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Abstract

Many valuable text databases on the web have non-crawlable contents that are “hidden” behind search
interfaces. Metasearchers are helpful tools for searching over multiple such “hidden-web” text databases
at once through a unified query interface. An important step in the metasearching process is database
selection, or determining which databases are the most relevant for a given user query. The state-of-
the-art database selection techniques rely on statistical summaries of the database contents, generally
including the database vocabulary and the associated word frequencies. Unfortunately, hidden-web text
databases typically do not export such summaries, so previous research has developed algorithms for
constructing approximate content summaries from document samples extracted from the databases via
querying. We present a novel “focused probing” sampling algorithm that detects the topics covered
in a database and adaptively extracts documents that are representative of the topic coverage of the
database. Our algorithm is the first that constructs content summaries that include the frequencies of
the words in the database. Unfortunately, Zipf’s law practically guarantees that, for any relatively large
database, content summaries built from moderately sized document samples will fail to cover many low-
frequency words; in turn, incomplete content summaries might negatively affect the database selection
process, especially for short queries with infrequent words. To enhance the sparse document samples and
improve the database selection decisions, we exploit the fact that topically similar databases tend to have
similar vocabularies, so samples extracted from databases with a similar topical focus can complement
each other. We have developed two database selection algorithms that exploit this observation. The
first algorithm proceeds hierarchically and selects the best category for a query, and then sends the
query to the appropriate databases in the chosen category. The second algorithm uses “shrinkage,”
a statistical technique for improving parameter estimation in the face of sparse data, to enhance the
database content summaries with category-specific words. We describe how to modify existing database
selection algorithms to adaptively decide –at run-time– whether shrinkage is beneficial for a query. A
thorough evaluation over a variety of databases, including 315 real web databases as well as TREC data,
suggests that the proposed sampling methods generate high-quality content summaries and the database
selection algorithms produce significantly more relevant database selection decisions and overall search
results than existing algorithms.

1 Introduction

The World-Wide Web continues to grow rapidly, which makes exploiting all useful information that is
available a standing challenge. Although general Web search engines crawl and index a large amount of
information, typically they ignore valuable data in text databases that are “hidden” behind search interfaces
and whose contents are not directly available for crawling through hyperlinks.

Example 1.1 Consider the U.S. Patent and Trademark (USPTO) database, which contains1 the full text of
all the patents awarded in the US since 1976.2 If we query3 USPTO for patents with the keywords “wireless”
and “network”, USPTO returns 36,686 matches as of June 22nd, 2005, corresponding to distinct patents
that contain these keywords. In contrast, a query4 on Google that finds the pages in the USPTO database

1The full text of the patents is stored at the USPTO site.
2The query interface is available at http://patft.uspto.gov/netahtml/search-adv.htm.
3The query is [wireless AND network].
4The query is [wireless network site:patft.uspto.gov].
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with the keywords “wireless” and “network” returns 0 matches as of June 22nd, 2005, which illustrates that
the valuable content available through the USPTO database is ignored by this search engine.

One way to provide one-stop access to the information in text databases is through metasearchers, which
can be used to query multiple databases simultaneously. A metasearcher performs three main tasks. After
receiving a query, it finds the best databases to evaluate the query (database selection), it translates the query
in a suitable form for each database (query translation), and finally it retrieves and merges the results from
the different databases (result merging) and returns them to the user. The database selection component of
a metasearcher is of crucial importance in terms of both query processing efficiency and effectiveness.

Database selection algorithms are traditionally based on statistics that characterize each database’s con-
tents [YL97, XC98, MLY+98, GGMT99]. These statistics, to which we will refer as content summaries,
usually include the document frequencies of the words that appear in the database, plus perhaps other
simple statistics. These summaries provide sufficient information to the database selection component of a
metasearcher to decide which databases are the most promising to evaluate a given query.

Constructing the content summary of a text database is a simple task if the full contents of the data-
base are available (e.g., via crawling). However, this task is challenging for the so-called “hidden-Web text
databases,” whose contents are only available via querying. In this case, a metasearcher could rely on the
databases to supply the summaries (e.g., by following a protocol like STARTS [GCGMP97], or possibly
using Semantic Web [BLHL01] tags in the future). Unfortunately, many Web-accessible text databases are
completely autonomous and do not report any detailed metadata about their contents to facilitate meta-
searching. To handle such databases, a metasearcher could rely on manually generated descriptions of the
database contents. Such an approach would not scale to the thousands of text databases available on the
Web [Bri00], and would likely not produce the good-quality, fine-grained content summaries required by
database selection algorithms.

In this article, we first present a technique to automate the extraction of high-quality content summaries
from hidden-Web text databases. Our technique constructs these summaries from a biased sample of the
documents in a database, extracted by adaptively probing the database using the topically focused queries
sent to the database during classification. Our algorithm selects what queries to issue based in part on
the results of the earlier queries, thus focusing on the topics that are most representative of the database
in question. Our technique resembles biased sampling over numeric databases, which focuses the sampling
effort on the “densest” areas. We show that this principle is also beneficial for the text-database world.
Interestingly, our technique moves beyond the document sample and attempts to include in the content
summary of a database accurate estimates of the actual document frequency of the words in the database.
For this, our technique exploits well studied statistical properties of text collections.

Unfortunately, all efficient techniques for building content summaries via document sampling suffer from
a “sparse-data” problem: many words in any text database tend to occur in relatively few documents, so
any document sample of reasonably small size will necessarily miss many words that occur in the associated
database a small number of times. To alleviate this sparse-data problem, we exploit the observation –which
we validate experimentally– that incomplete content summaries of topically related databases can be used to
complement each other. Based on this observation, we explore two alternative algorithms that make database
selection more resilient to incomplete content summaries. Our first algorithm selects databases hierarchically
based on the categorization of the databases. The algorithm first chooses the categories to explore for a
query and then picks the best databases in the most appropriate categories. Our second algorithm is a “flat”
selection strategy that exploits the database categorization implicitly, by using “shrinkage,” a statistical
technique for improving parameter estimation in the face of sparse data. Our shrinkage-based algorithm
enhances the database content summaries with category-specific words. As we will see, the shrinkage-
enhanced summaries often characterize the database contents better than their “unshrunk” counterparts do.
Then, during database selection, our algorithm decides in an adaptive and query-specific way whether the
application of shrinkage is beneficial.

We evaluate the performance of our content summary construction algorithms using a variety of data-
bases, including 315 real Web databases. We also evaluate our database selection strategies with extensive
experiments that involve text databases and queries from the TREC testbed, together with the relevance
judgments associated with the queries and the database documents. We compare our methods with a va-
riety of state-of-the-art database selection algorithms. As we will see, our techniques result in a significant
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CANCERLIT
3,801,351 documents
Word df
breast 181,102
cancer 1,893,838
. . . . . .

CNN Money
13,313 documents
Word df
breast 65
cancer 255
. . . . . .

Table 1: A fragment of the content summaries of two databases.

improvement in performance over the state of the art, achieved efficiently just by exploiting the database
classification information and without increasing the document-sample size.

In brief, the main contributions presented in this article are:

• A technique to sample text databases that results in higher quality database content summaries than
those produced by the state-of-the-art alternatives.

• A technique to estimate the absolute document frequencies of the words in the content summaries.

• A technique to improve the quality of sample-based content summaries using shrinkage.

• A hierarchical database selection algorithm that works over a topical classification scheme.

• An adaptive database selection algorithm that decides in an adaptive and query-specific way whether
to use the shrinkage-based content summaries.

• A thorough, extensive experimental evaluation of the presented algorithms using a variety of data sets,
including TREC data and 315 real Web databases.

The rest of the article is organized as follows. Section 2 gives the necessary background. Section 3 outlines
our new technique for producing content summaries of text databases and presents our frequency estimation
algorithm. Section 4 describes our hierarchical and our shrinkage-based database selection algorithms, which
build on our observation that topically similar databases have similar content summaries. Section 5 describes
the settings for the experimental evaluation of Sections 6 and 7. Finally, Section 8 describes related work
and Section 9 concludes the article.

2 Background

In this section, we provide the required background as well as describe related efforts. Section 2.1 briefly
summarizes how existing database selection algorithms work, stressing their reliance on database “content
summaries.” Then, Section 2.2 describes the use of “uniform” query probing for extraction of content
summaries from text databases and identifies the limitations of this technique. Finally, Section 2.3 discusses
how focused query probing has been used in the past for the classification of text databases.

2.1 Database Selection Algorithms

Database selection is an important task in the metasearching process, since it has a critical impact on the
efficiency and effectiveness of query processing over multiple text databases. We now briefly outline how
typical database selection algorithms work and how they depend on database content summaries to make
decisions.

A database selection algorithm attempts to find the best text databases to evaluate a given query, based
on information about the database contents. Usually this information includes the number of different
documents that contain each word, to which we refer as the document frequency of the word, plus perhaps
some other simple related statistics [GCGMP97, MLY+98, XC98], such as the number of documents stored
in the database.

Definition 2.1 The content summary S(D) of a database D consists of:

• The actual number of documents in D, |D|, and
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• For each word w, the number df(w) of documents in D that include w.

For notational convenience, we also use p(w|D) = df(w)
|D| to denote the fraction of D documents that include

w.

Table 1 shows a small fraction of what the content summaries for two real text databases might look like.
For example, the content summary for the CNN Money database, a database with articles about finance,
indicates that 255 out of the 13,313 documents in this database contain the word “cancer,” while there
are 1,893,838 documents with the word “cancer” in CANCERLIT, a database with research articles about
cancer. Given these summaries, a database selection algorithm estimates the relevance of each database for
a given query (e.g., in terms of the number of matches that each database is expected to produce for the
query):

Example 2.2 bGlOSS [GGMT99] is a simple database selection algorithm that assumes that query words are
independently distributed over database documents to estimate the number of documents that match a given

query. So, bGlOSS estimates that query [breast cancer] will match |D| · df(breast)
|D| · df(cancer)

|D|
∼= 90, 225

documents in database CANCERLIT, where |D| is the number of documents in the CANCERLIT database
and df(·) is the number of documents that contain a given word. Similarly, bGlOSS estimates that only 1
document will match the given query in the other database, CNN Money, of Table 1.

bGlOSS is a simple example of a large family of database selection algorithms that rely on content
summaries such as those in Table 1. Furthermore, database selection algorithms expect content summaries to
be accurate and up to date. The most desirable scenario is when each database exports its content summary
directly and reliably (e.g., via a protocol such as STARTS [GCGMP97]). Unfortunately, no protocol is widely
adopted for Web-accessible databases, and there is little hope that such a protocol will emerge soon. Hence,
we need other solutions to automate the construction of content summaries from databases that cannot or
are not willing to export such information. We review one such approach next.

2.2 Uniform Probing for Content Summary Construction

As discussed above, we cannot extract perfect content summaries for hidden-Web text databases whose
contents are not crawlable. When we do not have access to the complete content summary S(D) of a
database D, we can only hope to generate a good approximation and use it for database selection purposes.

Definition 2.3 The approximate content summary Ŝ(D) of a database D consists of:

• An estimate |̂D| of the number of documents in D, and

• For each word w, an estimate d̂f(w) of df(w).

Using the values |̂D| and d̂f(w), we can define an approximation p̂(w|D) of p(w|D) as p̂(w|D) = d̂f(w)

|̂D|
.

Callan et al. [CCD99, CC01] presented pioneering work on automatic extraction of approximate content
summaries from “uncooperative” text databases that do not export such metadata. Their algorithm extracts
a document sample via querying from a given database D and approximates df(w) using the frequency of
each observed word w in the sample, sf (w) (i.e., d̂f(w) = sf (w)). In detail, the algorithm proceeds as follows:

1. Start with an empty content summary where sf (w) = 0 for each word w, and a general (i.e., not
specific to D), comprehensive word dictionary.

2. Pick a word (see below) and send it as a query to database D.

3. Retrieve the top-k documents returned for the query.

4. If the number of retrieved documents exceeds a prespecified threshold, stop. Otherwise continue the
sampling process by returning to Step 2.
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Callan et al. suggested using k = 4 for Step 3 and that 300 documents are sufficient (Step 4) to create
a representative content summary of a database. Also they describe two main versions of this algorithm
that differ in how Step 2 is executed. The algorithm QueryBasedSampling-OtherResource (QBS-Ord for
short) picks a random word from the dictionary for Step 2. In contrast, the algorithm QueryBasedSampling-
LearnedResource (QBS-Lrd for short) selects the next query from among the words that have been al-
ready discovered during sampling. QBS-Ord constructs better profiles, but is more expensive than QBS-
Lrd [CC01]. Other variations of this algorithm perform worse than QBS-Ord and QBS-Lrd, or have only
marginal improvements in effectiveness at the expense of probing cost.

Unfortunately, both QBS-Lrd and QBS-Ord have a few shortcomings. Since these algorithms set d̂f(w) =
sf (w), the approximate frequencies d̂f(w) range between one and the number of retrieved documents in the
sample. In other words, the actual document frequency df (w) for each word w in the database is not
revealed by this process. Hence, two databases with the same focus (e.g., two medical databases) but
differing significantly in size might be assigned similar content summaries. Also, QBS-Ord tends to produce
inefficient executions in which it repeatedly issues queries to databases that produce no matches. According
to Zipf’s law [Zip49], most of the words in a collection occur very few times. Hence, a word that is randomly
picked from a dictionary (which hopefully contains a superset of the words in the database), is likely not
to occur in any document of an arbitrary database. Similarly, for QBS-Lrd, the queries are derived from
the already acquired vocabulary, and many of these words appear only in one or two documents, so a large
fraction of the QBS-Lrd queries return only documents that have been retrieved before. These queries
increase the number of queries sent by QBS-Lrd, but do not retrieve any new documents. In Section 3, we
present our algorithm for approximate content summary construction that overcomes these problems and, as
we will see, produces content summaries of higher quality than those produced by QBS-Ord and QBS-Lrd.

2.3 Focused Probing for Database Classification

Another way to characterize the contents of a text database is to classify it in a Yahoo!-like hierarchy of topics
according to the type of the documents that it contains. For example, CANCERLIT can be classified under
the category “Health,” since it contains mainly health-related documents. Gravano et al. [GIS03] presented
a method to automate the classification of Web-accessible text databases, based on “focused probing.”

The rationale behind this method is that queries closely associated with topical categories retrieve mainly
documents about that category. For example, a query [breast cancer] is likely to retrieve mainly documents
that are related to the “Health” category. Gravano et al. [GIS03] automatically construct these topic-specific
queries using document classifiers, derived via supervised machine learning. By observing the number of
matches generated for each such query at a database, we can place the database in a classification scheme.
For example, if one database generates a large number of matches for the queries associated with the “Health”
category and only a few matches for all other categories, we might conclude that this database should be
under category “Health.” If the database does not return the number of matches for a query or does so
unreliably, we can still classify the database by retrieving and classifying a sample of documents from the
database. Gravano et al. [GIS03] showed that a sample-based classification has both lower accuracy and
higher cost than the algorithm that relies on the number of matches; however, in the absence of reliable
matching statistics, classifying the database based on a document sample is a viable alternative.

To classify a database, the algorithm in [GIS03] (see Figure 1) starts by first sending the query probes
associated with the subcategories of the top node C of the topic hierarchy, and extracting the number of
matches for each probe, without retrieving any documents. Based on the number of matches for the probes
for each subcategory Ci, the classification algorithm then calculates two metrics, the Coverage(D,Ci) and
Specificity(D,Ci) for the subcategory: Coverage(D,Ci) is the absolute number of documents in D that are
estimated to belong to Ci, while Specificity(D,Ci) is the fraction of documents in D that are estimated
to belong to Ci. The algorithm decides to classify D into a category Ci if the values of Coverage(D,Ci)
and Specificity(D,Ci) exceed two prespecified thresholds τec and τes, respectively. These thresholds are
determined by “editorial” decisions on how “coarse” a classification should be. For example, higher levels of
the specificity threshold τes result in assignments of databases mostly to higher levels of the hierarchy, while
lower values tend to assign the databases to nodes closer to the leaves.5 When the algorithm detects that
a database satisfies the specificity and coverage requirement for a subcategory Ci, it proceeds recursively in

5Gravano et al. [GIS03] suggest that τec ≈ 10 and τes ≈ 0.3 − 0.4 work well for the task of database classification.
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Classify(Category C, Database D, τec, τes, Specificity(D ,C ))
Result = ∅
if C is a leaf node

then return {C}
Probe database D with the query probes for the subcategories of C
Calculate Coverage from the number of matches for the probes
Coverage=M−1×Coverage // Confusion Matrix Adjustment [GIS03]
for each subcategory Ci of C

Calculate Specificity(D, Ci) using Coverage and Specificity(D ,C )
if Specificity(D, Ci) ≥ τes AND Coverage(D, Ci) ≥ τec

then Result = Result ∪ Classify(Ci, D, τec, τes, Specificity(D ,Ci ))
if Result == ∅

then return {C} // D was not “pushed” down
else return Result

Figure 1: Algorithm for classifying a database D into the category subtree rooted at category C.

the subtree rooted at Ci. By not exploring other subtrees that did not satisfy the coverage and specificity
conditions, the algorithm avoids exploring portions of the topic space that are not relevant to the database.

Next, we introduce a novel technique for constructing content summaries that are highly accurate and
efficient to build. Our new technique builds on the document sampling approach used by the QBS al-
gorithms [CC01] and on the text-database classification algorithm from [GIS03]. Just as QBS, which we
summarized in Section 2.2, our new technique probes the databases and retrieves a small document sample
to construct the approximate content summaries. The classification algorithm, which we summarized in this
section, provides a way to focus on the topics that are most representative of a given database’s contents,
resulting in turn in accurate and efficiently extracted content summaries.

3 Constructing Approximate Content Summaries

We now describe our algorithm for constructing content summaries for a text database. Our algorithm
exploits a topic hierarchy to adaptively send focused probes to the database (Section 3.1). Our technique
retrieves a “biased” sample that contains documents that are representative of the database contents. Fur-
thermore, our algorithm exploits the number of matches reported for each query to estimate the absolute
document frequencies of the words in the database (Section 3.2).

3.1 Classification-Based Document Sampling

Our algorithm for approximate content summary construction exploits a topic hierarchy to adaptively send
focused probes to a database. These queries tend to efficiently produce a document sample that is rep-
resentative of the database contents, which leads to highly accurate content summaries. Furthermore, our
algorithm classifies the databases along the way. In Section 4, we will show that we can exploit categorization
to improve further the quality of both the generated content summaries and the database selection decisions.

Our content summary construction algorithm is based on the classification algorithm from [GIS03], an
outline of which we presented in Section 2.3 (see Figure 1). Our content summary construction algorithm
is shown in Figure 2. The main difference with the classification algorithm is that we exploit the focused
probing to retrieve a document sample. We have enclosed in boxes the portions directly relevant to content
summary extraction. Specifically, for each query probe we retrieve k documents from the database in addition
to the number of matches that the probe generates (box β in Figure 2). Also, we record two sets of word
frequencies based on the probe results and extracted documents (boxes β and γ):

1. df (w): the actual number of documents in the database that contain word w. The algorithm knows
this number only if [w] is a single-word query probe that was issued to the database.6

6The number of matches reported by a database for a single-word query [w] might differ slightly from df (w), for example,
if the database applies stemming [SM83] to query words so that a query [computers] also matches documents with word
“computer.”
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GetContentSummary(Category C, Database D, τec, τes, Specificity(D ,C ))

α: 〈sf , df ,Classif〉 = 〈∅, ∅, ∅〉
if C is a leaf node then return 〈sf , df , {C}〉
Probe database D with the query probes for the subcategories of C

β:

newdocs = ∅
for each query probe q

newdocs = newdocs ∪ {top-k documents returned for q}
if q consists of a single word w then df (w) = #matches returned for q

for each word w in newdocs
sf (w) = #documents in newdocs that contain w

Calculate Coverage from the number of matches for the probes
Coverage=M−1×Coverage // Confusion Matrix Adjustment [GIS03]
for each subcategory Ci of C

Calculate Specificity(D, Ci) using Coverage and Specificity(D ,C )
if Specificity(D, Ci) ≥ τes AND Coverage(D, Ci) ≥ τec then

γ:
〈sf ’, df ’,Classif ’〉 = GetContentSummary(Ci, D, τec, τes, Specificity(D ,Ci )))
Merge 〈sf ’, df ’〉 into 〈sf , df 〉

Classif = Classif ∪ Classif ’
if Classif == ∅

then return 〈sf , df , {C}〉
else return 〈sf , df ,Classif〉

Figure 2: Generalizing the classification algorithm from Figure 1 to generate a content summary for a
database using focused query probing.

2. sf (w): the number of documents in the extracted sample that contain word w.

The basic structure of the probing algorithm is as follows. We explore (and send query probes for)
only those categories with sufficient specificity and coverage, as determined by the τes and τec thresholds
(for details, see Section 2.3). As a result, this algorithm categorizes the databases into the classification
scheme during probing. We will exploit this categorization to improve the quality of the generated content
summaries in Section 4.2.

Figure 3 illustrates how our algorithm works for the CNN Sports Illustrated database, a database with
articles about sports, and for a toy hierarchical scheme with four categories under the root node: “Sports,”
“Health,” “Computers,” and “Science.” We pick specificity and coverage thresholds τes = 0.4 and τec = 10,
respectively, which work well for the task of database classification [GIS03]. The algorithm starts by issuing
the query probes associated with each of the four categories. The “Sports” probes generate many matches
(e.g., query [baseball] matches 24,520 documents). In contrast, the probes for the other sibling categories
(e.g., [metallurgy] for category “Science”) generate just a few or no matches. The Coverage of category
“Sports” is the sum of the number of matches for its probes, or 32,050. The Specificity of category “Sports”
is the fraction of matches that correspond to “Sports” probes, or 0.967. Hence, “Sports” satisfies the
Specificity and Coverage criteria (recall that τes = 0.4 and τec = 10) and is further explored to the next
level of the hierarchy. In contrast, “Health,” “Computers,” and “Science” are not considered further. By
pruning the probe space, we improve the efficiency of the probing process by giving attention to the topical
focus (or foci) of the database. (Out-of-focus probes would tend to return few or no matches.)

During probing, our algorithm retrieves the top-k documents returned by each query (box β in Figure 2).
For each word w in a retrieved document, the algorithm computes sf (w) by measuring the number of
documents in the sample, extracted in a probing round, that contain w. If a word w appears in document
samples retrieved during later phases of the algorithm for deeper levels of the hierarchy, then all sf (w)
values are added together (“merge” step in box γ). Similarly, during probing the algorithm keeps track of
the number of matches produced by each single-word query [w]. As discussed, the number of matches for
such a query is (an approximation of) the df (w) frequency (i.e., the number of documents in the database
with word w). These df (·) frequencies are crucial to estimate the absolute document frequencies of all words
that appear in the document sample extracted, as discussed next.
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Figure 3: Querying the CNN Sports Illustrated database with focused probes.

3.2 Estimating Absolute Document Frequencies

The QBS-Ord and QBS-Lrd techniques return the frequency of the words in the document sample (i.e., the
sf (·) frequencies), with no absolute frequency information. We now show how we can exploit the df (·) and
sf (·) document frequencies that we extract from a database to build a content summary for the database
with accurate absolute document frequencies.

Before turning to the details of the algorithm, we describe a (simplified) example in Figure 4 to introduce
the basic intuition behind our approach.7 After probing the CANCERLIT database using the algorithm in
Figure 2, we rank all words in the extracted documents according to their sf (·) frequency. For example,
“cancer” has the highest sf (·) value and “hepatitis” the lowest such value in Figure 4. The sf (·) value of
each word is noted by an associated vertical bar. Also, the figure shows the df (·) frequency of each word
that appeared as a single-word query. For example, df (hepatitis) = 200, 000, because query probe [hepatitis]
returned 200,000 matches. Note that the df value of some words (e.g., “stomach”) is unknown. These words
are in documents retrieved during probing, but did not appear as single-word probes. Finally, note from
the figure that sf(hepatitis) ≈ sf(stomach), and so we might want to estimate df (stomach) to be close to the
(known) value of df (hepatitis).

To specify how to “propagate” the known df frequencies to “nearby” words with similar sf frequencies,
we exploit well known laws on the distribution of words over text documents. Zipf [Zip49] was the first
to observe that word-frequency distributions follow a power law, an observation that was later refined by
Mandelbrot [Man88]. Mandelbrot identified a relationship between the rank r and the frequency f of a word
in a text database, f = P (r + p)B , where P , B, and p are database-specific parameters (P > 0, B < 0,
p ≥ 0). This formula indicates that the most frequent word in a collection (i.e., the word with rank r = 1)

7The figures in this example are coarse approximations of the real ones, and we use them just to illustrate our approach.
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...

200,000 matches
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600,000 matches

f (frequency)

r (rank)

Figure 4: Estimating unknown df values.

will tend to appear in about P (1 + p)B documents, while, say, the tenth most frequent word will appear in
just about P (10 + p)B documents. Therefore, given Mandelbrot’s formula for the database and the word
ranking, we can estimate the frequency of each word.

Our technique relies on Mandelbrot’s formula to define the content summary of a database and consists
of two steps:

1. During probing, exploit the sf (·) frequencies derived during sampling to estimate the rank-frequency
distribution of the words over the entire database (Section 3.2.1).

2. After probing, exploit the df (·) frequencies obtained from one-word query probes to estimate the
rank of these words in the actual database; then, estimate the document frequencies of all words by
“propagating” the known rank and document frequencies to “nearby” words w for which we only know
sf (w) but not df (w) (Section 3.2.2).

3.2.1 Estimating the Word Rank-Frequency Distribution

The first part of our technique estimates the parameters P and B (of a slightly simplified version8) of
Mandelbrot’s formula for a given database. To do this, we examine how the parameters of Mandelbrot’s
formula change for different sample sizes. We observed that in all the databases that we examined for our
experiments, log(P ) and B tend to increase logarithmically with the sample size |S|. (This is actually an
effect of sampling from a power-law distribution [Baa06].) Specifically:

log(P ) = P1 log(|S|) + P2 (1a)

B = B1 log(|S|) + B2 (1b)

and P1, P2, B1, and B2 are database-specific constants, independent of sample size.
Based on the above empirical observations, we proceed as follows for a database D. At different points

during the document sampling process, we calculate P and B. After sampling, we use regression to estimate
the values of P1, P2, B1, and B2. We also estimate the size of database D using the “sample-resample”
method [SC03] with five resampling queries. Finally, we compute the values of P and B for the database by
substituting the estimated |D| for |S| in Equations 1a and 1b. At this point, we have a description of the
frequency-rank distribution for the actual database.

8For numerical stability, we define f = PrB , which allows us to use linear regression in the log-log space to estimate
parameters P and B.
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3.2.2 Estimating Document Frequencies

Given the parameters of Mandelbrot’s formula, the actual document frequency df (w) of each word w can
be derived from its rank in the database. For high-frequency words, the rank in the sample is usually a
good approximation of the rank in the database. Unfortunately, this is rarely the case for low-frequency
words, for which we rely on the observation that df (·) frequencies derived from one-word query probes can
help estimate the rank and df (·) frequency of all words in the database. Our rank and frequency estimation
algorithm works as follows:

1. Sort words in descending order of their sf (·) frequencies to determine the sample rank sr(wi) of each
word wi; do not break ties for words with equal sf (·) frequency and assign the same sample rank sr(·)
to these words.

2. For each word w in a one-word query probe (df(w) is known), use Mandelbrot’s formula and compute

the database rank ar(w) =
(

df(w)
P

) 1
B

.

3. For each word w not in a one-word query probe (df(w) is unknown):

(a) Find two words w1 and w2 with known df and consider their ranks in the sample (i.e., sr(w1),
sr(w2)) and in the database (i.e., ar(w1), ar(w2)).9

(b) Use interpolation in the log-log space to compute the database rank ar(w).10

(c) Use Mandelbrot’s formula to compute d̂f(w) = P · ar(w)B , where ar(w) is the rank of word w as
computed in the previous step.

Using the procedure above, we can estimate the df frequency of each word that appears in the sample.

Example 3.1 Consider the medical database CANCERLIT and Figure 4. We know that df(liver) = 1, 400, 000
and df(hepatitis) = 200, 000, since the respective one-word queries reported as many matches. Furthermore,
the ranks of the two words in the sample is sr(liver) = 4 and sr(hepatitis) = 10, respectively. While we
know that the rank of the word “kidneys” in the sample is sr(kidneys) = 8, we do not know df(kidneys)
because [kidneys] was not a query probe. However, the known values of df(hepatitis) and df(liver) can help
us estimate the rank of “kidneys” in the database and, in turn, the df(kidneys) frequency. For the CAN-
CERLIT database, we estimate that P = 6 · 106 and B = −1.15. Thus, we estimate that “liver” is the
fourth most frequent word in the database (i.e., ar(liver) = 4), while “hepatitis” is ranked number 20 (i.e.,
ar(hepatitis) = 20). Therefore, 15 words in the database are ranked between “liver” and “hepatitis”, while
in the sample there are only 5 such words. By exploiting this observation and by interpolation, we estimate
that “kidneys” (with rank 8 in the sample) is the 14th most frequent word in the database. Then, using the
rank information with Mandelbrot’s formula, we compute d̂f(kidneys) = 6 · 106 · 14−1.15 ∼= 288, 472.

During sampling, we also send to the database query probes that consist of more than one word. (Recall
that our query probes are derived from an underlying automatically learned document classifier.) We do
not exploit multi-word queries for determining df frequencies of their words, since the number of matches
returned by a boolean-AND multi-word query is only a lower bound on the df frequency of each intervening
word. However, the average length of the query probes that we generate is small (less than 1.5 words in our
experiments), and their median length is one. Hence, the majority of the query probes provide us with df
frequencies that we can exploit.

Finally, a potential problem with the current algorithm is that it relies on the database reporting a
value for the number of matches for a one-word query [w ] that is equal (or at least close) to the value of
df (w). Sometimes, however, these two values might differ (e.g., if a database applies stemming to query
words). In this case, frequency estimates might not be reliable. However, it is rather easy to detect such
configurations [MYL99] and adapt the frequency estimation algorithm properly. For example, if we detect
that a database uses stemming, we might decide to compute the frequency and rank of each word in the
sample after the application of stemming and adjust the algorithms accordingly.

9It is preferable, but not essential, to pick w1 and w2 such that sr(w1) < sr(w) < sr(w2).
10The exact formula is ar(w) = exp(

ln(ar(w2))·ln(sr(w)/sr(w1))+ln(ar(w1))·ln(sr(w2)/sr(w))
ln(sr(w2)/sr(w1))

).
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In summary, we have presented a novel technique for estimating the absolute document frequency of the
words in a database. As we will see, this technique produces relatively accurate frequency estimates for
the words in a document sample of the database. However, the database words that are not in the sample
documents in the first place are ignored and are not part of the resulting content summary. Unfortunately,
any document sample of moderate size will necessarily miss many words that occur in the associated database
only a small number of times. The absence of these words from the content summaries can negatively affect
the performance of database selection algorithms for queries that mention such words. To alleviate this
sparse-data problem, we exploit the observation that incomplete content summaries of topically related
databases can be used to complement each other, as discussed next.

4 Database Selection with Sparse Content Summaries

So far, we discussed how to efficiently construct approximate content summaries using document sampling.
However, any efficient algorithm for constructing content summaries through query probes is likely to produce
incomplete content summaries, which can adversely affect the effectiveness of the database selection process.
To alleviate this sparse-data problem, we exploit the observation that incomplete content summaries of
topically related databases can be used to complement each other. In this section, we present two alternative
algorithms that exploit this observation and make database selection more resilient to incomplete content
summaries. Our first algorithm (Section 4.1) selects databases hierarchically based on the categorization of
the databases. Our second algorithm (Section 4.2) is a “flat” selection strategy that exploits the database
categorization implicitly, by using “shrinkage,” and enhances the database content summaries with category-
specific words that appear in topically similar databases.

4.1 Hierarchical Database Selection

We now introduce a hierarchical database selection algorithm that exploits the database categorization and
content summaries to alleviate the negative effect of incomplete content summaries. This algorithm consists
of two basic steps:

1. “Propagate” the database content summaries to the categories of the hierarchical classification scheme
and create the associated category content summaries using Definition 4.1.

2. Use the content summaries of categories and databases to perform database selection hierarchically by
zooming in on the most relevant portions of the topic hierarchy.

The intuition behind our approach is that databases classified under similar topics tend to have similar
vocabularies. (We present supporting experimental evidence for this statement in Section 6.2.) Hence, we can
view the (potentially incomplete) content summaries of all databases in a category as complementary, and
exploit this for better database selection. For example, consider the CANCER.gov database and its associ-
ated content summary in Figure 5. As we can see, CANCER.gov was correctly classified under “Cancer” by
the algorithm of Section 3.1. Unfortunately, the word “metastasis” did not appear in any of the documents
extracted from CANCER.gov during probing, so this word is missing from the content summary. However,
we see that CancerBACUP11, another database classified under “Cancer”, has d̂f(metastasis) = 3, 569, a
relatively high value. Hence, we might conjecture that the word “metastasis” is an important word for all
databases in the “Cancer” category and that this word did not appear in CANCER.gov because it was not
discovered during sampling, not because it does not occur in the database. Therefore, we can create a content
summary with category “Cancer” in such a way that the word “metastasis” appears with a relatively high
frequency. This summary is obtained by merging the summaries of all databases under the category.

In general, we define the content summary of a category as follows:

Definition 4.1 Consider a category C and the set db(C) = {D1, . . . , Dn} of databases classified (not neces-
sary immediately) under C.12 The approximate content summary Ŝ(C) of category C contains, for each word

11http://www.cancerbacup.org.uk
12If a database Di is classified under multiple categories, we can treat Di as multiple disjoint “sub-databases,” with each

sub-database being associated with one of the Di categories and containing only the documents in the respective category.

11
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Figure 5: Associating content summaries with categories.

w, an estimate p̂(w|C) of p(w|C), where p(w|C) is the probability that a randomly selected document from
a database in db(C) contains the word w. The p̂(w|C) estimates in Ŝ(C) are derived from the approximate
content summaries of the databases in db(C) as:13

p̂(w|C) =

∑
D∈db(C) p̂(w|D) · |̂D|∑

D∈db(C) |̂D|
(2)

where |̂D| is an estimate of the number of documents in D (see Definition 2.3)14. The approximate content
summary Ŝ(C) also includes:

• The number of databases |db(C)| under C (n in this definition).

• An estimate |̂C| =
∑

D∈db(C) |̂D | of the number of documents in all databases under C.

• For each word w, an estimate d̂fC(w) of the total number of documents under C that contain the word
w: d̂fC(w) = p̂(w|C) · |̂C|.

By having content sumaries associated with categories in the topic hierarchy, we can select databases for
a query by proceeding hierarchically from the root category. At each level, we use existing flat database
algorithms such as CORI [CLC95] or bGlOSS [GGMT99]. These algorithms assign a score to each database
(or category in our case), which specifies how promising the database (or category) is for the query, as
indicated by the content summaries (see Example 2.2). Given the scores for the categories at one level of
the hierarchy, the selection process continues recursively down the most promising subcategories. As further

13An alternative is to define p̂(w|C) =

∑
D∈db(C) p̂(w|D)

|db(C)| , which “weights” each database equally, regardless of its size. We

implemented this alternative and obtained results that were virtually identical to those for Equation 2.
14We estimate the number of documents in the database as described in Section 3.2.1.
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HierSelect(Query q, Category C, int K)
1: Use a database selection algorithm to assign a score for q to each subcategory of C
2: if there is a subcategory of C with a non-zero score
3: Pick the subcategory Cj with the highest score
4: if |db(Cj)| ≥ K //Cj has enough databases
5: return HierSelect(q,Cj ,K)
6: else // Cj does not have enough databases
7: return db(Cj) ∪ FlatSelect(q,C − Cj ,K − |db(Cj)|)
8: else // no subcategory of C has non-zero score
9: return FlatSelect(q,C,K)

Figure 6: Selecting the K most specific databases for a query hierarchically.

Root
|db(Root)|=136

Sports
|db(Sports)|= 21

(score: 0.93)

Arts
|db(Arts)|=35
(score: 0.0)

Computers
|db(Computers)|=55

(score: 0.15)

Hockey
|db(Hockey)|=8

(score:0.08)

Baseball
|db(Baseball)|=7

(score:0.78)

Health
|db(Health)|=25

(score: 0.10)

Query: [babe ruth]

ESPN
(score:0.68)

Soccer
|db(Soccer)|=5

(score:0.12)

Figure 7: Exploiting a topic hierarchy for database selection.

motivation for our approach, earlier research has indicated that distributed information retrieval systems
tend to produce better results when documents are organized in topically cohesive clusters [XC99, LCC00].

Figure 6 specifies our hierarchical database selection algorithm in detail. The algorithm receives as
input a query and the target number of databases K that we are willing to search for the query. Also, the
algorithm receives the top category C as input, and starts by invoking a flat database selection algorithm
to score all subcategories of C for the query (Step 1), using the content summaries associated with the
subcategories. We assume in our discussion that the scores produced by the database selection algorithms
are greater than or equal to zero, with a zero score indicating that a database or category should be ignored
for the query. If at least one “promising” subcategory has a non-zero score (Step 2), then the algorithm
picks the best such subcategory Cj (Step 3). If Cj has K or more databases under it (Step 4), the algorithm
proceeds recursively under that branch only (Step 5). This strategy privileges “topic-specific” databases over
databases with broader scope. On the other hand, if Cj does not have sufficiently many (i.e., K or more)
databases (Step 6), then intuitively the algorithm has gone as deep in the hierarchy as possible (exploring
only category Cj would result in fewer than K databases being returned). Then, the algorithm returns all
|db(Cj)| databases under Cj , plus the best K − |db(Cj)| databases under C but not in Cj , according to the
“flat” database selection algorithm of choice (Step 7). If no subcategory of C has a non-zero score (Step 8),
again this indicates that the execution has gone as deep in the hierarchy as possible. Therefore, we return
the best K databases under C, according to the flat database selection algorithm (Step 9).

Figure 7 shows an example of an execution of this algorithm for query [babe ruth] and for a target of
K = 3 databases. The top-level categories are evaluated by a flat database selection algorithm for the query,
and the “Sports” category is deemed best, with a score of 0.93. Since the “Sports” category has more than
three databases, the query is “pushed” into this category. The algorithm proceeds recursively by pushing the
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query into the “Baseball” category. If we had initially picked K = 10 instead, the algorithm would have still
picked “Sports” as the first category to explore. However, “Baseball” has only 7 databases, so the algorithm
picks them all, and chooses the best 3 databases under “Sports” to reach the target of 10 databases for the
query.

In summary, our hierarchical database selection algorithm attempts to choose the most-specific databases
for a query. By exploiting the database categorization, this hierarchical algorithm manages to compensate for
the necessarily incomplete database content summaries produced by query probing. However, by selecting
first the most appropriate categories, this algorithm might miss some relevant databases that are not under
the selected categories. One solution would be to try different hierarchy-traversal strategies that could
alleviate this problem, and could lead to the selection of databases from multiple branches of the hierarchy.
Instead of following this direction of finding the appropriate traversal strategy, we opt for an alternative, “flat”
selection scheme: we use the classification hierarchy only for improving the extracted content summaries,
and we allow the database selection algorithm to choose among all available databases. Next, we describe
this approach in detail.

4.2 Shrinkage-Based Database Selection

As argued above, content summaries built from relatively small document samples are inherently incom-
plete, which in turn might affect the performance of database selection algorithms that rely on such sum-
maries. Now, we show how we can exploit database category information to improve the quality of the
database summaries and subsequently the quality of the database selection decisions. Specifically, Sec-
tion 4.2.1 presents an overview of our general approach, which builds on the shrinkage ideas from document
classification [MRMN98], while Section 4.2.2 explains in detail how we use shrinkage to construct content
summaries. Finally, Section 4.2.3 presents a database selection algorithm that uses the shrinkage-based
content summaries in an adaptive and query-specific way.

4.2.1 Overview of our Approach

In Sections 2.2 and 3.1, we discussed sampling-based techniques for building content summaries from hidden-
Web text databases, and argued that low-frequency words tend to be absent from those summaries. Addi-
tionally, other words might be disproportionately represented in the document samples. One way to alleviate
these problems is to increase the document sample size. Unfortunately, this solution might be impractical,
since it would involve extensive querying of the (remote) databases. Even more importantly, increases in
document sample size do not tend to result in comparable improvements in content summary quality [CC01].
An interesting challenge is then to improve the quality of the approximate content summaries without nec-
essarily increasing the document sample size.

This challenge has a counterpart in the problem of hierarchical document classification. Document
classifiers rely on training data to associate words with categories. Often, only limited training data is
available, which might lead to poor classifiers. Classifier quality can be increased with more training data,
but creating large numbers of training examples might be prohibitively expensive. As a less expensive
alternative, McCallum et al. [MRMN98] suggested “sharing” training data across related topic categories.
Specifically, their shrinkage approach compensates for sparse training data for a category by using training
examples for more general categories. For example, the training documents for the “Heart” category can be
augmented with those from the more general “Health” category. The intuition behind this approach is that
the word distribution in “Health” documents is hopefully related to the word distribution in the “Heart”
documents.

We can apply the same shrinkage principle to our problem, which requires that databases be categorized
into a topic hierarchy. This categorization might be an existing one (e.g., if the databases are classified
under Open Directory15 or InvisibleWeb). Alternatively, databases can be classified automatically using
the classification algorithm briefly reviewed in Section 2.3. Regardless of how databases are categorized,
we can exploit this categorization to improve content summary coverage. The key intuition behind the use
of shrinkage in this context is that databases under similar topics tend to have related content summaries.

15http://www.dmoz.org
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Figure 8: A fraction of a classification hierarchy and content summary statistics for word “hypertension.”

Hence, we can use the approximate content summaries for similarly classified databases to complement each
other, as illustrated in the following example.

Example 4.2 Figure 8 shows a fraction of a classification scheme with two text databases D1 and D2

classified under “Heart,” and one text database D3 classified under the (higher-level) category “Health.”
Assume that the approximate content summary of D1 does not contain the word “ hypertension,” but that this
word appears in many documents in D1. (“Hypertension” might not have appeared in any of the documents
sampled to build Ŝ(D1).) In contrast, “ hypertension” appears in a relatively large fraction of D2 documents
as reported in the content summary of D2, which is also classified under the “Heart” category. Then, by
“shrinking” p̂(hypertension|D1) towards the value of p̂(hypertension|D2), we can capture more closely the
actual (and unknown) value of p(hypertension|D1). The new, “shrunk” value is in effect exploiting documents
sampled from both D1 and D2.

We expect databases under the same category to have similar content summaries. Furthermore, even
databases classified under relatively general categories can help improve the approximate content summary of
a more specific database. Consider database D3, classified under “Health” in the example in Figure 8. Ŝ(D3)
can help complement the content summary approximation of databases D1 and D2, which are classified under
a subcategory of “Health,” namely “Heart.” Database D3, however, is a more general database that contains
documents in topics other than heart-related. Hence, the influence of Ŝ(D3) on Ŝ(D1) should perhaps be
smaller than that of, say, Ŝ(D2). In general, and just as for document classification [MRMN98], each category
level might be assigned a different “weight” during shrinkage. We discuss this and other specific aspects of
our technique next.

4.2.2 Using Shrinkage over a Topic Hierarchy

We now define more formally how we can use shrinkage for content summary construction. For this, we use
the notion of content summaries for the categories of a classification scheme (Definition 4.1) from Section 4.1.

Creating Shrunk Content Summaries Section 4.2.1 argued that mixing information from content
summaries of topically related databases may lead to more complete approximate content summaries. We
now formally describe how to use shrinkage for this purpose. In essence, we create a new content summary
for each database D by “shrinking” the approximate content summary of D, Ŝ(D), so that it is “closer” to
the content summaries S(Ci) of each category Ci under which D is classified.
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Definition 4.3 Consider a database D classified under categories C1, . . . , Cm of a hierarchical classification
scheme, with Ci = Parent(Ci+1) for i = 1, . . . ,m− 1. Let C0 be a dummy category whose content summary
Ŝ(C0) contains the same estimate p̂(w|C0) for every word w. Then, the shrunk content summary R̂(D) of
database D consists of:

• An estimate |̂D| of the number of documents in D, and

• For each word w, a shrinkage-based estimate p̂R(w|D) of p(w|D), defined as:

p̂R(w|D) = λm+1 · p̂(w|D) +
m∑

i=0

λi · p̂(w|Ci) (3)

for a choice of λi values such that
∑m+1

i=0 λi = 1 (see below).

As described so far, the p̂(w|Ci) values in the Ŝ(Ci) content summaries are not independent of each
other: since Ci = Parent(Ci+1), all the databases under Ci+1 are also used to compute Ŝ(Ci) (Defini-
tion 4.1). To avoid this overlap, before estimating R̂(D) we subtract from Ŝ(Ci) all the data used to
construct Ŝ(Ci+1). Also note that a simple version of Equation 3 is used for database selection based on
language models [SJCO02]. Language model database selection “smoothes” the p̂(w|D) probabilities with
the probability p̂(w|G) for a “global” category G. Our technique extends this principle and does multilevel
smoothing of p̂(w|D), using the hierarchical classification of D. We now describe how to compute the λi

weights used in Equation 3.

Calculating Category Mixture Weights We define the λi mixture weights from Equation 3 so as to
make the shrunk content summaries R̂(D) for each database D as “similar” as possible to both the starting
summary Ŝ(D) and the summary Ŝ(Ci) of each category Ci under which D is classified. Specifically, we
use expectation maximization (EM) [MRMN98] to calculate the λi weights, using the algorithm in Figure 9.
(This is a simple version of the EM algorithm from [DLR77].)

The “Expectation” step calculates the “likelihood” that content summary R̂(D) corresponds to each
category. The “Maximization” step weights the λi’s to maximize the total likelihood across all categories.
The result of the algorithm is the shrunk content summary R̂(D), which incorporates information from
multiple content summaries and is thus hopefully closer to the complete (and unknown) content summary
S(D) of database D.

For illustration purposes, Table 2 reports the computed mixture weights for two databases that we used
in our experiments. As we can see, in both cases the original database content summary and that of the
most specific category for the database receive the highest weights (0.421 and 0.414, respectively, for the
AIDS.org database, and 0.411 and 0.297, respectively, for the American Economics Association database).
However, higher-level categories also receive non-negligible weights. In general, the λm+1 weight associated
with a database (as opposed to with the categories under which it is classified) is usually highest among the
λi’s and so, the word-distribution statistics for the database are not “eclipsed” by the category statistics.
(We verify this claim experimentally in Section 6.3.)

Shrinkage might in some cases (incorrectly) reduce the estimated frequency of words that distinctly appear
in a database. Fortunately, this reduction tends to be small, because of the relatively high value of λm+1, and
hence these distinctive words remain with high frequency estimates. As an example, consider the AIDS.org
database from Table 2. The word chlamydia appears in 3.5% of the documents in the AIDS.org database.
This word appears in 4% of the documents in the document sample from AIDS.org and in approximately 2%
of the documents in the content summary for the AIDS category. After applying shrinkage, the estimated
frequency of the word chlamydia is somewhat reduced but is still high. The shrinkage-based estimate is that
chlamydia appears in 2.85% of the documents in AIDS.org, which is still close to the real frequency.

Shrinkage might in some cases (incorrectly) cause the inclusion of words in the content summary that
do not appear in the corresponding database. Fortunately, such spurious words tend to be introduced in
the summaries with low weight. Using once again the AIDS.org database as an example, we observed that
the word metastasis was (incorrectly) added by the shrinkage process to the summary: metastasis does not
appear in the database, but is included in documents in other databases under the Health category and hence
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Initialization step:
Set each λi to any normalized, non-zero value such that

∑m+1
i=0 λi = 1. (For example, λi = 1

m+2
, for every

i = 0, . . . , m + 1.)

Create the shrunk content summary R̂(D), using the current λi values (Definition 4.3).

Expectation step:
Calculate the “similarity” βi of each category Ci with R̂(D), for i = 0, . . . , m:

βi =
∑

w∈Ŝ(D)

λi · p̂(w|Ci)

p̂R(w|D)

Calculate the “similarity” βm+1 of database D with R̂(D):

βm+1 =
∑

w∈Ŝ(D)

λm+1 · p̂(w|D)

p̂R(w|D)

Maximization step:
Maximize the total “similarity” of R̂(D) with the category content summaries Ŝ(Ci) and with Ŝ(D), by redefining each
λi as follows:

λi =
βi∑m+1

j=0 βj

Modify the shrunk content summary R̂(D) using the current λi values.

Termination check:
When calculation of the λi weights converges (within a small ε) return the “current” shrunk content summary R̂(D).
Otherwise, go to the “Expectation” step.

Figure 9: Using expectation maximization to determine the λi mixture weights for the shrunk content
summary of a database D.

Database Category λ Database Category λ
Uniform 0.075 Uniform 0.041
Root 0.026 American Root 0.041

AIDS.org Health 0.061 Economics Science 0.055
Diseases 0.003 Association Social Sciences 0.155
AIDS 0.414 Economics 0.297
AIDS.org 0.421 A.E.A. 0.411

Table 2: The category mixture weights for two databases.

the word is in the Health category content summary. The shrunk content summary for AIDS.org estimates
that metastasis appears in just 0.03% of the database documents, so such a low estimate is unlikely to
adversely affect database selection decisions. (We will evaluate the positive and negative effects of shrinkage
experimentally later in Sections 6 and 7.)

Finally, note that the λi weights are computed off-line for each database when the sampling-based data-
base content summaries are created. This computation does not involve any overhead at query-processing
time.

4.2.3 Improving Database Selection using Shrinkage

So far, we introduced a shrinkage-based strategy to complement the incomplete content summary of a data-
base with the summaries of topically related databases. In principle, existing database selection algorithms
could proceed without modification and use the shrunk summaries to assign scores for all queries and data-
bases. However, sometimes shrinkage might not be beneficial and should not be used. Intuitively, shrinkage
should be used to determine the score s(q,D) for a query q and a database D only if the “uncertainty”
associated with this score would otherwise be large.

The uncertainty associated with an s(q,D) score depends on a number of sample-, database-, and query-
related factors. An important such factor is the size of the document sample relative to that of database
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D. If an approximate summary Ŝ(D) was derived from a sample that included most of the documents in
D, then this summary is already “sufficiently complete.” (For example, this situation might arise if D is a
small database.) In this case, shrinkage is not necessary and might actually be undesirable, since it might
introduce spurious words into the content summary from topically related (but not identical) databases.
Another factor is the frequency of the query words in the sample used to determine Ŝ(D). If, say, every
word in a query appears in close to all the sample documents, and the sample is representative of the entire
database contents, then there is little uncertainty on the distribution of the words over the database at large.
Therefore, the uncertainty about the score assigned to the database from the database selection algorithm is
also low, and there is no need to apply shrinkage. Analogously, if every query word appears in only a small
fraction of the sample documents, then most probably the database selection algorithm would assign a low
score to the database, since it is unlikely for the database to be a good candidate for evaluating the query.
Again, in this case shrinkage would provide limited benefit and should be avoided. However, consider the
following scenario, involving bGlOSS and a multi-word query for which most words appear very frequently in
the sample, but where one query word is missing from the document sample altogether. In this case, bGlOSS
would assign a zero score to the database. The missing word, though, may have a non-zero frequency in the
complete content summary, and the score assigned by bGlOSS to the database would have been significantly
higher in the presence of this knowledge because of bGlOSS ’s boolean nature. So, the uncertainty about the
database score that bGlOSS would assign if given the complete summary is high, and it is then desirable to
apply shrinkage. In general, for query-word distribution scenarios where the approximate content summary
is not sufficient to reliably establish the query-specific score for a database, shrinkage should be used.

More formally, consider a query q = [w1, . . . , wn] with n words w1, . . . , wn, a database D, and an ap-
proximate content summary for D, Ŝ(D), derived from a random sample S of D. Furthermore, suppose
that word wk appears in exactly sk documents in the sample S. For every possible combination of values
d1, . . . , dn (see below), we compute:

• The probability P that wk appears in exactly dk documents in D, for k = 1, . . . , n:

P =
n∏

k=1

dγ
k

(
dk

|D|

)sk
(
1 − dk

|D|

)|S|−sk

∑|D|
i=0 iγ ·

(
i

|D|

)sk
(
1 − i

|D|

)|S|−sk
(4)

where γ is a database-specific constant. (For details, see Appendix A.)

• The score s(q,D) that the database selection algorithm of choice would assign to D if p(wk|D) = dk

|D| ,
for k = 1, . . . , n.

So for each possible combination of values d1, . . . , dn, we compute both the probability of the value combi-
nation and the score that the database selection algorithm would assign to D for this document frequency
combination. Then, we can approximate the “uncertainty” behind the s(q,D) score by examining the mean
and variance of the database scores over the different d1, . . . , dn values. This computation can be performed
efficiently for a generic database selection algorithm: given the sample frequencies s1, . . . , sn, a large number
of possible d1, . . . , dn values have virtually zero probability of occurring, so we can ignore them. Addition-
ally, mean and variance converge fast, even after examining only a small number of d1, . . . , dn combinations.
Specifically, we examine random d1, . . . , dn combinations and periodically calculate the mean and variance
of the score distribution. Usually, after examining just a few hundred random d1, . . . , dn combinations, mean
and variance converge to a stable value. The mean and variance computation typically requires less than 0.1
seconds for a single-word query, and approximately 4-5 seconds for a 16-word query.16 This computation can
be even faster for a large class of database selection algorithms that assume independence between the query
words (e.g., [GGMT99, CLC95, XC99]). For these algorithms, we can calculate the mean and variance for
each query word separately, and then combine them into the final mean score and variance, respectively. (In
Appendix B we provide more details.) For algorithms that assume independence between the query words,
the computation time is typically less than 0.1 seconds.

Figure 10 summarizes the discussion above, and shows how we can adaptively use shrinkage with an
existing database selection algorithm. Specifically, the algorithm takes as input a query q and a set of

16We measured the time on a PC with a dual AMD Athlon CPU, running at 1.8 GHz.
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Input: Query q = [w1, . . . , wn]; databases D1, . . . , Dm

Content Summary Selection step:
For each Di:

For every possible choice of values for d1, . . . , dn (see text):
Compute the probability P that wk appears in
exactly dk documents in Di, for k = 1, . . . , n.

Compute the score s(q, Di) assuming that wk appears
in exactly dk documents in Di, for k = 1, . . . , n.

If the standard deviation of the score distribution across dk values is larger than its mean

then A(Di) = R̂(Di) // use “shrunk” content summary

else A(Di) = Ŝ(Di) // use “unshrunk” content summary

Scoring step:
For each Di:

Compute s(q, Di) using the A(Di) content summary,
as selected in the “Content Summary Selection” step.

Ranking step:
Rank the databases by decreasing score s(q, Di).

Figure 10: Using shrinkage adaptively for database selection.

URL Documents Classification
http://www.bartleby.com/ 375,734 Root→ Arts→ Literature→ Texts
http://java.sun.com/ 78,870 Root→ Computers→ Programming→ Java
http://mathforum.org/ 29,602 Root→ Science→ Mathematics
http://www.uefa.com/ 28,329 Root→ Sports→ Soccer

Table 3: Some of the real Web databases in the Web data set.

databases D1, . . . , Dm. The “Content Summary Selection” step decides whether to use shrinkage for each
database Di, as discussed above. If the distribution of possible scores has high variance, then Ŝ(Di) is
considered unreliable and the shrunk content summary R̂(Di) is used instead. Otherwise, shrinkage is not
applied. Then, the “Scoring” step computes the score s(q,Di) for each database Di, using the content
summary chosen for Di in the “Content Summary Selection” step. Finally, the “Ranking” step orders all
databases by their final score for the query. The metasearcher then uses this rank to decide what databases
to search for the query.

In this section, we presented two database selection strategies that exploit database classification to
improve the selection decisions in presence of incomplete content summaries. Next, we present the settings
for the experimental evaluation of the content summary construction algorithm of Section 3 and of the
database selection algorithms of Section 4.

5 Experimental Setting

In this section, we describe the data (Section 5.1), strategies for computing content summaries (Section 5.2),
and database selection algorithms (Section 5.3) that we use for the experiments reported in Sections 6 and 7.

5.1 Data Sets

The content summary construction techniques that we proposed above rely on a hierarchical categorization
scheme. For our experiments, we use the classification scheme from [GIS03], with 72 nodes organized in a
4-level hierarchy. To evaluate the algorithms described in this article, we use four data sets in conjunction
with the hierarchical classification scheme.

• Controlled: This is a data set that was also used for evaluating the task of database classification

19

http://www.bartleby.com/
http://java.sun.com/
http://mathforum.org/
http://www.uefa.com/


in [GIS03]. To construct this data set, we used postings from Usenet newsgroups where the signal-
to-noise ratio was high and where the documents belonged (roughly) to one of the categories of our
classification scheme. For example, the newsgroups comp.lang.c and comp.lang.c++ were considered
relevant to category “C/C++.” We collected 500,000 articles from April through May 2000. Out of
the 500,000 articles, 81,000 articles were used to train and test the document classifiers that we used
for the Focused Probing algorithm (see Section 5.2.1). We removed all headers from the newsgroup
articles, with the exception of the “Subject” line; we also removed the e-mail addresses contained in
the articles. Except for these modifications, we made no other changes to the collected documents.

We used the remaining 419,000 articles to build the 500 databases in the “Controlled” data set. The
size of the 500 Controlled databases that we created ranged from 25 to 25,000 documents. Out of the
500 databases, 350 are “homogeneous,” with documents from a single category, while the remaining 150
are “heterogeneous,” with a variety of category mixes. We define a database as “homogeneous” when
it has articles from only one node, regardless of whether this node is a leaf node or not. If it is not a
leaf node, then it has equal number of articles from each leaf node in its subtree. The “heterogeneous”
databases, on the other hand, have documents from different categories that reside in the same level
in the hierarchy (not necessarily siblings), with different mixture percentages. We believe that these
databases model real-world searchable Web databases, with a variety of sizes and foci.

• TREC4: This is a set of 100 databases created using documents from TREC-4 [Har96] and sepa-
rated into disjoint databases via clustering using the K-means algorithm, as specified in [XC99]. By
construction, the documents in each database are on roughly the same topic.

• TREC6: This is a set of 100 databases created using documents from TREC-6 [VH98] and separated
into disjoint databases using the same methodology as for TREC4.

• Web: This set contains the top-5 real Web databases from each of the 54 leaf categories of the
hierarchy and from each of the 17 internal nodes of the hierarchy17 (except for the root), as ranked
in the Google Directory,18 for a total of 315 databases.19 The sizes of these databases range from 100
to about 376,000 documents. Table 3 lists four example databases. We used the GNU Foundation’s
wget crawler to download the HTML contents of each site, and we kept only the text from each file by
stripping the HTML tags using the “lynx –dump” command.

We use the Controlled data set in Section 6 to extensively test the quality of the generated content
summaries and to pick the variation of our probing strategy from Section 3.1 that we will use for our
subsequent experiments in Section 7. We also use the Web data set in Section 6 to further validate the results
on the quality of the summaries. Finally, we use the TREC4 and TREC6 data sets both for examining
the quality of the content summaries and for testing the performance of the database selection algorithms
in Section 7. (The TREC4 and TREC6 data sets are the only ones that include queries and associated
relevance judgments.) For indexing and searching the files in all data sets, we used Jakarta Lucene,20 an
open-source full-text search engine.

5.2 Content Summary Construction Algorithms

Our experiments evaluate a number of content-summary construction techniques, which vary in their un-
derlying document sampling algorithms (Section 5.2.1) and on whether they use shrinkage and absolute
frequency estimation (Section 5.2.2).

5.2.1 Sampling Algorithms

We use different sampling algorithms for retrieving the documents based on which we build the approximate
content summaries Ŝ(D) of each database D:

17Instead of retrieving the top-5 databases from each category, a plausible alternative is to select a number of databases from
each hierarchy node that is proportional to the size of the respective hierarchy subtree. In our work, we give equal “weight” to
each category.

18 http://directory.google.com/
19We have fewer than 71 × 5 = 355 databases, because not all internal nodes included at least five databases.
20http://lucene.apache.org/
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• Query-Based Sampling (QBS): We experimented with the two versions of QBS described in Sec-
tion 2, namely QBS-Ord and QBS-Lrd. As the initial dictionary D for these two methods, we used all
words in the Controlled databases.21 Each query retrieves up to four previously unseen documents.
Sampling stops after retrieving 300 distinct documents. In our experiments, sampling also stops when
500 consecutive queries retrieve no new documents. To minimize the effect of randomness, we run each
experiment over five QBS document samples for each database and report average results.

• Focused Probing (FPS): We evaluate our Focused Probing technique, which we introduced in Sec-
tion 3.1, with a variety of underlying document classifiers. The document classifiers are used by Focused
Probing to generate the queries sent to the databases. Specifically, we consider the following variations
of the Focused Probing technique:

– FP-RIPPER: Focused Probing using RIPPER [Coh96] as the base document classifier.

– FP-C4.5: Focused Probing using C4.5RULES, which extracts classification rules from decision
tree classifiers generated by C4.5 [Qui92].

– FP-Bayes: Focused Probing using Naive-Bayes classifiers [DHS00] in conjunction with the tech-
nique to extract rules from numerically-based Naive-Bayes classifiers from [GIS03].

– FP-SVM: Focused Probing using Support Vector Machines with linear kernels [Joa98] in con-
junction with the same rule-extraction technique used for FP-Bayes.

The query probes of these classifiers are typically short: the median query length is one word, the
average query length is 1.35 words, and the maximum query length is four words. Further details
about the characteristics of the classifiers are available in [GIS03].

We also consider different values for the τes and τec thresholds, which affect the granularity of sampling
performed by the algorithm (see Section 3.1). All variations were tested with threshold τes ranging
between 0 and 1. Low values of τes result in databases being “pushed” to more categories, which in
turn results in larger document samples. To keep the number of experiments manageable, we fix the
coverage threshold to τec = 10, varying only the specificity threshold τes.

5.2.2 Shrinkage and Frequency Estimation

Our experiments also evaluate the usefulness of our shrinkage (Section 4.2) and frequency estimation tech-
niques (Section 3.2). To evaluate the effect of shrinkage on content summary quality, we create the shrunk
content summary R̂(D) for each database D and contrast its quality against that of the unshrunk content
summary Ŝ(D). Similarly, to evaluate the effect of our frequency estimation technique on content summary
quality, we consider the QBS and FPS summaries both with and without this frequency estimation. We
report results on the quality of the content summaries before and after the application of our shrinkage
algorithm.

To apply shrinkage, we need to classify each database into the 72-node topic hierarchy. Unfortunately,
such classification is not available for TREC data, so for the TREC4 and TREC6 data sets we resort to our
classification technique from [GIS03], which we reviewed briefly in Section 2.3.22 A manual inspection of the
classification results confirmed that they are generally accurate. For example, the TREC4 database all-83,
with articles about AIDS, was correctly classified under the “Root→ Health→ Diseases→ AIDS” category.
Interestingly, in the case in which databases were not classified correctly, “similar” databases were still
classified into the same (incorrect) category. For example, all-14, all-21, and all-44 are about middle-eastern
politics and were classified under the “Root→ Science→ Social Sciences→ History” category.

Unlike for TREC4 and TREC6, for which no “external” classification of the databases is available, for the
Web databases we do not have to rely on query probing for classification. Instead we can use the categories
assigned to the databases in the Google Directory. For QBS, the classification of each database in our data
set was indeed derived from the Google Directory. For FPS, we can either use the (correct) Google Directory

21Note that this slightly favors QBS in the experiments over the Controlled databases: the initial dictionary contains a
superset of the words that appear in each database in the Controlled data set. The experiments that use the Web, TREC4,
and TREC6 data sets are not affected by this bias.

22We adapted the technique slightly so that each database is classified under exactly one category.
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database classification, as for QBS, or rely on the automatically computed database classification that this
technique derives during document sampling. We tried both choices and found only small differences in the
experimental results. Therefore, for conciseness, we only report the FPS results for the automatically derived
database classification. Finally, for the Controlled data set, we use the automatically derived classification
with τes = 0.25 and τec = 10.

5.3 Database Selection Algorithms

The algorithms presented in this article (Sections 4.1 and 4.2.3) are built on top of underlying “base” database
selection algorithms. We consider three well-known such algorithms from the literature.

• bGlOSS, as described in [GGMT99]. Databases are ranked for a query q by decreasing score s(q,D) =
|D| ·

∏
w∈q p̂(w|D).

• CORI, as described in [FPC+99]. Databases are ranked for a query q by decreasing score s(q,D) =∑
w∈q

0.4+0.6·T ·I
|q| , where T = (p̂(w|D)·|D|)/(p̂(w|D)·|D|+50+150· cw(D)

mcw ), I = log
(

m+0.5
cf(w)

)
/ log (m + 1.0),

cf (w) is the number of databases containing w, m is the number of databases being ranked, cw(D) is
the number of words in D, and mcw is the mean cw among the databases being ranked. One potential
problem with the use of CORI in conjunction with shrinkage is that virtually every word has cf (w)
equal to the number of databases in the data set: every word appears with non-zero probability in every
shrunk content summary. Therefore, when we calculate cf (w) for a word w in our CORI experiments,
we consider w as “present” in a database D only when round(|D| · p̂R(w|D)) ≥ 1.

• Language Modeling (LM), as described in [SJCO02]. Databases are ranked for a query q by
decreasing score s(q,D) =

∏
w∈q(λ · p̂(w|D)+ (1−λ) · p̂(w|G)). The LM algorithm is equivalent to the

KL-based database selection method described in [XC99]. For LM, p(w|D) is defined differently than
in Definition 2.1, Section 3.1. Specifically, p(w|D) = tf(w,D)∑

i tf(wi,D) , where tf(w,D) is the total number
of occurrences of w in D. The algorithms described in Section 4.2 can be easily adapted to reflect this
difference, by substituting this definition of p(w|D) for that in Definition 2.1. LM smoothes the p̂(w|D)
probability with the probability p̂(w|G) for a “global” category G. In our experiments, we derive the
probabilities p̂(w|G) from the “Root” category summary and we use λ = 0.5 as suggested in [SJCO02].

We experimentally evaluate the three database selection algorithms above with three variations:

• Plain: Using “unshrunk” (incomplete) database content summaries extracted via QBS or FPS.

• Shrinkage: Using shrinkage when appropriate (as discussed in Section 4.2.3), again over database
content summaries extracted via QBS or FPS.

• Hierarchical: Using “unshrunk” database content summaries (extracted via QBS or FPS ) in con-
junction with the hierarchical database selection algorithm from Section 4.1.

Finally, to evaluate the effect of our frequency estimation technique (Section 3.2) on database selection
accuracy, we consider the QBS and FPS summaries both with and without this frequency estimation. Also,
since stemming can help alleviate the data sparseness problem, we consider content summaries both with
and without stemming.

6 Experimental Results for Content Summary Quality

In this section, we evaluate the alternate content summary construction techniques. We first focus on the
impact of the choice of sampling algorithm on content summary quality in Section 6.1. Then, in Section 6.2
we show that databases classified under similar categories tend to have similar content summaries. Finally,
in Section 6.3 we show that shrinkage-based content summaries are of higher quality than their unshrunk
counterparts.
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Figure 11a: Weighted recall as a function of the
specificity threshold τes and for the Controlled data
set.
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Figure 11b: Unweighted recall as a function of the
specificity threshold τes and for the Controlled data
set.
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Figure 11c: Spearman Rank Correlation Coefficient as a function of the specificity threshold τes and for the
Controlled data set.
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words with df > 3, as a function of the specificity
threshold τes and for the Controlled data set.
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6.1 Effect of Sampling Algorithm

Consider a database D and a content summary A(D) computed using an arbitrary sampling technique. We
now evaluate the quality of A(D) in terms of how well it approximates the “perfect” content summary S(D),
determined by examining every document in D. In the following definitions, WA is the set of words that
appear in A(D), while WS is the (complete) set of words that appear in S(D). Our experiments are over
the Controlled data set.

Recall: An important property of content summaries is their coverage of the actual database vocabulary.

The weighted recall (wr) of A(D) with respect to S(D) is defined as wr =
∑

w∈WA∩WS
df(w)∑

w∈WS
df(w) , which corresponds

to the ctf ratio in [CC01]. This metric gives higher weight to more frequent words, but is calculated after
stopwords (e.g., “a”, “the”) are removed, so this ratio is not artificially inflated by the discovery of common
words. We report the weighted recall for the different content summary construction algorithms in Figure 11a.
The variants of the Focused Probing technique achieve substantially higher wr values than QBS-Ord and
QBS-Lrd do. Early during probing, Focused Probing retrieves documents covering different topics, and then
sends queries of increasing specificity, retrieving documents with more specialized words. As expected, the
coverage of the Focused Probing summaries increases for lower values of the specificity threshold τes, since
the number of documents retrieved for lower thresholds is larger (e.g., 493 documents for FP-SVM with
τes = 0.25 vs. 300 documents for QBS-Lrd): a sample of larger size, everything else being the same, is better
for content summary construction. In general, the difference in weighted recall between QBS-Lrd and QBS-
Ord is small, but QBS-Lrd has slightly lower wr values due to the bias induced from querying only using
previously discovered words. To understand whether low-frequency words are present in the approximate
summaries, we resort to the unweighted recall (ur) metric, defined as ur = |WA∩WS |

|WS | . The ur metric is the
fraction of words in a database that are present in a content summary. Figure 11b shows trends similar to
the ones for weighted recall, but the numbers are smaller, showing that lower frequency words are not well
represented in the approximate summaries.

Correlation of Word Rankings: The recall metric can be helpful to compare the quality of different
content summaries. However, this metric alone is not enough, since it does not capture the relative “rank”
of words in the content summary by their observed frequency. To measure how well a content summary
orders words by frequency with respect to the actual word frequency order in the database, we use the
Spearman Rank Correlation Coefficient (SRCC for short), which is also used in [CC01] to evaluate the
quality of the content summaries. (We use the version of SRCC that accounts for ties, as suggested by
Callan and Connell [CC01].) When two rankings are identical, then SRCC=1; when they are uncorrelated,
SRCC=0; and when they are in reverse order, SRCC=-1. The results for the different algorithms are shown
in Figure 11c. Again, the content summaries produced by the Focused Probing techniques have higher SRCC
values than those for QBS-Lrd and QBS-Ord, hinting that Focused Probing retrieves a more “representative”
sample of documents from the database.

Accuracy of Frequency Estimations: In Section 3.2, we introduced a technique to estimate the actual
absolute frequencies of the words in a database. To evaluate the accuracy of our predictions, we report the
average relative error for words with actual frequencies greater than three. (Including the large tail of
less-frequent words would highly distort the relative-error computation, even for small estimation errors.)
Figure 11d reports the average relative error estimates for our algorithms. We also applied our absolute
frequency estimation algorithm of Section 3.2 to QBS-Ord and QBS-Lrd, even though this estimation is not
part of the original algorithms in [CC01]. As a general conclusion, our technique provides a good ballpark
estimate of the absolute frequency of the words.

Efficiency: To measure the efficiency of the probing methods, we report the sum of the number of
queries sent to a database and the number of documents retrieved (“number of interactions”) in Figure 11e.
(See [GIS03] for a justification of this metric.) The Focused Probing techniques retrieve –on average– one
document per query, while QBS-Lrd retrieves about one document for every two queries.23 QBS-Ord un-
necessarily issues many queries that produce no document matches. The efficiency of the other techniques is
correlated with their effectiveness. The more expensive techniques tend to give better results. The exception
is FP-SVM, which for τes > 0 has the lowest cost (or cost close to the lowest one) and gives results of

23The average is computed over the databases in the Controlled data set, after the different content summary construction
algorithms run to completion.
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Figure 12b: Unweighted recall as a function of the
specificity threshold τes, for the Controlled data set
and for the case where the FP and QBS methods
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comparable quality with respect to the more expensive methods. As discussed above, the Focused Probing
probes were generally short, with a maximum of four words and a median of one word per query.

Recall, Rank Correlation, and Efficiency for Identical Sample Size: We have seen that the
Focused Probing algorithms achieve better wr and SRCC values than the QBS-Lrd and QBS-Ord algorithms
do. However, the Focused Probing algorithms generally retrieve a (moderately) larger number of documents
than QBS-Ord and QBS-Lrd do, and the number of documents retrieved depends on how deeply into the
categorization scheme the databases are classified. To test whether the improved performance of Focused
Probing is just a result of the larger sample size, we increased the sample size for QBS-Lrd to retrieve the
same number of documents as each Focused Probing variant.24 We refer to the versions of QBS-Lrd that
retrieve the same number of documents as FP-Bayes, FP-C4.5, FP-RIPPER, and FP-SVM as QBS-Bayes,
QBS-C4.5, QBS-RIPPER, and QBS-SVM, respectively.

The wr, ur, and SRCC values for the alternative versions of QBS-Lrd are shown in Figures 12a, 12b,
and 12c, respectively. We observe that the wr, ur, and SRCC values of the QBS methods improve with
the larger document sample, but are still lower than their Focused Probing counterparts; the difference is
statistically significant at the 1% level according to a paired t-test. In general, the results show that the
Focused Probing methods are more effective than their QBS counterparts: the Focused Probing queries are
generated by document classifiers and tend to “cover” distinct parts of the document space. In contrast, the
QBS methods query the database with words that appear in the retrieved documents, and these documents
tend to contain words already present in the sample. This difference is more pronounced in the earlier stages
of sampling, where Focused Probing sends more general queries. When Focused Probing starts sending
queries for lower levels of the classification hierarchy, both Focused Probing and QBS demonstrate similar
rates of vocabulary growth. The exact point where the two techniques start performing similarly depends
on the size of the database. For large databases, Focused Probing dominates QBS even at deep levels of the
hierarchy, while for smaller databases the benefits of Focused Probing are only visible during the first and
second levels of sampling.

Finally, we measured the number of interactions performed by the Focused Probing and QBS methods
when they retrieve the same number of documents. The sum of the number of queries sent to a database
and the number of documents retrieved (“number of interactions”) is shown in Figure 12d. The average
number of queries sent to each database is larger for the QBS methods than for their Focused Probing
counterparts when they retrieve the same number of documents: the QBS queries are derived from the
already acquired vocabulary, and many of these words appear only in one or two documents, so a large
fraction of the QBS queries return only documents that have been retrieved before. These queries increase
the number of interactions for QBS, but do not retrieve any new documents.

For completeness, we ran the same set of experiments for the Web, TREC4, and TREC6 data sets.
We use content summaries extracted from FP-SVM with specificity threshold τes = 0.25 and coverage
threshold τec = 10: FP-SVM exhibits the best accuracy-efficiency tradeoff while τes = 0.25 leads to good

24We pick QBS-Lrd over QBS-Ord because QBS-Ord requires a much larger number of queries to extract its document
sample: most of its queries return no results (see Figure 11e), making it the most expensive method.
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Figure 12d: Number of interactions per database
as a function of the specificity threshold τes, for
the Controlled data set and for the case where the
FP and QBS methods retrieve the same number of
documents.

Data Set Method Metric
wr ur SRCC Interactions

Web FP-SVM 0.887 0.520 0.813 623
Web QBS-SVM 0.879 0.456 0.810 650
TREC4 FP-SVM 0.972 0.599 0.884 650
TREC4 QBS-SVM 0.943 0.428 0.850 702
TREC6 FP-SVM 0.975 0.662 0.905 684
TREC6 QBS-SVM 0.952 0.545 0.883 694

Table 4: Weighted recall, unweighted recall, Spearman Rank Correlation Coefficient, and number of inter-
actions per database, for the Web, TREC4, and TREC6 data sets and for the case where FP-SVM and
QBS-SVM retrieve the same number of documents.

database classification decisions as well (see [GIS03]). We also use the respective QBS-SVM version of QBS.
The results that we obtained (Table 4) were in general similar to those for the Controlled data set. The
main difference with the results obtained for the Controlled data set is that the number of interactions
is substantially lower for FP-SVM (and hence for QBS-SVM ): the databases in the Controlled data set
are typically classified under multiple categories; in contrast, the databases in Web, TREC4, and TREC6
are generally classified under only one or two categories, and hence require much fewer queries for content
summary construction than the Controlled databases do.

Evaluation Conclusions: Overall, the Focused Probing techniques produce summaries of better quality
than QBS-Ord and QBS-Lrd do, both in terms of vocabulary coverage and word-ranking preservation. The
cost of Focused Probing in terms of number of interactions with the databases is comparable to that for
QBS-Lrd (for τes > 0), and significantly lower than that for QBS-Ord. Finally, the absolute frequency
estimation technique of Section 3.2 gives good ballpark approximations of the actual frequencies.

6.2 Relationship between Content Summaries and Categories

A key conjecture behind our database selection algorithms is that databases under the same category tend to
have closely related content summaries. Thus, we can use the content summary of a database to complement
the (incomplete) content summary of another database in the same category (Section 4.2). We now explore
this conjecture experimentally using the Controlled, Web, TREC4, and TREC6 data sets.

Each database in the Controlled set is classified using τs = 0.25 and τc = 10, and following the definition
in [GIS03]. By construction, we know the contents of all the databases in the Controlled set, as well as their
correct classification. For the Web data set, we use the database classification as given by Open Directory.
Finally, we classify the databases in the TREC4 and TREC6 data sets using the classification algorithm
from [GIS03], with τes = 0.25 and τec = 10. Then, for each pair of databases Di and Dj we measure:
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Figure 13a: Weighted recall for pairs of database
content summaries, for the Controlled data set as
a function of the number of common categories in
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Figure 13b: Unweighted recall for pairs of database
content summaries, for the Controlled data set as
a function of the number of common categories in
the database pairs.
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Figure 13c: Spearman Rank Correlation Coefficient for pairs of database content summaries, for the Con-
trolled data set as a function of the number of common categories in the database pairs.

Data numCategories
Set 1 2 3 4
Web 0.83 0.89 0.90 0.91
TREC4 0.85 0.89 0.92 0.95
TREC6 0.86 0.88 0.89 0.92

Table 5a: Weighted recall for pairs of database con-
tent summaries, as a function of the number of
common categories in the database pairs and for
the Web, TREC4, and TREC6 data sets.

Data numCategories
Set 1 2 3 4
Web 0.46 0.51 0.53 0.55
TREC4 0.52 0.57 0.59 0.60
TREC6 0.53 0.57 0.58 0.61

Table 5b: Unweighted recall for pairs of database
content summaries, as a function of the number of
common categories in the database pairs and for
the Web, TREC4, and TREC6 data sets.

Data numCategories
Set 1 2 3 4
Web 0.50 0.59 0.67 0.69
TREC4 0.52 0.55 0.60 0.70
TREC6 0.52 0.55 0.57 0.62

Table 5c: Spearman Rank Correlation Coefficient for pairs of database content summaries, as a function of
the number of common categories in the database pairs and for the Web, TREC4, and TREC6 data sets.
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Data Sampl. Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.903 0.745
Controlled QBS Yes 0.917 0.745

FPS No 0.912 0.827
FPS Yes 0.928 0.827
QBS No 0.962 0.875

Web QBS Yes 0.976 0.875
FPS No 0.989 0.887
FPS Yes 0.993 0.887
QBS No 0.937 0.918

TREC4 QBS Yes 0.959 0.918
FPS No 0.980 0.972
FPS Yes 0.983 0.972
QBS No 0.959 0.937

TREC6 QBS Yes 0.985 0.937
FPS No 0.979 0.975
FPS Yes 0.982 0.975

Table 6a: Weighted recall wr.

Data Sampl. Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.589 0.523
Controlled QBS Yes 0.601 0.523

FPS No 0.623 0.584
FPS Yes 0.638 0.584
QBS No 0.438 0.424

Web QBS Yes 0.489 0.424
FPS No 0.681 0.520
FPS Yes 0.711 0.520
QBS No 0.402 0.347

TREC4 QBS Yes 0.542 0.347
FPS No 0.678 0.599
FPS Yes 0.714 0.599
QBS No 0.549 0.475

TREC6 QBS Yes 0.708 0.475
FPS No 0.731 0.662
FPS Yes 0.784 0.662

Table 6b: Unweighted recall ur.

• the number of categories that they share, numCategories, where:

numCategories = |Path(Ideal(Di)) ∩ Path(Ideal(Dj))|,

and Ideal(D) is the correct classification of D, Path(Ideal(D)) = {category c |c ∈ Ideal(D) or c is an
ancestor of some n ∈ Ideal(D)}, for τes = 0.25 and τec = 10.

• the wr, ur, and SRCC values of their correct content summaries.

Figures 13a, 13b, and 13c report the wr, ur, and SRCC metrics, respectively, over all pairs of databases
in the Controlled set and discriminated by numCategories. The larger the number of common categories
between a pair of databases, the more similar their corresponding content summaries tend to be, according
to the wr, ur, and SRCC metrics. Tables 5a, 5b, and 5c report the wr, ur, and SRCC metrics, respectively,
over all pair of databases in the Web, TREC4, and TREC6 data sets, confirming that databases that are
classified under similar categories have more similar content summaries than databases under different topics.

6.3 Effect of Shrinkage

We now report experimental results on the quality of the content summaries generated by the shrinkage
technique from Section 4.2. To keep our experiments manageable, we use content summaries extracted from
FP-SVM with specificity threshold τes = 0.25 and coverage threshold τec = 10, which give good classification
decisions. We also pick QBS-Lrd over QBS-Ord, since the former method demonstrates similar performance
at substantially smaller cost than the latter. (See Section 6.1 for a justification of this choice.) For conciseness,
we now refer to FP-SVM as FPS and to QBS-Lrd as QBS. We evaluate the content summaries using the
Controlled, Web, TREC4, and TREC6 data sets.

Recall: We used the weighted recall and unweighted recall metrics to measure the vocabulary coverage
of the shrunk content summaries. The shrunk content summaries include (with non-zero probability) every
word in any content summary. Most words in any given content summary, however, tend to exhibit a very low
probability. Therefore, to not inflate artificially the recall results (and conversely, to not hurt artificially the
precision results), we drop from the shrunk content summaries every word w with round(|D| · p̂R(w|D)) < 1
during evaluation. Intuitively, we drop from the content summary all the words that are estimated to appear
in less than one document.

Table 6a shows the weighted recall for different content summary construction techniques. Most methods
exhibit high weighted recall, which shows that document sampling techniques identify the most frequent
words in the database. Not surprisingly, shrinkage increases the (already high) wr values and all shrinkage-
based methods have close-to-perfect wr. This improvement is statistically significant in all cases: a paired
t-test [Mar03] showed significance at the 0.01% level. The improvement for the Web set is higher compared
to that for the TREC4 and TREC6 data sets: the Web set contains larger databases, and the approximate
content summaries are less complete than the respective approximate content summaries of TREC4 and
TREC6. Our shrinkage technique becomes increasingly useful for larger databases. To understand whether
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Data Sampl. Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.989 1.000
Controlled QBS Yes 0.979 1.000

FPS No 0.948 1.000
FPS Yes 0.940 1.000
QBS No 0.981 1.000

Web QBS Yes 0.973 1.000
FPS No 0.987 1.000
FPS Yes 0.947 1.000
QBS No 0.992 1.000

TREC4 QBS Yes 0.978 1.000
FPS No 0.987 1.000
FPS Yes 0.984 1.000
QBS No 0.978 1.000

TREC6 QBS Yes 0.943 1.000
FPS No 0.976 1.000
FPS Yes 0.958 1.000

Table 7a: Weighted precision wp.

Data Sampl. Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.932 1.000
Controlled QBS Yes 0.921 1.000

FPS No 0.895 1.000
FPS Yes 0.885 1.000
QBS No 0.954 1.000

Web QBS Yes 0.942 1.000
FPS No 0.923 1.000
FPS Yes 0.909 1.000
QBS No 0.965 1.000

TREC4 QBS Yes 0.955 1.000
FPS No 0.901 1.000
FPS Yes 0.856 1.000
QBS No 0.936 1.000

TREC6 QBS Yes 0.847 1.000
FPS No 0.894 1.000
FPS Yes 0.850 1.000

Table 7b: Unweighted precision up.

Data Sampl. Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.723 0.628
Controlled QBS Yes 0.723 0.628

FPS No 0.765 0.665
FPS Yes 0.765 0.665
QBS No 0.904 0.812

Web QBS Yes 0.904 0.812
FPS No 0.917 0.813
FPS Yes 0.917 0.813
QBS No 0.981 0.833

TREC4 QBS Yes 0.981 0.833
FPS No 0.943 0.884
FPS Yes 0.943 0.884
QBS No 0.961 0.865

TREC6 QBS Yes 0.961 0.865
FPS No 0.937 0.905
FPS Yes 0.937 0.905

Table 8: Spearman Correlation Coefficient.

Data Sampl. Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.364 0.732
Controlled QBS Yes 0.389 0.645

FPS No 0.483 0.542
FPS Yes 0.378 0.503
QBS No 0.361 0.531

Web QBS Yes 0.382 0.472
FPS No 0.298 0.254
FPS Yes 0.281 0.224
QBS No 0.296 0.300

TREC4 QBS Yes 0.175 0.180
FPS No 0.253 0.203
FPS Yes 0.193 0.118
QBS No 0.305 0.352

TREC6 QBS Yes 0.287 0.354
FPS No 0.223 0.193
FPS Yes 0.301 0.126

Table 9: KL-divergence.

low-frequency words are present in the approximate and shrunk content summaries, we use the unweighted
recall metric. Table 6b shows that the shrunk content summaries have higher unweighted recall as well.

Finally, recall is higher when shrinkage is used in conjunction with the frequency estimation technique.
This behavior is to be expected: when frequency estimation is enabled, the words introduced by shrinkage are
close to their real frequencies, and are used in precision and recall calculations. When frequency estimation
is not used, the estimated frequencies of the same words are often below 0.5, and are therefore not used in
precision and recall calculations.

Precision: A database content summary constructed using a document sample contains only words
that appear in the database. In contrast, the shrunk content summaries may include words not in the
corresponding databases. To measure the extent to which “spurious” words are added –with high weight–
by shrinkage in the content summary, we use the weighted precision (wp) of A(D) with respect to S(D),

wp =
∑

w∈WA∩WS
d̂f(w)∑

w∈WA
d̂f(w)

. Table 7a shows that shrinkage decreases weighted precision by just 0.8% to 6%.

We also report the unweighted precision (up) metric, defined as up = |WA∩WS |
|WA| . This metric reveals

how many words introduced in a content summary do not appear in the complete content summary (or,
equivalently, in the underlying database). Table 7b reports the results for the up metric, which show that
the shrinkage-based techniques have unweighted precision that is usually above 90% and always above 84%.

Word-Ranking Correlation: Table 8 shows that SRCC is higher for the shrunk content summaries.
In general, SRCC is better for the shrunk than for the unshrunk content summaries (p < 0.001, according
to a paired t-test): not only do the shrunk content summaries have better vocabulary coverage, as the recall
figures show, but also the newly added words tend to be ranked properly.

Word-Frequency Accuracy: Our shrinkage-based algorithm modifies the probability estimates p̂(w|D)
in the approximate summaries A(D), in order to generate a summary whose probability distribution is
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“closer” to that of the original S(D). The KL-divergence compares the “similarity” of the A(D) estimates
against the real values in S(D): KL =

∑
w∈WA∩WS

p(w|D) · log p(w|D)
p̂(w|D) , where p(w|D) is defined as p(w|D) =

tf(w,D)∑
i tf(wi,D) and tf(w,D) is the total number of occurrences of w in D. The KL metric takes values from 0

to infinity, with 0 indicating that the two content summaries being compared are equal.
Table 9 shows that shrinkage helps decrease large KL values. (Recall that lower KL values indicate

higher quality summaries.) This is a characteristic of shrinkage [HTF01]: all summaries are shrunk towards
some “common” content summary, which has an “average” distance from all the summaries. This effectively
reduces the variance of the estimations and leads to reduced estimation “risk.” However, shrinkage (mod-
erately) hurts content-summary accuracy in terms of the KL metric in cases where KL is already low for
the unshrunk summaries. We use this observation in our shrinkage-based database selection algorithm in
Section 4.2.3, where our algorithm attempts to identify the cases where shrinkage is likely to help general
database selection accuracy and avoids applying shrinkage in other cases.
Evaluation Conclusions: The general conclusion from our experiments on content summary quality is
that shrinkage drastically improves content summary recall, at the expense of precision. The high weighted
precision of the shrinkage-based summaries suggests that the spurious words introduced by shrinkage appear
with low weight in the summaries, which should reduce any potential negative impact on database selection.
Next, we present experimental evidence that the loss in precision ultimately does not hurt, since shrinkage
improves overall database selection accuracy.

7 Experimental Results for Database Selection Accuracy

In this section, we evaluate the accuracy of the database selection algorithms that we presented in this article.
We first describe our evaluation metric, and then we study the performance of the proposed database selection
algorithms under a variety of settings. Just as in Section 6.3, we use FP-SVM (for conciseness, FPS ) with
specificity threshold τes = 0.25 and coverage threshold τec = 10 and QBS-Lrd (for conciseness, QBS ) as
underlying content summary construction algorithms.

Consider a ranking of the databases �D = D1, . . . , Dm according to the scores produced by a database
selection algorithm for some query q. To measure the “goodness” or general “quality” of such a rank, we
follow an evaluation methodology that is prevalent in the information retrieval community, and consider
the number of documents in each database that are relevant to q, as determined by a human judge [SM83].
Intuitively, a good rank for a query includes –at the top– those databases with the largest number of relevant
documents for the query. If r(q,Di) denotes the number of Di documents that are relevant to query q, then
A(q, �D, k) =

∑k
i=1 r(q,Di) measures the total number of relevant documents among the top-k databases in

�D. To normalize this measure, we consider a hypothetical, “perfect” database rank �DH = Dh1 , . . . , Dhm
in

which databases are sorted by their r(q,Dhi
) value. (This is of course unknown to the database selection

algorithm.) Then, we define the Rk metric for a query and database rank �D as Rk = A(q, �D,k)

A(q, �DH ,k)
[GGMT99].

A “perfect” ordering of k databases for a query yields Rk = 1, while a (poor) choice of k databases with
no relevant content results in Rk = 0. We note that when a database receives the “default” score from a
database selection algorithm (i.e., when the score assigned to a database for a query is equal to the score
assigned to an empty query) we consider that the database is not selected for searching. This sometimes
results in a database selection algorithm selecting fewer than k databases for a query.

The Rk metric relies on human-generated relevance judgments for the queries and documents. For our
experiments on database selection accuracy, we focus on the TREC4 and TREC6 data sets, which include
queries and associated relevance judgments.25 We use queries 201-250 from TREC-4 with the TREC4 data
set and queries 301-350 from TREC-6 with the TREC6 data set. The TREC-4 queries are long, with 8 to
34 words and an average of 16.75 words per query. The TREC-6 queries are shorter, with 2 to 5 words and
an average of 2.75 words per query.

25We do not consider the Web and Controlled data sets of Section 3.1 for these experiments because of the lack of relevance
judgments for them. In [IG02] we presented a preliminary evaluation of the hierarchical database selection algorithm of
Section 4.1 over a subset of the Web data set, for a relatively low-scale evaluation. (This evaluation used relevance judgments
provided by volunteer colleagues.) The results in [IG02] are consistent with those that we present here over the TREC data.
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Figure 14a: The Rk ratio for CORI with stemming over the TREC4 data set.
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Figure 14b: The Rk ratio for CORI without stemming over the TREC4 data set.
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Figure 14c: The Rk ratio for CORI with stemming over the TREC6 data set.
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Figure 14d: The Rk ratio for CORI without stemming over the TREC6 data set.
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Figure 15a: The Rk ratio for bGlOSS with stemming over the TREC4 data set.
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Figure 15b: The Rk ratio for bGlOSS without stemming over the TREC4 data set.
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Figure 15c: The Rk ratio for bGlOSS with stemming over the TREC6 data set.
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Figure 15d: The Rk ratio for bGlOSS without stemming over the TREC6 data set.
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Figure 16a: The Rk ratio for LM with stemming over the TREC4 data set.
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Figure 16b: The Rk ratio for LM without stemming over the TREC4 data set.
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Figure 16c: The Rk ratio for LM with stemming over the TREC6 data set.
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Figure 16d: The Rk ratio for LM without stemming over the TREC6 data set.
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Data Sampl. Database Shrinkage Data Sampl. Database Shrinkage
Set Method Selection Application Set Method Selection Application

bGlOSS 35.42% bGlOSS 33.43%
FPS CORI 17.32% FPS CORI 13.12%

TREC4 LM 15.40% TREC6 LM 12.78%
bGlOSS 78.12% bGlOSS 58.94%

QBS CORI 15.68% QBS CORI 14.32%
LM 17.32% LM 11.73%

Table 10: Percentage of query-database pairs for which shrinkage was applied.

We considered eliminating stopwords (e.g., “the”) from the queries, as well as applying stemming to the
query and document words (e.g., so that a query [computers] matches documents with word “computing”).
While the results improve with stopword elimination, a paired t-test showed that the difference in performance
is not statistically significant; therefore, we only report results with stopword elimination. Stemming tends
to improve performance for small values of k. The results are mixed when k > 10.

Figures 14a, 14b, 14c, and 14d show results for the CORI database selection algorithm. We used both
the TREC4 and TREC6 data sets and queries, as well as the QBS and FPS content summary construction
strategies (Section 5.2). We consider applying CORI over “unshrunk” content summaries (QBS-Plain and
FPS-Plain), using the adaptive shrinkage-based strategy (QBS-Shrinkage and FPS-Shrinkage), and using the
hierarchical algorithm (QBS-Hierarchical and FPS-Hierarchical). Figures 15a, 15b, 15c, and 15d show the
results for the bGlOSS database selection algorithm, while Figures 16a, 16b, 16c, and 16d show the results
for the LM database selection algorithm.

Overall, a paired t-test shows that QBS-Shrinkage improves the database selection performance over
QBS-Plain, and this improvement is statistically significant (p < 0.05). FPS-Shrinkage also improves the
database selection performance relative to FPS-Plain, but this improvement is statistically significant only
when k < 10. We now describe the details of our findings.

Shrinkage vs. Plain: The first conclusion from our experiments is that QBS-Shrinkage and FPS-
Shrinkage improve performance compared to QBS-Plain and FPS-Plain, respectively. Shrinkage helps be-
cause new words are added in the content summaries in a database- and category-specific manner. In Table 10,
we report the number of times shrinkage was applied for each database-query pair and for each database
selection algorithm. Since the queries for TREC6 are shorter, shrinkage was applied comparatively fewer
times for TREC6 than for TREC4. Also, shrinkage was applied more frequently for bGlOSS than for LM
and CORI. bGlOSS does not have any form of smoothing and assigns zero scores to databases whose content
summaries do not contain a query word. This results in high variance for the bGlOSS scores, which in turn
triggers the application of shrinkage.

Interestingly, Table 10 shows that shrinkage is applied relatively few times overall, yet its impact on
database selection accuracy is large, as we have seen. To understand why, note that the Table 10 figures
refer to database-query pairs. We have observed that the application of shrinkage for even a few critical
databases for a given query can sometimes dramatically improve the quality of the database rank that is
produced for the query. As a real example of this phenomenon, consider the TREC-6 query [unexplained
highway accidents] and database all-2, which contains 92.5% of all the relevant documents for the query.
Using the LM algorithm (for both FPS and QBS ) database all-2 is ranked 16th, resulting in low Rk values
for any k < 16. Our adaptive shrinkage algorithm decides to use shrinkage for this specific database-query
pair, and database all-2 is ranked 3rd after application of shrinkage. This results in substantially larger Rk

values for the shrinkage-based algorithms for 3 ≤ k ≤ 15. While our adaptive database selection algorithm
applied shrinkage in just 5% of the databases for this query (i.e., for just 5 databases out of 100), the resulting
database rank for the query is significantly better than the rank produced with no shrinkage. In general,
even limited applications of shrinkage tend to have a significant effect on the Rk ranking: the distribution
of relevant documents across databases is typically skewed,26 and only a small number of databases contain
the majority of the relevant documents. Therefore, by ranking the important databases accurately, we can
substantially improve the database selection performance.

Shrinkage vs. Hierarchical: QBS-Hierarchical and FPS-Hierarchical generally outperform their “plain”
counterparts. This confirms our observation that categorization information helps compensate for incomplete
summaries. Exploiting this categorization via shrinkage results in even higher accuracy: QBS-Shrinkage and

26This effect is not only limited to the TREC data sets, but it is true for the Web at large.
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Figure 17a: The Rk ratio for CORI with stemming over the TREC4 data set, with and without universal
application of shrinkage.
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Figure 17b: The Rk ratio for CORI without stemming over the TREC4 data set, with and without universal
application of shrinkage.
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Figure 18a: The Rk ratio for bGlOSS with stemming over the TREC4 data set, with and without universal
application of shrinkage.
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Figure 18b: The Rk ratio for bGlOSS without stemming over the TREC4 data set, with and without
universal application of shrinkage.
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FPS-Shrinkage significantly outperform QBS-Hierarchical and FPS-Hierarchical. This improvement is due
to the “flat” nature of our shrinkage method: while QBS-Shrinkage and FPS-Shrinkage can rank the data-
bases “globally,” QBS-Hierarchical and FPS-Hierarchical have to make irreversible choices at each category
level of the hierarchy. Even when a chosen category contains only a small number of databases with rel-
evant documents, the hierarchical algorithm continues to select (irrelevant) databases from the (relevant)
category. When a query “cuts across” multiple categories, the hierarchical algorithm might fail to select
the appropriate databases. In contrast, our shrinkage-based approach can potentially select databases from
multiple categories and hence manages to identify the appropriate databases for a query, no matter if they
are similarly classified or not.

Adaptive vs. Universal Application of Shrinkage: The strategy in Section 4.2.3 dynamically decides
when to apply shrinkage for database selection. To understand whether this decision step is necessary,
we evaluated the performance of the algorithms when we always decide to use shrinkage (i.e., when the
R̂(Di) content summary is always chosen in Figure 10). Figures 17a, 17b, 18a, and 18b show the TREC4
results for CORI and bGlOSS, with QBS-Universal and FPS-Universal denoting universal application of
shrinkage.27 The only case where QBS-Universal and FPS-Universal are better than QBS-Plain and FPS-
Plain, respectively, is for bGlOSS (Figures 18a and 18b): unlike CORI and LM, bGlOSS does not have
any form of “smoothing” already built in, so if a query word is not present in a content summary, bGlOSS
assigns a zero score to the database. Unlike bGlOSS, CORI and LM perform worse when we apply shrinkage
universally than when we do so adaptively. The only exception is for content summaries created without
the use of stemming, and only for small values of k, but even in this case the small improvement is not
statistically significant. This result indicates that CORI and LM handle incomplete content summaries in a
more graceful way than bGlOSS does, since both CORI and LM have a form of smoothing already embedded.

Frequency Estimation: We also examined the effect of frequency estimation (Section 3.2) on database
selection. Figures 19a, 19b, 19c, and 19d show the results for CORI over TREC4 and TREC6. In general,
frequency estimation affected only the performance of the CORI database selection algorithm, and had only
a small effect on the performance of bGlOSS and LM, so we do not show plots for these two techniques.
The reason is that bGlOSS and LM rely on probabilities that remain virtually unaffected after the frequency
estimation step. In contrast, CORI relies on document frequencies. Figures 19a, 19b, 19c, and 19d show
that, when shrinkage is used, frequency estimation improves the performance of CORI, by 10% to 30% for
small values of k, with respect to the case where the raw word frequencies for the document sample are used.
Interestingly, frequency estimation alone, without shrinkage, does not improve database selection as much,
hinting that more accurate frequency estimates only improve database selection accuracy substantially when
the underlying content summaries are sufficiently complete.

Evaluation Conclusions: A general conclusion from the experiments is that the adaptive application
of shrinkage significantly improves database selection when selection decisions are based on sparse content
summaries. An interesting observation is that the universal application of shrinkage is not always beneficial,
indicating that for cases where selection decisions are already accurate, shrinkage negatively affects the
selection process. Another conclusion is that stemming-based summaries are typically better than their
non-stemmed counterparts, since stemming reduces data sparseness. The difference is significant for small
numbers of selected databases, which indicates that stemming results in better database rankings.

8 Related Work

This section addresses the literature relevant to the topics covered in this article. Portions of this article
appeared in [IG02] and [IG04]. First, Section 8.1 reviews work on database selection. Then, Section 8.2 dis-
cusses related work for content summary construction. Finally, Section 8.3 summarizes various applications
of query probing, a technique that we used extensively in this article.

8.1 Database Selection

A large body of work has been devoted to distributed information retrieval, or metasearching, over text
databases. As we discussed, a crucial task for a metasearcher is database selection, which requires that the

27The results for TREC6 are similar, while the results for LM are analogous to those for CORI.
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Figure 19a: The Rk ratio for CORI with stemming over the TREC4 data set, for summaries generated with
(“-FreqEst”) and without (“-NoFreqEst”) the use of frequency estimation.
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Figure 19b: The Rk ratio for CORI without stemming over the TREC4 data set, for summaries generated
with (“-FreqEst”) and without (“-NoFreqEst”) the use of frequency estimation.
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Figure 19c: The Rk ratio for CORI with stemming over the TREC6 data set, for summaries generated with
(“-FreqEst”) and without (“-NoFreqEst”) the use of frequency estimation.
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Figure 19d: The Rk ratio for CORI without stemming over the TREC6 data set, for summaries generated
with (“-FreqEst”) and without (“-NoFreqEst”) the use of frequency estimation.
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metasearcher have summaries of the database contents.
Early database selection techniques relied on human-generated database descriptions. WAIS [KMG+93]

uses such descriptions and ranks databases according to their similarity to the queries. In Search Bro-
ker [MB97], each database is manually tagged with two or three category index descriptors. At query time,
users specify the query category and then Search Broker selects the appropriate databases. Chakravarthy
and Haase [CH95] use Wordnet [Fel98] to complement the manually assigned keywords that are used to
describe each database for database selection.

More robust database selection approaches rely on statistical metadata about the contents of the data-
bases, generally following the type of content summaries used in this article. CORI [CLC95, XC98] uses
inference networks together with this kind of content summaries to select the best databases for a query.
(We used CORI for our experiments in Section 7.) GlOSS [GGMT99] uses content summaries and selects
databases for a query according to some notion of goodness for a query. GlOSS can choose among a variety of
definitions of goodness, some of which depend on the retrieval model supported by the databases. (We used
bGlOSS, a variant of GlOSS originally introduced for boolean databases, for our experiments in Section 7.)
Yuwono and Lee [YL97] use content summaries and rank databases according to the cue validity of the query
words: a query word w has high cue validity for a database D if the probability of observing w in D is com-
paratively higher than in other databases. Meng et al. [MLY+98, YML+99] also rely on content summaries
to identify the databases that contain the highest number of documents similar to a query, and similarity is
computed using the cosine similarity metric. Meng et al. use a variety of methods to estimate the weight of
the words in the database, and propose to keep significant covariance statistics for word pairs that appear
often together. The storage requirements for the content summaries in [MLY+98] are much higher compared
to the other methods that ignore the covariance statistics, such as [CLC95, XC98, GGMT99, YL97], which
we described above. In a similar approach, Yu et al. [YMWL01] rank the databases for a query according
to the highest similarity of any document in each database and the query. Baumgarten [Bau97, Bau99]
proposes a probabilistic framework for database selection and uses content summaries to derive the p̂(w|D)
probability estimates that are used during querying. Most approaches that use content summaries rely either
on access to all documents or on metadata directly exported by the databases, using, for example, a protocol
like STARTS [GCGMP97].

French et al. [FPV+98, FPC+99, PFC+00, PF03] present experimental evaluations of database selection
algorithms. Their main conclusion is that CORI is robust and performs better than other database selection
algorithms for a variety of data sets. Results by Xu and Croft [XC99] and Si and Callan [SJCO02] indicate
that a language modeling (LM) approach for database selection works better than CORI for topically focused
databases. (We used the LM algorithm for our experiments in Section 7.) Xu and Croft [XC99] and Larkey
et al. [LCC00] show that organizing documents by topic helps improve database selection accuracy. Our
results in Section 7 are consistent with these findings, since they show that classification-aware database
selection algorithms perform better than algorithms that ignore the classification information.

Our database selection techniques in Section 4 are built on top of an arbitrary “base” database selection
algorithm. We reported experiments using CORI, bGlOSS, and LM. Our experimental results show that our
techniques improve database selection –in the face of sparse data– when used in conjunction with a variety
of existing “flat” algorithms. In the future, our techniques can continue to leverage new database selection
algorithms that rely on content summaries to make the selection decisions. An example of a new algorithm
that we might use in the future is Si and Callan’s ReDDE algorithm [SC03].

Other database selection algorithms rely on hierarchical classification schemes –mostly for efficiency– to
direct queries to appropriate categories of the hierarchy [Dol98, She95, GGMT99, CY01, YML+99]. The
hierarchical database selection algorithm in [She95] uses intentionally small content summaries that contain
only the high-frequency terms that characterize each category. The hGlOSS system [GGMT99] focuses on
the efficiency of selection and does not exploit any topic similarity of the databases. Similarly, the hierarchical
organization in [Dol98] focuses on efficiency and does not exploit the clustering of similar databases under
the same categories. Fuhr [Fuh99] briefly discusses the hierarchical database selection problem, but no
special clustering of similar databases is considered to improve the hierarchical selection task. The above
hierarchical algorithms also need access to all documents or metadata directly exported by the databases.
Our hierarchical database selection algorithm in Section 4.1 first appeared in [IG02]; this algorithm uses a
topic hierarchy not only for efficiency, but also for improving the quality of the database selection decisions
in the presence of sparse content summaries.
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Other approaches rely on users providing relevance judgments to create a profile of each database.
Voorhees et al. [VGJL95] use a set of training queries to learn the usefulness of each database and decide how
many documents to retrieve from each. ProFusion [GWG96] and SavvySearch [DH97] also exploit historic
data to learn the performance of each database for various types of queries. Then, databases that exhibit
higher performance for a query are preferred over others that tend to return worse results. Fuhr [Fuh99] uses
a decision-theoretic model to decide whether to use a database and to determine how many documents to
retrieve from a selected database. The method in [Fuh99] tries to minimize the cost of retrieval and assumes
that the precision-recall curves of the underlying retrieval system either are known or can be estimated.

8.2 Constructing Database Content Summaries

Unfortunately, hidden-Web text databases do not usually export any metadata about their contents and do
not offer immediate access to their contents. Callan et al. [CCD99, CC01] probe databases with semi-random
queries to extract content summaries from autonomous databases. (See Section 2 for a detailed discussion
of this technique.) We used Callan et al.’s algorithm extensively in our experiments of Sections 6 and 7.
Monroe et al. [MFP02] present and evaluate small variations of the algorithm from [CCD99, CC01]. Craswell
et al. [CBH00] compared database selection algorithms in the presence of incomplete content summaries,
extracted using document sampling, and observed that the performance of the algorithms deteriorated
with respect to their behavior over complete summaries. Sugiura and Etzioni [SE00] proposed the Q-
Pilot technique, which uses query expansion to route Web queries to the appropriate search engines and
characterizes databases using words that appear in the Web pages that host the search interfaces, as well
as words that appear in other Web pages that link to the databases. We used an adaptation of Q-Pilot for
content summary generation in a preliminary experimental evaluation [IG02] of our hierarchical database
selection algorithm of Section 4.1. Our experiments showed that the Q-Pilot content summaries are not
sufficient for accurate database selection. Hawking and Thistlewaite [HT99] used query probing to perform
database selection by ranking databases by similarity to a given query. Their algorithm assumed that the
query interface to the database can handle normal queries and query probes differently, and that the cost to
handle query probes is smaller than that for normal queries.

A preliminary version of the algorithm of Section 3 for constructing content summaries appeared in [IG02].
The frequency estimation algorithm in [IG02] managed to produce relatively accurate frequency estimates for
database words that appeared in sample-based content summaries. However, a problem with the algorithm
in [IG02] is the assumption that the rank of a word in a database coincides with the word’s rank in a
document sample extracted from the database. Unfortunately, this assumption does not hold in general, and
is largely false for words that appear in a database only a relatively small number of times. In Section 3.2, we
presented an improved frequency estimation algorithm that addresses this problem and produces significantly
more accurate word frequency estimates for database words that appear only a relatively small number of
times.

Along a related research direction, Si and Callan [SC03] show that database selection performance can be
improved by considering database size estimates within their ReDDE database selection algorithm. ReDDE
retains the documents retrieved during content summary construction and uses this document sample to
estimate the distribution of relevant documents across databases. Further studies by Si and Callan [SC04]
show that CORI and LM are only marginally affected when used in conjunction with the database size
estimation method from [SC03]. This result is consistent with the behavior that we observed for CORI
(without use of shrinkage) with our frequency estimation method.

Our content summary construction technique in Section 4.2 appeared in [IG04] and is based on the
work by McCallum et al. [MRMN98], who introduced a shrinkage-based approach for hierarchical document
classification in the face of sparse data. Shrinkage is a form of smoothing and smoothing has been used
extensively in the area of speech recognition [Jel99] to improve probability estimates in language models.
Language modeling has also been used for information retrieval [CL03]. Notably, smoothing is present in
recent language modeling approaches to information retrieval [ZL01, ZL02, ZL04]. An interesting direction
for future work is to examine the performance of smoothing models other than shrinkage for database
selection, especially in the presence of database classification information.

Liu et al. [LLCC04] estimate the potential inaccuracy of the database rank produced for a query by
a database selection algorithm. If this inaccuracy is unacceptably large, then the query is dynamically
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evaluated on a few carefully chosen databases to reduce the uncertainty associated with the database rank.
This work does not take content-summary accuracy into consideration. In contrast, in Section 4.2.3, we
addressed the scenario where summaries are derived from document samples –and are hence incomplete–
and decide dynamically whether shrinkage should be applied, without actually querying databases during
database selection. The bulk of Section 4.2.3 appeared originally in [IG04], where we described a generic
method for computing the mean and the variance of a database score distribution when we use sample-based
content summaries. The method in [IG04] did not use the fact that most database selection algorithms
assume independence of the query words. We now exploit this property in Appendix B to substantially
improve both the accuracy and the runtime performance of the mean-variance computation, which, in turn,
improves substantially the runtime performance of our database selection algorithm of Section 4.2.3.

8.3 Miscellaneous Applications of Query Probing

In this article, we used query probing for the extraction of content summaries from text databases. Query
probing has helped in other related tasks. Gravano et al. [GIS03] use a small number of query probes derived
using state-of-the-art machine learning techniques to categorize a text database in a topic hierarchy. (We
briefly reviewed this algorithm in Section 2.3 and used it extensively in subsequent sections.) Perkowitz et
al. [PDEW97] use it to automatically understand query forms and extract information from Web databases
to build a comparative shopping agent. New forms of crawlers [RGM01] use query probing to automatically
interact with Web forms and crawl the contents of hidden-Web databases. Cohen and Singer [CS96] use
RIPPER to learn queries that retrieve mainly documents about a specific category. The queries are used at
a later time to retrieve new documents about this category. Flake et al. [FGLG02] extract rules from non-
linear SVMs that identify documents with a common characteristic (e.g., “calls for papers”). The generated
rules are used to modify queries sent to a search engine, so that the queries retrieve mostly documents of the
desired kind. Grefenstette and Nioche [GN00] use query probing to determine the use of different languages
on the Web. The query probes are words that appear only in one language. The number of matches generated
for each probe is subsequently used to estimate the number of Web pages written in each language. Ghani
et al. [GJM01] automatically generate queries to retrieve documents written in a specific language. Meng
et al. [MYL99] used guided query probing to determine sources of heterogeneity in the algorithms used to
index and search locally at each text database. Bergholz and Chidlovskii [BC04] probe a database with a
carefully selected set of queries to identify the characteristics of the query language. Finally, the QXtract
system [AG03] automatically generates queries to improve the efficiency of a given information extraction
system such as Snowball [AG00] or Proteus [YG98] over large text databases. Specifically, QXtract learns
queries that tend to match those database documents that are useful for the extraction task at hand. The
information extraction system can then focus only on these documents, which results in large performance
improvements.

9 Conclusion

Database selection is critical to building efficient metasearchers that interact with potentially large numbers
of databases. Exhaustively searching all available databases to answer each query is impractical (or even
not possible) in increasingly common scenarios. Current database selection algorithms rely on statistical
summaries about the contents of the databases to select the best databases for a given query but, unfortu-
nately, the databases accessible through the Web do not generally export these statistics. In this article, we
presented efficient algorithms for constructing content summaries for such databases. Our algorithms create
content summaries of higher quality than alternate approaches and, additionally, categorize databases in a
classification scheme. We also presented a shrinkage-based technique that further improves the quality of
the generated content summaries. The shrinkage-based content summaries are more complete than their
“unshrunk” counterparts. Our shrinkage-based technique achieves this performance gain efficiently, without
requiring any increase in the size of the document samples.

We also presented techniques for improving the performance of database selection algorithms in the case
where database content summaries are derived from relatively small document samples. Such summaries
are typically incomplete, and this can hurt the performance of database selection algorithms. We showed
that classification-aware database selection algorithms can significantly improve the accuracy of the selection
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decisions in the face of incomplete content summaries. Both the hierarchical database selection algorithm of
Section 4.1 and the adaptive, shrinkage-based database selection algorithm of Section 4.2 perform better than
their counterparts that do not exploit database classification. Furthermore, we showed that the shrinkage-
based strategy outperforms the hierarchical database selection algorithm: the hierarchical algorithm initially
selects databases under a single subtree of the classification hierarchy, so the hierarchical algorithm fails to
select the appropriate databases for queries that “cut across” multiple categories. Shrinkage, on the other
hand, embeds the category information in the content summaries. Therefore, a “flat” database selection
algorithm can exploit the classification information without being constrained by the classification hierarchy.
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A Estimating Score Distributions

Section 4.2.3 discussed how to estimate the “uncertainty” associated with a database score for a query.
Specifically, this estimate relied on the probability P of the different possible query keyword frequencies. To
compute P , we assume independence of the words in the sample:

P =
n∏

k=1

p(dk|sk)

where p(dk|sk) is the probability that wk occurs in dk documents in D given that it occurs in sk documents
in S. Using the Bayes rule, we have:

p(dk|sk) =
p(sk|dk)p(dk)∑|D|
i=0 p(i)p(sk|i)

To compute p(sk|dk), we assume that the presence of each word wk follows a binomial distribution over the
S documents, with |S| trials and probability of success dk

|D| for every trial. Then,

p(sk|dk) =
(
|S|
sk

) (
dk

|D|

)sk
(

1 − dk

|D|

)|S|−sk
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p(dk|sk) =
p(dk)

(
dk

|D|

)sk
(
1 − dk

|D|

)|S|−sk

∑|D|
i=0

(
p(i)

(
i

|D|

)sk
(
1 − i

|D|

)|S|−sk
)

Finally, to compute p(dk) we use the well known fact that the distribution of words in text databases tends
to follow a power law [Man88]: approximately cfγ words in a database have frequency f , where c and γ are
database-specific constants (c > 0, γ < 0). Then,

p(dk) =
cdγ

k∑|D|
i=1 ciγ

=
dγ

k∑|D|
i=1 iγ

Interestingly, γ = 1
B − 1, where B is a parameter of the frequency-rank distribution of the database [Ada02]

and can be computed as described in Section 3.2.

B Estimating Score Variance

The adaptive algorithm in Figure 10 computes the mean and the variance of the query score distribution for a
database to decide whether to use shrinkage for the database content summary. In Section 4.2.3, we outlined
a method for computing the mean and variance relatively efficiently for any arbitrary database selection
algorithm. This computation can be made even faster for the large class of database selection algorithms
that assume independence of the query words. For example, bGlOSS, CORI, and LM, the database selection
algorithms that we used in our experiments, belong to this class. For these algorithms, we can calculate
the mean and variance of the subscore associated with each query word separately, and then combine these
word-level mean and variance values to compute the final score mean and variance for the query. We show
the derivation of variance28 for bGlOSS and CORI. The computation of variance for LM is similar to the
one for bGlOSS.29

Estimating Score Variance for bGlOSS

bGlOSS defines the score s(q,D) of a database D for a query q as:

s(q,D) = |D| ·
∏
w∈q

p̂(w|D)

By definition of variance we have:

V ar(s(q,D)) = E
[
s(q,D)2

]
− (E [s(q,D)])2

= E

⎡⎣(
|D| ·

∏
w∈q

p(w|D)

)2
⎤⎦ −

(
E

[
|D| ·

∏
w∈q

p(w|D)

])2

= |D|2 · E

⎡⎣(∏
w∈q

p(w|D)

)2
⎤⎦ − |D|2 ·

(
E

[∏
w∈q

p(w|D)

])2

Since the p(w|D)’s are assumed to be independent:

E

⎡⎣(∏
w∈q

p(w|D)

)2
⎤⎦ =

∏
w∈q

E
[
p(w|D)2

]
(

E

[∏
w∈q

p(w|D)

])2

=

(∏
w∈q

E [p(w|D)]

)2

28The computation of the mean score is simpler and the derivation is analogous to the variance computation presented here.
29In the computation of mean and variance for LM, we treat the values of p̂(w|G) as constants, since the variance of the

random variable p̂(w|G) is negligible compared to the variance of p̂(w|D).
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Therefore:

V ar (s(q,D)) = |D|2 ·

⎛⎝∏
w∈q

E
[
p(w|D)2

]
−

(∏
w∈q

E [p(w|D)]

)2
⎞⎠

The mean values of the distributions of p(w|D) and p(w|D)2 can be computed using the results from Appendix
A. Since p(w|D) depends only on the frequency sw of the word w in Ŝ(D) we have:

E [p(w|D)] =
|D|∑
i=1

i

|D|p(i|sw)

E
[
p(w|D)2

]
=

|D|∑
i=1

(
i

|D|

)2

p(i|sw)

We can see that the variance V ar (s(q,D)) can be computed efficiently, because there is no need to consider
frequency combinations, unlike the case for a generic database selection algorithm (see Section 4.2.3).

Estimating Score Variance for CORI

CORI defines the scores(q,D) of a database D for a query q as:

s(q,D) =
∑
w∈q

0.4 + 0.6 · Tw · Iw

|q| = 0.4 + 0.6 ·
∑
w∈q

Tw · Iw

|q|

Tw =
p(w|D) · |D|

p(w|D) · |D| + 50 + 150 · cw(D)
mcw

, Iw = log
(

m + 0.5
cf(w)

)
/ log (m + 1.0)

where cf (w) is the number of databases containing w, m is the number of databases being ranked, cw(D)
is the number of words in D, and mcw is the mean cw among the databases being ranked. For simplicity in
our calculations below, we assume that cf(w) and cw(D) are constants, since the variance of their values is
small compared to the other components of the CORI formula. In that case, Iw is also constant. Then, by
definition of variance we have:

V ar(s(q,D)) = E
[
(s(q,D))2

]
− (E [s(q,D)])2

= E

⎡⎣(
0.4 + 0.6 ·

∑
w∈q

Tw · Iw

|q|

)2
⎤⎦ −

(
E

[
0.4 + 0.6 ·

∑
w∈q

Tw · Iw

|q|

])2

=
0.36
|q|2 · E

⎡⎣(∑
w∈q

Tw · Iw

)2
⎤⎦ − 0.36

|q|2 ·
(

E

[∑
w∈q

Tw · Iw

])2

=
0.36
|q|2

( ∑
w∈q

E
[
T 2

w · I2
w

]
+

∑
wi,wj∈q,i�=j

E
[
Twi

· Iwi
· Twj

· ·Iwj

]
−

∑
w∈q

(
E [Tw · Iw]

)2

−
∑

wi,wj∈q,i�=j

E [Twi
· Iwi

] · E
[
Twj

· Iwj

] )

By assuming independence of the words w in the query, the variables Twi
and Twj

are independent if i 	= j,
and we have: ∑

wi,wj∈q,i�=j

E
[
Twi

· Iwi
· Twj

· ·Iwj

]
=

∑
wi,wj∈q,i�=j

E [Twi
· Iwi

] · E
[
Twj
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]
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Therefore:

V ar(s(q,D)) =
0.36
|q|2

(∑
w∈q

I2
w ·

(
E

[
T 2

w

]
− (E [Tw])2

))
Again, the distribution of the random variables Tw and T 2

w can be computed using the results from Appendix
A. The mean values of the distributions can be computed efficiently, since there is no need to consider
frequency combinations, unlike the case for a generic database selection algorithm (see Section 4.2.3).
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