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A Bootstrap Evaluation of the Effect of
Data Splitting on Financial Time Series

Blake LeBaron and Andreas S. Weigend

Abstract— This article exposes problems of the commonly
used technique of splitting the available data into training,
validation, and test sets that are held fixed, warns about
drawing too strong conclusions from such static splits, and
shows potential pitfalls of ignoring variability across splits.
Using a bootstrap or resampling method, we compare the
uncertainty in the solution stemming from the data split-
ting with neural network specific uncertainties (parameter
initialization, choice of number of hidden units, etc.). We
present two results on data from the New York Stock Ex-
change. First, the variation due to different resamplings is
significantly larger than the variation due to different net-
work conditions. This result implies that it is important to
not over-interpret a model (or an ensemble of models) es-
timated on one specific split of the data. Second, on each
split, the neural network solution with early stopping is very
close to a linear model; no significant nonlinearities are ex-
tracted.

Keywords—Model evaluation. Model uncertainty. Boot-
strap. Resampling. Financial forecasting. Time series pre-
diction. Linear bias of early stopping. Superposition of
forecasts. Model merging.

Data—Dow Jones Industrial Average, 1962-1987. Volume
from New York Stock Exchange, 1962-1987. The data used
in this article is available from the web sites of the authors.

I. INTRODUCTION

Training a network on a time series is not hard, but once
we have a network, how much can we trust the forecasts for
truly new data? On the one hand, if the time series is fairly
long (above a few thousand points), and if it is fairly clean
(noise of less than one percent of the signal), the evaluation
of a model is relatively easy, since only very few functions
will fit some held-back data very well. This regime can be
described as a “right-with-probability-(1 — €)-regime.” On
the other hand, for very noisy and/or very short time series,
one can only hope to be right on new data with a proba-
bility of (0.5+¢€). An example would be the forecast of the
direction of a stock price movement. It is well known that
random predictions, or random trading strategies, can yield
deceptively long sequences of good predictions or profitable
trades. In such noisy problems, many functions will be in-
distinguishable in their forecasting quality. When connec-
tionist techniques are used, additional choices (such as the
architecture, training procedure, and the random initial-
ization of the network) make the evaluation even harder.
Evaluating a model for noisy time series can be more work
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than estimating the parameters.

A standard procedure for evaluating the performance of
a model is to split the data into one training set (used for
the parameter estimation, e.g., through gradient descent or
second order methods), one validation set (used to deter-
mine the stopping point before overfitting occurs, and/or
used to set additional parameters or hyperparameters, such
as the importance given to penalize model complexity),
and one or more test sets. This procedure has been used
for many years in the connectionist community, see e.g.,
Weigend et al. (1990). Our more recent experience has
found this approach, along with conclusions drawn from
it, to be very sensitive to the specific splitting of the data.
Therefore, usual tests of forecast reliability can easily be
overly optimistic.

This article addresses these problems with a bootstrap
method. The approach we present combines the purity of
splitting the data into three disjoint sets with the power of
a resampling procedure, giving a better statistical picture
of forecast variability, including the ability to estimate the
effect of the randomness of the splits of the data vs. the
randomness of initial conditions of the network.

This is not the first article that uses the bootstrap in
a connectionist context. Weigend et al. (1992) used the
bootstrapping of residuals to evaluate the forecasting power
of a neural net for exchange rate forecasts, and Connor
(1993) also bootstrapped residuals to obtain error bars for
the iterated time series predictions. The goals were differ-
ent from the goal of the work reported here. In this article
we resample pairs which will be clarified in Section II-A.
Resampling pairs was first suggested by Efron (1982), and
first used in the connectionist community by Paass (1993)
on the example of noisy exclusive OR. Tibshirani (1996)
applied the bootstrap machinery to networks in a cross-
sectional context. However, none of these articles evaluate
the effect of using the common, simple, static sample split
on the performance reliability.

To demonstrate our method, we wanted to use a data
set that lies somewhere between simple noise-free function
fitting, and a sequence of true random numbers where no
model has a chance. We picked the daily trading volume!
on the New York Stock Exchange, where predictions can
explain about half of the variance. Section II of this ar-
ticle describes the method and the data set, Section III
presents the empirical results of the study, Section IV dis-
cusses other sources of uncertainty not captured by the
bootstrap, and Section V draws some conclusions.

1 Although forecasting prices is a potentially more lucrative target,
volume actually is interesting to the economist whose goal is to un-
derstand how markets function.
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II. EXPERIMENTAL DESIGN
A. Bootstrapping Methodology

Randomness enters naturally in two ways in neural net-
work modeling: in the splitting of the data, and in choices
about the network initialization, architecture, and train-
ing. A standard procedure for finding a good network is to
split the patterns derived from a time series into three sets:
training, validation, and test sets. The training set is used
for parameter estimation (in simple backpropagation, by
updating the parameter by gradient descent on some cost
function). In order to avoid overfitting, a common proce-
dure is to use a network sufficiently large for the task, to
monitor (during training) the performance on the separate
validation set, and finally to choose the network that corre-
sponds to the minimum on the validation set, and employ
it for future purposes such as the evaluation on the test
set. These sets have no patterns in common. The usual
procedure fixes these sets. As many statistical quantities
as desired can be estimated in the test set, but this leaves
one question wide open: What is the variation in perfor-
mance as we vary training, validation, and test sets? This
is an important question since real world problems don’t
come with a tag at each pattern saying how it should be
used! Also, if we were to only train one network on such a
split, this would not tell us how stable the performance is
with respect to network choices.

Since there is not just one “best” split of the data or obvi-
ous choice for the initial weights etc., we will vary both the
data partitions and network parameters in order to find
out more about the distributions of forecast errors. We
use a computer intensive bootstrapping method to evaluate
the performance, reliability and robustness of the connec-
tionist approach, and to compare it with linear modeling.
Bootstrapping involves generating empirical distributions
for statistics of interest through random resampling. We
combine bootstrapping along with random network selec-
tion and initialization.

In more detail, in order to understand the impact of
the splitting and network choices, we draw a realization of
splits and network conditions, and train a complete model
on this realization. This is sometimes called bootstrap-
ping pairs (Efron & Tibshirani, 1993), since the input-
output pairs or patterns remain intact, and are resampled
as full patterns. This can be contrasted with training one
model only, and resampling the errors of that one model
to obtain a distribution, called bootstrapping residuals.
The latter method was used in single-step prediction by
Weigend et al. (1992) in the context of foreign exchange
rate predictions. One model was built on one split of the
data. Similarly, in an application to load forecasting, Con-
nor (1993) trained one single-step prediction network on
one split of the data, then resamples from the empirical
distribution of the single-step errors and adds these to the
inputs in order to obtain estimates of the errors of iter-
ated forecasts. In this residuals bootstrap, the residuals
obtained from one specific model are used in rebuilding
pairs or patterns to obtain error bars reflecting all sources

of error, including model misspecification. In contrast, here
we are interested in variation due to sample splits rather
than error bars. Every “run” has a different assignment
between the sample patterns and the three sets which thus
are different for each run.

In the example used in this article, we have some 6200
patterns, each made up of a few past values of a number of
time series (for details of how the patterns are constructed,
see Section II-B below). We first build the test set by ran-
domly picking 1500 patterns with replacement. The pat-
terns used in this specific test set are then removed from the
pool. From the remaining patterns, we then randomly set
aside 1500 patterns as the validation set (these are picked
without replacement, and are also removed from the pool).
The remaining patterns then constitute the training set.?
For the results presented in the article, we do this 2523
times, training a network each time.

We use fully connected feedforward networks with one
hidden layer of tanh units and a linear output unit. How-
ever, in order to include variations over reasonable choices
for network and learning parameters, a number of network
characteristics are also drawn randomly at the beginning
of each run.® The cost function is the squared difference
between the network output and the target (expressed as
the log-transformed volume, detailed in the next section),
summed over all patterns in the training set. Most results
are given in terms of (1 — R?), i.e., one minus the squared
correlation coefficient between forecast and target.

B. Data Set

We use daily data from the New York Stock Ex-
change (NYSE) from December 3rd, 1962, through Septem-
ber 16th, 1987, corresponding to 6230 days.* Our forecast-
ing goal is daily total trading volume, shown in Fig. 1. We
believe that this series has two interesting features: First,
while many articles have tried neural network approaches
to forecasting prices, few have attempted forecasting trad-
ing volume. Second, volume differs from many other fi-
nancial series in that it contains more forecastable struc-
ture than typical price series. We use the daily measure
of aggregate turnover on the NYSE which is total volume

2There is no deep theoretical justification for drawing the test data
with replacement, and the training and validation set effectively with-
out replacement. Our motivation was to stick to the standard rule of
sampling with replacement for the test set. For the training and val-
idation sets, we did not allow for repeated patterns since we wanted
the linear fit comparison to be estimated on each non-test data point
with even weight, and wanted to use identical sets for the net and the
linear fit in each run.

3In detail, the network architecture is chosen uniformly over 2 to
6 hidden units. The learning rate is chosen uniformly over [1,20] x
10~*, no momentum. The weight-range w of the initial weights is
drawn between [0.25,2.5]. The individual weights are then initialized
randomly from a uniform distribution over [w/7, —w/i] where 7 is the
number of connections coming into a unit (“fan-in”). The block-size
(how many patterns are presented until the weights are updated) is
drawn uniformly from [20,180]. All inputs are scaled to have zero
mean and unit variance as estimated over the entire data set. No
significant correlation was found between performance and any of
these choices.

4 A “super test set” (the period from September 17th through Octo-
ber 19th, 1987 that contains the 1987 crash) is set aside for some final
out-of-sample forecasting experiments, described in Section III-D.



WORKING PAPER 1S-97-013, LEONARD N. STERN SCHOOL OF BUSINESS, NEW YORK UNIVERSITY 3

(a) Dow Jones Industrial Level

2000

1000

0 I I I I I
65 70 75 80 85

T
(b) NYSE Trading Volume

65 70 75 80 85
1 ‘(c) Normalized 'ILrading Volume '
ol \ :
-1
1 1 1 1 1
65 70 75 80 85
date
Fig. 1. (a) The level of the Dow Jones Industrial Average from

December 1962 - October 1987. (b) The raw trading volume (ag-
gregate turnover) on the NYSE. The nonstationarity is evident;
this is a semi-logarithmic plot. (C) The series v that we use as
target: it is obtained by taking the logarithm of the raw value
and dividing it by the mean of the last 100 trading days.

divided by shares outstanding, or the fraction of shares
traded that day. This series is not stationary, Fig. 1 (b).
We “detrend” it by dividing by a 100-day moving average of
past turnover. In other words, we compare the volume to-
day with the average volume over the last 100 trading days.
The distribution of this series is still very skewed. We then
take the logarithm to obtain a less skewed distribution.’
We refer to this transformed series as v;. This target series
is shown in Fig. 1 (¢).

Beside three lagged values of v (a typical autoregressive
or AR model), we use three other sets of variables, making
it an exogenous or ARX model. We use first differences
of the logarithm of the level of the Dow Jones Industrials
Index as a measure of relative stock returns, r;. Further-
more, volume movements are connected to stock return
movements in interesting ways (Karpov, 1987; LeBaron,
1992a; Gallant et al., 1993). One of these features is that
volume is related to stock price volatility, sometimes ap-
proximated by the absolute magnitude of daily price move-
ments. Furthermore, volume tends to be higher in rising
markets. For these reasons we chose several lagged returns
and volume variables as predictors. The predictor vector
(i.e., the 12 values presented to the network as inputs for
each pattern) is given by

{ V:-1,2,3, Tt-1,2,3, |7°t—1,2,3| ) log(af_LZ’S) }

5Normalizing with the 250-day mean (of the last trading year) did
not remove quite enough of the nonstationarity. Note also that we
are using the normalized level of the volume, not a difference ver-
sion that would correspond to the change in volume. Apart from
correcting somewhat for the skewed distribution, the logarithm can
be interpreted as emphasizing small values of the volume more than
large ones, and, alternatively, as facilitating product interactions be-
tween lagged values of the volume, since the inputs are added in the
argument of the hidden units, and adding logarithms corresponds to
multiplying the original values.

Here, o is an estimate of a volatility. It is defined recur-
sively as

of=Boi+(1=-p)r

This represents an exponential filter of the squared re-
turns. This can be interpreted in physical terms as a re-
laxator: A shock in r? decays in —1/log8 = 9.5 days to
1/e = 0.37 times its initial value.® We initialize o2 to the
unconditional variance of the series. The choice of the ex-

with 8 = 0.9

ponentially smoothed squared returns is motivated by the
similarity to variance estimates from autoregressive condi-
tional heteroskedastic (ARCH) models often used in finan-
cial time series (Bollerslev et al., 1990; Bollerslev et al.,
1995).

Summarizing, we use the following inputs for our model:

o Three lags of the past trading volume, v;_1 2 3. They
are normalized by the 100-day moving average (but
not differenced), see Fig. 1 (¢). Their one-day autocor-
relation after normalization is 0.66. (Without our nor-
malization, i.e., taking the raw volume from Fig. 1 (b),
the overall shift in level over the two decades is respon-
sible for an autocorrelation of 0.95.)

o Three lags each of the relative returns, r;_; » 3. Their
one-day autocorrelation is small (0.135), and disap-
pears for two or more lags, as discussed in LeBaron
(1992).

o Two estimates of their volatilities, with three lags each:

— Absolute value of the relative returns,|r;_; » 3|. Their
autocorrelation coefficients are dropping off very
slowly, and have values for the first 10 lags around
0.16, computed after subtracting the mean of |r;|.”

— Logarithm of the exponentially smoothed squared re-
turns, log(c7_; 5 3). Their one-day autocorrelation
is 0.975. It drops off very slowly, primarily due to
the smoothing (each value re-enters at the next time
step attenuated by 8 = 0.9), and secondarily due to
the already existing autocorrelation of the driving
process of 2.

We refer to each of these 12-dimensional predictor vec-
tors with the associated 1-dimensional target value as a pat-
tern. The correlation coefficients were computed through
Oct 19, 1987, i.e., excluding the effect the day of the 1987
crash would have. As shown, some of the input dimensions
are highly correlated. Despite this high correlation that
gives an effective overlap of the patterns in the three sets,
we will see in the next section that the performance varies

6 An equivalent box-cart moving average would average the squared
returns over 19 days. We chose the exponential average since it does
not exhibit the box cart’s shadows, i.e., the effect that large shocks
show up again with the opposite sign once they drop off the left side
of the window.

"The 1/e decay time of the corresponding AR process is about
half a time step. This does not characterize the time scale of the
underlying process well: the coefficient is severely underestimated due
to the presence of noise in the inputs ( “errors-in-variables”, see Fuller
(1987) and Carroll et al. (1995)). Fitting a state space model with
full dynamics to the series {|r:|— < |r:| >} gives an autoregressive
coefficient for the dynamics of the state of 0.9915, corresponding to
an 1/e decay time of approximately 5 months (117 trading days).
For more details of this method and their interpretation for modeling
volatilities see Timmer & Weigend (1997).
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a lot for different random samples out of these overlapping
patterns.

II1. EMPIRICAL RESULTS
A. Learning Curves and Quverfitting

Fig. 2 shows the set of learning curves® for a typical
run, for the three sets, both expressed as one minus the
correlation coefficient squared, (1 — R?), and as the mean
squared error divided by the overall variance of the target,
NMSE. Differences between these two reasonable perfor-
mance measures occur when the mean and the variances are
not estimated correctly. Whereas the correlation coefficient
corrects for these differences (by subtracting the means
and dividing by the standard deviations), the squared error
does not, and is thus higher than (1 — R?).

Learning curves. lines: training set, x: cross-validation set, o: test set.
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Fig. 2. Learning curves of one specific network on one specific split.
They show the performance vs. the number of backpropagation
iterations. There are three pairs of curves. The first pair (mono-
tonically decreasing) gives the performance on the training set,
the second pair (denoted by “X”) on the validation set, and the
third pair (“o”) on the test set. The three solid lines plot the
(1 — R?) measure; the three dash-dotted lines give the normal-
ized mean squared error (NMSE). The straight line indicates the
test error of a linear model estimated on the union of the training
set and the validation set.

The learning curves in Fig. 2 show performance vs. the
number of backpropagation iterations. There is a clear in-
crease of validation and test errors after passing through
minima, usually called overtraining or overfitting. At some
stage (around epoch 800 in this specific run which hap-
pened to have a very small learning rate) the network ex-
tracts a feature of the training set that helps the test set,
but hurts the validation set. The minima of the validation
set and the test set do not occur at the same epoch. From
each of these sets of learning curves, only a single number

8 We use the term learning curve to characterize the performance as
a function of the iterations of the algorithm. In a different context,
typically when an arbitrary number of training patterns can be gen-
erated, the term learning curve denotes performance as a function of
data set size.

is used for the subsequent analysis and comparisons in this
article: the performance value on the test set at that epoch
that has the minimum of the validation set.

B. Linear vs. Nonlinear Comparison

One of the most important goals of any exploration of a
nonlinear forecasting method is to demonstrate an improve-
ment over linear forecasts. For synthetic data, generated
from nonlinear noise-free systems, forecast improvements of
several orders of magnitude have been reported: consider
the celebrated logistic map which consists only of a second-
order component (quadratic term) without any first-order
(linear) component. It really should come as no surprise
that methods that allow for nonlinearities will vastly out-
perform the perfectly inadequate linear fit in cases when
there is no linear component.

We here focus on high-noise real world data where the
evaluation is much harder, and potential nonlinearities are
often masked by noise. In this case, great care needs to be
taken to evaluate the nonlinearity of the model: obtained
on a single split, depending on the split, a network can eas-
ily be a few percent better, but also a few percent worse
than the linear model. Thus, instead of just comparing
forecasts on one split and one out-of-sample time period,
we recommend bootstrapping and reporting the distribu-
tion of forecast performance for both the network and lin-
ear forecasts. This allows a more meaningful statistical
comparison between linear and neural network models.

Solid: neural nets; dashes: linear (2523 resamplings each). Dots: 697 nets (1 sampling).
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Fig. 3. Histograms of (1 — R?) forecast performance. The solid

line shows the distribution of the networks, the dashed lines of
linear model, both estimated on 2523 different resamplings of the
available data. The dotted line takes just one split of the data
and describes the distribution of 697 networks. The fact that the
width of the dotted histogram is clearly smaller than the width
of the other two indicates that the randomness in the splitting
of the data generates more variability than the randomness in
network initialization does.

In this comparison we fit for each split a linear model to
exactly the same patterns (inputs and targets) used for the
network. Parameters are estimated using the union of the
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same training and validation set, and (1 — R?) is estimated
over the same test set from each bootstrap resampling.®

The empirical density from 2523 bootstrap resamplings
of the forecast performance is shown in Fig. 3. The solid
line displays the performance of the networks, and the
dashes that of the linear models. It is clear from this pic-
ture that distinguishing between the two forecasts is going
to be difficult, if possible at all.

Neural net performance vs linear performance (ratio). [N=2523, mean=0.996, std=0.016]
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Fig. 4. Histogram of the ratio of (1 — R?) network performance di-
vided by (1 — R2)—linear performance for 2523 resamplings. Each
entry in this histogram corresponds to the performance ratio of
one network and one linear model trained on one specific split.

To focus on the comparison, Fig. 4 shows a histogram
of the run-by-run ratio of the two forecast performance
measures. This ratio is estimated for each of the bootstrap
samples and recorded. If the networks were consistently
outperforming the linear models then this ratio would be
less than unity. However, this histogram shows that it is
not very likely that the network will do better than a linear
model in most cases.!?

Another perspective on the correlation of forecast perfor-
mance between neural networks and linear models is given
in Fig. 5, a scatter plot of the performance of the nonlinear
vs. the nonlinear model,

{ (1= R}, (1—RyN) }.

90ne referee suggested a comparison with an autoregressive mov-
ing average (ARMA) models instead of the exogenous autoregressive
linear (ARX) we use. ARMA models are indeed more general linear
models than AR models. However, for the pairs-bootstrap study pre-
sented here, where resampling destroys the sequence of the patterns,
it is not possible to feed back errors (the MA part). An ARMA model
cannot be used in combination with the pairs-bootstrap; ARX is thus
the appropriate linear model class to compare to.

10The average ratio in Fig. 4 is 0.99640.016. On the one hand, this
is significantly different from 1, with a t-statistic of 12.6, indicating
a significant, but small improvement in overall forecast performance.
On the other hand, when we compare the forecast performance using
squared forecast errors, we find that the average ratio (over the same
2523 runs) is larger than unity, 1.003+0.020 (the confidence intervals
are statistical errors of one standard deviation). This leads us to the
conclusion that there is no relevant difference between the nets and
the linear fits.

One point is entered for each bootstrap sample, i. If the
networks are picking up much of the same structure as the
linear forecasts, we will see a strong correlation between the
two. This is indeed the case in Fig. 5 where the correlation
between forecast errors is 0.936.

To summarize this section: When we embarked on this
experiment, we were hoping for simple clean evidence for
nonlinear structure in the volume of the NYSE, of high in-
terest for economists. What we found instead is that pos-
sible underlying nonlinearities are not easily discovered—
using a model class celebrated for its ability to express any
nonlinear function (feedforward networks with tanh hidden
units with a squared error cost function) did not reveal such
structure. Since this article focuses on the variation due to
different splitting of the data, we did not use explore alter-
natives to early stopping that avoid the bias towards a lin-
ear solution, such as weight-elimination or pruning; those
are interesting experiments and the data is available from
the authors’ web sites. Furthermore, we did not use com-
puter generated nonlinear data, since generating an arbi-
trarily large number of noise-free data points of an ergodic
system will typically (for any split of the data) give very
close neighbors between the different sets. This does not
constitute a serious test for the real-world problem of noisy
data of finite record length, perhaps slightly nonlinear, that
we typically find in economics, finance and business.

C. Variability Over Random Networks

Our procedure randomizes both over data samples and
over network architectures and initial parameters. An im-
portant question is: How much of the variability is due
to the data set resampling, and how much is due to the
network parameters? Viewed from a different angle: for
a given split, how much model overfitting would connec-
tionists be likely to engage in were they to optimize their
network architecture etc. for that split? If great gains
were possible by tinkering with network parameters for
each split, we should observe a lot of variability in forecast
performance over randomly initialized networks on a given
data set split. However, the dotted line in Fig. 3 shows
a representative density for 697 randomly drawn nets, all
trained and tested using the same training, validation, and
test sets. The answer to the question is: The variations of
the forecasts due to changes in network structure are small
relative to the variations due to sample splitting.

D. Probability Density of the Forecasts

Now that we have an entire ensemble of neural network
predictors, we can investigate how all these networks can
give us a fresh view on the old idea of combining forecasts
by looking at the scale of the variations compared to the
noise inherent in the problem. We use each of the networks
to make predictions on a sample that had been set aside
throughout (i.e., never used during training, validating or
testing). The time period of this sample starts immedi-
ately after the time period considered so far, i.e., it starts
on September 17th, 1987, and includes the crash of Octo-
ber 19th, 1987, a day with unusually large price movement
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Scatter plot: one point per run (resampling)
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Fig. 5. Scatter plot of the prediction errors. For each of the 2523
runs (i.e., different splits of the data) one point is entered into
this scatter plot. Its location is determined by the performance
of the network vs. the linear model. Note that the point cloud is
much more stretched out along the 45-degreeline than orthogonal
to it, again indicating that there is more variation due to the
randomness in data splits than the variation that results from
the randomness in the initial conditions.

and trading volume.

Fig. 6 displays, for each day, the density of all the net-
work predictions. They are single-step forecasts: the input
for tomorrow’s prediction contains today’s observed values.
The solid lines are the histograms of the individual raw
predictions; they have not been convolved with any added
uncertainties. The actual data points are marked with x.
(The data points for the stock market crash, October 19th
and 20th, 1989 are missing since they are off the scale.) A
few interesting features are contained in the figure. First,
we see that the forecasts in many cases are biased high or
low, indicating generally mediocre forecast performance.
(Explaining 50 percent of the variance of the data means
that there still remains 50 percent unexplained!) Second,
the fact that for many of the days the width of the distribu-
tion is quite small and quite far away from the actual value
suggests that even the smartest selection or combination
of forecasts cannot yield much improvement.!! Finally, we
can see how the models’ predictions begin to spread apart
as the period of the crash is reached. The main reason
for this spreading is that the inputs wander off into re-

1 The idea of combining of forecasts (Bates & Granger, 1969), based
on the idea that superposition helps to the degree that the errors are
uncorrelated, has recently reached the connectionist community, see
e.g., (Jacobs, 1995). This article presents, on a practical example,
the limitations of averaging for noisy data: the empirical densities
show that averaging over all the splits we did (by taking the mean,
median or any convex, possibly even adaptive, combination of the
1843 individual models) will not improve the predictions dramatically.

gions where the network has never seen training points.
Regression neural networks do not spend any resources on
modeling the density of the inputs—moving away from re-
gion of interpolation to extrapolation manifests itself indi-
rectly through deteriorating performance. Thanks to the
benevolent nature of tanh hidden units, the output remains
bounded even for thus far unexplored regions.

IV. RELATION TO OTHER SOURCES OF UNCERTAINTY

Forecast uncertainty can come from many sources. We
focused on the uncertainty obtained from the specific splits,
that can be called splitting uncertainty. In the larger pic-
ture, its size is relatively small compared to all the noise
sources that contribute to the normalized squared error of
about 50 per cent, or a correlation coefficient of about

R=+/(1-05)=07 .

We here briefly describe the effect of other sources of
uncertainty:12

o Noisy targets. An appropriately trained network out-
puts expected values. Gradient descent in a squared
error cost function can be interpreted in a maximum
likelihood framework as the observed values being nor-
mal distributed around the predicted values with con-
stant noise level. This assumption can be relaxed, first
by allowing a Gaussian with locally varying widths,
then by modeling the output distribution with poten-
tially multimodal functions:

— Heteroskedasticity (“local error bars”). Nix &
Weigend (1995) described a method to train a net-
work with two output units, the first giving the pre-
diction, the second the error bar. Those two num-
bers, both functions of the input space, parametrize
a Gaussian and can be used for unimodal densi-
ties. This method is more flexible than the constant
variance assumption, but not appropriate for multi-
modal output densities.

— The assumption of a single Gaussian can be gener-
alized to a mixture of Gaussians that allow predic-
tion of more general densities. Jacobs et al. (1991)
introduced Gaussian mixture models to the connec-
tionist community, and Weigend et al. (1995) ap-
plied them to time series prediction. As an alter-
native, rather than using this mixture of Gaussians
with varying centers, Weigend & Srivastava (1995)
introduced a fuzzy-logic like superposition of tent-
functions at fixed centers to model potentially mul-
timodal densities.

o Noisy inputs (observational noise). This important
noise source in autoregression of noisy time series is
well known in statistics and econometrics (see Sec-
tion II-B) but less well known in the connectionist
community (Weigend et al., 1996). If the levels of the
noise for each input is known, the effect can always be

120ther sources, important in nonlinear dynamical systems with
low noise, such as the divergence of nearby trajectories, are less im-
portant in the present case of noisy financial data.



WORKING PAPER 1S-97-013, LEONARD N. STERN SCHOOL OF BUSINESS, NEW YORK UNIVERSITY 7

solid line: distribution over 1843 networks. x: data points
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Fig. 6. One-day ahead densities for the days on the “super-test-set”. The October 1987 stock market crash occurred on day 23 on this scale;

the value for the volume went off scale.

emulated with a Monte Carlo simulation of forward
passes with slightly different values for the inputs in
order to build a density reflecting input fluctuations.

o Parameter noise (uncertainty in the weights). From
a Bayesian perspective, model parameters are never
known exactly but also have some uncertainty that
translates into an uncertainty of the prediction (Bun-
tine & Weigend, 1991; MacKay, 1992; Neal, 1996).
While an analytic approximation is only available for
simple cases, it is always possible to obtain a distribu-
tion by generating forward passes through networks
with slightly different weight values.

o Regions of low input density (extrapolation). At the
end of the Section ITI-D we discussed the uncertainty
for the 1987 crash stemming from too few patterns
in the vicinity of the pattern for which the prediction
is to be made. For the data set used in this paper
this is not an important source here since adjacent
input patterns are highly correlated, implying that in
most cases the network will have encountered nearby
neighbors in the training set. This yields, however, to
an overly optimistic interpretation of the performance.

The specific values of the prediction performance should
not be overinterpreted. As typically done in cross-sectional
bootstraps, we pick the validation and test patterns inter-
spersed with the training data in order to obtain an indica-
tion of the variation of the subsample selection. Care has
to be taken, however, in interpreting the results as accu-
rate estimates of the generalization performance for truly
future data. If there is a strong overlap from one pattern
to the next (imagine a problem where all inputs are highly
smoothed, like the exponentially filtered volatility estimate
we use, or, even without smoothing, if the data is sampled
with a frequency a lot faster than the dynamics of the sys-
tem!) the chances are high that for a given test pattern,
there will be very similar training patterns adjacent in time.
In this case, more accurate estimates of the performance on
future data might be obtained by bootstrapping blocks of

data (Kunsch, 1989; Liu & Singh, 1992). Note, however,
that these blocks are still taken from the entire period.
So, if the dynamics is truly nonstationarity, this blocks-
bootstrapping will still give overly optimistic results. To
avoid fooling oneself on financial data, we strongly recom-
mend using only data for testing that arrived after the end
of the training and validation period (whether these two
are interspersed, blocked, or sequential).

V. CONCLUSIONS

This article demonstrated the usefulness of a pairs boot-
strap approach to generating and testing time series fore-
casts. We then applied the procedure to trading volume.
Contrary to our expectation, no improvement over linear
models could be obtained with a standard network trained
with backpropagation and regularized by early stopping.
This does not rule out the possibility of forecast improve-
ments using additional forecast variables, or by using prun-
ing and weight-elimination techniques.

The simulations gave us important insights into the vari-
ability of forecast performance over changes in subsamples
and network structure. For our example, most of the vari-
ability in forecast performance was clearly coming from
sample variation and not from model variation. This tells
us that for this series there is probably little hope in fine
tuning the networks we used. This is an example of an
application where we feel that procedures such as boot-
strapping are extremely useful in getting a clearer picture
of what might be real and what is noise.
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