PLUG-IN SELECTION OF THE NUMBER OF FREQUENCIES IN
REGRESSION ESTIMATES OF THE MEMORY PARAMETER OF A LONG-
MEMORY TIME SERIES

By CLIFFORD M. HURVICH AND ROHIT S. DEO
New York University

First version received July 1998

Abstract. We consider the problem of selecting the number of frequencies, m, in a
log-periodogram regression estimator of the memory parameter d of a Gaussian long-
memory time series. It is known that under certain conditions the optimal m,
minimizing the mean squared error of the corresponding estimator of d, is given by
m© = Cn*/5, where n is the sample size and C is a constant. In practice, C would
be unknown since it depends on the properties of the spectral density near zero
frequency. In this paper, we propose an estimator of C based again on a log-
periodogram regression and derive its consistency. We also derive an asymptotically
valid confidence interval for d when the number of frequencies used in the regression
is deterministic and proportional to #*/>. In this case, squared bias cannot be neglected
since it is of the same order as the variance. In a Monte Carlo study, we examine the
performance of the plug-in estimator of d, in which m is obtained by using the
estimator of C in the formula for m©"Y above. We also study the performance of a
bias-corrected version of the plug-in estimator of 4. Comparisons with the choice
m = n'? frequencies, as originally suggested by Geweke and Porter-Hudak (The
estimation and application of long memory time series models. J Time Ser. Anal. 4
(1983), 221-37), are provided.
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1. INTRODUCTION

In this paper, we will consider a Gaussian long-memory time series whose
spectral density is of the form

[ =1 —exp(=id)| 2 f*() A e[-m a] (M

where the memory parameter d € (—1/2, 1/2) and the function /(1) govern
the long- and short-term correlation structure respectively of the series. A widely
used semiparametric estimator of d is the log-periodogram regression estimator
proposed by Geweke and Porter-Hudak (1983). The estimator is obtained by
regressing the log periodogram on log frequency for the first m Fourier
frequencies w; = 27j/n, where n is the sample size. The choice of m is crucial
in practice, since it determines the bias, variance and mean squared error of the
estimator. Based on simulations, Geweke and Porter-Hudak suggested that m =
n'/? be used, and this choice has been widely adopted in the applied literature. It
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is now known, however, that this choice is not optimal in general. Under certain
assumptions on /™ and its first two derivatives at zero, Hurvich e al. (1998)
showed that the optimal value for m is O(n*), and the mean squared error of
the corresponding estimate of d is O(n~*%). In this case, the choice m = n'/?
would yield the suboptimal convergence rate O(n~'/?). They also determined
that the asymptotically optimal value of m which minimizes the mean squared
error is given by

m = Cp* )

« /
c‘( 5 )1/5 T ) 3)
- \12872 o

Note that C depends on the behavior of the unknown function ™ at zero. In this
paper, we will propose and study the properties of an estimate C of C in (3),
based on log-periodogram regression. Using this value of C yields a
corresponding selected value of i = Cn*/5. We will refer to this selection as
a plug-in choice of m, since its motivation is derived from the idea of replacing
(‘plugging in’) an estimated value for C in the asymptotic relationship (2).

Giraitis et al. (1997a, 1997b) have also addressed the problem of selecting
the number of frequencies in a regression estimator of d. They introduce
another parameter 5 which governs the smoothness of the function /™ around
zero. Under their assumptions, which are more general than ours, they derive
optimality theory for estimating d. They also propose a data-driven selection of
m, based on an adaptive estimator of 5. Their choice of m is rate optimal in
the sense that its ratio to the optimal value of m converges to a finite constant.
Since they make no attempt to estimate this constant, the resulting estimator of
d will be inefficient in general. By contrast, our assumptions imply that 8 = 2,
so that the optimal value of m is determined up to an unknown constant, which
we seek to estimate. It should be noted that § is in fact 2 for most known
parametric long-memory models including the ARFIMA (Granger and Joyeux,
1980; Hosking, 1981), fractional exponential and fractional Gaussian noise
models (see Beran, 1994).

Another approach to the selection of m was considered by Henry and
Robinson (1996), who also assumed that 5 = 2. There, the focus was on the
Gaussian semiparametric estimator (GSE), originally proposed by Robinson
(1995a), in which d is estimated by maximizing a Whittle-type quasi-likelihood
for Fourier frequencies 1 to m. GSE enjoys at least two advantages over the
regression estimator of Geweke and Porter-Hudak (GPH). First, the properties
of GSE have been derived without assuming that the time series is Gaussian,
while the theory for GPH (Robinson, 1995b, Hurvich ef al. 1998) does requre
the Gaussian assumption. Second, in the Gaussian case, the asymptotic
efficiency of GPH relative to GSE is only 6/7% ~ 0.67. In terms of developing
a theory for selecting m, however, GSE seems potentially problematic. Since

where
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GSE is defined implicitly, it seems difficult, if not impossible, to obtain a
rigorous expression for the asymptotically optimal m. Indeed, the expression
given by Henry and Robinson (1996) is admittedly based on somewhat
heuristic reasoning. In addition, the resulting formula for the optimal m
depends, unfortunately, on d, which is unknown and which is in fact the
quantity on which the ultimate interest is centered. This dependence
necessitates the use of iterative methods in which d and a corresponding
optimal value for m are estimated in alternating cycles.

Delgado and Robinson (1996) derive an expression for the optimal number
frequencies m in the averaged periodogram estimator of d proposed by
Robinson (1994). This estimator of d has the advantage that its properties have
been established without requiring Gaussianity, although the asymptotic
distribution is somewhat complicated. Delgado and Robinson provide a plug-
in method of estimating the optimal m, assuming that § = 2. However, the
optimal m depends again on d and their plug-in procedure is iterative as in the
method of Henry and Robinson (1996).

Another existing approach to the selection of m is frequency-domain cross-
validation, as proposed by Hurvich and Beltrao (1994). There, an asymptotic
equivalence was established between the mean squared error of an (arbitrarily
defined) estimate of d and the mean integrated squared error of the
corresponding ARFIMA(O, d, 0) spectral estimator, in a neighborhood around
zero frequency. Then it was suggested that m could be selected so as to
minimize an estimate of this mean integrated squared error based on frequency-
domain cross-validation. Unfortunately, there is as yet no rigorous justification
of the optimality of this selected m, even for GPH in the Gaussian case.

The remainder of this paper is organized as follows. In Section 2 we propose
a plug-in selection of m and study its properties. Section 3 presents a Monte
Carlo study of the associated estimator of d for certain ARFIMA models.
Section 4 contains a brief discussion. We conclude with a mathematical
appendix.

2. THE PLUG-IN METHOD

We assume that we have n observations yi, y, ..., y, from a stationary
Gaussian time series with spectral density given by (1). We further assume that
/*(-) is an even continuous function on [—z, 7] with bounded derivatives up to
order 3 near the origin. We also assume that f*(0)>0, f*'(0)=0 and
7*"(0) # 0. The periodogram at the jth Fourier frequency is given by

2

1 L .
I;= Tn ;y, exp(—iw;t)

The regression estimator of d based on the first m Fourier frequencies is given
by
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Z;":l(aj — E)log Ij
Z;nﬂ(a T ay
where a; = log|1 — exp(—iw,)| = log|2sin(w,/2)| and @ = m 'Y 7" a;.
We will now develop an estimator of C in Equation (3). It is convement first
to estimate the quantity K = f*"(0)//*(0) directly. Note that

d,=-05

(4)

log I; = —2dlog|2sin(w;/2)| + logf + log (5)

f/

where f; = f(w;) and f ;k = Mo 7). A Taylor series expansion of log f * at the
origin yields

2 w?
logfjf:logf?;—i-?jK—l-?jRj (6)

where R; is uniformly bounded in the neighborhood of the origin. Substituting
(6) in (5) gives
w? 3

log1; =log fy —y — 2dlog|2sin(w,/2)| + ~ K+ ?’R_, +¢ (7)
where ¢; =log 7;/f; +y and y = 0.577216 ... is Euler’s constant. This suggests
the estimator K obtained as the third coefficient in an ordinary linear regression
of {log/;} on the matrix X with columns (1, log|2sin(w;/2)|, w? +/2) for
j=1,2,..., L where L= An® for some arbitrary constant 4 and O<<§ <l.
The use of 6 <1 ensures that the regression is confined to a neighborhood of
zero. We can express K = Z 1bjlogI; where {b;} is the third row of
(X'X)"'X’. The following lemma gives the bias and variance of K.

LEMMA 1. For 6 >3/4, bias(K) = O(L/n) and var(K) = O(n*/L°).

It can be seen from Lemma 1 that to obtain a consistent estimator of K it is
necessary to have L oc n® frequencies with d>4/5. This lower bound, which
will henceforth be assumed, is required to ensure the asymptotic non-singularity
of X'X. Furthermore, in terms of mean squared error the optimal value of ¢ is
6/7, since then bias?(K) and var(K) are of the same order, O(n 2/7). As a
consequence of the consistency of K, we obtain the following theorem about
the consistency of the estimator of C, C = (27/12872)'/5K~2/5.

THEOREM 1. If C < oo, clc.

This estimator of C can then be used to construct a regression estimator dy of d
by using i = Cn*5. It follows from the consistency of C that 7/ m“’pt) is
consistent for 1.

One goal of practical interest is the construction of confidence intervals for
d, which requires knowledge of the asymptotic distribution of d,,. The usual
confidence interval for 4 is based on the assumption that ml/z(d —d) is
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asymptotically normal with zero mean. Unfortunately, this asymptotic mean is
not zero when m o n*°, which is the optimal rate for estimating d, since then
the squared bias and variance of d,, are both proportional to n~#/>. This will
invalidate the traditional confidence intervals for d. The following theorem
suggests a way of correcting this problem.

THEOREM 2. Let m = Bn*/® for some arbitrary constant B. Then

T2
m'(d, —d)_>N< 29 KB, 24)

The present result follows immediately from Lemma 1 and arguments similar
to those in Theorem 2 in Hurvich et al. (1998). It is a generalization of
Theorem 2 of Hurvich et al. (1998), which was valid for m = o(n*/°). A bias-
corrected version of d,, is given by
dm,U:dm—f—TK? (8)
where K is any consistent estimator of K. This suggests that cAi,;,,U may be a
useful bias-corrected version of the plug-in estimator d .

3. MONTE CARLO STUDY

We conducted a simulation study to examine the performance of our proposed
methods of estimating 4. We simulated 1000 realizations of an ARFIMA
(1, 0.4, 0) process (1 — @B)(1 — B)?x, = &,, where the ¢, are independent and
identically distributed N(0, 1) and B is the backshift operator, for each of the
sample sizes n = 1024, 2048, 4096, and autoregressive parameters ¢ =
0.1,0.2, ..., 0.9. For each realization, we estimated d by several methods:

(i) the method of GPH, i.e. the regression estimator d given by Equation
(4), with m = n'/2. (GPH is widely used in practice, and hence provides an
important benchmark for comparison with other methods);

(ii) the plug-in method d;, where i is given by Cn** and C is defined
below Lemma 1; R

(ii1) the bias-corrected plug-in method d; ¢y (see Equation (8)), where 7 is
as in (ii).

For methods (ii) and (iii), we used three different values of L: 0.2n%7,
0.25n7 and 0.3n%7. The exponent in n°7 was used since it minimizes the
mean squared error of K as follows from Lemma 1. The multiplicative
constants 0.2, 0.25 and 0.3 were chosen on the basis of a small initial
simulation study.

Here, we report on a representative subsample of our results, limiting the
sample sizes to n = 1024, 4096, the values of ¢ to 0.1, 0.3, 0.5, 0.7, 0.9, and
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the values of L to 0.2n%7 and 0.31°/7. Table I gives m(°P as in Equations (2)
and (3), together with m @™ = »n'/2 as well as the average values (over the
1000 realizations) of 7z obtained with L = 0.21%7 and L = 0.31%7. As is to be
expected, m°P) decreases as ¢ increases. The values of m@PH) which remain
fixed for given n, are clearly too small for small ¢, but eventually become
somewhat too large when ¢ reaches 0.9. By contrast, the average values of m
do tend to decrease as ¢ increases, although they tend to underestimate m(°P!
when ¢ is small and overestimate m(°PY when ¢ is large. In addition, the
average values of 7z are always larger for L = 0.31%7 than for L = 0.2n%7,
Thus, the larger value of L provides better estimates of m(°P) than the smaller
value when ¢ is small but the situation is reversed when ¢ is large.

Tables II and III give average estimates of d and mean squared errors,

TABLE 1
AVERAGE OF THE SELECTED NUMBER OF FREQUENCIES

Plug-in m Plug-in m
n ¢ mO O =2 (L =027  (L=0.3n%7)
1024 01 207 32 74 112
03 109 32 74 108
05 68 32 73 93
07 39 32 65 69
09 14 32 44 58
4096 0.1 629 64 260 374
03 331 64 250 360
0.5 206 64 245 277
07 119 64 165 170
09 45 64 101 137

TABLE 11
AVERAGE ESTIMATED d (TRUE VALUE = 0.4)
Plug-in Bias-corrected plug-in
n @ GPH L=02r" L[=03n%7 L=02n%" L=03n%"
1024 0.1 04171 0.4164 0.4164 0.4171 0.4158
0.3 04110 0.4207 0.4298 0.4164 0.4192
0.5 04217 0.4445 0.4583 0.4320 0.4339
0.7 0.4535 0.4976 0.5175 0.4648 0.4798
0.9 0.6627 0.7135 0.7941 0.6662 0.7526
4096 0.1  0.4098 0.4077 0.4068 0.4084 0.4052
0.3 0.4046 0.4139 0.4218 0.4099 0.4145
0.5 0.4093 0.4281 0.4331 0.4175 0.4157
0.7 04142 0.4450 0.4535 0.4206 0.4290
0.9  0.4930 0.5686 0.6375 0.5371 0.6104
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TABLE III
MEAN SQUARED ERROR OF ESTIMATED d
Plug-in Bias-corrected plug-in
n ) GPH L=02n" L=03n"" L=0207 L=03n
1024 0.1  0.0169 0.0099 0.0065 0.0151 0.0096
03 0.0173 0.0104 0.0083 0.0150 0.0109
0.5 0.0186 0.0146 0.0136 0.0188 0.0144
0.7  0.0222 0.0300 0.0280 0.0296 0.0221
0.9 0.0858 0.1201 0.1699 0.0946 0.1398
4096 0.1  0.0088 0.0030 0.0020 0.0045 0.0030
0.3  0.0084 0.0033 0.0027 0.0048 0.0034
0.5 0.0083 0.0054 0.0048 0.0064 0.0048
0.7 0.0084 0.0076 0.0066 0.0067 0.0047
0.9 0.0162 0.0355 0.0615 0.0261 0.0494

respectively, for methods (i), (ii) and (iii), based on averages over the 1000
realizations, for n = 1024 and n = 4096.

First, we discuss bias. As ¢ increases, all of the estimates of d become
positively biased, due to the strengthening contamination from the short-
memory component f*. As ¢ increases, GPH generally becomes much less
biased than the other methods, due to the fact (see Table I) that GPH typically
uses a smaller value of m than the other methods, and hence is better able to
avoid bias due to contamination from higher frequencies. For small values of
¢, GPH is still somewhat less biased than the other methods, but the
differences are not extremely strong. The bias correction for the plug-in
estimator seems to be effective in that, for a given value of L, the bias-
corrected estimator is in fact typically less biased than the plug-in estimator,
especially when ¢ is large. Comparing the two values of L, the use of the
larger L strongly increases bias in the plug-in estimators when ¢ is large. This
effect can be explained by noting that the estimates of K become more biased
as L is increased, particularly when ¢ is large.

Next, we discuss mean squared error. For small values of ¢, the best method
in terms of mean squared error is the plug-in, with L = 0.3#%7. This method
strongly outperforms GPH, by a factor between 2 and 4.5, for ¢ = 0.1 and
¢ = 0.3. In fact, except in one case, all other methods considered outperform
GPH for ¢ between 0.1 and 0.5. For a given value of L, the bias-corrected
estimator often has a much larger mean squared error than the plug-in
estimator when ¢ is small, but the situation is reversed when ¢ is large. This
may be the effect of increased variability induced by the bias correction
method, which is only offset by reduction in bias when ¢ is large. Comparing
the two values of L, the larger L yields smaller mean squared errors when ¢ is
small, but larger mean squared errors when ¢ is large. This is consistent with
the results in Table I and seems sensible, since the larger value of L gives less
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variable but more biased estimates of K, and this bias becomes more
appreciable as ¢ increases. For ¢ = 0.9, the GPH estimator has the smallest
mean squared error of all methods considered, by a wide margin. Again, this
can be attributed to the superior bias properties of GPH in this case.

In Table 1V, we present the coverage rates of the nominal 95% confidence
intervals for d. These intervals are given by d,,, + 1.96(312/24111/2)1/2 for
GPH, d;, & 1.96(%/24m)'/? for plug-in and d;, y + 1.96(%/24m)"/? for the
bias-corrected plug-in estimator. All of the confidence intervals are anti-
conservative, particularly so when ¢ is large. Overall, the coverage rates for
GPH are closer to nominal than those for the other methods. For a given
value of L, the intervals based on bias-corrected plug-in have better coverage
rates than those based on just plug-in when ¢ is close to 0.9. However, the
situation is reversed for small values of ¢. Given the results of Theorem 2, it
is disappointing that, for the situations studied here, the bias-corrected plug-in
method does not uniformly outperform and never dramatically improves the
coverage rate compared to plug-in alone. This is presumably due to variability
in K when ¢ is small as well as bias in K when ¢ is large, particularly when
L is large.

In Table V, we present the average widths over the 1000 realizations of the
nominal 95% confidence intervals described above. Note that the widths of the
GPH-based intervals remain constant for given n, while the widths for plug-in
and bias-corrected plug-in are equal for a given sample, » and L. On average,
the GPH-based intervals are wider than those based on the other methods, by a
factor of as much as 1.77 in the most extreme case. This partly offsets the
apparent advantage of GPH in terms of coverage rates. The patterns observed
here are consistent with the fact (see Table I) that the plug-in and bias-
corrected plug-in methods use, on average, larger values of m than GPH.

TABLE IV
COVERAGE RATES (%) FOR NOMINAL 95% CONFIDENCE INTERVALS
Plug-in Bias-corrected plug-in
n @ GPH L=02r%" L=03n" L=020% L=03n""
1024 0.1 89.6 90.4 89.8 823 82.9
0.3 90.3 88.8 82.5 80.5 75.8
0.5 89.3 78.7 71.9 72.8 73.8
0.7 86.3 64.2 59.1 68.4 68.9
0.9 38.1 24.5 4.8 34.6 8.6
4096 0.1 89.7 89.4 89.8 81.2 82.5
0.3 91.3 85.3 80.1 78.3 76.1
0.5 92.9 77.6 75.1 74.2 79.0
0.7 92.9 73.7 72.5 81.8 81.4
0.9 75.5 304 4.6 43.9 8.8
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TABLE V
AVERAGE WIDTH OF NOMINAL 95% CONFIDENCE INTERVALS
Plug-in Bias-corrected plug-in
n ) GPH L=02n%7 L=03n%7 L=02s%7 L=03n
1024 0.1 04444 0.3120 0.2517 0.3120 0.2517
0.3 0.4444 0.3109 0.2559 0.3109 0.2559
0.5 0.4444 0.3134 0.2750 0.3134 0.2750
0.7 0.4444 0.3373 0.3126 0.3373 0.3126
0.9 0.4444 0.3910 0.3350 0.3910 0.3350
4096 0.1 0.3142 0.1694 0.1391 0.1694 0.1391
0.3 03142 0.1710 0.1414 0.1710 0.1414
0.5 0.3142 0.1740 0.1596 0.1740 0.1596
0.7 0.3142 0.2038 0.1937 0.2038 0.1937
0.9 03142 0.2502 0.2148 0.2502 0.2148

4. DISCUSSION

Overall, our results indicate that plug-in selection of m may be advantageous
when /™ is not too peaked near zero frequency. Thus, these methods may be
useful for econometric data, where one generally works with the first differences
which typically exhibit only weak short-term correlation. Inevitably, in small
enough samples, a simple deterministic choice of m, say m = n'/2 as advocated
in GPH can yield estimates of d which outperform those based on a plug-in
choice of m. However, asymptotically the performance of GPH will be inferior
to that of the plug-in estimator.

APPENDIX

PROOF OF LEMMA 1. We will assume throughout the proof that all summations are
over j=1,2,..., L Let X, = log|2sin(w;/2)| and X3 = O.Sw?. Then it follows from
standard regression theory that K = (3_r%3)"'> r;log/;, where #; is the jth residual in
the regression of {X;3} on {(1, X2)}. More specifically,

rp=Xp—Xs = (X — X)) ©)
where
Xn—X)X;
b= 2 = XX, (10)
(X — X2)
and X, = L™'Y" ;X for k =2, 3. From Hurvich ef al. (1998), it is known that
Xp—X, zlog%—i— 1+o0(1)
and
S (Xjp = X2 = L+o(L). (11)
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Using the fact that for any integer s = 0
s+1

TG o

. J
xl J
> og 7

we obtain

- 2t , j
Y (Xp—X2)Xj3 :721 logz+1+o(1)
472 L3 =
o <— - (13)
Using Equations (10), (11) and (13) in (9), we get

L2 72 10 4 J
r= 2( __——logz+0(1)logz. (14)

2 \"12 9 9

Applying Equation (12) together with the fact that > {log(j/L)}*> = 2L + o(L), we get
64 *L° (L5>
2 _ .
er 405 nt to nt)’

Letting b; = (3_r3)"'r;, it follows from Equation (7) that

s bjwiR;
bias(K) = > Tf + >°b,E(g)). (15)

Using the uniform boundedness of R;, Equation (12) and the fact that \Zwi
log(jL™ Y| = —Zwi log(jL™"), some simple manipulation yields

> bjwiR; = O(Ln™").

To handle the second term on the right-hand side of Equation (15), we use Lemmas 5 and
6 of Hurvich et al. (1998) to conclude that for 6 >3/4

logzL L lOg]
’ijE(fj) =AY |bl+a D |bl—==
Jj=1 Jj=log? L+1 J
=0(LnYH

where A is some finite positive constant. Hence, we have
bias(K) = O(Ln™").

Using Lemmas 2, 3 and 5 of Hurvich ef al. (1998), an argument similar to the one
presented in the proof of their Theorem 1 also gives

ar(K) v 1 +o(n*L7%)

% =——— n

62}’3
1351

_ 475
= Toss TOUET)
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