of 
a rninirnaliy incomp!eie s t a t e  and satisfiability of YES. 
This shows t h a t  t h e  set  of NS-ruiss is a finite Church- 
Rosser system. 

Let R b e  a reiatrcn scheme,  F a s e t  of F'Ds ernbed- 
dzd m R,  and  r a n  instance of R. Cons,der the applica- 
tion of t h e  aigor~thrr ,  TEST-FDs with t h e  folloivlng con- 
vention for nul! values 

C o n 2 ; e n f i m  Any equality comparison where a null is  
involved is positive. Also, any inequslity corr,parisoc 
where a null is involved is positive, ? ~ n l e s s  both values 
compared a r e  null and they belocg to the same 
equivalence class. 

F is strongly - sa t i s f i ed  in r iB TEST-FDs(r,F) = y e s  

Eraaf. 
The convention made  imp!ies tha t  vhen  testing ;n PD 
X->!- on i~:o tc:;;cs I.& and t ,  T;C ha-ie the :‘ol!cl-leg: if onc 
of t,[X]: t : [ X ]  is nail Lhen t h c  comparis2.n jt,[.Yj=t,[..<']! 
is true. If the  previous comparison is t r u e  then sr> :s the 
comparison ( t , [ Z - j * t j [ Y ] ) ,  unless there  exis:s a 
NEC:t,[I ']:=tj[?-j (aga i :~  rye assume that  ar. least  on? of 
t , [ Y ] ,  tj[l'] is nu!!). It  may s e e m  tka t  w1:h abovc 
convention vre have a ~ r o b i e m  in app!]iing i.he algorithm 
TEST-rDs.  f Tvro vaiues t h a t  a t  some point were com- 
pared and found equal may a t  another  point be foucd 
not equal. For F ne t  t o  b:: stror,gl:r. satisfied, it suB;ces 
to find a completion of T where t h e  FDs are  violated. In 
c o r ~ p a r i s o n s  we consider all possible compietions. 
Since Armstrong's rules a r e  sound and complete w e  can 
tes t  E'Ds for strong satisfiability independently. But 
notice tha t  for the same dependency X-+Y the  same 
at t r ibute  values s r e  never compared both for equality 
and for inequality when TEST-FDs is applied. 

i f -part  
Tne assurn;it;on here is t h a t  2"FST-r"i7s(r.F) = yes.  We 
show tha t  .L7 is strongly satisfied in r .  Assame tka t  there 
is a n  FD X - t Y  which Is visiated in r. That  is, fcr t:so 
tuples t,, t j  in r, t h e r e  exist zompletions t',, 1": such 
tha t  t ' i [ X ] = t ' j [ X ]  and ! ' , [Y j ; r t ' j [Y] .  Triviitiiy, wken 
TEST-FDs is applied on r ,  t h e  comparisons between the  
non-completed X and Y values of ti and t j  a r e  both posi- 
tive, thus TEST -FOs (T,-?) = no. A contradiction. 

only-if part 
Suppose tha t  F is strongly satisfied in r and that  
TEST-F3s  re tu rns  with a n o  when applied on r with our  
cp--- ,,,,cnLlon for nc;:r;. The ccn:ra-liciLo:~ :.; i-lca.. . Aily 
tirlzc the eqcaliiy comparison for- the  >;-:-a!ucs of i.-::o 
.. lu?!es . - and the  i n e q ~ a l i t y  coi~lparison for the  Y-vaiucs o? 
the  same tuples a re  found positive, a coinpIcti3n nl r :s 

f hqo:fi~r probier. is sortine thz nrIi values undcr the  nbo:-. can-. 
vcntion. rjlternztivcly, another ver::ion of ?%ST--FDS n--2:: bc 
used, rihcre the reidtion ?s not sorted mrl each tuple is ie::Lc2 
zgvlnst every other tuple in the  reiation. The r'Iilxn;: f.irr;e is now 
O ( i F  i.na). 

Z Testing for  FD-setisfiabi?ity 

Test a set of F D s F  in T for cm~sfency; .  

begin 
comentr  comparison 1s based on 

I lexicographical o rder  
c o m e n k  read-nezt__tuple(7;1, r e a d s  t h e  ~ e s t  

I 
tuple m c r d e r  frcm r and  re turns  EOF 
i f  rio more  tuples. 

for each X + Y  i n F  do 
begin 

sor t  relation r on X 
tPqt +~eari_nezt - - tuple  ( T )  
a i l e  t+s,,r#EOF do  

begin 
t,,,t +- ;-ezd-n,~zt-!upl~ (r ) 
while f , , i [ X ] ~ Z 3 . 1 . '  and :,,, iX  j= t,,,jX] do 

begin 
if fw.rtEYl*trirstIYl 

then rat-an(xo ) 
else f,,,,i - r e a L n e r t - t u p l e  (r ) 

end 
ffwlt tn**t 
end 

end 
rcturn(yes ) 
end 

Complexity Aardysis 

The dgci.iChrn runs in 0 (IF 1 .n Zoyn) trrze, where n 
is t h e  size {n-ber of tuples) of r and i F 1 is the  
number  of depeadencies. Each FD is tested in t ime  
d o g n ,  t h e  ii=e t o  s s r t  t h e  relcltion. 

A d d i t i m l  Ass-umpticns. If bucket  sor t  i o  used, s o r t i q  
t akes  time U ( n  p )  where p is the  number of a t t r ibu tes  
in X for s ciepondency X-'7. Furt ierrnore,  if  t k e r e  :s 
ody one ddpendency je.&. ECSF ~ 5 t h  ope key), and thc 
refation is a!rea:!- ??r ted:  ch:, tcsC requires Linear 
on t h c  rclati3.1 s : ; : ~ .  
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illustrated where t h e  ;"D X-1Y is violated. 9 

Theorem 3 
Lct R be a relation scheme, r" a se t  of FDs embed- 

ded in R, and r a ~ + i n i m a E l y - i n c o m p l e t e  instance of R. 
Consider the application of the algortthm TEST-FDs 

a with the following convention for nal! values: 

Conmention: Any inequality comparison where a null is 
involved is negative. Also, any equality comparison 
where a null is involved is negat~ve, unless  both values 
compared are null and they belong to the same 
equivalence class. 

F is weak ly  - s a t i s f i e d  in T ifl TEST-FDs(r,Fj = yes  

&Mi. 

As in the previous theorem, we consider the problem 
that  may be introduced with our convention for null 
values. It may be tha t  the same two values are  com- 
pared and found equal a t  some point and a t  another 
point not equal. We show that when TEST-FDs Is 
applied in a minimdly incomplete state of r this never 
happens. Consider two tuples t, and f, in r. Suppose 
that t i [ X ]  is null and t j [ X ]  is not. If X  appears only on 
the left of dependencies, we have no problem 
(TEST-FDs makes oniy equality comparisons on X 
values). Similarly for X appearing oniy on the right of 
dependencies. Consider the case where X appears on 
the left of a dependency X-Y and on the right of a 
dependency Z-iX. In testing X-rY we assume that 
t ,[X]*L,[X].  In testing 2-,X, we wiil only consider X- 
values when t , [Z j= t , [Z] .  If the state is minimally 
incomplete. rve wouldn't have t i [ X ]  null (by application 
of the XS-rule). The case of both l,[II] and t : [X]  being 
null is treated with similar arguments. In this case the 
outcome of the evaiuation depends on whether or  not 
the nulls belong to the same equivalence class. We also 
note that the convention allows for sorting. Null values 
are considered distinct and their order is not impor- 
tant. (They are  never equated unless they are in the 
same equivalence class in which case they appear 
together.) 

i f -part  
The substitution of nulls with Cifferent values from the 
one's appearing in r illustrates a completion of r where 
all FDs are satisfied. 

only-if-part 

We show that  if there is a completion of r where the FDs 
are satisfied, then TEST-FDs ( r . F )  = yes. Suppose 7' is 
such a completion. If TEST-FDs has a r,o answer ther.j 
must exist two tuples ti and f f  in r such that for a func- 
tional dependency X - + Y  the corcparisons ( t , [ X ] = t j [ X ] )  
and ( t i [ Y ] # t j [ Y ] )  are both positive. The first compari- 
son is positive under ocr  convention when both fi[X]. 
t f [ X ]  are equal constants, or, both are nu!ls in the same 
equivalence class. In this last case. they both have the 
same completions in r' (as in any other completion of r). 
Similarly, for the second comparison to  be positive it 
must be that  both t , [ Y ]  and t j [ Y ]  are distinct constant 
values. It follovvs immediately from tht. a b v e  argu- 
ments that  the FD X - t f *  is violated for the two tuple 
completions in r'. A contradiction. 9 

Note that  the test for strong satisfiability is less 
expensive than the one for weak satisfiabiiity since it 
does not require a minirnaliy incomplete instance. This 
comes as no surprise - very few relation instances are 
strongly-consistent. 

The NS-rules applied in a different order may result 
in different minimally incomplete states. This is 

illust,rated nitk az example. Consider a relation R with 
three ettributes, the c5epcc'lenciej A -+a, C - 8 .  ma the 
instance r (figure 5) .  h>piyLrg the rule A -rB first we get 
a minimally incornp!e*ie stake r'. On the other hand, if we 
first apply C - 6  %.re get a difierent minirnaliy incomplete 
state rf'. 

I t  

From deEr~ition 2, an  NS-rule for an FD X - Y  is 
applied if there exist tuples t, u such that  ~ [ X ] = U [ X ]  
and ane or both of FEY], u [ Y ]  is nul!. :Ye now extend 
the notion of an NS-rule application and we assume that  
a rule may be appiied even if none ol f [Yj, u [ Y j  is nul!. 
but as constants they are siisiinct. in this case they are  
both replaced by the  i n c m i s t e n t  element (the n o t h w ~ g  
data value). This triggers the replacement with n o t n i n y  
of all constants that are equil_i to thorn. In olii example, 
if A - 9  is applied first producing r ' ,  th-n C-+B can be 
applied on r' resulting in an ~ns t ance  with ali values in 
the B column equal to  not i i i zg .  It is easily observed 
that  the  agplication cf the rules in reverse order wiil 
produce the same i ~ s t a n c e .  The theorem be!ow is pro- 
ven in [Graham 801 

'I'heoren; .2- [Graham 801 

Given a relation scheme R, a se t  of FDs F ,  and an 
instance r of R. Then, 

(a) The application of the XS-rules n-il! produce 
zcnque minimally ~ncornpleke instance (the NS- 
ruies constitute e Church-Rosser sys~emj .  

(b) F is weakly-satisfied in r ~ f f  there is no x ~ l h i n g  
value in the resu!ting mln~mafly incomplete In- 
stance. = 
For the proof of the theorem the noticn of 

congruence closure is tlsed [Dorvney e t  a! 831. The con- 
struction of the graph from the instance T for the pur- 
pose of applyirig congruence closnre IS reversed. The 
result is a relation instmce (possibly with n ~ t h i n g  
vai~les). This instaincz is unrqJe znd, is esaetiy the 
minimally incomplete instance prcduced froAm the :is- 
ruie applications. The thecrem abcvs verifies tha t  in 
any minimally incomplete ~r,stacce. produced from XS- 
rules application, t he  test for satisfiability Kill deter-  
mine correctly whether the FDs are  saiissed. 

7. Concluding Remarks 
Functional dependencies were examined in the 

light of ineomp!ete information In a databcso. O c r  
results a re  both encouraging and, in some rezpeci, 
discouraging concerning the possibility of a!lov?ing nz;!is 
with no restrictions in relations. Trro notions of i'D 
saiisfiability were introduced. The first is the  reg-dsr 
one which requires tha t  an FD takes the truth-vaiue true 
when i t  is ixterpreted as  a predicate on reiation 
instances. In addition, a weak notion of satisfiabi1l:y \;es 
define6 which allorvs for uncertalntj- aabsat the vdidiiy 
of zii FD a s  long a s  this uncertainty does not introdiicle 
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contraSictions. It was shorvn thzt a n.dl value does not 
have an impact on the  validity cf an i?C if it appears in 
specid places. This is  becausc ;hero exists a substitt~- 
tion of this nu!L (possibly all substiiutions) which results 
in having tf;e dependency satisfied. Furtherrizore, to  
find. these cases of satisfability is not computationali}- 
hard. 

On the other hand,  there are some extreme cases 
where all substitutions of the n u l i  resuit in inconsistent 
states. This occurs with Lhc weak notion of satisfiability 
and domain-size restrictions. The test to f k d  such 
cases is domain and state-rippendent. thus having an 
unacceptable complexity for practical considerations. 
It was argued that  in practice the above extreme cases 
are unlikely to  appear,  provided that the ciependencies 
are carefully defined (e.g. on attributes \vi.i;h large 
domains). 

lYeak satisfiability seems to be the more important 
and interesting notion from a practical point. Dats- 
bases are usually "overconstrained". That is, there is a 
large number of semantic constraints (rules) which 
would make sense for a database. However, database 
systems do not usually have the ability to  maintain ail 
these constraints. The test of constraint va!idity In a 
database instance, apart from being probibit~vciy 
expensive, results mainly in verifying that most  or i.hc 
data is "dirty". On the  other hand, nu!! va!uej and vvi'ehii 
satisfiability al!ow constraints to be valid in more 
instances. 

A basic result of this paper is the verification for 
extended FDs of the soundness and completeness of the 
same inference rules that were soand and complete for 
FDs with no n t i i l s .  This allows us to ccnr.!iidc that s!i - .  . 
v;ork on normalization, decorn;ssi;:oi;, eic. vherc YDs 
are invo!ved can be applied directly in our fi.diiiev<ori; of 
incomplete i~format ion .  

We now discuss the importance of our results taken 
together with on-going research. ils was mentione2 in 
the introduction, the universal reiation assumption is 
questioned both on practical and theoretics! grcunds. 
With our work we have provided a partial repiy to  the 
practical attacks on the possibiliLy of a unis-crsal rela- 
tion instance. More realistic instances may now be per- 
ceived; the ones wh%rc nuLLs are ;lllo:.jed. In [Berrlsteiri 
and Goodman 80) it is shown that  the requirement of 
having the universal relation assurnption defeats the 
purpose of normalization, which is to avoid update 
anomalies. [Bernstein and Goodman 80: attempted the 
use of n u l l s  te overcome the an=mAies, but decidoa 
that for  each semantic they tried, OF?-Lain bizarre 
behavior ?vas forced. I t  is our conjecture Chat a mi;re 
careful approsch to n u t <  interpretation an3 treatment., 
like the one we presented here, contribukes to tne 
attempts to  bridge the gap between ihe stztic (normali- 
zation) and the dyaam~c  (rnodificaiionj proper;.ies oi the 
database [Graham and iiassil~ou 801. A "c-eal;erM version 
of the universal reialion assumption is ctorct-ivatsle thct 
allows for universal instances (v;ith nzilsj where the 
dependencies are only wealcly-satisfied. in addiiion to 
the warlc reported here, more research 1s needed on thc 
semanlics of the ways a dat.abase acq3ii .e~ inio;n~atiotl. 
This acquisition may be internal (non-amb;guous substi- 
tution of n?xLLs), or external (n~odificaticri opera:ioA;s by 
the users). 
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