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Density forecasting is increasingly more important and commonplace, for
example in financial risk management, yet littie attention has been given to the
evaluation of density forecasts. We develop a simple and operational frame-
wark for density forecast evaluation. We illustrate the framework with a
detailed application ta density forecasting of asset returns in environments with
time-varying volatility. Finally, we discuss several extensions.

1. INTRODUCTION

Prediction occupies a distinguished position in econometrics, as it does in all the
sciences. Hence, evaluating predictive ability is a fundamental concern. Reviews of
the forecast evaluation literature, such as Diebold and Lopez (1996), reveal that
most attention has been paid to evaluating point forecasts. In fact, the bulk of the
literature focuses on point forecasts, while conspicuously smaller sub-literatures
interval forecasts (Chatfield 1993, Christoffersen 1998} and probability forecasts
(Wallis 1993, Clemen et al., 1995).

Particularly little attention has been given to evaluating density forecasts. At least
three factors explain this neglect. First, analytic construction of density forecasts has
historically required restrictive and sometimes dubious assumptions, such as linear
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dynamics, Gaussian innovations and no parameter estimation uncertainty. Recent
work using numerical and simulation techniques to construct density forecasts,
however, has reduced our reliance on such assumptions. In fact, improvements in
computer technology have rendered the provision of credible density forecasts
increasingly straightforward, in both classical and Bayesian framewarks 2

Second, until recently there was little demand for density forecasts; historically,
point and interval forecasts seemed adequate for most users’ needs. Again, however,
recent developments have changed the status quo, particularly in quantitative
finance. The booming area of financial risk management, for example, is effectively
dedicated to providing density forecasts of portfolio values and to tracking certain
aspects of the densities, such as value at risk. The day will soon arrive in which risk
management will routinely entail nearly real-time issuance and evaluation of such
density forecasts.

Finally, the problem of density forecast evaluation appears difficult. Although it is
possible to adapt techniques developed for the evaluation of point, interval and
probability forecasts to the evaluation of density forecasts, such approaches lead to
incomplete evaluation of density forecasts. For example, using Christoffersen’s
(1998} method for evaluating interval forecasts, we can evaluate whether the series
of 90% prediction intervals corresponding to a series of density forecasts is correctly
conditionally calibrated but that leaves open the question of whether the corre-
sponding prediction intervals at other confidence levels are correctly conditionally
calibrated. Corréct conditional calibration of density forecasts correspends to the
simultaneous correct conditional calibration of all possible interval forecasts, the
assessment of which seems a daunting task.

In light of the increasing importance of density forecasts, and lack of attention
paid to them in the literature, we propose methods for evaluating density forecasts,
Our evaluation methods are based on an integral transform that turns out to have a
long history, dating at least to Rosenblatt (1952). Independent work by Crnkovic and
Drachman (1996) is also closely related, as is that of Granger and Pesaran (1996),
who study decision making guided by probability forecasts defined over discrete
outcomes.

We proceed as follows. In Section 2, we present a statement and discussion of the
problem, and we provide decision-theoretic motivation for the density forecast
evaluation methods that we introduce subsequently in Section 3. In Section 4, we
provide a detailed simulation example of density forecast evaluation in an environ-
ment with time-varying velatility. In Section 5, we use our tools to evaluate density
forecasts of U.S. S&P 500 daily stock returns. We conclude in Section 6.

2. DENSITY FORECASTS, LOSS FUNCTIONS AND ACTICN CHOICES:
IMPLICATIONS FOR DENSITY FORECAST EVALUATION

Studying the relationships among density forecasts, loss functions and action
choices will help to clarify what can and cannot be hoped for when evaluating
density forecasts, and it will also suggest productive directions for density forecast

2gee, for example, Efron and Tibshirani {1993), and Gelman et al. {1995).
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evaluation. We first show that the problem of density forecast evaluation is intrinsi-
cally linked to the forecast user’s loss function, which would appear to hode poorly
for our quest for a universally applicable approach to density forecast evaluation.
We then show that, contrary to first impressions, all is not [ost: the analysis suggests
an important approach to density forecast evaluation, which we pursue in subse-
quent sections.

The Decision Environment. Let {f(y Q)2 be the sequence of conditional
densities governing a series y,, where O, ={y,_,,¥,_1,...}, and let {p.(y,[{}I}% | be
a corresponding sequence of I-step-ahead density forecasts.® Finally, let {y}",
denote the corresponding series of realizations.* The forecast user has a loss
function L{a,y), where a refers to an action choice, and chooses an action to
minimize expected loss computed using the density believed to be the data generat-
ing process. If the user believes that the density forecast p(y) is the correct density,
then he chooses an action a* such that?

a*{ p(v)) = argen;in fL(a,y)p(y) dy.

The action choice defines the loss L.(a*, y} faced for every realization of the process
y ~ f(¥). This loss is a random variable and possesses a probability distribution that
depends only on the action chaoice.

Expected loss with respect to the true data generating process is

E[L(a* y)] = [L(a*¥)f() dy.

The effect of the density forecast on the user’s expected loss is easily seen. Different
density forecasts will, in general, lead to different action choices and hence different
distributions of loss. The better a density forecast, the lower its expected loss,
computed with respect to the true data generating process.

Ranking Two Forecasts. Suppose the user has the option of choosing between
two forecasts in a given period, denoted by p,(y) and p,{y), where the subscript
refers to the forecast. The user will weakly prefer forecast p(y) to forecast p,(y) if

JLaE ) f(y) by < [Lat, ) f(y) &,

! For notational canvenience, we will often not indicate the information set and simply write
fi(y,)and p{y,), but the dependence on €1, should be understood. Moreover, because in this section
we consider the relationships among density forecasts, loss functions and actions in a one-period
cantext, we temporarily drop the time subscripts for notational convenience.

* We mdulge in the standard abuse of notation, which favors convenience aver precision, by
failing to distinguish berween random variables and their realizations. The meaning will be clear
fram. cottext. -

¥ We assume a unique mimmizer, a sufficient condition for which 1s that 4 be compact and that
L be strictly convex in a.
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where af denotes the action that minimizes expected loss when the user bases the
action choice on forecast j.

Ideally, we would like to find a ranking of forecasts with which all users agree,
regardless of thetr loss function. Unfortunately, such a ranking does not exist. More
precisely, there does not exist a ranking » of arbitrary density forecasts p; and p,,
hoth distinet from f, such that for all loss functions L(a, y),

nzree [L(af,9)f(y) dy = [LaE, ) f(y) dy.

To see why, simply notice that it is easy to find a pair of loss functions L, and L,, a
density function f governing y, and a pair of forecasts, p, and p,, such that

JLiat, ) (v dy < [Li(at,y) () dy,

while

[Loal,y) vy dy> [Lo(aF,y)F(y) dy.

That is, user 1 does better on average under forecast k, while user 2 does better
under forecast j. Suppose, for example, that the true density function is N({, 1), and
suppaose that user 1’s [oss function is L(a, y} = (y — a)* and user 2's loss function is
L,{a,y) =(y*— a)* The optimal action choices are then {yp(y}dy and [y*p(y)dy.
That is, user 1 bases his action choice on the mean, with higher expected loss
occurring with larger errors in the forecast mean, while the actions and expected
losses of user 2 depend on the error in the forecast of the uncentered second
mament. In this context, cansider two forecasts: forecast / is N(0,2) and forecast &
is N(1,1). User 1 prefers forecast j, because it leads to an action choice implying
lower expected lass, but user 2 prefers forecast k for the same reason.

To repeat: there is no way to rank two incorrect density forecasts such that all
users will agree with the ranking.® However, it is easy to see that if a forecast
coincides with the true data generating process, then it will be preferred by all
forecast users, regardless of loss function.” More formally, suppose that pAy)=f(y),
so that 4] minimizes the expected loss with respect to the true distribution. Then

JLas, yyf(v) dy < [L(ak, ) f(v) dy, Yk,

which follows immediately from the fact that ¢ minimizes expected loss aver all
possible actions, including those which might be chosen under alternative density
forecasts.

® The result is analogous to Arrow's celebrated impossibility theorem. The ranking effectively
reflects a social welfare function, which does not exist. .

? Granger and Pesaran (1996) independently arrive at a similar result in the context of probability
forecasting.
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Although simple, the insight that f(y) dominates all other forecasts for all users
regardless of loss function is not vacuous. In particular, it suggests a useful direction
for evaluating density forecasts. Regardless of loss function, we know that the
correct density is weakly superior to all forecasts, which suggests that we evaluate
forecasts by assessing whether the forecast densities are correct, that is, whether
{py 007, = {f (|0 )" . If not, we know that some users, depending on their
loss functions, could potentially be better served by a different depsity forecast. We
now develop that idea in detail.

3. EVALUATING DENSITY FORECASTS

The task of determining whether {p,(y QN7 = {f(y Q)" appears difficult,
perhaps hapeless, because {f,{y[{,)}", is never observed, even after the fact.
Moreaver, and importantly, the true density f,{y,[{},) may exhibit structural change,
as indicated by its time subscript. As it turns out, the challenges posed by these
subtleties are not insurmountable.

The Probability Integral Transform. Our methods are based on the relationship
between the data generating process, f,(y,), and the sequence of density forecasts,
2.¥.), as related through the probability integral transform, z,, of the realization of
the process taken with respect to the density forecast. The probability integral
transform is simply the cumulative density function corresponding to the density
py,) evaluated at y,,

2= f_y;pr(ﬂ) du

=Pz()"r)'

The density of z,,¢,(z,), is of particular significance. Assuming that ¢P,”*(z,)/ 4z, is
continuous and nonzero over the support of y,, then, because p,(y,) = dP(y)/dy,
and y, = P '(z,), z, has support on the unit interval with density

aP7(z,)

4z,

RO
p(P7N(2))

Note, in particular, that if p{y,)=f{y,), then gz} is simply the U(Q, 1) density.

Now we go beyond the one-period characterization of the density of z when
pAy,)=fLy,), and characterize both the density and dependence structure of the
entire z sequence when ply,) =f{y,).

9.(2,) = f(F7(2))

PROPOSITION.  Suppose {y 7, is generated from {f{(y Q0" where Q,=
Yoo} If a sequence of density forecasts {py )2, coincides with
{(F QN |, then under the usual condition of a nonzero Jacobian with continuous
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partial dervatives, the sequence of probability integral transforms of {y 2| with respect
to {py 2 is Lid. U0, 1). That is,
il
{z}em1 ~ U(0,1).

PrOOF. The joint density of {y )2, can be decomposed as

f(ym!"'1YL]ﬂl) :ﬂn(ym|ﬂm)fm—I_(ym—[lﬂm—l) “'fl(y[]ﬂl)‘

ML

We therefore compute the joint density of {z %, using the change of variables
formula:

g{zy,25,...,2,,)

ay, ay,

4z 9z,
= ﬁu(R;I(zm)|ﬂm)fm—l(Pn:ll(zm—l)"Q‘m—l)
ay]ﬂ ay}ﬂ
4z; dz

"

Xfl(PL_[(zl)l‘Q'l)
6}’]_ ayZ aym

dzy 8z Pz,

Xfl(Pfl(zl)lnl)’

because the Jacabian of the transformation is lower triangular. Thus we have

fm(PrglcszQm) fm—l(PP;E 1(zm— 1)|Q’m—l)
pm(Pn:l(zm.)) pm—l(Pn_all(zm—l))

fl(‘pl_l(zl)i‘ﬂ'l)
5P (2))

Under the assumed conditions, each of the ratios above is a U0, 1) density, the
product of which yields an m-variate {40, 1) distribution for {z,2,. Because the
joint distribution is the product of the marginals, we have that {z,}Z, is distributed
i.id. 0, 1). O

The intuition for the above result may perhaps be hetter understood from the
perspective of Christoffersen (1998), who shows that a correctly conditionally cali-
brated intetval forecast will provide a hit sequence that is distributed i.i.d. Bernoull,
with the desired success probability.® If a sequence of density forecasts is correctly
conditionally calibrated, then every interval will be correctly conditionally calibrated

fm(Prr_!l(zm)j‘ﬂ‘m)fm—I(Pn_i,il(zm—lﬂﬂm—l) o

q‘(zma“'lzll‘n’) =

® The hit* series is | if the realization is contained in the forecast interval, and 0 otherwise,
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and will generate an i.i.d. Bernoulli hit sequence. This fact manifests itself in the
i.i.d. uniformity of the carresponding probability integral transforms.

Practical Application. The theory developed thus far suggests that we evaluate
density forecasts by assessing whether the probability integral transform series,
{z)72 , is Li.d. U(0,1). Simple tests of i.l.d. U(0, 1) behavior are readily available, such
as those of Kolmogorov—Smirnov and Cramer—vonMises. Alone, however, such tests
are not likely to be of much value in the practical applications that we envision,
hecause they are not constructive; that is, when rejection occurs, the tests generally
provide no guidance as to why. If, for example, a Kolmogorov—Smirnov test rejects
the hypothesis of Li.d. IX0,1) behavior, is it because of violation of unconditional
uniformity, violation of i.i.d., or both? Moreover, even if we know that rejection
comes from violation of uniformity, we would like to know more: What, precisely, is
the nature of the violation of uniformity, and how important is it? Similarly, even if
we know that rejection comes from a violation of i.i.d., what precisely is its pature? Is
z heterogeneous but independent, or is z dependent? If z is dependent, is the
dependence operative primarily through the conditional mean, or are higher ordered
conditional moments, such as the variance, relevant? Is the dependence strong and
important, or is Li.d. an economically adequate approximation, even if strictly false?

Hence we adopt less formal, but more revealing, graphical methods, which we
supplement with more formal tests. First, as regards unconditional uniformity, we
sugpest visual assessment using the obvious graphical tool, a density estimate. Simple
histograms are attractive in the present context because they allow straightforward
imposition of the constraint that z has support on the unit interval, in contrast to
more sophisticated procedures such as kernel density estimates with the standard
kernel functions. We visually compare the estimated density to a U(0,1), and we
compute confidence intervals under the null hypothesis of i.i.d. N0, 1) exploiting the
hinomial structure, bin-by-bin.

Second, as regards evaluating whether z is Li.d., we again suggest visual assess-
ment using the chvious graphical tool, the correlogram, supplemented with the usual
Bartlett confidence intervals. The correlogram assists with the detection of particu-
lar dependence patterns in z and can provide useful information about the deficien-
cies of density forecasts. For example, serial correlation in the z series indicates that
conditional mean dynamics have been inadequately captured by the forecasts.
Because we are interested in potentially sophisticated nonlinear forms of depen-
dence, not simply linear dependence, we examine not only the correlogram of
(z—Zz), but also those of powers of (z — Z}. Examination of the correlograms of
(z - %), (z—z), (z— zF, and (z — 2)* should be adequate; it will reveal dependence
operative through the conditional mean, conditional variance, conditional skewness,
or conditional kurtosis.

4. APPLICATION TO A SIMULATED. GARCH PROCESS

Before proceeding to apply our density forecast evaluation methods to real data, it
is useful to examine their efficacy on simulated data, for which we know the true
data-generating process, We examine a simulated sample of length 8004 from the
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-GARCH(1, 1) process (Bollerslev 1987):

i,
ye=y — «(6)

h, =001 +0.13y2 | +0.864,_,.

Both the sample size and the parameter values are typical for financial asset
returns.’ Throughout, we split the sample in half and use the ‘in-sample’ observa-
tions 1 through 4000 for estimation, and the ‘out-of-sample’ observations 4001
through 8600 for density forecast evaluation.

We will examine the usefulness of our density forecast evaluation methods in
assessing four progressively better density forecasts. To establish a benchmark, we
first evaluate forecasts based on the naive and incorrect assumption that the process
is i.i.d. N(0,1).1 That is, in each of the periods 4001-8000, we simply issue the
forecast *N(Q, 1)

In Figure 1a we show two histograms of z, one with 20 bins and one with 40
bins."! The histograms have a distinet, nonuniform ‘butterfly’ shape—a hump in the
middle and two wings on the sides—indicating that too many of the realizations fall
in the middle and tails of the forecast densities relative to what we would expect if
the data were really [.i.d. normal. This is exactly what we hope the histograms would
reveal, given that the data-generating process is known to be unconditionally
leptokurtic.

In Figure 1b we show the correlograms of (z —2),(z ~2)?, (z~z)* and (z - 2)* 1*
The strong serial correlation in (z — 2)? (and hence (z —2)*) makes clear another
key deficiency of the N(0,1) forecasts—they fail to capture the volatility dynamics
operative in the process. Again, this is what we hope the correlograms would reveal,
given our knowledge of the true data-generating process.

Second, we evaluate forecasts produced under the incorrect assumption that the
process is Li.d. but not necessarily Gaussian. We estimate the unconditional distribu-
tion from observations 1 through 4000, freeze it, and then issue it as the density
forecast in each of the periods 4001 through 8000. Figures 2a and 2b contain the
results. The 2z histogram is now almost perfect (as it must be, apart from estimation
error, which is small in a sample of size 4000}, but the correlograms correctly
continue to indicate neglected volatility dynamics.

Third, we evaluate forecasts that are based on a GARCH(I, 1) model estimated
under the incorrect assumption that the conditional density is Gaussian. We use
observations 1 through 4000 to estimate the model, freeze the estimated model, and

® The conditional variance function intercept of (.01 is arbitrary but incansequential; it simply
amounts to & normalization of the unconditional variance to 1 {0.01 A1 —0.13 — 0.86)).

 The process as specified does have mean zero and variance I, but it is neither i.id. nor
unconditionally Gaussian.

U The dashed lines superimposed on the histogram are approximate 95% confidence intervals for
the individual bin heights under the null that z is i.i.d. 00, 1).

2 The dashed lines supetimposed on the correlograms are Bartlett's approximate 95% confi-
dence intervals under the null that z is i.id.
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then use it to make (time-varying) density forecasts from 4001 through 8000. Figures
3a and 3b contain the z histograms and correlograms. The histograms are closer to
uniform than those of Figure 1a, but they still display slight peaks at either end and
a hump in the middle. We would expect to see such a reduction, but not elimination,
of the butterfly pattern, because allowance for conditionally Gaussian GARCH
effects should account for some, but not all, unconditional lepmkurtcns.is.13 The
correlograms now show no evidence of neglected conditional volatility dynamics,
again as expected because the conditionally Gaussian GARCH model delivers
consistent estimates of the conditional variance parameters, in spite of the fact that
the conditional density is misspecified (Bollerslev and Wooldridge, 1992), so that the
estimated model tracks the volatility dynamics well.

Finally, we forecast with an estimated correctly-specified +-GARCH(L, 1) model.
We show the z histogram and correlograms in Figures 4a and 4b. Because we are
forecasting with a- correctly specified model, estimated using a large sample, we
would expect that the histogram and correlograms would fail to find flaws with the
density forecasts, which is the case.

In closing this section, we note that at each step of the above simulation exercise,
our density forecast evaluation procedures clearly and correctly revealed the strengths
and weaknesses of the various density forecasts. The results, as with all simulation
results, are specific to the particular data-generating process examined, but the
process and the sample size were chosen to be realistic for the leading applications
in high-frequency finance. This gives us confidence that the procedures will perform
well on real financial data, to which we now turn, and for which we do not have the
luxury of knowing the true data-generating process.

5. APPLICATION TO DAILY s&P 500 RETURNS

We study density forecasts of daily value-weighted S&P 500 returns, with divi-
dends, from 02,03 /62 through 12/29/95. As before, we split the sample into
in-sample and out-of-sample periods for model estimation and density forecast
evaluation. There are 4133 in-sample observations (07 /03 /62-12 /29 /78) and 4298
out-of-sample abservations (01,/02,/79-12/29 /95). As before, we assess a series of
progressively more sophisticated density forecasts.

As in the simulation example, we begin with an examination of N(0,1) density
forecasts, in spite of the fact that high-frequency financial data are well-known to be
unconditionally leptokurtic and conditionally heteraskedastic.'* In Figures 5a and 5b
we show the histograms and correlograms of z. The histograms have the now-familiar
butterfly shape, indicating that the S&P realizations are leptokurtic relative to the
N{0,1) density forecasts, and the correlograms of (z — )? and (z — 2)* indicate that
the N(0,1) forecasts are severely deficient, because they neglect strong conditional
volatility dynamics. '

Next, we generate density forecasts using an apparently much more sophisticated
model. Both the Akaike and Schwarz information criteria select an MA(1)-

13 Recall that the data generating process is conditionatly, a well as unconditionally, fat-rajled.
™ See, among many atbers, Ballerslev et al. (1992).
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* Figure 5a: z is the probability integrai transform of y with respect to density forecasts produced
under the assumption that y is i.i.d. normal. See text for details.

" Figure 5b: Panels (a} to {d} show sample autocorrelations of {z —z), (z—2)?, (z—Z)® and
{z—z2)*
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* Figure 6a: z ig the probability integral iransform of vy with respect to density forecasts produced
under the assumption that y is a conditionally Gaussian MA{1}GARCH(1, 1) pracess with parame-
ters equal ta those estimated from. 07 /03 /62 to 12/29 /78, See text for details.

rFigurt: éb: Panels {a) to (d) show autacorrelations of (z — z), {z — 2)%, {z — 2)? and (z — 2)*.
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*Figure 7a: z is the probability integral transform of y with respect to density forecasts produced
under the assumption that y is a conditionally Student’s ¢ MA{}GARCH(1, 1} process with
parameters equal to those estimated from 07 /03 /62 to 12 /29 /78. See text for details.

t Figure 7h: Panels (a) to (d) show sample autocorrelations of (z— %), (z- %)%, (z—2) and
(z—20
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GARCH(1,1) model for the in-sample data, which we estimate, freeze, and use to
generate out-of-sample density forecasts. Figures 6a and b contain the z histograms
and correlograms. The histograms are closer to uniform and therefore improved,
although they still display a slight butterfly patiern. The correlograms ook even
better; all evidence of neglected canditional volatility dynamics has vanished.

Finally, we estimate and then farecast with an MA(1)-+-GARCH(I, 1) model. We
show the z histogram and correlograms in Figures 7a and 7b. The histogram is
improved, albeit slightly, and the correlograms remain good.

6. CONCLUDING REMARKS

Let us begin by tying up a couple of loose ends. First, note that notwithstanding
the classical feel of most of our discussion, our methods are equally applicable to
Bayesian forecasts issued as predictive probability densities. Superficially, it might
appear that strict Bayesians would have little interest in our evaluation methods, on
the grounds that conditional on a particular sample path and specification of the
prior and likelihood, the predictive density simply is what it is, so that there is
nothing to evaluate, But such is not the case. A misspecified likelihood, for example,
can lead to poor forecasts, whether classical or Bayesian, and density forecast
evaluation can help us to flag misspecified likelihoods. It comes as no surprise,
therefore, that model checking by comparing predictions to data is emerging as an
integral part of modern Bayesian data analysis and forecasting, as highlighted for
example in Gelman et al. (1995), and our methods are very much in that spirit.

Second, we wish to empbasize that our decision to ignore parameter estimation
uncertainty was intentional. In our framewark, the forecasts are the primitives, and
we do not require that they be based on a model. This is useful because many
density forecasts of interest do not come from models. Such is the case, for example,
with the survey density forecasts of inflation recorded in the Survey of Professional
Faorecasters since 1968; for a description of those forecasts and evaluation using our
methods, see Diebold et al. (1998a).)* A second and very important example of
model-free density forecasts is provided by the recent finance literature, which
shows how to use options written at different strike prices to extract a model-free
estimate of the market’s risk-neutral density forecast of returns on the underlying
asset (e.g., Alt-S8ahalia and Lo, 1998; Soderlind and Svensson, 1997). Moreover, many
density forecasts based on estimated models already incorporate the effects of
parameter estimation uncertainty; Bayesian predictive density forecasts are a leading
example, as are classical density forecasts computed using appropriate bootstrap
techniques. Finally, it would seem that samples of the size typically available in
high-frequency finance are often so large as to render negligible the effects of
parameter estimation uncertainty, as for example in our simulation study. At the

 Diebald et al. {1998a} also augment the methads praposed here with resampling procedures to
approximate better the finite-sampie distributions of the test statistics of interest in small macroeco-
namic, as opposed to financial, samples.
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same time, we readily acknowledge that many model-based density forecasts do not
explicitly account for parameter estimation uncertainty, and the sample size some-
times is small; for such situations it may be useful to extend our methods to account
for parameter estimation uncertainty, in a fashion precisely analogous to West's
(1996), and West and McCracken’s (1998) extensions of Diebold and Mariano
(1995).1¢

Now let us sketch several promising directions for future research. First, it is
apparent that our methods can be used to improve defective density forecasts, in a
fashion parallel to standard procedures for improving defective point forecasts.
Recall that in the case of defective point forecasts we can regress the y's on the #s
(the point forecasts), and use the estimated relationship to construct improved point
forecasts.!” Similarly, in the context of density forecasts that are defective in that
they produce an iid. but nonuniform z sequence, we can exploit the fact that (in
period m + 1, say)

fm+1(ym+1) =pn1+l(ym+l)Qm+l(P(ym+1))
:pm+l(ym+l)qm+l(zm+l)‘

Thus, if we know g, (z,, ), we would know the actual distribution f,, (3. . 1)
Because g, (z,,,,) is unknown, we can estimate §,,, ,(z,,,,) using the historical
series of {257, and we can use that estimate to construct an improved estimate,
f;” (¥4 1), of the true distribution. Standard density estimation techniques can be
used to produce the estimate 4, , (2, ,,).*

Second, our methods may be generalized to handle multi-step-ahead density
forecasts, so long as we make provisions for serial correlation in z, in a fashion to
the usual MACh — 1) structure for optimal %-step ahead point forecast errors. It may
prove most effective to partition the z series inte groups for which we expect ii.d.
uniformity if the density forecasts were indeed correct. For instance, for correct
2-step ahead forecasts, the sub-series {z,z;, z5,...} and {z,, z,, 2, ...} should each
be ii.d. X0, 1), although the full series would not be Lid. LX0, 1). If a formal test is
desired, it may be obtained via Bonferroni bounds, as suggested in a different
context by Campbell and Ghysels (1995). Under the assumption that the z series is
(h — 1)-dependent, each of the following A sub-series will be iLid.: {z,,z;,,,
Zisans b $22, 20 0ni Zaaio o b oo {24, 225 23,0 3 Thus, a test with size bounded
by & can be obtained by performing / tests, ecach of size a/k, on each of the &
sub-series of z, and rejecting the null hypothesis of i.id. uniformity if the null is

' [t would be similarly interesting to see whether and how the decision-thearetic background that
we sketch, which requires that agents use density forecasts as if they were known to be the true
conditional density, in a fashion similar to West et al. {1993}, would change if parameter estimation
uncertainty were acknowledged.

“Such a regression is sometimes called a Mincer—Zarnowitz regression, after Mincer and
Zarnowitz (1969).

“ In finite samples, of course, there is na guarantee that the ‘impraved’ forecast will actually be
superior to the original, because it is based on an estimate of g rather than the true g, and the
estimate could be very poor. [n the large samples typical in high-frequency finance, however, very
precise estimation should be possible,
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rejected for any of the A sub-series. With the huge high-frequency datasets now
available in finance, such sample splitting, although inefficient, is not likely to cause
important power deterioration.

Third, the principle that governs the univariate techniques in this paper extends to
the multivariate case, as shown in Diebold et al., (1996). Suppose that the variable of
interest y is now an (N % 1} vector, and that we have on hand m multivariate
forecasts and their corresponding multivariate realizations. Further suppose that we
are able to decompose each period’s forecasts into their conditionals, that is, for
each period’s forecasts we can write

P(YL;ayZz:“‘:erMJ;—l)
=p(yN;lyN—l,r!“-sylﬂ(D:—l) "'P(_}’ub’lu(D:—1)P(}’1r|¢'r—1):

where ®,_, now refers to the past history of (y,,, ¥,,,..., ¥y,). Then for each period
we can transform each element of the multivariate observation (3., Yas...> Yy} by
its correspending conditional distribution. This procedure will produce a set of Nz
series that will be i.i.d. T{0, 1) individually, and also when taken as a whole, if the
multivariate density forecasts are correct. Note that we will have N! sets of z series,
depending on how the joint density forecasts are decomposed, giving us a wealth of
information with which to evaluate the forecasts. In addition, the univariate formula
for the adjustment of forecasts, discussed above, can be applied to each individual
conditional, yielding

f(yttsyll!'--!y!\l;'@fvl)
N
= I_[I [p(yir[yi—l,r‘l--'sylr!(D:—l)Q(P(YHryi—l,u---:YIH(DzHI))]
i=

=p(ylrsyirs---ser[q’t—l)Q(zlm22;:---121\{;1@:—1)'

Fourth, we note that our methods may be related to the idea of predictive
likelihood, which is based not on the joint density of the sample (the likelihood), but
rather the joint density of future observations, conditional upon the sample (the
predictive likelihood)."* Moreover, Clements and Hendry (1993) establish a close
link between predictive likelihood and a measure of the accuracy of point forecasts
that they propose, the generalized forecast error second moment. Investigation of
the relationships amaong such methods and ours is beyond the scope of this paper
but appears to be 2 promising direction for future research.

Fifth, real-time monitoring of adequacy of density forecasts using CUSUM and
other recursive techniques should be a simple matter, because under the adequacy
hypothesis the z series is i.i.d. IX0, 1), which is free of nuisance parameters, thereby
enabling trivial calculation of CUSUM bounds.

Finally, if we have information regarding the user’s loss function, we should be
able to evaluate density forecasts under the relevant loss function, as done in other

'® Far a concise ntraduction to predictive likelihood, see Bigrnstad (1990).
™ We thank a referee for making this observation.
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forecasting contexts by Diebold and Mariano (1995) and Christoffersen and Diebold
(1996, 1997, 1998).
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