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Summary 

The past forty years have seen a great deal of research into the construction and properties of nonpara- 
metric estimates of smooth functions. This research has focused primarily on two sides of the smoothing 
problem: nonparametric regression and density estimation. Theoretical results for these two situations 
are similar, and multivariate density estimation was an early justification for the Nadaraya-Watson 
kernel regression estimator. 

A third, less well-explored, strand of applications of smoothing is to the estimation of probabilities in 
categorical data. In this paper the position of categorical data smoothing as a bridge between nonpara- 
metric regression and density estimation is explored. Nonparametric regression provides a paradigm 
for the construction of effective categoical smoothing estimates, and use of an appropriate likelihood 
function yields cell probability estimates with many desirable properties. Such estimates can be used 
to construct regression estimates when one or more of the categorical variables are viewed as response 
variables. They also lead naturally to the construction of well-behaved density estimates using local or 
penalized likelihood estimation, which can then be used in a regression context. Several real data sets are 
used to illustrate these points. 

Key words: Kernel estimator; Local likelihood estimator; Local polynomial estimator; Maximum penalized 
likelihood estimator; Poisson regression. 

1 Introduction 

Consider the following three data situations: 

(1) Figure 1 is a scatter plot that refers to an exploration of the relationship between "objective" 
and subjective ratings of the difficulty of various school text passages. The horizontal axis gives 
the Flesch-Kincaid Grade Level, a common readability formula, while the vertical axis gives 
the subjective opinions of the appropriate grade level of the passage by members of the staff of 
an education program in New York City. These passages can be used to perform an Informal 
Reading Inventory, whereby the reading level of a student is assessed as being the grade level 
score of the most difficult passage that a student comprehends (based on their answers to 
questions after reading the passage). It is crucial to determine accurately the appropriate grade 
level of the passage. While it is clear that there is a relationship between the Flesch-Kincaid 
level and the opinions of the teachers, the nature of that relationship is not obvious. If teachers' 
ratings are very different from those of the Flesch-Kincaid score, that makes use of the easily 
available Flesch-Kincaid score problematic. The plot differentiates between fiction (circles) 
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Flesch-Kincaid grade level 

Figure 1. Scatter plot ofteucher assessments of grade level versus Flesch-Kincaid grade level scoresfor school text passages. 
Nonfiction books are given us pluses, while fiction books ure given us circles. 

and nonfiction (pluses) books. Is the relationship between the two grade level scores different 
for the two types of books? 

(2) Table 1 is a cross-tabulation of the fiscal health of 57 of the 75 largest U.S. cities, as measured 
by the Standard and Poor's 1994 rating for their general obligation bonds (the other 18 cities 
do not have general obligation bonds), by the number of not-for-profit organizations in that 
city among the city's top ten employers, according to Chamber of Commerce lists in 1995 
(Abzug, Ahlstrom & Simonoff, 1997). Bond rating, which is ordered from AAA (top rating) 
to BB (lowest rating for these cities), has been shown to be a good proxy for a city's general 
fiscal health (Przybylski, Littlepage & Rosentraub, 1996), and number of organizations among 
the top ten employers is a measure of the importance of the not-for-profit sector in the life of 
the city. What is the relationship between prominence of the nonprofit sector in a city and its 
fiscal health? 

(3) Figure 2 refers to a bivariate data set that gives the percentage of students who were from the 
top 10% of their high school class, and the percentage of students who graduated within six 
years, for 201 research universities in the United States (U.S. News and World Report, 1996). 
It is important for college administrators to understand the relationship between these two 
variables, since the former is a measure of the quality of students admitted, while the latter 
is a measure of the ultimate success of enrolled students. The scatter plot reveals a positive 
association between the variables, but gives little information about the possibility of relatively 
low or high density regions in the joint distribution. 
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Table I 
Stundard und Poor's ratings of general 
obligution b o d s  by the number cf not- 
fi~r-pr(fits umong the top ten employers 
,fir U.S. cities. 

Bond Number of not-for-profits 
rating among top 10 employers 

0 1 2 3 4 5  
AAA 0 4 2 0 0 0  
AA+ 0 2 2 2 0 0  
AA 4 9 5 2 1 0  
AA- 1 1 4 0 0 0  
A+ 0 0 0 1 1 0  
A 0 1 1 4 1 0  
A- 1 0 2 0 0 0  
BBB+ 0  0  0  0  0  0  
BBB 1 0 1 1 0 0  
BBB- 0  0  0  0  0  2  
BB+ 0 0 0 0 0 0  
BB 0 0 0 1 0 0  

I 0 1 
I I I I I 

20 40 60 80 100 

Percent of students from top 10% 

Figure 2. Scatter plot of gruduution rate o f  students versus percent of students,from the top 10% c?f their high school clusses 
,fir U.S. reseurch universities. 
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Despite the different natures of these three situations, all are closely related to each other. The 
idea that ties all of them together is the notion that whatever the form of the functional of interest 
(a regression curve in (I), a cell probability matrix in (2), and a bivruiate density function in (3)), 
it is likely to be smooth, implying that data values that are "close" to a given point can be used to 
improve estimation at that location. 

There is a vast literature on smoothing methods, with recent book-length treatments including 
those of Scott (1992), Green & Silverman (1994), Wand & Jones (1995), Fan & Gijbels (1996), 
and Simonoff (1996). A standard approach to describing smoothing methods is to start with the 
estimation of density functions, and then justify nonparametric regression through the relation 

(Nadaraya, 1964; Watson, 1964). 
The purpose of this paper is to describe a different way of thinking about smoothing methods, 

Section 2 starts with regression estimation (problem (1) above), and shows how this leads to natural 
estimation procedures for cell probabilities in ordered categorical data (problem (2) above). This is 
particularly true when estimation is based on the appropriate (Poisson) likelihood function. Categor- 
ical data smoothing methods provide a natural bridge to highly effective density estimators (problem 
(3) above), as discussed in Section 3. The paper concludes with discussion of extensions and open 
problems. Much of the material discussed here is based on Simonoff (1996, chapters 5 and 6). In 
particular, asymptotic results given there are not repeated here, the focus being on the application of 
smoothing methods rather than the theory. 

2 From Regression to Categorical Data Smoothing and Back Again 

Nonparametric regression estimation is based on the model 

where the regression function m(x) is the conditional expectation m(x) = E(YIX = x), and the 
errors satisfy E(cIX = x) = 0 and V(cIX = x) = a2(x)  not necessarily constant. If it is assumed 
that m(x) is a smooth function (whatever its precise form), estimation of m(x) at any point xo can 
proceed by "borrowing" information about m(xo) from observations "close to" xo. 

Many different methods for estimating m(x) have been proposed, including kernel, regression 
spline, and wavelet estimators. This paper will focus on the two classes of methods known as local 
polynomial estimators and penalty function estimators. Local polynomial estimators estimate m(xo) 
as a polynomial using weighted least squares, where the weights decrease smoothly with increasing 
distance from xo. The t th  order local polynomial regression estimator at xo is the constant term of 

where W is a kernel function, typically taken to be a continuous symmetric density function with 
zero mean and finite variance. In all of the examples used here, the tricube kernel 

[a - , i f u  E ( - i , i )  
W(u) = 

otherwise, 

will be used. The order t is chosen to be t = 1,2,  or 3. The bandwidth h determines how quickly the 
weights descend to zero with distance from xo, and hence controls the smoothness of the resultant 
estimate (larger values of h lead to a smoother estimate). 
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The appeal of local polynomial estimators comes from their intuitive nature, amenability to asymp- 
totic analysis, and good properties near the boundaries. Unlike the local averaging (kernel) estimator 
(which corresponds to a local polynomial estimator with t = 0), local polynomial estimators are 
based on the natural idea that m (x) can be approximated locally using a polynomial, thereby account- 
ing for local slope and curvature, leading to better estimates compared with using a local constant. 
See Fan & Gijbels (1996) or Simonoff (1996, chapter 5) for further details. 

Penalty function estimators operate based on the principle of explicitly trading off fidelity to the 
data with smoothness of the estimate. The estimator is the minimizer over the class of functions with 
square integrable lth derivative and absolutely continuous derivatives up through order C - 1 of 

Larger values of a penalize roughness of the estimate more, and hence lead to a smoother estimate. 
The most common version takes l = 2, resulting in a cubic smoothing spline. The asymptotic 
properties of the cubic smoothing spline are roughly similar to those of the local quadratic estimator. 
See Eubank (1988), Green & Silverman (1994), or Simonoff (1996, chapter 5) for further details. 

The smoothness of a nonparametric regression estimate is controlled by a smoothing parameter (h 
for local polynomial estimators and a for penalty function estimators, respectively). There is a large 
literature on how to choose the smoothing parameter for various regression estimators; see Simonoff 
(1996, sections 5.3 and 5.6.3) for a discussion of some of the proposed methods. Hurvich, Simonoff 
& Tsai (1998) proposed a criterion based on the Akaike Information Criterion, where the smoothing 
parameter is chosen to minimize 

Here H is the so-called smoother matrix, which satisfies = Hy. The AICc criterion has the 
advantage of being applicable to any linear estimator, including local polynomial estimators of any 
order and smoothing spline estimators, and was shown in Hurvich, Simonoff & Tsai (1998) to 
generally work well in practice. Unless stated otherwise, A ICc is used as the criterion to choose the 
level of smoothing in all of the examples that follow. It is important to remember, however, that any 
automatic smoothing parameter selector should be viewed as only a guideline (or benchmark), and 
can be adjusted based on subjective impressions. 

Figure 3 illustrates the way nonparametric regression methods can highlight structure. The data are 
those of Figure 1, and local quadratic estimates for the fiction (solid line) and nonfiction (dotted line) 
are given, along with a dashed line representing equality of the two grade level scores. It is clear that 
the objective and subjective scores do not match up, casting doubt on the use of the Flesch-Kincaid 
score from the point of view of the teachers. The two scores are reasonably linearly related for the 
nonfiction books, although the teachers consistently rate the passages roughly two grades higher 
than Flesch-Kincaid does. The pattern for the fiction books is very different, characterized by a wide 
range of book scores where the Flesch-Kincaid level is apparently unrelated to the teacher scores. 
This pattern of a leveling-off effect of readability scores has been noted before in the readability 
literature (see, e.g., Zakaluk & Samuels, 1988, p. 19, or Chall & Dale, 1995, pp. 74-75), although it 
is interesting to note that the Flesch-Kincaid score is designed to address this effect. The necessity 
of using different scoring systems for different types of texts was discussed in Chall et al. (1996, p. 
3). 

Consider now categorical data with ordered categories. The data consist of counts {n,), j  = 
1, . . . , K, where K is the number of cells in the table and n, is the number of observations that fall 
in the j th  cell. The goal is to estimate p = { p j ] ,  the set of probabilities of an observation falling in 
a given cell. The standard model for this random variable is a multinomial distribution with sample 
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Flesch-Kincaid grade level 

Figure 3. Local quadratic estimtes for reuding grade level duta. The solid line refers tofiction books, while the dotted line 
refers to nonfiction books. The dashed line corresponds to equality of the two grade level scores. 

size n and probability vector p, with log-likelihood 

K K 

n j  log p, , subject to the constraint p, = 1 

(ignoring constants). 

The usual estimate of the cell probabilities is the set of observed cell frequencies pi = nj /n .  
These estimates are accurate if the number of observations in each cell is large, but are not useful 
for sparse tables, where the table has small (or zero) counts. In this situation, borrowing information 
from nearby cells makes sense, and can lead to improved estimation. 

For the multinomial distribution E(nj)  = np,, and hence E(p j )  = p j .  It is useful to model p as 
being generated from an underlying smooth density f on [0, 11 through the relation 

f (u)du, 

which is reasonable for categories with a natural ordering. This implies that the existence of deriva- 
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tives of f corresponds to smoothness of p. Note that the Mean Value Theorem implies that 

pi = f (xj)/K, for somex, E [ ( j  - 1)lK, jlK1. (2.2) 

A natural way to define a smooth estimator p is by analogy with a regression of response values 
pj on the equispaced design j / K ,  j = 1, . . . , K .  So, for example, the local polynomial estimator 
j i  is the constant term of the minimizer /3 of 

Aerts, Augustyns & Janssen (1997a,b) described the asymptotic properties of this estimator, showing 
that they were similar to those for local polynomial regression estimators. In particular, unlike the 
frequency estimator, the estimates are consistent under sparse asymptotics, where n and K become 
infinite at the same rate (these asymptotics model large sparse tables). 

A difficulty with local polynomial probability estimates is that while an arbitrary regression 
function m can take on positive or negative values, a probability vector p cannot take on negative 
values. Negative local polynomial estimates are reflecting that when f is relatively small, it does 
not behave locally like a polynomial, since it must be nonnegative. Further, since V(pj) = pj ( l  - 
p,)/n, sample frequencies that correspond to higher probability cells are more variable than those 
that correspond to low probability cells (that is, from a regression point of view, the data exhibit 
heteroscedasticity). 

The problem is that the estimator is based on the minimization of a local least squares criterion, 
which is appropriate for regression data, but not for categorical data. The correct likelihood function 
is the multinomial likelihood (2.1). It is helpful to formulate this problem in terms of a Poisson 
regression model instead, with log-likelihood 

(omitting constants). The canonical link for the Poisson distribution is the log link (McCullagh 
& Nelder, 1989), so the appropriate version of a local polynomial analysis is to use the local log- 
likelihood (Tibshirani & Hastie, 1987,1990; Firth, Glosup & Hinkley, 1991; Fan, Heckman & Wand, 
1995), 

(2.3) 
for cell i .  That is, it is the logarithm of p that is modeled locally as a polynomial, rather than p 
itself. The local polynomial likelihood estimator is then exp(Bo), where f i  is the maximizer of (2.3). 
The estimates are thus guaranteed to be nonnegative, and better reflect the behavior of probabilities 
(especially in the tails). 

Roughness penalty methods also can be adapted to this situation, by working in the log(p) scale, 
and penalizing the log-likelihood. The maximum penalized likelihood estimator is the maximizer of 

subject to C, p j  = 1, where the "derivative" operation (log p)(') is actually a differencing operator. 
So, for example, for L = 1 

(log p)' = log p i  - log pj-, 
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(Simonoff, 1983), while f o r t  = 2 

(logp)" = 10gpj+1 - 210gpj + logpj-1. 

The choice t = 2 has asymptotic advantages over l = 1, and will be the one used here. See Green 
& Silverman (1994, chapter 5 )  for general discussion of this estimation method. 

The AICc ~mooth in~ '~a ramete r  selector can be adapted to these likelihood-based estimators 
using a linearization approximation. The smoothing parameter is chosen to minimize 

where H is the implied smoother matrix from the last iteration of the iteratively reweighted least 
squares fit of the model. 

Figure 4 illustrates the use of these categorical smoothing methods. The data are from Eubank 
(1997), and refer to the probability of each of 10 balls (numbered 0 through 9) being selected in 
150 draws from a machine used in the Pick 3 game of the Texas Lottery. The balls are loaded 
into the machine in sequential order (low numbers on the bottom) before mixing, so there is a 
natural ordering to the categories. The probability distribution of the number being chosen should 
be uniform, of course, but the machine that generated the data had been removed from use because 
of unusual selection patterns in the daily drawings. The observed proportions of each number being 
chosen out of 150 draws are given by the bars in the figure. Local linear likelihood (dotted lines 
connecting pluses) and penalized likelihood (solid lines connecting circles) probability estimates are 
superimposed on the bars, each with smoothing parameter chosen based on AICc.  

Digit chosen 

Figure 4 .  Plot of probability estimates ,for lottery dutu. The burs are the ,frequency estimutes, pluses connected by dotted 
lines ure locul quudrutic likelihood estimutes, and circles connected by solid lines are penalized likelihood estimates. 
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As Eubank (1997) noted, even though x 2  tests of uniformity are not close to statistical significance, 
there appears to be a pattern where the balls that are loaded into the machine last have a lower 
probability of being chosen. The local linear likelihood estimate suggests a sharp drop in probability 
of digits 5-9, while the penalized likelihood estimate fits a smoother trend, but both give the same 
qualitative results, which are consistent with those of Eubank (1997). 

The problems associated with sparse multinomials are magnified when moving to higher dimen- 
sions (contingency tables). Since the number of cells in a table increases multiplicatively with the 
dimension of the table, higher dimensional tables are more likely to be sparse. Fortunately, smoothing 
methods extend directly to higher dimensions as well. Unfortunately, however, so does the so-called 
curse of dimensionality, which refers to the need for progressively larger sample sizes in higher 
dimensions to achieve comparable accuracy. 

Local linear estimation illustrates how the methods generalize to higher dimensions. The least 
squares estimator jij for the probability of falling in the (i, j) th cell of an R x C two-dimensional 
table ( n i j ]  is Bo, where ,6 is the minimizer of 

where WhR,h,(i, j ,  k, l ,  R,  C) is a two-dimensional kernel function with h R  and hc the smoothing 
parameters for rows and columns, respectively (Aerts, Augustyns & Janssen, 1997~). A better version 
of this estimator is based on local likelihood, rather than local least squares. Equation (2.3) generalizes 
in the obvious way. For example, the local linear likelihood estimator for a two-dimensional table is 
exp(Bo), where Bo is the constant term of the maximizer of 

Table 2 gives local quadratic likelihood estimates for the data of Table 1. The estimator uses a 
product tricube kernel covering 35% of the cells, which is smaller than the amount suggested by 
AICc (the expected cell counts are given so that direct comparison with Table 1 is possible; the 
estimated cell probabilities are the expected cell counts divided by 57). The expected counts are 
generally concentrated in the upper left of the table, corresponding to higher bond ratings and fewer 
not-for-profits among the top ten employers. The table also shows a clear relationship between bond 
rating and the number of not-for-profits, with a higher bond rating being associated with a lower 
number of not-for-profits among the top ten employers. The "ideal" number of not-for-profits (in 
terms of higher probability of better bond rating) is apparently one, with zero or two not-for-profits 
being roughly similar. As the number of not-for-profits among the top ten employers gets larger, 
the probability of lower bond rating increases. Abzug et al. (1997) and Simonoff & Tutz (1998) 
discussed possible reasons for this observed pattern. 

These cell probability estimates reflect an application of nonparametric regression to categorical 
data smoothing, but the direction of application also can be reversed. It is often the case that one (or 
more) ordered categorical variables can be considered response variable(s) (see Simonoff & Tutz, 
1998, and the references therein). For example, the bond rating data of Table 1 are naturally viewed 
this way, with the number of not-for-profits being a potential predictor of the fiscal health of a city 
(as measured by the bond rating). 

The goal is to estimate p ; ( j )  = P(Y = i lX = j ) ,  where Y is the target variable and X is the 
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Table 2 
Local quadratic likelihood estimated cell counts for U.S. city 
bond rating table. 

Bond Number of not-for-profits 
rating among top 10 employers 

0 1 2 3 4 5  
AAA 0.51 2.08 1.82 0.46 0.05 0.00 
AA+ 1.27 4.85 3.64 1.05 0.17 0.00 
AA 1.72 5.60 3.97 1.45 0.33 0.00 
AA- 1.25 2.61 2.91 1.70 0.55 0.00 
A+ 0.60 0.74 1.79 1.74 0.79 0.01 
A 0.35 0.33 1.13 1.48 0.71 0.01 
A- 0.36 0.18 0.84 0.97 0.36 0.02 
BBB+ 0.44 0.07 0.64 0.47 0.14 0.14 
BBB 0.37 0.03 0.41 0.22 0.06 0.46 
BBB- 0.19 0.05 0.20 0.20 0.09 0.51 
BB+ 0.05 0.03 0.14 0.22 0.14 0.42 
BB 0.01 0.01 0.16 0.28 0.18 0.24 

predicting variable. By the definition of conditional probability, 

P(Y = i and X = j )  P(Y = i and X = j )  
~ i ( j >  = - - 

P ( X  = j )  x i P ( Y = i a n d X = j ) '  (2.4) 

A natural estimate of p i ( j )  is thus to simply substitute the local polynomial likelihood estimates of 
P(Y = i and X = j) into (2.4). 

Table 3 shows how this works for the bond rating data. Each column represents a j i ( j ) ,  where 
j = 0, . . . , 5  corresponds to the number of not-for-profits in the top ten and i corresponds to bond 
rating. The estimates confirm that the most favorable number of not-for-profits is one, with zero 
and two not-for-profits implying similar estimated probability distributions for bond rating. This is 
consistent with the good fit of a proportional odds model using (Nonprofits- 1)' as the predictor that 
is discussed in Abzug et al. (1997). 

Table 3 
Local quudrutic likelihood conditional probability estimates 
of bond rating given number of not-for-profits. 

Bond Number of not-for-profits 
rating among top 10 employers 

0 1 2 3 4 5  
AAA ,072 .I25 ,103 ,045 ,014 ,000 
AA+ .I78 .293 ,206 ,103 ,048 ,000 
AA ,241 ,338 ,225 ,142 .092 .000 
AA- ,176 .I57 .I65 ,166 ,154 ,000 
A+ ,084 ,045 ,101 ,170 ,221 ,006 
A ,049 ,020 ,064 ,145 ,199 ,006 
A- ,051 ,011 ,048 ,095 ,101 ,011 
BBB+ .062 .004 ,036 ,046 .039 .077 
BBB ,052 .002 ,023 ,021 ,017 ,254 
BBB- .027 ,003 ,011 ,020 ,025 ,282 
BB+ ,007 ,002 .008 ,021 ,039 ,232 
BB ,001 ,001 .009 .027 .050 ,133 

These regression estimates also can be used to model higher dimensional probability matrices as 
the target distribution, using a generalization of (2.4) to multidimensional tables and summing in the 
denominator over the margin(s) corresponding to the predictor(s). Table 4 summarizes data of this 
type. The table is based on a survey of 341 undergraduate students in the Leonard N. Stern School 
of Business of New York University (LaBarbera & Simonoff, 1999). The response table is the joint 
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Table 4 

Importance of number of anticipated employment op- 
portunities by importance of anticipated salary size for 
undergraduate business students, separated by when 
the students chose their major. Ratings range from Not 
at all important ( I )  to Extremely important (5). 

Importance of 
employment opportunities 
1 2 3 4  5 

Chose major as a 
high school student 

Importance 1 2  0  0  0  1  
(?f 2 0 0 1  0  0  

size 3 0 3 3  1 2  
(?f 4 0 0 0 0  10 

salary 5 1 1 0  8  25 
Chuse major as a,freshman 

Importance I 0  0  0  0  0  
(!f 2 0 0 0  1 0  

size 3 0 0 2 4  2  
(?f 4 0 0 1  6 15 

sahry 5 0  0  1  6 21 
Chose major as a sophomore 

Importance 1 2  0  0  0  0  
of  2 0 1 1 0  0  

size 3 0 0 4 7  5  
(!f 4 0 1 3 1 9  22 

salary 5 0  1 1 10 38 
Chuse major as a junior 

Importance I 0  0  0  0  0  
of 2 0 1 0 1  1  

size 3 0 0 1  4  2  
of  4  0  1 1  15 14 

salary 5 0  0  3  3  24 
Chose major as a senior 

Importance 1 2  0  0  0  0  
( f  2 0 1 0 0  0  

size 3 1 0 1 0  0  
of  4 0 0 2  8  6 

salary 5 1 0  2  2  4 

distribution of the importance to the student in choosing a major field of the number of anticipated 
employment opportunities by the anticipated size of the salary, each measured on a five point scale 
from not at all important to extremely important. The predicting variable is when the student chose 
their major field (as a high school student, freshman, sophomore, junior, or senior). 

Table 5 gives the smoothing-based regression estimates of the joint distribution of importance of 
employment opportunities by importance of salary size given when the student chose their major 
field. The estimates are based on a local quadratic likelihood smoothing of the underlying three- 
dimensional table using a product tricube kernel that covers half of the cells. Several interesting 
patterns emerge from the estimated bivariate regression function. 

It seems that in many ways students who choose their major field either very early (in high school) 
or very late (as seniors) are different from those who choose it in their first three years of college: 

(1) The estimated probability of a student putting great importance (rating 4 or 5) on the anticipated 
number of employment opportunities is reasonably stable for students who chose their majors 
as freshmen (.899), sophomores (.893), or juniors (.863). It is noticeably lower, however, for 
students who choose their majors in high school (.818), and much lower for students who 
choose as seniors (.704). 

(2) Similarly, the estimated probabilities of a student putting great importance on the anticipated 
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Table 5 
h c a l  quadratic regression estimates of joint probability distribution 
uf importance of number of anticipated employment opportunities 
by importance of anticipated salary size for undergraduate business 
students, given when the students chose their major 

Importance of employment opportunities 
1 2 3 4  5 

Chose major as a high school student 

Importance 1  ,018 ,006 ,002 ,002 ,002 
of 2  ,009 ,009 ,010 ,008 ,007 

size 3  ,005 ,013 ,030 ,040 ,033 
of 4  ,004 .010 ,032 ,094 ,165 

salary 5 ,005 ,007 ,021 ,102 ,365 

Chose major as a freshman 
Importance 1  ,007 ,002 ,001 ,001 ,001 

of 2  ,002 ,004 ,006 ,006 ,005 
size 3  ,001 ,004 ,023 ,046 ,038 
of 4  ,001 ,004 ,026 .lo7 ,209 

salary 5 ,002 ,003 ,015 ,095 ,391 

Chose major us a sophomore 
Importance 1  ,006 ,001 ,000 ,000 ,000 

(?f 2  ,001 ,004 ,007 ,007 ,004 
size 3 .000 ,004 ,027 ,067 ,038 
of 4 ,001 ,004 ,032 ,147 ,218 

salary 5 ,001 ,003 .015 ,086 ,326 

Chose major as a junior 
Importance 1 ,010 ,002 ,000 ,000 ,000 

(?f 2 ,003 ,005 ,006 ,005 ,002 
size 3  ,001 ,006 ,027 ,060 ,034 
(?f 4  ,001 ,006 ,042 ,164 .210 

salary 5 ,002 ,005 ,020 ,096 ,292. 

Chose major as a senior 
Importance 1  ,040 ,005 ,001 ,000 ,000 

of 2  .021 ,012 ,006 ,003 ,001 
size 3  .010 ,017 .034 ,046 ,023 
of 4  ,008 ,020 ,068 ,165 .I60 

salary 5 ,009 ,013 ,033 ,098 ,208 

salary size is higher for students who choose their majors as freshmen (.853), sophomores 
(.833), or juniors (338)  than it is for students who choose in high school (.805) or as se- 
niors (.782). 

(3) The strength of the association between importance of anticipated employment opportunities 
and importance of anticipated salary size also varies with time of choosing a major. The 
association is stronger when the choice is made as a freshmen, sophomore, or junior. For 
example, the estimated probabilities of the importance ratings differing by more than one level 
are .078, .073, and .076, respectively, for those years, but are. 106 and .121, respectively, when 
the choice is made as a high school student or college senior. 

Each of these results suggests a difference in the view of the purpose of a college education 
as a preparation for a job. Students who choose their majors as freshmen, sophomores, or juniors 
apparently view the vocational aspect of a college education as very important, but students who 
choose their majors early or late view that as less important. This could reflect that students who 
choose early do so out of a basic love for the field, while those who choose late have a tendency to 
procrastinate, and are ultimately choosing a major so that they can graduate. 
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3 From Categorical Data Smoothing to Density Estimation 

Categorical data smoothing occupies a central position between nonparametric regression and non- 
parametric density estimation, providing a natural way to apply regression to the density estimation 
problem. The key link is through the idea of binning continuous data. 

Let f (x) be the density function for a continuous random variable X. Treating the data as (ordered) 
categorical by binning it and then smoothing the resultant histogram form has long been proposed on 
the basis of computational efficiency; see Fan & Marron (1994), and the references therein. Equation 
(2.2) shows that an estimate of a cell probability pi gives a density estimate for f (xi) (it is easiest 
to take f to be supported on [0, 11, so that xi = i / K ,  but any arbitrary interval can be treated by a 
simple translation, with the estimated density on [a, b] being the estimated density on [0, 11 divided 
by b - a). 

The local polynomial least squares density estimator is K times the constant term of the minimizer 

As the bins narrow (or equivalently, as K + oo), this is equivalent to the constant term of the 
minimizer of 

where 8 is the Dirac delta function. This estimator has been justified through both local polynomial 
arguments and as a generalized jackknifing boundary kernel estimator; see Sarda (1991), Lejeune & 
Sarda (1992), Jones (1993), Fan, Gijbels, Hu & Huang (1996), Cheng (1997a,b), and Cheng, Fan & 
Marron (1997). 

This estimator inherits all of the properties of the local polynomial least squares cell probability 
estimator. These include the favorable ones (higher order convergence when using higher order 
polynomials, automatic boundary correction), but also the unfavorable ones (including possible 
negativity). A better approach is to base the estimate on the correct likelihood (Poisson regression, 
rather than Gaussian [least squares] regression), as was done in Section 2 for categorical data 
smoothing (see Efron & Tibshirani, 1996, Eilers & Marx, 1996, and Jones, 1996, for other Poisson 
regression-based proposals). The estimator is the (exponentiation of the) maximizer of 

As the bins narrow, this becomes equivalent to the maximizer of 

(ignoringconstants). This is the local likelihood for density estimation proposed by Loader (1996), 
and is a special case of that proposed by Hjort & Jones (1996). Besides nonnegativity and automatic 
boundary bias correction, the local likelihood density estimator has other useful characteristics. Hjort 
& Jones (1996) showed that for the local linear likelihood estimator, 

where fo is the closest exponential density to the true f (x). So, for example, if the true density has 
exponential-like tails, the bias will be small for a wide range of h (since f "(x) % f:(x)), allowing 
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the data analyst to choose h to highlight other structure or yield estimates with less bumpiness in 
the tails. Loader (1996) showed that for densities with exponential tails the kernel estimator has 
asymptotic relative efficiency equal to zero compared with the local linear likelihood estimator. A 
local quadratic likelihood estimator allows the ability to account for local curvature. 

The maximum penalized likelihood probability estimator also has a direct analogue for density 
estimation. As the bins narrow, the estimator is the maximizer of 

n 1  2 log f ( x i )  - u [[log f (u ) ] "  d u  

subject to 1 f = I ,  which is the penalized likelihood estimator proposed by Good 8r Gaskins (197 1)  
and Silverman (1 982). 

Figure 5.  Density estimates ,for daily returns of the New York Stock Exchange Composite Index,for January 1990 through 
September 1997. Solid lines ure penalized likelihood density estimates, while dotted lines are estimated Gaussiun densities. 
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Figure 5 demonstrates the practical benefits of this estimation scheme. The data are the daily 
returns of the New York Stock Exchange Composite Index for January 1990 through September 
1997, separated by year. A common representation of stock prices is that they follow a geometric 
random walk with lognormal innovations; that is, stock returns are independent and identically 
distributed Gaussian random variables. Each plot in Figure 5 gives the AICc-based penalized 
likelihood density estimates (solid line) and the Gaussian density with observed mean and standard 
deviation (dotted line). All plots are on the same horizontal and vertical scale. 

The random walk hypothesis is clearly not supported by the data. Returns are leptokurtotic, 
being more peaked and having fatter tails than the normal. Further, the returns are not identically 
distributed, as there are apparently periods of higher volatility (such as 1990-1991 and 1997) followed 
by periods of lower volatility (1992-1993 and 1995 particularly). These plots support the possibility 
of an autoregressive conditional heteroscedasticity (ARCH) model for returns; see Bollerslev, Chou, 
& Kroner (1992) for a discussion of applications of this model to financial data. 

The advantages of estimating in the log f scale are seen in Figure 6. The figure gives the penalized 
likelihood density estimate for 1997 returns (dotted line), along with a kernel density estimate with 
smoothing parameter chosen to give a similar representation of the mode of the density (solid line). 
The kernel density estimate suffers from the common~problem of bumpiness in the tails. This is 
avoided by basing the estimate on the likelihood, since in the tails the density behaves in a roughly 
exponential way. 

-0.02 0.0 0.02 0.04 0.06 

Daily return 

Figure 6. Penalized likelihood density estimate (dotted line) and kernel density estimate (solid line) ,for 1997 stock return 
data. 
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One advantage of the local polynomial likelihood density estimate over the penalized likelihood 
density estimate is that its structure can be manipulated to allow local variation in the amount of 
smoothing. Figure 7 gives local quadratic likelihood density estimates of the number of lifetime 
sexual partners for a sample of 1850 U.S. women (Chatterjee, Handcock & Simonoff, 1995, pp. 
113-122). The top plot.uses a constant bandwidth h = 5 based on a tricube kernel (the AICc 
bandwidth is h = 44, which smooths over the initial spike in the density). The bumpiness in the 
long tail is not spurious, as (not surprisingly) respondents tend to round off their answers, leading to 
multiple responses at 15, 20,25, 30, and 35. 

Fixed local quadratic likelihood estimate 

Number of partners 

Adaptive local quadratic likelihood estimate 

Number of partners 

Figure 7. Local qucidrutic likelihood density estimates ,fi)r,femule ltfetime sexuul partners dutu. Top plot: fixed bandwidth 
locul quudrutic likelihood estimate. Bottom plot: locul quudrutic likelihood density estimate using smaller bandwidth ,for 
smull number c?fpurmers. 

Examination of the original data suggests that the spike at the left of the density is not sharp 
enough, since three times as many respondents reported one lifetime partner than any other value. 
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This sharp increase and subsequent decrease can be incorporated into the local quadratic likelihood 
density estimate by using a smaller bandwidth in that region. The bottom plot in Figure 7 is identical 
to the top plot, except that the density estimate is based on h = 2.5 for 0-6 partners (this value was 
chosen subjectively here, although there are methods to do this automatically for local polynomial 
regression estimators; see, e.g., Fan & Gijbels, 1995). 

Local quadratic likelihood estimate 

Percent of students from top 10% 

Modal regression estimate 

Percent of students from top 10% 

Figure 8. Local quadratic likelihood estimates of research university data. Top plot: contour plot ufbivariute density estimate. 
Bottom plot: modal regression estimate. 

Figure 8 concludes this section with a bivariate example, the college data of Figure 2. The estimate 
is a local quadratic likelihood estimate based on a 30 x 30 table of counts, with a product tricube kernel 
covering 10% of the cells (the A I Cc choice is 7% of the cells, which seems slightly undersmoothed). 
The estimate shows clear bimodality in the density that was not evident in the scatter plot. Most 
schools center at around 30% of students from the top 10% of their high school classes and a 60-70% 
graduation rate. The smaller mode corresponds to the top 25 universities in the U.S., where around 
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80% of the students come from the top 10% of their high school classes, and the graduation rate is 
around 90%. There is also indication of a third mode that corresponds to a high percentage of students 
from the top 10% of their high school classes, but lower graduation rates. These are schools in the 
University of California system, which effectively guarantees a spot in the system to all California 
high school students graduating in the top 10% of their class. 

Just as probability estimates were used in Section 2 to create regression estimates, so too can 
multivariate density estimation be used to create nonparametric regression estimates based on (1.1). 
The bottom plot in Figure 8 is a modal regression plot (Scott, 1992, pp. 233-235), where the lines 
given correspond to modes in the underlying estimated conditional density f(x, y)/fx(x) (see 
Hyndman, Bashtannyk & Grunwald, 1996, for discussion of estimators of this type). The modal 
regression plot shows that for most universities, graduation rate is roughly linearly associated with 
percent of students from the top 10% of their high school classes until that percent is around 35%. 
Above that, there is virtually no relationship between the two variables, which might reflect the 
increasingly challenging nature of the school itself. The top 25 schools form a separate group shifted 
up from the rest of the schools (with graduation rates roughly 25 percentage points higher), exhibiting 
some evidence of a weak relationship between the two variables. 

4 Conclusion 

The theme of this paper is that likelihood-based regression methods provide a unified approach to 
constructing effective regression and density estimators, with categorical data smoothing occupying 
a position as a bridge between the two (in addition to its importance in the analysis of contingency 
tables). It would be hoped that this unified approach could lead to useful cross-fertilization between 
these areas. Further, given the increasing availability of Poisson nonparametric regression software (as 
part of generalized additive modeling software, for example), it seems that kernel density estimates 
should be replaced in routine application with likelihood-based density estimates as a matter of 
course. 

Simonoff (1996, chapter 7) discussed several fruitful areas of application where better understand- 
ing of categorical data smoothing would be beneficial, including goodness-of-fit and smoothing-based 
parametric estimation and testing. The discussion here suggests that the nonparametric regression 
literature is a good place to look for useful ideas and results. 

All of the models discussed here are purely nonparametric, but a major area of regression research 
in recent years has been that of semiparametric models. These models include aspects of both 
parametric and nonparametric models, and can thereby avoid many of the problems of the curse of 
dimensionality. Examples of such models include additive models, where m is represented as a sum 
of several smooth functions, and partially linear models, where m includes some variables entering 
linearly and others entering as smooth functions (see Hastie & Tibshirani, 1990, for a discussion of 
such models, and Simonoff & Tsai, 1999, for discussion of the application of A ICc to them). 

These models could also be adapted to contingency tables (and, by extension, multivariate density 
estimation) in the same way as is discussed here. So, for example, log-linear models for contin- 
gency tables could be replaced by log-additive or log-partially linear models, with potential gains 
in simplicity or interpretability. Density estimates based on such modeling, assuming they were 
appropriate for the given data, could also avoid the curse of dimensionality found in multivariate 
density estimators. 

S-PLUS functions and the data sets used in this paper are available in the form of an S-PLUS 
dump file via the World Wide Web at the location 
http://www.stern.nyu.edu/-jsimonof/three.dmp. 
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Durant les quarantes dernitres annks,  l'estimation fonctionnelle nonparamttrique a connu un dtveloppement considtrable. 
Ce travail pksente, un bilan des recherches portant sur l'estimation des fonctions de densitts et de rtgression. Les dsultats 
thtoriques associts B ces deux probltmes d'estimation sont trts similaires. De plus, I'estimateur de Nadaraya-Watson d'une 
fonction de dgression trouve ses racines dans I'estimation de densitts multivari6es. 

Un troisitme volet de l'estimation fonctionnelle moins exploitt, est celui de l'estimation par lissage de lois de probabilitt de 
donnks cattgoriques. Ce travail explore le fait que ce type d'estimation constitue un pont entre l'estimation nonparamttrique 
de densitts et de fonctions de rtgression. La rtgression nonparamttrique fournit un paradigme pour construire de manitre 
efficace des estimateurs de lois de probabilitts de donnks cattgoriques. Un choix adkquat de la fonction de vraisemblance 
permet de construire des estimateurs possdant de nombreuses proprittts inttressantes. Les estimateurs ainsi obtenus peuvent 
Etre utilish en estimation de rtgression aussi bien dans le cas de variables rtponses cattgoriques ou dans le cas d'une 
estimation pdalable de densitts par le biais de la vraisemblance locale ou p6nalis6e. Les divers probltmes abordts dans ce 
travail sont illustrts par l'entremise de plusieurs jeux de donnks h l l e s .  
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