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is thus central to the viability and growth of this nascent industry. We contribute towards such an

understanding in this paper by modeling the optimal pricing of on-demand computing while taking

four critical factors into account: the costs of deploying IT in-house, the business value of this IT,

the scale of the provider’s on-demand computing infrastructure, and the variable costs of providing

on-demand computing. Three distinct pricing models emerge as optimal among all possible pricing

functions for on-demand computing. These models describe when volume discounting, free usage

and demand caps should be used to manage demand appropriately and profitably. We also outline

a likely path that the transformation towards on-demand computing will follow — under which low-

usage customers are targeted initially, followed by a broadening of the market, and finally, a focus on

profiting from inducing adoption by high-usage customers — and prescribe how the associated pricing

models should evolve appropriately3.
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1 Introduction

The emergence of on-demand computing promises to transform the way corporations buy and

manage their IT infrastructure. This model of computing, also referred to as "utility com-

puting", or in the specific context of software, as "apps on tap", may shift IT infrastructure

from being a fragmented capital asset to being a centralized utility service. The viability of

on-demand computing has been facilitated by two related technological developments — grid

computing and Web services. Together with the widespread availability of Internet bandwidth,

they make it technologically feasible for corporate buyers to "rent" key parts of their IT in-

frastructure — servers, data storage, isolated software applications, and integrated software

solutions, for, among other things, salesforce management, CRM and retail fulfilment — from

large-scale utility providers, rather than deploying and running these parts of their infrastruc-

ture in-house.

Current spending levels for on-demand computing are still a small fraction of IT corporate

budgets; however, this fraction is widely projected as growing rapidly over the next decade.

During this nascent stage in its evolution, it is essential for providers of on-demand computing

develop and implement pricing and migration strategies that make the transition appropriately

gradual and reliable. An inappropriate choice of pricing that is based on usage could either

lead to excessive inertia in migration, or alternatively, to excess demand that providers cannot

fulfil profitably or scale to meet reliably. Either scenario could easily kill early innovators in

on-demand computing.

The importance of a careful and judicious choice of pricing models, critical during this

transition in corporate computing, motivates our paper’s objective: to develop robust prescrip-

tions for pricing on-demand computing. We identify and model four aspects of corporate IT

infrastructure that affect it’s pricing:

(1) The cost of buying, deploying and maintaining the infrastructure in-house: Since this
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option is always a viable substitute for on-demand computing, the magnitude of its cost will

play an important part in pricing on-demand computing.

(2) The business value of the infrastructure: Often, the business value of different kinds of

IT infrastructure varies widely, based on its functionality and the context in which it is used,

and this variation is not always directly related to its cost. Providers of on-demand computing

are likely to price based on business value or willingness to pay, while their customers may be

accustomed to thinking about paying for the infrastructure based on its cost.

(3) The scale of the provider’s on-demand computing infrastructure: The seller’s primary

instrument to control demand is its pricing model, which needs to be designed to ensure that

its infrastructure is not under-utilized, while also maintaining an acceptable level of quality-

of-service and reliability, both of which can be compromised by excessive demand. Linking

infrastructure scale to pricing is therefore important.

(4) The variable costs of on-demand computing: Even after accounting for the costs of

infrastructure, on-demand computing services are not "information goods". Rather, their pro-

vision involves non-trivial variable costs that relate to customer service, billing and monitoring.

Additionally, adopting customers may bear variable costs of transition, and of usage, that are

independent of price.

Our analysis of optimal pricing for on-demand computing incorporates each of these four

factors, and yields three different optimal pricing models, each of which characterizes a distinct

stage of transition in corporate computing. These models may feature volume discounting, free

usage for high-demand customers, and demand caps. The emergence of a range of nonlinearity

in the optimal pricing policy validates our approach of choosing to place no restrictions on the

choice of pricing function, despite the associated analytical complexity of this approach.

We are also able to characterize which model is suitable based on the stage of evolution

of an infrastructure industry towards the on-demand model, and suggest a path of transition
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pricing for an IT industry making the transition. In the early stages of transition to on-demand

computing, our model prescribes an optimal pricing strategy designed to attract lower-usage

customers, by offering demand-capped pricing that draws in those companies who lack the

scale to implement their own in-house solutions. In an intermediate stage, as providers gain

confidence in the viability of the on-demand computing model, a pricing strategy which features

limited free-usage to some higher-usage customers is optimal. This strategy will induce a

measured expansion into the middle of the market (which, although seemingly related, is quite

different from the "move to the middle" hypothesis of Clemons, Reddi and Rowe, 1995), while

continuing to profit from the lower-usage customers attracted early in the process. As the

on-demand computing model matures, and the fixed costs of in-house deployment rise as a

consequence, pricing is likely to become more "normal": aimed at a broad segment of high-

usage customers, with volume discounts and no artificial caps on demand. Our model also

suggests that the sectors of the IT industry that make the transition earlier are likely to be

those whose impact on an organization’s core business value is not as substantial.

Our work extends the literature of nonlinear pricing with positive participation constraints

(Lewis and Sappington 1989, Maggi and Rodriguez 1995, and Jullien 2000) and the literature

about on-demand computing. The former literature is quite vast, a survey is beyond the scope

of our paper, and we therefore focus on placing our work in the latter (and related) literature.

Gurnani and Karlapalem (2001) develop a monopoly pricing model to examine the optimal

pricing strategies for selling and pay per use licensing of packaged software over Internet. Their

main contribution is to show that pay per use is indeed a profitable alternative for software ven-

dors. Snir and Hitt (2003) investigate bidding behavior in early-stage markets for IT services,

theorizing that such bidding contains important information about the viability and value of

these markets early in their evolution, and finding that services with higher value do indeed at-

tract a larger set of bids. Paleologo (2004) presents a methodology for pricing utility computing
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that takes risk into account, and reports on how it improves on simple cost-plus pricing models.

Chen andWu (2004) model a seller’s choice of linear usage-based pricing for on-demand comput-

ing, and Bhargava and Sundaresan (2004) study how to use contingent auctions to price utility

computing. Our paper also adds to a growing literature in information systems that study

second-degree pricing discrimination for IT-related goods and services. This literature includes

Nault (1997), who analyzes pricing and profitability when an interorganizational system can

lead to quality differentiation based on whether or not a good is supported by the IOS, and

relates these measures to the optimal design of the IOS for both a monopolist and competing

duopolists., Bakos and Brynjolfsson (1999) who show that bundling information goods is often

profitable, Geng, Stinchcombe and Whinston (2005) who show that pure bundling may not be

optimal when the value each customer places on different goods in the bundle varies sufficiently,

Bhargava and Choudhary (2001) who establish conditions under which versioning is optimal,

Weber (2001) who analyzes when mixed versioning is optimal, Anand and Aron (2003), who

derive a monopolist’s optimal group-buying schedule and compare its profits with those that

obtain under the more conventional posted-price mechanism, and Sundararajan (2004) who

establishes the optimality of fixed-fee pricing for information goods.

Our paper differs from this stream of literature in the following key ways. First, we ex-

plicitly model the presence of a "build-your-own" option, which while possibly less relevant for

information goods, is clearly a critical aspect of a corporation’s choice of IT infrastructure, and

consequently, of a seller’s pricing model for on-demand computing targeted at such corpora-

tions. Second, we explicitly model the effects of the seller’s choice of infrastructure levels: in

other words, we recognize and incorporate the fact that while their costs at the margin may of-

ten be zero, on-demand computing services are not really information goods: increasing supply

often necessitates discrete and costly increases in infrastructure. Third, we explicitly model the

choice of a pricing function, rather than imposing a linear pricing function ex-ante. Our results
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show that the structure of this pricing function can vary significantly at different phases in

the industry’s evolution, and can include volume discounts, free usage and demand caps, none

of which would emerge in an analysis of linear pricing. This highlights the importance of our

generalization. Our model is similar in some respects to the model in Sundararajan (2004b),

which studies optimal nonlinear pricing in the presence of piracy, since both models study price

discrimination in the presence of an outside alternative whose value depends on customer type.

What distinguishes our model is that the outside alternative for on-demand computing involves

payments for fixed infrastructure, thereby significantly changing the way surplus varies across

customer type, and leading to a broader family of pricing functions that emerge as optimal.

We do not explicitly model queuing effects or congestion costs. Beginning with the seminal

paper by Mendelson (1985), there is a rich literature in IS that studies the effects of such costs

on pricing. These include Mendelson and Whang (1990) who demonstrate that priority pricing

for a constrained resource can be expressed in a simple form: a base price for the lowest class

plus an increasing priority surcharge; Dewan and Mendelson’s (1990) analysis of congestion

pricing with general delay costs, Dewan’s (1996) discussion of declining computing costs on the

tradeoff between capacity costs and user time, Konana, Gupta and Whinston’s (2000) model

of dynamic priority pricing with congestion premiums, and Afeche and Mendelson (2004) who

model interdependent delay costs and consumer value. Granted, congestion costs are certainly

pertinent to the provision of on-demand computing, and we do not ignore them entirely. Instead,

we translate such effects into a shadow cost imposed by the level of infrastructure, based on an

implicit assumption of a constant level of quality of service. By abstracting congestion costs in

this way, we can focus on modeling of other aspects of pricing on-demand computing that have

not received as much attention in the IS literature.

We have organized the rest of this paper as follows. Section 2 presents our model which

characterizes the demand for computing, the cost structure of on-demand and in-house de-
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ployment, and formulates the pricing problem for a seller of on-demand computing. Section

3 presents the solution to this problem. It describes three distinct pricing models, each of

which is optimal across a different range of combinations of average business value from the

service, and the relative fixed and variable costs of in-house and on-demand deployment, and

discusses the distinct characteristics of each of these models. Section 4 summarizes our results,

discusses a possible path of transition towards on-demand computing and the corresponding

pricing models that will accompany it, and outlines directions for future research.

2 Model

This section briefly describes our model of the costs and value from on-demand computing, and

concludes with a characterization of the pricing problem that is solved in Section 3.

2.1 Overview

We model a computing or IT infrastructure service, henceforth simply referred to as the service,

that is used by different customers in varying quantities. These customers are heterogeneous

in how much they value a specific number of units q of the service (a couple of examples are

provided later in this section that illustrate what these units might be for different kinds of on-

demand computing). Specifically, each customer is indexed by a parameter θ that determines

the value u(q, θ) that the customer derives from using q units of the service, and which we

assume takes the following functional form:

u(q, θ) =

⎧⎪⎨⎪⎩ α[θq − 1
2
q2], q ≤ θ

α[1
2
θ2], q > θ

, (1)

where α is a service-specific parameter that models how much business value customers derive

from the service, on average. This specification of u(q, θ) implies that the parameter θ represents

the maximum demand a customer indexed by θ has for the service, and, for a fixed value of α,
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is also indicative of the marginal business value the customer derives from an increase in their

demand for the service. We assume that θ is known only to the customer (that is, it cannot be

observed by a seller), and that it is uniformly distributed2 on the interval [0, 1].

To fulfil their demand for the service, customers have two options. The first option is to

buy, implement and maintain the infrastructure required to fulfil the service in-house, from an

established market for in-house fulfilment of the service. A customer who chooses this option

incurs a fixed infrastructure cost of F , and this option enables the customer to fulfil their entire

computing needs3.

The second option a customer has is to fulfil all or part of their demand from a monopoly

seller of an on-demand version of the service. This seller chooses a pricing function P (q) that

specifies the price that a customer will pay for their usage of q units of the service. Since

the seller cannot observe the type θ of any customer, this pricing function is available to all

customers. A special (familiar) example of a pricing function might be a linear price P (q) = pq,

and a natural question at this stage is whether additional insight can be gained by allowing

the seller to choose a more general pricing function. Our results in Section 3 will show that

linear pricing is never optimal for the seller: the pricing model chosen will feature increasing

volume discounts, demand caps, free usage for high-usage customers, or some combination of

these factors.

Our model easily generalizes to a scenario in which there are a few distinct segments in which

customers across segments differ in terms of their scale (thus incurring a segment-specific cost of

in-house computing F ), so long as the seller can identify what segment a customer belongs to,

2Our choice of utility function and distribution are for analytical simplicity. The pricing structures we derive

are likely to generalize in their structure to a more abstract model, although establishing this will involve

substantial additional analytical complexity.
3In a different context, this may be interpreted as an "all you can use" price for a tangible version of a digital

good now being priced as a service.
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but faces some residual incomplete information about specific customers within each segment.

For example, a seller may be able to identify whether a potential corporate customer is a small

business or a Fortune 500 company, or may have a rough estimate of how many employees or

customers a company has; this information is indicative of both the customer’s willingness to

pay for the service, as well as the scale of costs they incur to deploy in-house computing. So

long as a customer’s segment can be identified, the seller will simply independently design a

different pricing schedule for each segment according to our results in Section 3, and offer only

that schedule to customers in the segment. To that extent, our assumption of one segment with

a common cost of in-house deployment F is without much loss in generality.

The seller deploys a fixed level of infrastructure, represented by the vectorK = (k1, k2, ..., kn).

The components of infrastructure could include hardware, software licenses, disk storage, cus-

tomer support infrastructure, administration and maintenance staff, and so on. The fixed cost

of this infrastructure is sunk and therefore does not affect the seller’s choice of pricing, although

the level of K does affect pricing through the constraint it places on a seller’s ability to fulfil

demand. The seller also incurs a linear variable cost c ≥ 0 per unit of demand it fulfils from

this shared infrastructure. This cost may be incurred due to transaction costs associated with

billing, usage monitoring and customer support, or may include costs associated with integrat-

ing the service with other parts of the customer’s existing in-house IT infrastructure. The

seller also guarantees a fixed level of quality-of-service to each of its customers, which restricts

the aggregate level of demand that it can fulfil at a choice of infrastructure K to a maximum

of Q(K). The function Q(K) is (weakly) increasing in each component of K (a higher level

of infrastructure leads to a higher maximum demand). Our specification of infrastructure is

analogous to the idea of IOS design used in Nault (1997), where the vector K of infrastructure

is similar to his vector −→x of IT inputs, which are mapped to IOS quality using a production

function ξ(−→x ) Beyond this, it is not necessary to make any assumptions about its functional
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form, and the connection between K and the seller’s choice of pricing will be made clear at the

beginning of Section 3.

To illustrate the variables of the model further, consider the example of on-demand access

to a grid of high-performance servers. The units of q in this example could be the number of

processor-hours that the customer uses (this is the basis for Sun Microsystems’ pricing of access

to their grid, for example). F would represent the cost of acquiring and administering a high-

performance server in-house, and Q(k1) would represent the maximum number of processor

hours that, say, a grid with k1 nodes can support. A second example might be on-demand

access to Amazon’s retailing platform. The units of q in this second example could be the

number of (some standardized) transactions the customer fulfils using Amazon’s platform. F

would be the cost to the customer of buying, setting up and running the hardware, application

and database server software, and other infrastructure required for the in-house fulfilment of

online retailing, and Q(K) would represent the maximum number of non-Amazon (partner)

retail transactions Amazon.com can support under its current infrastructure level K.

2.2 The trade-off between in-house and on-demand corporate computing

Once the pricing schedule P (q) is set, for a customer of type θ, the surplus from a choice of

on-demand deployment is:

max
q
[u(q, θ)− P (q)], (2)

and the surplus from a choice of in-house deployment isµ
max
q
[u(q, θ)]

¶
− F. (3)

Therefore, customers segment into a maximum of three groups, based on the absolute value

of their surplus from each option, as well as the relative values of surplus between options. The

first group chooses on-demand computing, and will consist of those customers whose type θ is
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such that their net value from on-demand computing is positive, and is higher than their net

value from in-house deployment:

max
q
[u(q, θ)− P (q)] ≥ 0. (4)

max
q
[u(q, θ)− P (q)] ≥

µ
max
q
[u(q, θ)]

¶
− F. (5)

For simplicity, we assume that indifferent customers choose on-demand computing. The second

group chooses in-house deployment, and will consist of those customers whose type θ is such

that their net value from in-house deployment is positive, and is higher than their net value

from in-house deployment:µ
max
q
[u(q, θ)]

¶
− F ≥ 0. (6)µ

max
q
[u(q, θ)]

¶
− F > max

q
[u(q, θ)− P (q)]. (7)

The third group of customers will be those whose net value from either option is negative, and

who therefore do not deploy the service at all.

The seller’s pricing problem is to choose the pricing function P (q) that maximizes its profits,

given that its demand will be from the set of customers whose type θ satisfies (4) and (5), that

each customer in this set will generate demand according to (2), and that total demand fulfilled

cannot exceed Q(K). We transform this formulation into a simpler one to facilitate solving it,

and the mathematical details of this transformation are presented in Appendix A.

3 Pricing models for on-demand computing

In this section, we present the seller’s optimal pricing schedule. It takes the form of being

one of three different pricing models. We describe each model and relate its choice to the

seller’s cost structure, infrastructure choices, and the business value customers generate from

their usage of the service. We present our results as a sequence of three pricing models for
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clarity, and to be able to highlight the features of each that are relevance to pricing in practice.

However, rather than being specific structures (or functional forms) we have exogenously chosen

to study, these are the pricing functions that our analysis establishes as optimal among all

possible pricing functions, and across all feasible combinations of the model’s parameters. That

is, we analyze all possible combinations of parameters, and derive the optimal pricing function

for each combination of parameters. To make our exposition clearer and easier to understand,

and towards trying to make sure that the implications of our results do not get buried in the

complexity of the math that our analysis entails, we have then partitioned the parameter space

(as summarized in Figure 1) based on structural similarities we identify within different optimal

pricing functions. Appendix B presents the mathematical details of our analysis and contains

all of our proofs.

3.1 A preliminary result: relating infrastructure levels to pricing

Our first lemma is an intermediate result that relates the seller’s choice of infrastructure K to

their pricing problem.

Lemma 1 The seller’s pricing problem with the constraint Q(K) on demand is equivalent to

the same pricing problem with no constraint on demand, but with linear variable costs c+λ(K),

where λ(K) measures the "shadow" cost of using one unit of demand fromQ(K), and is (weakly)

decreasing in each component of K.

This result allows us to view the seller’s infrastructure constraint as being equivalent to

bearing an additional (variable) shadow cost λ(K) that is linear in total demand. There is

always an infrastructure level for which this cost is zero. This is at a point where the seller can

fulfil its unconstrained profit-maximizing level of the demand. None of the results that follow

(for instance, the presence of demand caps) rely critically on the presence of this "capacity"
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Figure 1: Summarizes the three pricing models for different average business value, cost and

infrastructure levels. Each of these models is discussed in more detail later in this section. The

analytical details of each of the curves that define this partition are summarized in Table 1.

constraint — rather, it simply allows infrastructure K to affect pricing, if in fact the level of K

constrains demand.

Our next three results describe the seller’s optimal pricing schedule under different combi-

nations of c, λ(K), F , and α. The regions of the parameter space under which each is optimal

are summarized in Figure 1, and the exact expressions defining these regions are summarized

in Table 1. Notice that these are exhaustive, accommodating all feasible positive combinations

of F, c, λ(K) and α.

3.2 Model 1: Volume discounting targeted at high-usage customers

Our first proposition describes the optimal pricing model in region 1:
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Region Restrictions on parameters
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α
≤ 1
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α
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µ
1
2
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9

h
1−

³
c+λ(K)

α

´i2¶¾
Table 1: The analytical details of the regions mapped in Figure 1

Proposition 1 In region 1 of the parameter space, when the cost of in-house deployment is

high (relative to the service’s business value of the service), the seller’s optimal on-demand

pricing schedule involves gradual volume discounting targeted at inducing high-usage customers

to adopt. Specifically, the pricing function takes the form:

P (q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α

∙µ
[c+ λ(K)] + α

2α

¶
q − q2

4

¸
for

F

α
≥ 1
2
−
µ
α− c− λ(K)

2α

¶2
α

"Ã
1−

r
1

2
− F

α

!
q − q2

4

#
for

F

α
<
1

2
−
µ
α− c− λ(K)

2α

¶2 (8)

The region of the parameter space under which Model 1 is optimal is illustrated in Figure 2.

The pricing model in this region is "normal" in a sense: it involves no caps on demand, and a

gradually increasing level of volume discounting. Notice that in the region above the dotted line,

the pricing function does not depend on the fixed costs of in-house adoption. This is because

the cost advantages of on-demand computing are sufficiently high (or alternatively, the costs

of in-house deployment are sufficiently large) that the constraint placed on the seller by the

presence of the in-house deployment alternative are no longer relevant, and pricing is according

to standard unconstrained nonlinear pricing. Clearly, this will occur only if either the variable

cost c of providing on-demand computing is low, or the seller has deployed a relatively high
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Figure 2: Illustrates the region of the parameter space under which Model 1 is applicable. The

"in-house" deployment constraint does not bind above the dotted line, and pricing in the region

above the line is according to the first line of the equation (8).

level of infrastructure (which would make λ(K) relatively low), or both. However, the fraction

of customer types who will adopt on-demand computing is concentrated among high-usage

customers.

Below the dotted line, the alternative of in-house deployment begins to affect pricing. How-

ever, it is still optimal for the seller to price in a manner that targets all high-usage customers,

although at a progressively lower per-unit price. Notice that in this case, the variable price

P (q)

q
= α

"Ã
1−

r
1

2
− F

α

!
− q

4

#

is strictly decreasing as F/α decreases because when developing in house becomes more attrac-

tive, the seller has to offer deeper discounts.
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3.3 Model 2: Attracting a subset of high-volume users with free usage

Our next proposition describes the optimal pricing model in region 2:

Proposition 2 In region 2 of the parameter space, when the business value of the service is high

relative to the cost of in-house deployment, but the adjusted variable costs [c+λ(K)] of providing

on-demand computing are low, the seller’s optimal on-demand pricing schedule involves gradual

volume discounting at low levels of usage, free usage beyond a threshold, and often, a (relatively

high) demand cap. Specifically, the pricing function takes the form:

P (q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α

"r
F

α
q − q2

4

#
for q < 2

r
F

α
;

F for 2

r
F

α
≤ q ≤ min

½
1,

F

c+ λ(K)

¾
.

(9)

The region of the parameter space under which Model 2 is appropriate, along with the

general shape of the pricing function is illustrated in Figure 4. The pricing function therefore

has upto three distinct regions. For low levels of usage, pricing is relatively standard, with a

steadily increasing discount. However, at a threshold value of demand per customer, the seller

stops increasing their total price, and offers free usage beyond that point. Notice that it is

important for this segment of free usage to be targeted at the higher-usage customers — that

is, those who have paid for their usage of the first [2
p
F/α] units of usage — rather than it

being offered as "use k units for free up front and then start paying" schedule. This is because

its purpose is to get the high-usage customers to find the on-demand computing alternative

at least as attractive as their in-house alternative, while still being able to attract sufficient

numbers of low-usage customers.

In the region above the dotted line of Figure 3 (on the left), the demand cap (F/[c+λ(K)])

from line 2 of equation (9) is non-binding — that is, it is higher than the maximum level of

demand from any customer type. However, below this dotted line, this "demand cap" becomes

binding. This is because in this region, the firm no longer finds it profitable to induce the

15



Adjusted variable cost [ ( )] /+c Kλ α

F
α
⎡ ⎤
⎢ ⎥⎣ ⎦

0

0.5

0.25

10

Region 2
“Extreme” discounts 

for high-usage, 
moderate caps

on demand 

q

( )P q

0

α

10
2 F⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠α ( )

F
c K+λ

free usage to induce adoption
by higher-end customers

Adjusted variable cost [ ( )] /+c Kλ α

F
α
⎡ ⎤
⎢ ⎥⎣ ⎦

0

0.5

0.25

10

Region 2
“Extreme” discounts 

for high-usage, 
moderate caps

on demand 

Adjusted variable cost [ ( )] /+c Kλ α

F
α
⎡ ⎤
⎢ ⎥⎣ ⎦

0

0.5

0.25

10

Region 2
“Extreme” discounts 

for high-usage, 
moderate caps

on demand 

q

( )P q

0

α

10
2 F⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠α ( )

F
c K+λ

free usage to induce adoption
by higher-end customers

q

( )P q

0

α

10
2 F⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠α ( )

F
c K+λ

free usage to induce adoption
by higher-end customers

Figure 3: Illustrates the parameter region under which Model 2 applies, and the corresponding

pricing function in this region. The demand cap illustrated in the pricing figure on the right is

only present in the region of the parameter space below the dotted line .

highest-usage customers to adopt on-demand computing — their variable costs are too high to

profitably offer usage beyond the usage level (F/[c + λ(K)]) while still charging a maximum

total price F . The pricing strategy therefore transitions towards being focused on the "middle

of the market", and away from the higher end. This is a trend that is accentuated further in

Region 3, as described in our next proposition.

3.4 Model 3: Inducing limited adoption by low-usage customers

Our next proposition describes the optimal pricing model in region 3:

Proposition 3 In region 3 of the parameter space, when the business value of the service is not

very high relative to the cost of in-house deployment, and the adjusted variable costs [c+λ(K)]

of providing on-demand computing are high, the seller’s optimal on-demand pricing schedule

involves gradual volume discounting at low levels of usage, and a very restrictive demand cap.
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Specifically, the pricing function takes the form:

P (q) = α

∙µ
[c+ λ(K)] + αγ

2α

¶
q − q2

4

¸
for q <

γ2 − ( c+λ
α
)2

2 (c+λ)
α

, (10)

where γ is a positive root of the equation

4
(c+ λ)

α
bθ(γ)− (γ + c+ λ

α
)2 = 0; (11)

bθ(γ) = γ +
(c+ λ)

α
−
√
2

2

r
(γ +

c+ λ

α
)2 − 4F

α
. (12)

While we do not have a closed-form solution for the equation, it is not essential for us to

describe the structure of the pricing function. We have also performed extensive numerical

analysis to study the extent to which the demand cap varies, and find that indeed, it is quite

restrictive, allowing participation by only a subset of customer types.

The pricing function and relevant region are illustrated in Figure 4. The intuition for this

demand cap is quite straightforward — it is due to the fact that the adjusted variable costs are

high relative to the cost of in-house fulfilment. As a consequence of these high costs, the seller

cannot profitably sell its service to the higher-usage customers while still ensuring that its price

is below their outside alternative (in-house development). However, it can sell profitably to

those customers who cannot afford the in-house alternative at all — these are the lower usage

customers. Clearly, without a demand cap, a price that is affordable to these customers would

also be attractive to the higher usage customers, and consequently, in order to profit the most

from their sales to these customers, the structure in (10) emerges.

Our final proposition defines the region of the parameter space for which on-demand com-

puting is not profitable:

Proposition 4 There is no demand for on-demand computing if and only if F
α
< 1

2
( c+λ

α
)2.

In this region, the cost of providing on-demand computing is high enough relative to the

cost of in-house deployment to render its provision unprofitable for any customer type.
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Figure 4: Illustrates the region of the parameter space under which Model 3 is applicable, and

the corresponding optimal pricing function. The value of the demand cap increases as adjusted

variable costs [c+ λ(K)] decrease, that is, as either variable costs fall or the limits on demand

fulfilment imposed by infrastructure are relaxed.

4 Discussion, a possible path of transition and concluding remarks

As described in the brief discussion following the propositions, each of these three pricing

models is optimal for a specific set of relative levels of average business value, variable cost,

seller infrastructure, and fixed cost of in-house deployment. The sequence of pricing models

that a seller will use, and correspondingly, the set of customer segments they target with their

pricing strategy, depends on how these relative levels change over time.

Figure 5 summarizes a possible trajectory for the maturing of on-demand computing. In

the years before technological advances in grid computing and Internet access made the model

viable, it was clear that the variable costs of on-demand computing were too high to base a

viable business around it, and the region in which it is not viable is reflective of this. Next,

consider an industry in which the average business value α is relatively high. In the early stages

of evolution of an industry’s transition to on-demand computing, provider scale will be relatively

low, and additionally, the variable costs of administering its provision are likely to be relatively
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high, prior to any economies of scale that arise out of learning by doing. As a consequence,

it seems likely that providers will be in region 3 at this stage. Our model prescribes that

their optimal pricing strategy should be designed to attract lower-usage customers, by offering

demand-capped pricing that draws in those companies who lack the scale to implement their

own in-house solutions. In fact, there may be another reason for this approach early in the

process: it gives providers the opportunity to gain expertise and "iron out the kinks" in their

provision models without running the risk of a high-profile failure that could stifle a nascent

industry.

As the variable costs of provision fall over time, and providers are sufficiently confident in the

longer-term viability of the on-demand computing model to invest in sufficient scale to decrease

λ(K), the industry is likely to transition into region 2. During this phase, providers should

design their pricing strategy to slowly expand the middle of the market, towards eventually ful-

filling demand from higher-usage and larger corporate customers. Our model recommends that

this expansion can be implemented most profitably by offering limited free-usage to customers

whose individual demand exceeds a pre-specified level. This ensures that sellers can continue

to profit from the lower-usage customers they have attracted early in the process, while being

an economically viable alternative for these larger customers they are slowly drawing in.

Finally, as an increasing fraction of companies begin to transition to an on-demand corporate

computing infrastructure, it is likely that the fixed costs of in-house deployment will rise, owing

to the shrinking of the IT industry segments that support this kind of in-house provision.

Indeed, a similar transition in cost structure occurred in the electricity provision industry in

the early 20th century4. Prior to the widespread availability of centralized utility-based power,

4Our analogy has only to do with the similarity in cost structure, and unlike Carr (2005), we do not imply

any similarity in the importance of IT and electricity to business. It is clear that the latter general-purpose

technology, information technology, actually becomes progressively more important as shared infrastructures

(like those supporting widespread on-demand computing) become available (Dhar and Sundararajan, 2005).

19



Adjusted variable cost [ ( )] /+c Kλ α

F
α
⎡ ⎤
⎢ ⎥⎣ ⎦

0

0.5

0.25

1

Model 1

Model 2

Model 3

0

No market for 
on-demand computing 

Enter the ODC market by
pricing to target low-usage

customers, use 
demand caps  

Relax demand 
caps, start
attracting
higher-usage
customers

Focus on higher-usage customers with
aggressive volume discounting, raise prices 

as outside alternatives diminish  

Adjusted variable cost [ ( )] /+c Kλ α

F
α
⎡ ⎤
⎢ ⎥⎣ ⎦

0

0.5

0.25

1

Model 1

Model 2

Model 3

0

No market for 
on-demand computing 

Enter the ODC market by
pricing to target low-usage

customers, use 
demand caps  

Relax demand 
caps, start
attracting
higher-usage
customers

Focus on higher-usage customers with
aggressive volume discounting, raise prices 

as outside alternatives diminish  

Figure 5: Summarizes a possible path of evolution to on-demand computing in an infrastructure

industry with relatively high average business value, and the corresponding transition in pricing

models and customer adoption that our model prescribes for this path. The solid line depicts

a slower pace and transition through all three models, which is likely for IT infrastructure with

higher average business value α relative to its costs and which is more tightly integrated with

a customer’s business, while the dotted line depicts a more rapid transition, more likely when

pricing IT infrastructure for which willingness to pay is closer to its cost of provision.
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many companies operated their own power plants. As the centralized power transmission and

distribution infrastructure matured, and more and more larger companies switched to buying

electricity on-demand (as the vast majority of them do today), the costs of setting up and

running one’s own dedicated power plant became prohibitively high. If the in-house IT provision

industry evolves in a similar way (where the change in cost structure will be driven largely by

the increasing cost of managing such an infrastructure in-house as they become progressively

less common), the industry will transition into region 1, and pricing is likely to become more

"normal": aimed at a broad segment of high-usage customers, with volume discounts and no

artificial caps on demand.

In contrast, for an industry in which the average business value α of the service is relatively

lower, the transition to region 3 may occur far more rapidly, since as indicated by our model,

it is the ratios [F/α] and [c+ λ(K)]/α that influence which region of the parameter space the

firm is in. For example, for lower values of α, and a comparable cost structure, the transition

is likely to be more rapid, and directly from region 1 to region 3. This leads to an interesting

and intuitive conclusion: that on-demand company is likely to be widely prevalent earlier in

those sectors of the IT infrastructure business which are less critically tied to a company’s core

value propositions. These are likely to be in commodity-like sectors such as web hosting, large

scale processing, and data storage. Other forms of computing more closely tied to a company’s

business and customers are likely to remain as a mix — large-scale in-house deployment coexisting

with on-demand alternatives for lower-end/mid-range customers — for much longer. Supply-

chain management and CRM seem like good examples.

Our analysis suggests many directions for future research. The model we have articulated

might apply equally well to a study of the optimal pricing of digital goods as a service; the

analogue of F would be the price of the tangible (or unlimited usage) counterpart. Indeed, such

usage-based business models are emerging in digital music and video. The prior literature (for
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instance, Sundararajan, 2004) has characterized how these usage-based and unlimited usage

options can coexist when offered by the same vendor. However, very little is known about

the pricing strategy for an entrant whose business model is based on separating a digital good

from its artifact and selling it as a service, when the level of F to be strategically varied by

the incumbent. Since such entry threats are likely to become more common over time, this

represents an interesting direction for further inquiry.

In order to focus our analysis on pricing structure, we ignore the possibility of peak-load

pricing (for instance, like in Oren, Smith andWilson, 1985) and of variability in the level of usage

of individual customers. These two issues are clearly related. An extension of our model that

accounts for these factors is a possible direction for future researchers, and an interesting one,

given that such pricing is widely used for electricity industry, although such pricing is probably

more important in the electricity industry, where adjusting "infrastructure" (the capacity to

generate power) is significantly more difficult.. A limitation of our model is that it does not

relate the fixed costs of in-house deployment to the scale of the customer explicitly. As we

argue in Section 2, this may not be a significant assumption if providers can design and offer

different pricing models for segments containing customers of differing scale. A generalization

might associate in-house deployment scale endogenously with cost (perhaps by relating it to θ),

although our analysis indicates that such a generalization is likely to be mathematically quite

challenging.

To summarize, we have presented a new set of models of pricing on-demand corporate

computing that explicitly take into account the relative business value of the infrastructure in

question, the fixed costs of in-house deployment, the variable costs of provision and the scale

of provider infrastructure. Our analysis shows that there are three distinct pricing models that

may be optimal for on-demand computing, each of which is likely to characterize a specific

stage in the transition. These pricing models may feature volume discounting, free usage for
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high-demand customers, and demand caps, and the emergence of these features validates our

approach of choosing to place no restrictions on the choice of pricing function, despite the

associated analytical complexity of this approach. We are able to characterize which model is

suitable based on the stage of evolution of an infrastructure industry towards the on-demand

model, and suggest a likely path for an industry making the transition. As more vendors and

their customers make this transition, further research on this increasingly important area is

natural, and something we hope to contribute towards.
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A Appendix: A precise formulation of the pricing problem

Given a choice of pricing function P (q), recall that the set of customers who adopt on-demand

computing are those whose type θ satisfies:

max
q
[u(q, θ)− P (q)] ≥ 0. (13)

max
q
[u(q, θ)− P (q)] ≥

µ
max
q
[u(q, θ)]

¶
− F. (14)

denote the subset of θ values which satisfy (13) and (14) as Θ(P ). The demand from a customer

of type θ ∈ Θ(P ) will be q(θ, P ), where:

q(θ, P ) ≡ argmax
q

u(q, θ)− P (q). (15)

The total demand that the seller receives is therefore:Z
θ∈Θ(P )

q(θ, P )dθ, (16)

and the seller’s total profits are therefore:Z
θ∈Θ(P )

[P (q(θ, P ))− cq(θ, P )]dθ. (17)

The seller’s problem is to choose the function P (.) that maximizes (17) subject to the constraintZ
θ∈Θ(P )

q(θ, P )dθ ≤ Q(K). (18)
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or, summarizing, the seller’s problem is

[P1] max
P (.)

Z 1

0

[P (q(θ, P ))− cq(θ)] dθ (19)

subject to

q(θ, P ) ∈ argmax
q
[u(q, θ)− P (q)] , (20)

max
q
[u(q, θ)− P (q)] ≥ max

∙
max
q
[u(q, θ)− F ] , 0

¸
, (21)Z 1

0

q(θ, P )dθ ≤ Q(K). (22)

The first constraint specifies that each customer chooses the quantity that maximizes his gross

surplus. The second constraint specifies that each buyer buys from the seller only if his surplus

from buying on-demand computing is higher than that from his alternative options which are

developing the service in-house or doing nothing (= 0). The last constraint specifies that the

seller cannot sell more than the capacity constraint allowed by his infrastructure resources, K.

Rather than considering all possible pricing functions, the revelation principle ensures that

the seller can restrict its attention to direct mechanisms–that is, usage-based contracts in

which one specific quantity-price pair is designed for each customer, and in which it is rational

and optimal for the customer to choose the quantity price pair that was designed for him or

her5. We can thus rewrite [P1] as [P1a].

[P1a] max
p(θ),q(θ)

Z 1

0

[p(θ)− cq(θ)] dθ (23)

subject to (24)

[IC]: q(θ) ∈ argmax
t
[u(q(t), θ)− p(t)] , (25)

[PC]: argmax
t
[u(q(t), θ)− p(t)] ≥ max

∙
max
q
[u(q, θ)− F ] , 0

¸
, (26)

[CC]:
Z 1

0

q(θ)dθ ≤ Q(K). (27)

Followed a standard transformation from the nonlinear pricing literature (Armstrong 1996),

define the surplus function as

s(θ) ≡ u(q(θ), θ)− p(θ), (28)

5This kind of formulation is standard in models of price screening–see, for instance, Armstrong (1996, §2).

A good exposition of mechanism design, the revelation principle, and its applications to pricing can be found

in Fudenberg and Tirole (1991, Chapter 7).
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and [P1a] can be rewritten as problem [P2]:

[P2] max
q(θ),s(θ)

Z 1

0

[u(q(θ), θ)− s(θ)− c · q(θ)] dθ (29)

subject to (30)

[IC1]: qθ(θ) > 0, (31)

[IC2]: sθ(θ) = uθ(q, θ) = αq, (32)

[PC] : s(θ) ≥ bs(θ) ≡ max ∙1
2
αθ2 − F, 0

¸
, (33)

[CC] :
Z 1

0

q(θ)dθ ≤ Q(K). (34)

Lemma 1 will show that [P2] is equivalent to the following formulation [P3], which is our final

one.

[P3] max
q(θ),s(θ)

Z 1

0

[u(q(θ), θ)− s(θ)− [c+ λ(K)]q(θ)] dθ (35)

subject to (36)

[IC1]: qθ(θ) > 0, (37)

[IC2]: sθ(θ) = uθ(q, θ) = αq, (38)

[PC]: s(θ) ≥ bs(θ) ≡ max ∙1
2
αθ2 − F, 0

¸
. (39)

For brevity later on, we have denoted the outside opportunity by bs(θ) . [P3] is an optimal
control problem in which q(θ) is the control variable, s(θ) is the state variable, [IC2] is the

equation of motion (dynamics), and which has two inequality constraints.

B Appendix: Proofs

Outline of the proof of Lemma 1

[P2] is called the isoperimetric problem in the optimal control literature (Seierstad and Syd-

sæster, 1987, Chapter 4). The Lagrangian or generalized Hamiltonian without the constraint

[PC] for this problem is6

HP2 = u(q, θ)− s(θ)− c[q(θ)] + λ[Q(K)− q(θ)] + μ[uθ(q, θ)]. (40)

Correspondingly, the Hamiltonian for [P3] without the constraint [PC] is

HP3 = u(q, θ)− s(θ)− (c+ λ)q(θ) + μuθ(q, θ). (41)

6We ignore the monotonicity constraing [IC1], later verifying for each case that our solution satisfies it.
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In Huang and Sundararajan (2005), we show that for any value of Q(K), there exists a unique

solution for λ, the marginal benefit of an additional unit of capacity. We further show that the

marginal revenue curve λ(K) is continuous and strictly decreasing. As a result, under most

general cost structures for Q(K) (including ones that are discontinuous and in "blocks") that

generate a relationship between infrastructure and the ability to fulfil a constrained level of

maximum demand, there exists a unique optimal solution of λ, and consequently, the optimal

solution of [P2] is equivalent to that of [P3].

The addition of the [PC] constraints (33) and (39) do not change the equivalence of HP2 and

HP3, since it involves the addition of the same term [μ2(θ)]
£
s(θ)−max{1

2
θ2 − F, 0}

¤
to both

equations. While λ(K) is still decreasing, it is no longer continuous, which adds some technical

complexity, but does not change the idea above. A more detailed exposition is available on

request.

Outline of the proofs of our propositions

We first state the necessary conditions of our problem in Lemma (2). Next, we solve the case

when [PC] does not bind, in Lemma (3). We characterize the optimal solution of (q(θ), s(θ))

in Lemma (4), (5), and (6). We establish that q∗(θ) is a parallel shift of the solution to the

standard nonlinear pricing problem (which we refer to subsequently as the standard problem),

although s∗(θ) is somewhat different. Based on these lemmas, we can express the profit function

as a function of just one variable γ, the extent of this parallel shift. We find that there are

three cases that completely describe our problem, depending on which constraint is binding.

We characterize the optimal contract sequentially in Lemma (7), (8), and (9), and these lemmas

lead directly to our propositions.

Lemma 2 Define θ and θ as the lowest and highest customer types who adopt on-demand

computing. The necessary conditions for [P3] are:

∂HP3

∂q(θ)
= uq(q

∗, θ)− (c+ λ) + μ1(θ)uqθ(q
∗, θ) = 0,

⇒ q∗(θ) = θ + μ1(θ)− c+ λ

α
, (42)

μ1θ(θ) = −∂H
P3

∂s(θ)
= 1− μ2(θ), (43)

Transversality Conditions: 0 = μ1(θ) [s(θ)− bs(θ)] , (μ1(θ) > 0⇒ s(θ) = bs(θ)), (44)
0 = μ1(θ)

£
s(θ)− bs(θ)¤ , (μ1(θ) > 0 ⇒ s(θ) = bs(θ)), (45)

0 = HP3(q∗(θ), μ1(θ), θ), (46)

0 = HP3(q∗(θ), μ1(θ), θ), (47)

Kuhn-Tucker Condition: 0 = μ2(θ) · [s(θ)− bs(θ)] , (μ2(θ) > 0 ⇒ s(θ) = bs(θ)). (48)
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Proof. These conditions follow from the Maximum Principle, found in standard optimal

control theory textbooks (Seierstad and Sydsæster, Chapter 5, for instance). Equations (42)

and (43) indicate that the optimal quantity for each type will balance the sum of the marginal

benefit from this type and the cost this type imposes indirectly on account of higher information

rent to higher types. (44) to (47) are special in our problem since our boundary conditions on

θ and θ are endogenously determined rather than fixed. The participation constraint adds a

Kuhn-Tucker condition for this inequality constraint.

Lemma 3 (q0(θ), s0(θ)) is the optimal solution if and only if

(α− λ− c)2

4α
≥ 1
2
α− F, (49)

where

q0(θ) = 2θ − 1− (c+ λ)

α
, (50)

s0(θ) =
α

4

µ
2θ − 1− c+ λ

α

¶2
. (51)

This also defines the optimal pricing strategy when the buyer does not have the option of in-

house deployment (or the outside opportunity is zero for all buyers).

Proof. First, consider the solution to the problem in which bs(θ) = 0 for each θ. It is well

known that s(θ) = 0 (Mussa and Rosen,1978). As a result, we have one transversality condition

μ(1) = 0. The necessary and sufficient conditions of (41) reduce to

∂HP3

∂q(θ)
= α

¡
θ − q0

¢
− (c+ λ) + α · μ(θ) = 0,

⇒ q0(θ) = θ + μ(θ)− c+ λ

α
, (52)

μθ(θ) = −∂H
P3_0

∂s(θ)
= 1, (53)

s(θ) = 0, (54)

μ(1) = 0. (55)

Consequently,

μ(θ) = θ − 1, (56)

and thus

q0(θ) = 2θ − 1− c+ λ

α
. (57)

Since q0(θ) = 0, it follows from (44) that

θ =
c+ λ+ α

2α
. (58)
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The surplus function is thus

s0(θ) = 0 +

Z θ

θ

q0(t)dt =
α

4

µ
2θ − 1− c+ λ

α

¶2
. (59)

Also notice that the condition in (49) is equivalent to s0(1) ≥ bs(1). Recall the definition of bs(θ)
bs(θ) = 1

2
αθ2 − F, (60)

and it therefore follows that:

s0θ(θ)− bsθ(θ) = α

"
θ −

µ
1 +

c+ λ

α

¶2#
, (61)

which is strictly negative since θ ≤ 1. From (61), s0(1) ≥ bs(1) implies s0(θ) ≥ bs(θ) for all
θ ∈ [0, 1], and the solution to the standard problem is feasible for all θ, which proves the

necessary part. The sufficient part follows from the fact that if s0(1) < bs(1), [PC] is violated
for some θ ≤ 1.

Lemma 4 Define bθ ≡ min{θ : s∗(θ) = bs(θ) > 0}. If θ̂ exists, then the optimal quantity and
price schedule takes the following form:

q∗(θ) =

(
2θ − γ − (c+λ)

α
, θ ∈ [θ,bθ)

θ, θ ∈ [bθ, θ], , (62)

or the optimal allocation to each type is either a parallel upwards shift of the allocation under

the standard problem (with γ < 1 representing the extent of this shift), or an allocation that

induces usage at the maximum possible level. Also,

p∗(θ) =

⎧⎨⎩
α

4

µ
3
c+ λ

α
+ 3γ − 2θ

¶
q(θ), θ ∈ [θ,bθ)

F, θ ∈ [bθ, θ], , (63)

or the optimal price to each type is either the price under the standard problem adjusted for the

demand shift, or a price that replicates the cost of in-house deployment.

Proof. When θ < bθ, s∗(θ) > bs(θ) by definition. and hence μ2(θ) = 0 from (48). From

(43), this implies that μ1(θ) must take the form [θ − γ], where γ is an arbitrary constant (we

choose [θ − γ] rather than [θ + γ] since this makes γ positive later on). Substituting into (42)

yields the first line of (62), and the price schedule in the first line of (63) follows accordingly

based on the fact that

s∗(θ) = s∗(θ) +

Z θ

θ

αq(t)dt, (64)

p∗(θ) = U(q∗(θ), θ)− s∗(θ). (65)
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When θ > bθ, the seller cannot set s∗(θ) > bs(θ) since this violates [PC]. As a consequence, the
seller either chooses s∗(θ) = bs(θ), which can only be implemented by the quantity and price
schedule in the second line of (62) and (63), or excludes the customer type θ, in which case

θ > θ. The result follows.

Lemma 5 (1) s∗(θ) = 0, (2) q∗(θ) = 0, and (3) θ = 1
2

h
γ + (c+λ)

α

i
.

Proof. (1) When θ = 0, it is not optimal to set s∗(θ) > 0. Next, suppose for some θ > 0,

the seller chooses s∗(θ) > 0. If this is the case, it follows that q∗(θ) > 0, and since the seller

sets a non-zero price,

u(q∗(θ), θ)− (c+ λ)q∗(θ) > 0, (66)

which, using the first line of (62), in turn implies

α

µ
θ − 1

2
q∗(θ)− (c+ λ)

α

¶
q∗(θ) > 0, (67)

or

γ − (c+ λ)

α
> 0. (68)

Consequently, there exists an ε > 0 such that θ − ε > 0 and q∗(θ − ε) ∈ (0, q∗(θ)). If the seller
chooses s∗(θ − ε) = 0, the profit from serving type θ − ε is

u(q∗(θ − ε), θ − ε)− s∗(θ − ε)− (c+ λ)q∗(θ − ε), (69)

which simplifies to

=
α

2

µ
γ − ε− (c+ λ)

α

¶
q∗(θ − ε), (70)

which is strictly positive for a small enough ε. Introducing this contract does not violate [IC2],

since it can be verified that

u(q∗(θ − ε), θ)− p∗(θ − ε) = αεq∗(θ − ε), (71)

and the RHS of (71) can be made smaller than s∗(θ) by choosing an arbitrarily small ε. There-

fore, including the customer types [θ − ε, θ] improves the seller’s profits, a contradiction, and

the result follows.

(2) Given s∗(θ) = 0, by (46), we have

u(q, θ)− (c+ λ) · q(θ) + μ1(θ)uθ(q, θ) = 0, (72)

where the last term in HP3 is dropped because of (48). After substituting the expression from

(62) and simplifying, (72) is equivalent to

1

2
q(θ)

∙
1

2
q(θ)− θ

¸
= 0, (73)

and the result follows since q(θ) ≤ θ under any pricing schedule.

(3) Follows immediately from the fact that q(θ) = 0.
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Lemma 6 θ = min
£
q∗−1( F

c+λ
), 1
¤
, where q∗−1(θ) is the inverse of q∗(θ)

Proof. Given any q(θ), the highest level of profit feasible from type θ is

u(q(θ), θ)− [c+ λ(K)]q(θ)− û(θ), (74)

which simplifies to

−1
2
α[θ − q(θ)]2 + [F − [c+ λ(K)]q(θ)]. (75)

If q(θ) > F/[c + λ(K)] , (75) is strictly negative, which proves that θ ≤ q∗−1( F
c+λ
). When θ =

q∗−1( F
c+λ
), we can show(later) that s∗(θ) = ŝ(θ) except in the standard case. As a consequence,

by lemma (4), the profit is zero at θ. By assumption, the marginal customer is served and thus

θ = q∗−1( F
c+λ
) when θ ≤ 1. Otherwise, θ = 1.

We can now rewrite the profit function in terms of only one argument, γ. We are going

to show that, with the exception of one case, separately analyzed in Proposition 3, there are

two regions of the profit function and the optimal value of γ is at the boundary of those two

regions. Define q∗(θ, γ) as the demand from a customer of type θ and s∗(θ, γ) as the consumer

surplus for type θ when the shift γ is chosen in (62). Correspondingly, following Lemma 4,

define θ̂(γ) = min{θ : s∗(θ, γ) = s(θ)}. Define the following critical values of γ:

γ1 = min{γ : s∗(θ, γ) = ŝ(θ)} (76)

where γ1 is the lowest such value for some θ ∈ [0, 1], and

γ2 = γ : s∗(1, γ) = ŝ(1). (77)

The value of γ1 in (76) may not always exist. In the cases that follow, the variable γ0 will take

the value either γ1 or γ2 and we will show they are the solutions. Our problem is therefore to

maximize π(γ) with respect to γ, and has the following cases, which we label based on their

eventual solutions:

Case 1: (α−λ−c)
2

4α2
≥ 1

2
− F

α
(standard pricing): The solution is stated in Lemma (3).

Case 2: (α−λ−c)2
4α2

< 1
2
− F

α
and F

α
≥ min( c+λ

α
,

Ã
1

2
− 4
9

∙
1− c+ λ(K)

α

¸2!
)7 (non-standard

with possible free usage, and no demand cap): The profit function has two regions:

Region 1, when γ ≥ γ0,

π(γ) =

θ(γ)Z
θ

[u(q∗(θ, γ), θ)− [c+ λ]q∗(θ, γ)− s∗(θ)] dθ +

1Z
θ(γ)

[u(θ, θ)− [c+ λ]θ − bs(θ)] dθ, (78)

7With these constraints, we can verify that the solutions satisfy all constraints. F
α ≥

c+λ
α comes from θ ≤ 1

within region 2 and F
α ≥

1

2
− 4
9

∙
1− c+ λ(K)

α

¸2
comes from p(q∗(1))− [c+ λ(K)] q∗(1) ≥ 0 in region 1.
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Region 2, when γ < γ0,

π(γ) =

min[1,(γ+ c+λ
α
+ F
c+λ

)/2]Z
θ

[u(q∗(θ, γ), θ)− [c+ λ]q∗(θ, γ)− s∗(θ, γ)] dθ. (79)

The upper bound comes from lemma 4 and 6. When F
α
≤ 1

4
8 , γ0 = γ1 (case 2A), and when

F
α
> 1

4
, γ0 = γ2 (case 2B). The intuition is that when γ is smaller, q∗(θ, γ) is larger and s∗(θ, γ)

is greater than bs(θ) for each θ. As a result, there exists a threshold value of γ, whose value is

γ1, such that the objective function changes its shape. At the same time, the constraint bθ(γ)
≤ 1 leads to Case 2B, with the threshold determined by bθ(γ) = 1.We will show that the profit
function is increasing in region 1 and decreasing in region 2. As a consequence, we will have a

corner solution at γ∗ = γ0.

Case 3: F
α
< min( c+λ

α
,

Ã
1

2
− 4
9

∙
1− c+ λ(K)

α

¸2!
), (non-standard pricing with a demand

cap): Again, we have two subcases:

• Case 3A: When 2(c+λ)
α
≤
q

F
α
, the profit function has two regions, analogous to those in

case 2. For γ ≥ γ0,

π(γ) =

θ(γ)Z
θ

[u(q∗(θ, γ), θ)− [c+ λ]q∗(θ, γ)− s∗(θ)] dθ +

F
c+λZ

θ(γ)

[u(θ, θ)− [c+ λ]θ − bs(θ)] dθ,
(80)

and for γ < γ0,

π(γ) =

min[1,(γ+ c+λ
α
+ F
c+λ

)/2]Z
θ

[u(q∗(θ, γ), θ)− [c+ λ]q∗(θ, γ)− s∗(θ, γ)] dθ, (81)

where γ0 = γ1.

• Case 3B: When 2(c+λ)
α

>
q

F
α
, the profit function has three regions, and its discussion is

deferred to the proof of Proposition 3.

These cases are mapped out onto our parameter space in Figure 6 to make the connection

with the Propositions clearer.

We now proceed to show that:

• Case (2A): bθ(γ) < 1, γ1 < 1
8 F
α ≤

1
4 comes from

bθ(= 2qF
α ) ≤ 1 in region 2.
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Case 2A

Case 2B

Case
3A

Case 3B

Case 1

Figure 6: Mapping of our cases in the Appendix to the regions of the parameter space that

each case describes the solution to.

• Case (2B): bθ(γ) > 1, γ2 < γ1 < 1

• Case (3A), bθ(γ) < F/(c+ λ), γ1 < 1.

• Cases (2A), (2B) and (3A): The profit function is increasing for all γ < γ0, and the profit

function is decreasing for all γ > γ0.

We summarize these proofs in the following three lemmas.

Lemma 7 When (α−λ−c)2
4α

< 1
2
α− F and γ < γ0, π(γ) is increasing in γ.

Proof. Independent of whether γ0 = γ1 or γ2, when θ = 1, the profit function in (79)

simplifies to

π(γ) =
α

12

µ
2γ − 1− c+ λ

α

¶ ∙
γ +

(c+ λ)

α
− 2
¸2

. (82)

Differentiating with respect to γ and simplifying yields

πγ(γ) =
³α
2

´
(1− γ)

µ
2− γ − (c+ λ)

α

¶
. (83)

the second term is positive because γ ≤ 1 is a standard result (Jullien 2000) and the third term
in parenthesis on the RHS of (83) is positive because q∗(1, γ) > 0.
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A similar computation of the profit function in (79) when θ = (γ + c+λ
α
+ F

c+λ
)/2 yields

πγ(γ) =
αF 2

8 (c+ λ)2
, (84)

which is strictly positive. The result follows.

Lemma 8 When (α−λ−c)2
4α

< 1
2
α− F and γ > γ0, π(γ) is decreasing in γ.

Proof. We first identify bθ(γ), the marginal type whose participation constraint is binding,
given γ. This is the value of θ which solves s∗(θ, γ) = bs(θ), and this equation reduces to:

α

4

µ
2bθ − γ − (c+ λ)

α

¶2
=
1

2
αbθ2 − F, (85)

which yields: bθ(γ) = γ +
(c+ λ)

α
−
√
2

2

r
(γ +

c+ λ

α
)2 − 4F

α
. (86)

Next, we compute the following partial derivatives.

∂bθ(γ)
∂γ

=
θ − bθ(γ)

[γ + (c+λ)
α
− bθ(γ)] < 0. (87)

∂θ

∂γ
=
1

2
> 0. (88)

∂

∂γ
[u(q∗(θ, γ), θ)− (c+ λ)q∗(θ, γ)− s∗(θ)] = 2θα− (c+ λ)

2
− 3
2
αγ. (89)

Differentiating (78) with respect to γ yields:

πγ(γ) =

Z θ

θ

µ
2θα− [c+ λ]

2
− 3
2
αγ

¶
dθ +

∙
3α

4
γ − α

2
bθ(γ)− [c+ λ]

4

¸
[2bθ(γ)− γ − [c+ λ]

α
]

−∂
bθ(γ)
∂γ

"
α

2
[bθ(γ)]2 − α

4

µ
2bθ(γ)− γ − [c+ λ]

α

¶2
− [c+ λ]bθ(γ)# ,

which, using (87-89) simplifies to:

πγ(γ) =
α

2

³
θ − bθ´ ∙γ + (c+ λ)

α
− bθ¸ ,

which is strictly negative because the last term is positive by (86). A similar computation for

Case 3A, which is omitted, yields the required result.
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Lemma 9 The value of γ that maximizes π(γ) is, for each of the cases (2A), (2B), and (3A)
respectively:

(2A): γ∗ = γ1 = 2

r
F

α
− c+ λ

α
. (90)

(2B): γ∗ = γ2 = 2−
c+ λ

α
−
r
2− 4F

α
. (91)

(3A): γ∗ = γ1 = 2

r
F

α
− c+ λ

α
. (92)

Proof. We need to show that under the conditions in each case, bθ(γ∗) ≤ 1 and γ∗ < 1. We
first derive γ1 and γ2 from their definitions.

γ1 = 2

r
F

α
− c+ λ

α
. (93)

γ2 = 2−
(c+ λ)

α
−
r
2− 4F

α
. (94)

From (87), bθγ(γ) < 0 and therefore, bθ(γ) is maximized at γ = γ∗.

Case 2A: F
α
≤ 1

4
implies that 2

q
F
α
≤ 1.

bθ(γ1) = γ1 +
c+ λ

α
= 2

r
F

α
≤ 1; (95)

and

γ1 +
c+ λ

α
≤ 1⇒ γ1 ≤ 1. (96)

Case 2B: F
α
> 1

4
, bθ(γ2) = 1 by definition. For γ2, we know that s∗(1, γ2) = bs(1) by definition.

From (91), it follows that

1

2
α− F =

α

4

µ
2− γ2 −

(c+ λ)

α

¶2
, (97)

which in conjunction with the condition (α−λ−c)2
4α

< 1
2
α− F implies that γ2 < 1.

Case 3A: 2(c+λ)
α
≤
q

F
α
implies that

bθ(γ1) = 2rF

α
≤ F

(c+ λ)
. (98)

The proof of γ∗ = γ1 ≤ 1 is the same as that in (2A).
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Proof of Proposition 1

This proposition corresponds to the regions of the parameter space covered by Case 1 and

Case 2B. The optimal schedule for case 1 follows directly from Lemma (3). By definition, the

optimal pricing schedule is simply

p0(θ) = α(θq0(θ)− q0(θ)2

2
)− s0(θ). (99)

Using the expressions for q0(θ) and s0(θ) from (50) and (51) in (99) enables us to derive the

pricing function as a function of demand:

P ∗(q) =
1

4
α

µ
2
c+ λ

α
+ 2− q

¶
q. (100)

The optimal schedule for case 2B follows from Lemmas (4), (7), (8), and (9). Substituting

the optimal value γ∗ into the expressions in (4) yields

q∗(θ) = 2θ − 2 +
r
2− 4F

α
; (101)

s∗(θ) =
1

4
α

Ã
2θ − 2 +

r
2− 4F

α

!2
; (102)

p∗(θ) =
3

4
α

Ã
2−

r
2− 4F

α
− 2θ
3

!
q∗(θ). (103)

Rearranging these expressions yields the pricing function as a function of demand:

P ∗(q) =
1

4
α

"
4− 2

r
2− 4F

α
− q

#
q, (104)

which completes the proof of the Proposition.

Proof of Proposition 2

The region of the parameter space that this Proposition corresponds to is covered by our

cases 2A and 3A, as illustrated in Figure 6. In case 2A, from lemma 9,

γ∗ = 2

r
F

α
− c+ λ

α
, (105)

by (86), the lowest customer type that receives free usage is:

bθ = 2rF

α
(106)
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and θ = 1. The optimal schedule then follows from Lemma (4):

q∗(θ) =

⎧⎨⎩ 2(θ −
q

F
α
), θ ∈ [

q
F
α
, 2
q

F
α
)

θ, θ ∈ [2
q

F
α
, θ]

. (107)

s∗(θ) =

⎧⎨⎩ α
h
θ −

q
F
α

i2
, θ ∈ [

q
F
α
, 2
q

F
α
)

1
2
αθ2 − F, θ ∈ [2

q
F
α
, θ]

. (108)

and therefore:

p∗(θ) =

⎧⎨⎩ α[3
q

F
α
− θ][θ −

q
F
α
], θ ∈ [

q
F
α
, 2
q

F
α
)

F, θ ∈ [2
q

F
α
, θ]

. (109)

Rearranging these expressions yields the pricing function as a function of demand:

P ∗(q) =
1

4
α

Ã
4

r
F

α
− q

!
· q. (110)

An identical sequence of steps yields the same solution for case 3A, with the exception that

θ = F/(c+ λ) rather than 1.

Proof of Proposition 3

This proposition corresponds to case 3B. Define

γ3 = γ : bθ(γ) = F

(c+ λ)
. (111)

In contrast with cases 2A, 2B and 3A, the profit function may have up to three regions:

Region 1, when γ ≤ γ1, s
∗(θ, γ) > bs(θ) for all θ, and the profit function is increasing as

we showed in Lemma(7).

Region 2, when γ1 < γ ≤ min[γ3, 1],then the demand cap is set such that all customers
of type θ > bθ are excluded. We will show that the profit function has an interior maximum in

this case.

Region 3, when γ > min{1, γ3}, s∗(bθ) = bs(bθ), the exclusion happens at θ > bθ. The
profit function is decreasing as we showed in Lemma(8). We may not have this case for some

parameter values, but that does not matter, since the solution is never in this region.

Now, in Region 2, the profit function for a given γ is

π(γ) =

θ(γ)Z
θ

[u(q∗(θ, γ), θ)− [c+ λ]q∗(θ, γ)− s∗(θ, γ)] dθ. (112)
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Substituting the expression for quantity from Lemma (4), and then differentiating both sides

of (112) with respect to γ yields:

πγ(γ) =

³
4bθc+ 4bθλ− (γ + c+λ

α
)2α
´³bθ − θ

´
4
³
γ + c+λ

α
− bθ´ . (113)

Since bθ > θ and using (80), the sign of the RHS of (113) depends only on the sign of

f(γ) ≡ 4(c+ λ)

α
bθ − (γ + c+ λ

α
)2. (114)

Now,

f(γ1) = 4α

r
F

α

"
2
(c+ λ)

α
−
r

F

α

#
≥ 0, (115)

where the last inequality follows from the condition 2(c+λ)
α
≥
q

F
α
which defines case 3B. In

addition:

f(γ3) = 4
F

α
− (γ + c+ λ

α
)2 ≤ 0, (116)

where the inequality comes from the fact that square root of (86) must be positive, and

f(1) = 4
(c+ λ)

α
bθ − (1 + c+ λ

α
)2, (117)

which implies that, since θ̂ < 1,

f(1) < 4
(c+ λ)

α
− (1 + c+ λ

α
)2 < 0. (118)

From (115),(116) and (118), it follows that

πγ(γ1) > 0,

πγ(min{γ3, 1}) < 0,

and therefore the optimal γ is attained in Region 2. The first order condition thus yields the

solution.

4
(c+ λ)

α
bθ − (γ + c+ λ

α
)2 = 0. (119)

Once the appropriate root of this equation is computed, the optimal pricing schedule is obtained

from Lemma 4. The last thing to derive is q(θ),

q(θ) = q(θ̂) =
γ2 − ( c+λ

α
)2

2 (c+λ)
α

. (120)

and the result follows.
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Proof of Proposition 4

The profit of the seller is bounded above by the total gross surplus from trade, or

π(θ, q) ≤ α

µ
θ · q − 1

2
q2
¶
− (c+ λ)q = α

∙
(θ − c+ λ

α
)q − 1

2
q2
¸
. (121)

The customer type which has the highest net surplus from trading is at the kink of bs(θ), which
occurs when θ =

q
2F
α
.This is also the highest type for which bs(θ) = 0.

(Part: Only if) If
q

2F
α
− c+λ

α
> 0, then there is gain from trading at θ =

q
2F
α
and trade will

occur.

(Part: If) If
q

2F
α
− c+λ

α
< 0,then for all θ ≤

q
2F
α
, π(θ, q) < 0, which implies it is not

profitable to trade. Correspondingly, for each θ ∈ [
q

2F
α
, 1], the optimal surplus from on-

demand computing is less than the outside opportunity of developing in-house, since the optimal

surplus increases more slowly than the outside opportunity; that is,

d

dθ

∙
α

2
(θ − c+ λ

α
)2
¸
= α(θ − c+ λ

α
) (122)

and
d

dθ

µ
1

2
αθ2 − F

¶
= αθ. (123)

The result follows.
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