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EVALUATING DENSITY FORECASTS WITH APPLICATIONS TO 
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Department of Economics and Statistics, 
National Uniuerstty of Singapore, Singapore 

Density forecast~ng is increasingly more important and commonplace, for 
example in financial risk management, yet little attention has been given to the 
evaluation of density forecasts. We develop a simple and operational frame- 
work for density forecast evaluation. We illustrate the framework with a 
detailed applicatian ta density forecasting of asset returns in environments with 
time-varying volat~lity. Finally, we discuss several extensions. 

1. INTRODUCTION 

Prediction occupies a distinguished position in econometrics, as it does in all the 
sciences. Hence, evaluating predictive ability is a fundamental concern. Reviews of 
the forecast evaluation literature, such as Diebold and Lopez (19961, reveal that 
most attention has been paid to evaluating  poi^ forecasts. In fact, the bulk of the 
literature focuses on point forecasts, while conspicuously smaller sub-literatures 
interval forecasts (Chatfield 1993, Christoffersen 1998) and probability forecasts 
(Wallis 1993, Clemen et al., 1995). 

Particularly little attention has been given to evaluating densi~forecmts. At least 
three factors expIain this neglect. First, analytic construction of density forecasts has 
historically required restrictive and sometimes dubious assumptions, such as linear 
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dynamics, Gaussian innovations and no parameter estimation uncertainty. Recent 
work using numerical and simulation techniques to construct density forecasts, 
however, has reduced our reliance on such assumptions. In fact, improvements in 
computer technology have rendered the provision of credible density forecasts 
increasingly straightforward, in both classical and Bayesian frameworks.' 

Second, until recently there was little demand for density forecasts; historically, 
point and interval forecasts seemed adequate for most users' needs. Again, however, 
recent developments have changed the status quo, particularly in quantitative 
finance. The booming area of financial risk management, for example, is effectively 
dedicated to providing density forecasts of portfolio values and to tracking certain 
aspects of the densities, such as value at risk. The day will soon arrive in which risk 
management will routinely entail nearly real-time issuance and evaluation of such 
density forecasts. 

Finally, the problem of density forecast evaluation appears difficult. Although it is 
possible to adapt techniques developed for the evaluation of point, intervaI and 
probability forecasts to the evaluation of density forecasts, such approaches lead to 
incomplete evaIuation of density forecasts. For example, using Christoffersen's 
(1998) method for evaluating lnterval forecasts, we can evaluate whether the series 
of 90% prediction intervaIs corresponding to a series of density forecasts is correctly 
conditionally calibrated but that leaves open the question of whether the corre- 
sponding prediction intervals at other confidence levels are correctly conditionally 
calibrated. Correct conditional calibration of density forecasts corresponds to the 
simultaneous correct conditional calibration of all possibIe interval forecasts, the 
assessment of which seems a daunting task. 

In light of the increasing importance of density forecasts, and lack of attention 
paid to them in the literature, we propose methods for evaluating density forecasts. 
Our evaluation methods are based o n  an integral transform that turns out to have a 
long history, dating a t  Ieast to Rosenblatt (1952). Independent work by Crnkovic and 
Drachman (1996) is also closely related, as is that of Granger and Pesaran (19961, 
who study decision making guided by probabiIity forecasts defined over discrete 
outcomes. 

We proceed as follows. In Section 2, we present a statement and discussion of the 
problem, and we provide decision-theoretic motivation for the density forecast 
evaluation methods that we introduce subsequently in Section 3. In Section 4, we 
provide a detailed simuIation example of density forecast evaluation in an  environ- 
ment with time-varying volatility. In Section 5,  we use our tools to evaluate density 
forecasts of U.S. S & P  500 daily stock returns. We  conclude in Section 6. 

2. DENSIIT FORECASTS, LOSS FUNCTIONS AND ACTION CHOICES: 
IMPLICATIONS FOR DENSITY FORECAST EVALUATION 

Studying the relationships among density forecasts, loss functions and action 
choices will help to clarify what can and cannot be hoped for when evaluating 
density forecasts, and it will also suggest productive directions for density forecast 

'See, for example, Efron and Tibsh~rani  (19931, and Gelman et  al. (1995). 
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evaluation. We first show that the problem of density forecast evaluation is intrinsi- 
cally linked to the forecast user's loss function, which would appear to bode poorly 
for our quest for a universally applicable approach to density forecast evaluation. 
We then show that, contrary to first impressions, a11 is not lost: the analysis suggests 
an important approach to density forecast evaluation, which we pursue in subse- 
quent sections. 

The Decislon Environment. Let ( f , ( y ,  1 !2,)}:2 , be the sequence of conditional 
densities governing a series y,, where R, = {y,- y,- ,, . . . I, and let { p , ( y ,  IfL,)}:, be 
a corresponding sequence of 1-step-ahead density  forecast^.^ Finally, let {y,};"=, 
denote the corresponding series of  realization^.^ The forecast user has a loss 
function L(a, y ) ,  where a refers to an action choice, and chooses an action to 
minimize expected loss computed using the density believed to be the data generat- 
ing process. If the user believes that the density forecast p ( y )  is the correct density, 
then he chooses an  action a* such that5 

The action choice defines the loss L(a*, y)  faced for every realization of the process 
y - f ( y )  This loss is a random variable and possesses a probability distribution that 
depends only on the action choice. 

Expected loss with respect to the true data generating process is 

The effect of the density forecast on the user's expected loss is easily seen. Different 
density forecasts will, in general, lead to different action choices and hence different 
distributions of loss. The better a density forecast, the lower its expected loss, 
computed with respect to the true data generating process. 

Rank~ng Two Forecasts. Suppose the user has the option of choosing between 
two forecasts in a given period, denoted by p j ( y )  and p,(y), where the subscript 
refers to the forecast. The user will weaWy prefer forecast p j ( y )  to forecast p , ( y )  if 

For notational convenience, we will often not indicate the informatton set and simply write 
f , (y t )  and p,{y , ) ,  but the dependence on fl, should be understood. Moreover, because in this section 
we consider the relationships among density forecasts, lass functians and actians in a one-period 
cantext, we temporarily drop the time subscripts for notational conventence 
' We indulge in the standard abuse of notatian, which favars convenience aver precision, by 

failing to distinguish between random variables and thetr realizations The meaning will be clear 
from context. 

We assume a unique rnImmtzer, a sufhcient condition for wh~ch is that A be compact and that 
L be strictly canvex in a. 
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where a: denotes the action that minimizes expected loss when the user bases the 
action choice on forecast j. 

Ideally, we would like to find a ranking of forecasts with which all users agree, 
regardless of thew loss function. Unfortunately, such a ranking does not exist. More 
precisely, there does not exist a ranking v of arbitrary density forecasts p, and pk, 
both distinct from f,  such that for all loss functions L(a, y),  

To see why, simply notice that it is easy to find a pair of Ioss functions L,  and L,, a 
density function f governing y ,  and a pair of forecasts, p, and p,, such that 

while 

That is, user 1 does better on average under forecast k, while user 2 does better 
under forecast j. Suppose, for example, that the true density function is N(O,1), and 
suppose that user 1's Ioss function is L,(a, y )  = ( y  - a)2 and user 2's loss function is 
L,(a, y )  = ( y  - a)*. The optimal action choices are then /yp(y) dy and l y  'p(y) dy. 
That is, user 1 bases his action choice on the mean, with higher expected loss 
occurring with larger errors in the forecast mean, while the actions and expected 
losses of user 2 depend on the error in the forecast of the uncentered second 
moment. In this context, consider two forecasts: forecast j is N(O,2) and forecast k 
is N(1, I). User 1 prefers forecast j, because it leads to an  action choice implying 
lower expected loss, but user 2 prefers forecast k for the same reason. 

To  repeat: there is no way to rank two incorrect density forecasts such that all 
users will agree with the ranking6 However, it is easy to see that if a forecast 
coincides with the true data generating process, then it will be preferred by all 
forecast users, regardless of loss f ~ n c t i o n . ~  More formally, suppose that p,(y) = f(y 1, 
so that a: minimizes the expected loss with respect to the true distribution. Then 

which follows immediately from the fact that a; minimizes expected loss over all 
possible actions, including those which might be chosen under alternative density 
forecasts. 

The result is analogous to Arrow's celebrated impossibility theorem. The ranking effectively 
reflects a social welfare function, which does not exist. 

'Granger and Pesaran (1996) independently arrive at a similar result in the context af prabability 
forecasting. 
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Although simple, the insight that f ( y )  dominates all other forecasts for all users 
regardless of loss function is not vacuous. In particular, it suggests a usefuI direction 
for evaluating density forecasts. Regardless of loss function, we know that the 
correct density is weakly superior to aII forecasts, which suggests that we evaIuate 
forecasts by assessing whether the forecast densities are correct, that is, whether 
{p,( y, Ifl,)}: = { f , (y ,  lfkCt,)}yL If not, we know that some users, depending on their 
loss functions, could potentially be better served by a different density forecast. We 
now develop that idea in detail. 

3. EVALUATING DENSIIT FORECASTS 

The task of determining whether {p,(y,l R,)}E, = { f,(y, lfLz)}z, appears difficult, 
perhaps hopeless, because ( ff(y,lCLt)};: is never observed, even after the fact. 
Moreover, and importantly, the true density f,(y,lfkr) may exhibit structural change, 
as indicated by its time subscript. As it turns out, the challenges posed by these 
subtleties are not insurmountable. 

The Pvobabili~ Inlegal Trunsfumz. Our methods are based on the relationship 
between the data generating process, f , ( ~ , ) ,  and the sequence of density forecasts, 
p,(y,), as related through the probability integral transform, t,, of the realization of 
the process taken with respect to the density forecast. The probability integral 
transform is simply the cumulative density function corresponding to the density 
p,(y,) evaluated at y,, 

The density of z,,  q,(t,), is of particular significance. Assuming that dPF ' ( z , ) / d z ,  is 
continuous and nonzero over the support of y,, then, because p,(y,) = dP,(y,)/dy, 
and y, =P;'(z,), z, has support on the unit interval with density 

Note, in particular, that if p,(y,) = f,(y,), then q,(z,) is simply the U(0, I) density. 
Now we go beyond the one-period characterization of the density of 2 when 

p,(yr) = f i ( ~ , ) ,  and characterize both the density and dependence structure of the 
entire z sequence when p , (y , )  =f,(y,). 

P~o~osrrrora. Suppose Iy,J;"=, is generuted from I ~ , ( Y , ~ C L , ) } ~ ~  where a,= 
(yt-  ,, y,-,, . . .). If a sequence of dens@ forecasts {p,(y,)l;ll coincides with 
(fr(y,l a,)};_: ,, then under  he usual condilion of a nonzero .Jacobian with conlinuow 
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partial depiuatiues, [he sequence ofpuobabili~ integral lvansfutnns of { y , ) ~  , with respect 
to {p,(y,)},"=, ir i.i.d. U(0, l ) .  That is, 

PROOF. The joint det~sity of {y,);; can be decomposed as 

We  therefore compute the joint density of {z,},",, using the change of variables 
formula: 

because the Jacobian of the transformation is lower triangular. Thus we have 

Under the assumed conditions, each of the ratios above is a U(0,l) density, the 
product of which yieIds an  m-variate U(0, I) distribution for {2,);"=,. Because the 
joint distribution is the product of the marginals, we have that ( z , } E ,  is distributed 
i.i.d. U(0, 1). 

The intuition for the above result may perhaps be better understood from the 
perspective of Christoffersen (1998), who shows that a correctly conditionally cali- 
brated interval forecast will provide a hit sequence that is distributed i.i.d. Bernoulli, 
with the desired success p r o b a b i ~ i t ~ . ~  If a sequence of density forecasts is correctly 
conditionally calibrated, then eueqv interval wilI be correctly conditionally calibrated 

rZle 'hit' series is I i f  the realization is contained in the forecast interval, and 0 otherwise. 
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and will generate an i.i.d. Bernoulli hit sequence. This fact manifests itself in the 
i.i.d, uniformity of the corresponding probability integral transforms. 

Prfictical Application. The theory developed thus far suggests that we evaluate 
density forecasts by assessing whether the probability integral transform series, 
{z,);"= ,, is i.i.d. U(0,l). Simple tests of i.i.d. U(0,l) behavior are readily available, such 
as those of Kolmogoxov-Smirnov and Crarner-vonMises. Alone, however, such tests 
are not likeIy to be of much value in the practical applications that we envision, 
because they are not constructive; that is, when rejection occurs, the tests generally 
provide no guidance as to why. If, fox example, a Kolmogoxov-Smixnov test rejects 
the hypothesis of i.i.d. U(0,l) behavior, is it because of violation of unconditional 
uniformity, violation of i.i.d., or both? Moreover, even if we know that rejection 
comes from violation of uniformity, we would like to know more: What, precisely, is 
the nature of the violation of uniformity, and how important is it? Similarly, even if 
we know that rejection comes from a violation of i.i.d., what precisely is its nature? Is 
z heterogeneous but independent, or is z dependent? If z is dependent, is the 
dependence operative primarily through the conditional mean, or are higher ordered 
conditional moments, such as the variance, relevant? Is the dependence strong and 
important, or  is i.i.d. an economically adequate approximation, even if strictly false? 

Hence we adopt Iess formal, but more revealing, graphical methods, which we 
supplement with more formal tests. First, as regards unconditional uniformity, we 
suggest visual assessment using the obvious graphical tool, a density estimate. Simple 
histograms are attractive in the present context because they allow straightfonvaxd 
impositioxl of the constraint that z has support on the unit interval, in contrast to 
more sophisticated procedures such as kernel density estimates with the standard 
kernel functions. We visually compare the estimated density to a U(0,1), and we 
compute confidence intervals under the nu11 hypothesis of i.i.d. U(0, I) exploiting the 
binomial structure, bin-by-bin. 

Second, as regards evaluating whether x is i.i.d., we again suggest visual assess- 
ment using the obvious graphical tool, the correlogram, supplemented with the usual 
Bartlett confidence intervals. The correlogram assists with the detection of particu- 
lar dependence patterns in x and can provide useful information about the deficien- 
cies of density forecasts. For example, serial correlation in the z series indicates that 
conditional mean dynamics have been inadequately captured by the forecasts. 
Because we are interested in potentially sophisticated nonlinear forms of depen- 
dence, not simply linear dependence, we examine not only the correlogram of 
(2 - f ) ,  but aIso those of powers of (2 - 5). Examination of the corxelograms of 
( z  - Z), ( r  - ,?I2, ( r  - ,?I3, and ( z  - E)4 should be adequate; it will reveal dependence 
operative through the conditional mean, conditiona1 variance, conditional skewness, 
or conditional kurtosis. 

4. APPLICATION TO A SIMULATED. GARCH PROCESS 

Before proceeding to apply our density forecast evaluation methods to real data, it 
is useful to examine their efficacy on simulated data, for which we know the true 
data-generating process, We examine a simulated sample of length 8000 from the 
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t-GARCH(1,l) process (Bollexslev 1987): 

Both the sample size and the parameter values are typical fox financial asset 
returns? Throughout, we split the sample in half and use the 'in-sample' observa- 
tions 1 through 4000 for estimation, and the 'out-of-sample' observations 4001 
through 8000 for density forecast evaluation. 

We will examine the usefulness of our density forecast evaluation methods in 
assessing four progressively better density forecasts. To establish a benchmark, we 
first evaluate forecasts based on the naive and incorrect assumption that the process 
is i.i.d. N(0, I)." That is, in each of the periods 4001-8000, we simply issue the 
forecast 'N(0, I).' 

In Figure l a  we show two histograms of z ,  one with 20 bins and one with 40 
bins." The histograms have a distinct, nonuniform 'butterfly' shape-a bump in the 
middle and two wings on the sides-indicating that too many of the realizations fall 
in the middle and tails of the forecast densities relative to what we would expect if 
the data were really i.i.d. normal. This is exactly what we hope the histograms would 
reveal, given that the data-generating process is known to be unconditionally 
leptokurtic. 

In Figure 16 we show the correlograms of Iz  - j ) ,  Iz  - 212, Cz - ?I3 and Iz  - 214.12 
The strong serial correlation in ( z  - z)* (and hence ( 2  - F ) 4 )  makes clear another 
key deficiency of the N(0, 1) forecasts-they fail to capture the volatility dynamics 
operative in the process. Again, this is what we hope the correIograms would reveal, 
given our knowledge of the true data-generating process. 

Second, we evaluate forecasts produced under the incorrect assumption that the 
process is i.i.d. but not necessarily Gaussian. We estimate the unconditional distribu- 
tion from observations 1 through 4000, freeze it, and then issue it as the density 
forecast in each of the periods 4001 through 8000. Figures 2a and 2b contain the 
results. The z histogram is now almost perfect (as it must be, apart from estimation 
error, which is small in a sample of size 4000), but the correlograrns correctly 
continue to indicate negIected volatility dynamics. 

Third, we evaluate forecasts that are based on a GARCH(I, 1) model estimated 
under the incorrect assumption that the conditional density is Gaussian. We use 
observations 1 through 4000 to estimate the model, freeze the estimated model, and 

The conditional variance function intercept of 0.01 is arbitrary but inconsequential; it simply 
amounts to a normalization of the unconditional variance to 1 (O.O1/(1 - 0.13 - 0 86)). 

''The process as specified does have mean zero and variance I ,  but it is neither i.i.d. nor 
unconditionally Gaussian. 

" The dashed lines superimposed on the histogram are approximate 95% confidence intervals fox 
the individual bin heights under the null that z is i.i.d. U(0, I). 
" The dashed lines superimposed on the correlograrns are Bartlett's approximate 95% conti- 

dence intervals under the nulI that z is i.i.d. 
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FIGURE l~ 

ESTIMATES OF THE U E N S I n  OF L* 

FIGURE Is  

ESTIMATE5 OF THE AUTOmRRELATION FUNCTIONS OF POWERS OF f t  

*Figure la: L is the probability integral transform oC y with respect to density forecasts produced 
under the incorrect assumption that y is i.i d. N(0, 1). See text for details 

Figure 1 b: PaneIs (a) to (d) show sample autocorrelations of ( z  - i), (L - f 12, (z - ?I3 and 
(2 - 2j4, 
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ESTIMATE OF THE DENSlTY OF I* 

FIGURE 2 B  

ESTIMATES OF THE AUMCORRELATION FUNCTIONS OF POWERS OF 2' 

' Figure 2a: z is the probability integral transform of y with respect to density forecasts produced 
under the incorrect assumption that y rs 1.i.d. with density equal ta the unconditional density 
estimated over periods 1-4000. See text for details. ' Figure 2b. Panels (a) to (d) show sample autocorrelations of ( z  - 71, ( z  -2): ((z - 2)3 and 
(2 - T ) ~ .  
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then use it to make (time-vaving) density forecasts from 4001 through 8000. Figures 
3a and 3b contain the z histograms and correlograms. The histograms are closer to 
uniform than those of Figure la ,  but they still display skight peaks at either end and 
a hump in the middle. We wouId expect to see such a reduction, but not elimination, 
of the butterfly pattern, because alkowance for conditionally Gaussian GARCH 
effects should account for some, but not alI, unconditional leptokurtosis." The 
correlograms now show no evidence of neglected conditional volatility dynamics, 
again as expected because the conditionally Gaussian GARCH model delivers 
consistent estimates of the conditional variance parameters, in spite of the fact that 
the conditional density is misspecified (Bollerslev and Wooldridge, 1992), so that the 
estimated model tracks the volatility dynamics well. 

Finally, we forecast with an est~mated correctly-specified t-GARCH(1,l) model. 
We show the z histogram and correlograms in Figures 4a and 4b. Because we are 
forecasting with a correctly specified model, estimated using a large sample, we 
would expect that the histogram and correlograms would fail to find flaws with the 
density forecasts, which is the case. 

In dosing this section, we note that at each step of the above sirnulatlon exercise, 
our density forecast evaIuation procedures clearly and correctIy revealed the strengths 
and weaknesses of the various density forecasts. The results, as with all simulation 
results, are specific to the particuIar data-generating process examined, but the 
process and the sampke size were chosen to be realistic for the leading appkications 
in high-frequency finance. This gives us confidence that the procedures will perform 
well on real financial data, to which we now turn, and for which we do not have the 
luxury of knowing the true data-generating process. 

5. APPLICATION TO DAIr-Y S&P 500 RETURNS 

We study density forecasts of daily value-weighted S & P  500 returns, with divi- 
dends, from 02/03/62 through 12/29/95. As before, we split the sample into 
in-sample and out-of-sample periods for model estimation and density forecast 
evaIuation. There are 4133 in-sample observations (07/03/62-12/29/78) and 4298 
out-of-sample observations (01 /02/79- 12/29/95). As before, we assess a series of 
progressively more sophisticated density forecasts. 

As in the simulation example, we begin with an examination of N(0,l) density 
forecasts, in spite of the fact that high-frequency financial data are well-known to be 
unconditionakly leptokurtic and conditionally hetero~kedastic.'~ In Figures 5a and 5b 
we show the histograms and correlograms of z. The histograms have the now-familiar 
butterfly shape, indicating that the S & P realizations are leptokurtic reIative to the 
NCO, I) density forecasts, and the correlograms of ( r  - f )* and ( z  - ?I4 indicate that 
the N(0,l) forecasts are severely deficient, because they negIect strong conditionaI 
volatility dynamics. 

Next, we generate density forecasts using an apparently much more sophisticated 
model. Both the Akaike and Schwarz information criteria select an MA(1)- 

" Recall that the data generating process is conditionally, a well as unconditionalfy, fat-tailed. 
"See, among many others, Bollerslev et al. (1992). 



874 DIEBOLD, GUNTRER, TAY 

ESTIMATE OF THE DENSITY OF z * 

* Figure 3a: z is the  roba ability integral transfarm of y with respect to density forecasts praduced 
under the incorrect assumption that y is a conditionafly Gaussian GARCNI,  I) process with 
parameters equal to those estimated over periods 1-4000. See text for details. 

Figure 3b: Panefs (a) to (d) show sampie autocorrelations of (z - ?), (z - z )2 ,  (z -2 j3  and 
( 2  -2 j4 ,  
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FIGURE 4~ 

ESTIMATE OF THE DENSITY OF f * 

ESTIMATES OF THE AUTOCORRELATION FUNCTIONS OF POWERS OF f t  

*Figure 4a: Histogram of z series produced from forecasts of simulated I-GARCHC1, 1) series 
based on estimated 1-GARCH model. We estimate parameters over 1-4000 and forecast over 
4001-8000. 
' Figure 4b: Panels (a) to (dl show sample autocorreiations of ( r  - 21, (1- ?I2, (2 - 2)' and 

(2 - 2j4. 
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EYITMATES OF THE D E N S m  OF f * 

FrGURE 58 

ESTIMATES OF THE AUTOCORRELATION FUNCTIONS OF POWERS OF Z r  

* Figure 5a: r is the probability integral transform of y with respect to density forecasts produced 
under the assumption that y is i.i.d. normal. See text for details. 

Figure 5b: Panels (a) to (dj show sample autocorrelations of (z -21, ( z  -?)*, ( z  - 7)' and 
(2 - z)+.  
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FIGURE 6~ 

ESTIMATE OF THE DENSITY OF Z* 

ESTIMATES OF THE AUTOCORRELATION FUNCTIONS OF POWERS OF 2' 

*Figure 6a: t i s  the probability integral transform of y with respect to density forecasts produced 
under the assumption that y is a conditionally Gaussian MA(1)-GARCH(I, I)  process w~th parame- 
ters equal ta those estimated from 07/03/62 to 12/29/78. See text for details. 

'Figure 6b: Panels (a) to (d) shaw autocorrelations of (z - F ) ,  (z - ? ) I ,  (z - 2 ) 3  and (z - F I 4 .  
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F~GURE 7~ 

ESTIMATE OF THE DENSITY OF z * 

ESTIMATES OF THE AUTOCORRELATION FUNCTIONS OF POWERS OF 1' 

*Figure 7a: z is the prabability integral transfarm of JI with respect to density forecasts produced 
under the assumption that y is a conditionally Student's t MA(1)-GARCH(1,l) process with 
parameters equal to those estimated from 07/03/62 to 12/29/78. See text for detaiIs 

'Figure 7b: Panels (a) to (dl show sample autocorrelations af (I-?), ( z  - ? ) I ,  ( z  -213 and 
(2  --a4, 
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GARCH(1,l) model for the in-sample data, which we estimate, freeze, and use to 
generate out-of-sample density forecasts. Figures 6a and 6b contain the z histograms 
and correlograms. The histograms are closer to uniform and therefore improved, 
although they still display a slight butterfly pattern. The correlograms look even 
better; all evidence of neglected conditional volatility dynamics has vanished. 

Finally, we estimate and then forecast with an MA(1)-t-GARCH(I,l) model. We 
show the x histogram and correlograms in Figures 7a and 7b. The histogram is 
improved, albeit slightly, and the correlograms remain good. 

Let us begin by tying up a couple of loose ends. First, note that notwithstand~ng 
the classical feel of most of our discussion, our methods are equally applicable to 
Bayesian forecasts issued as predictive probability densities. Superficially, it might 
appear that strict Bayesians would have little interest in our evaluation methods, on 
the grounds that conditionai on a particular sample path and specification of the 
prior and likelihood, the predictive density simply is what it is, so that there is 
nothing to evaluate. But such is not the case. A misspecified likelihood, for example, 
can lead to poor forecasts, whether classical or Bayesian, and density forecast 
evaluation can help us to flag misspecified likeiihoods. It comes as no surprise, 
therefore, that model checking by comparing predictions to data is emerging as an 
integral part of modern Bayesian data analysis and forecasting, as highiighted for 
example in Gelman et al. (19951, and our methods are very much in that spirit. 

Second, we wish to emphasize that our decision to ignore parameter estimation 
uncertainty was intentional. In our framework, the forecasts are the primitives, and 
we do not require that they be based on a model. This is useful because many 
density forecasts of interest do not come from models. Such is the case, for example, 
with the survey density forecasts of inflation recorded in the Survey of Professional 
Forecasters since 1968; for a description of those forecasts and evaluation using our 
methods, see Diebold et  al. (1998a).I5 A second and very important example of 
model-free density forecasts is provided by the recent finance literature, which 
shows how to use options written at different strike prices to extract a model-free 
estimate of the market's rwk-neutral density forecast of returns on the underlying 
asset (e.g., Ait-Sahalia and Lo, 1998; Soderlind and Svensson, 1997). Moreover, many 
density forecasts based on estimated models aiready incorporate the effects of 
parameter estimation uncertainty; Bayesian predictive density forecasts are a leading 
example, as are classical density forecasts computed using appropriate bootstrap 
techniques. Finaliy, it would seem that samples of the size typically available in 
high-frequency finance are often so large as to render negiigible the effects of 
parameter estimation uncertainty, as for example in our simulation study. At the 

15 Diebald et al. (1998a) also augment the methods proposed here with resampling procedures to 
approximate better the finite-sample distributions of the test statist~cs of interest in small macroeco- 
nomic, as opposed to financia1, samples. 
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same time, we readily acknowledge that many model-based density forecasts do not 
explicitly account for parameter estimation uncertainty, and the sample size some- 
times i~ small; for such situations it may be useful to extend our methods to account 
for parameter estimation uncertainty, in a fashion precisely analogous to West's 
(19961, and West and McCracken's (1998) extensions of Diebold and Mariano 
(1995).16 

Now let us sketch several promising directions for future research. First, it is 
apparent that our methods can be used to improve defective density forecasts, in a 
fashion parallel to standard procedures for improving defective point forecasts. 
Recall that in the case of defective point forecasts we can regress the y's on the j 's 
(the point forecasts), and use the estimated relationship to construct improved point 
forecasts.17 Similarly, in the context of density forecasts that are defective in that 
they produce an i.i.d. but nonuniform z sequence, we can exploit the fact that (in 
period m + 1, say) 

frnt l ( Y r n t  1) = ~ ~ i + 1 ( ~ ~ + 1 ) 4 ~ + 1 ( ~ ( ~ r n t  1 ) )  

Thus, if we know q,+l(z,l+l), we would know the actual distribution f,,+,(y,,,+ ,). 
Because qm+ ,(z,+ ,) is unknown, we can estimate i;, + ,(z, + ,) using the historical 
series of (z,1;1 ,, and we can use that estimate to construct an improved estimate, 
frnt ,(yrn+,), of the true distribution. Standard density estimation techniques can be 
used to produce the estimate Gm+ ,(zm+ l).la 

Second, our methods may be generalized to handle multi-step-ahead density 
forecasts, so long as we make provisions for serial correlation in z ,  in a fashion to 
the usual MA(h - 1) structure for optimal h-step ahead point forecast errors. It may 
prove most effective to partition the z series into groups for which we expect i.i.d. 
uniformity if the density forecasts were indeed correct. For instance, for correct 
2-step ahead forecasts, the sub-series {z,, Z 3 ,  z5,. . . I  and {z,, z,, z,, . . . I  should each 
be i.i.d. U(0, I), although the full series would not be i.i.d. U(0,I). If a formal test is 
desired, it may be obtained via Bonferroni bounds, as suggested in a different 
context by Campbell and Ghysels (1995). Under the assumption that the z series is 
( h  - 1)-dependent, each of the following h sub-series will be i.i.d.: {z , ,  z, +,, 
z1 + 2,1,. . . I ,  (z2, z2  +,>, z2  + 2,p,. . . J, . . . , {zh, z*,, , zgk,  . . . I .  Thus, a test with size bounded 
by a can be obtained by performing h tests, each of size m/h, on each of the h 
sub-series of z,  and rejecting the nu11 hypothesis of i.i.d. uniformity if the nul1 is 

l6 [t wauld be similarly interesting to see whether and how the decision-theoretic background that 
we sketch, which requires that agents use density forecasts as if they were known to be the true 
conditional density, in a fashion similar to West et al. (1993), would change if parameter estimation 
uncertainq were acknowledged 

L 7 S ~ ~ h  a regression is sometimes called a Mincer-Zarnowitz regressian, after Mincer and 
Zarnowitz (1969). 

Ls In finite samples, of course, there is na guarantee that the 'irnpraued' forecast will actually be 
superior to the original, because it is based on an esttmate of q rather than the true q ,  and the 
estimate could be very paor. [n the large samples typical in high-frequency finance, however, very 
precfie est~mation shouId be possible. 
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rejected for any of the h sub-series. With the huge high-frequency datasets now 
available in finance, such sample splitting, aithough inefficient, is not likely to cause 
important power deterioration. 

Third, the principle that governs the univariate techniques in this paper extends to 
the multivariate case, as shown in Diebold et al., (1996). Suppose that the variable of 
interest y is now an (N x 1) vector, and that we have on hand m multivariate 
forecasts and their corresponding multivariate realizations. Further suppose that we 
are abIe to decompose each period's forecasts into their conditionals, that is, for 
each period's forecasts we can write 

where a,- I now refers to the past history of (y,,, y2,, . . . , y,,). Then for each period 
we can transform each element of the multivariate observation (y,,, y,,, . . . , y,,) by 
its corresponding conditional distribution. This procedure will produce a set of N z 
series that wil1 be i.i.d. U(0,l) individually, and also when taken as a whole, if the 
multivariate density forecasts are correct. Note that we will have N! sets of 2 series, 
depending on how the joint density forecasts are decomposed, giving us a wealth of 
information with which to evaluate the forecasts. In addition, the univariate formula 
for the adjustment of forecasts, discussed above, can be applied to each individual 
conditional, yielding 

Fourth, we note that our methods may be related to the idea of predictive 
likelihood, which is based not on the joint density of the sample (the likelihood), but 
rather the joint density of future observations, conditional upon the sample (the 
predictive likelih~od).'~," Moreover, Clements and Hendry (1993) estabiish a close 
link between predictive likelihood and a measure of the accuracy of point forecasts 
that they propose, the generalized forecast error second moment. Investigation of 
the relationships among such methods and ours is beyond the scope of this paper 
but appears to be a promising direction for future research. 

Fifth, real-time monitoring of adequacy of density forecasts using CUSUM and 
other recursive techniques should be a simple matter, because under the adequacy 
hypothesis the z series is i.i.d. U(0, I), which is free of nuisance parameters, thereby 
enabling trivial calculation of CUSUM bounds. 

Finally, if we have information regarding the user's loss function, we should be 
able to evaluate density forecasts under the relevant loss function, as done in other 

'' Far a concise intraduction to predictive likelihood, see BjQrnscad (1990) 
We thank a referee for making this observation 
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forecasting contexts by Diebold and Mariano (1995) and Christoffersen and Diebold 
(1996, 1997, 1998). 

REFERENCES 

,%T-SAHALIA, Y. AND A. LO, "Nonparametric Estimation of State-Price Densities Implicit in 
Financial Asset Prices," Journal of Finance 53 (1998): 499-547. 

BJQRNSTAD, J.F., "Predictive Likelihaod: A Review," Statistical Science 5 (19901, 242-265. 
BOLLERSLEV, T., "A Conditional Heteroskedastic Time Series Model for Speculative Prices and 

Rates of Return," Reuiew ofEconomics a d  Statirks 69 (1987), 542-547. 
-, R.Y. CHOU, ANE K.F. E ~ O N E R ,  "ARCH Modeling in Finance: A Review of the Theory and 

Empirical Evidence," Journal of Econometrics 52 (1992), 5-59. 
- AND J.M. WOOLDRIDGE, "Quasi-Maximum Likelihood Estimation and Inference in Dynamic 

Models with Time-Varying Covariances," Econometvic Reuiew* 11 (19921, 143-179. 
CAMPBELL, B. m E. GHYSELS, "Federal Budget Projections: A Nonparametric Assessment of Bias 

and Efficiency," Reulew of Economics and Statistics 77 (1995), 17-31. 
CHATFIELD, C., "Calculat~ng Interval Forecasts," Journal of Business and Economics Statistics 11 

(19931, 121-135. 
CHRISTOFFERSEN, P.F , "Evaluating Interval Forecasts," Intemacional Economic Reuiew (1998), this 

issue, pp. 841-862. 
- AND F.X. DIEBOLD, "Further Results on Forecasting and Model Selection Under Asymmet- 

ric Loss," J o m d  of Applied Econometvics 11 (1996), 561-572. 
- AND - , "Optimal Prediction Under Asymmetric Loss," Econometric Theoy 13 {1997a), 

808-817. 
- m -  , "Caintegration and Long-Horizan Forecasting," Jouml of Busitwss and 

S c a h t ~ s  16 (19981, 450-458. 
CLEMEN, R.T., A.H. MURPHY, m a  R.L. WINKLER, "Screening ProbabiIity Forecasts: Contrasts 

Between Chaosing and Combining," I ~ e m f i o n a l  Jouml of Forecasting 11 (19951, 133-146. 
CLEMENTS, M.P. m a  D.F. HENDRY, "On the Limitations of Comparing Mean Square Forecast 

Errors" {with Discussian), Jouml of Forecavung 12 {1993), 617-637. 
CRNKOVIC, C. AND J .  DRACHMAN, A Uniuersal Tool to Discpiminatt Among Risk Measurement 

Techquer  (New York: J.P. Morgan, 1996). 
DIEBOLD, F.X. AND LOP- J.A., "Forecast Evaluation and Cambination," in G.S. Maddala and C.R. 

Rao, eds., Handbook of Stutirtics (Amsterdam: North-Holland, 1996), 241-268. 
- AND R.S. MARIANO, "Comparing Predictive Accuracy," Joz~raal of Business a d  Ecortomic 

Stutisticr 13 (1995), 253-263. 
-, A.S. TAY, AND K.D. WALLIS, "Evaluating Density Forecasts of Inflation: The Survey of 

Professional Forecasters," prepared for R.F. Engle and H, White, eds., Festschpifr in Honov of 
C.  W .  I .  Gmnger, http://w.ssc.upenn.edu/ - diebald/, 1998a. 

-, J. WN, ANE A. TAY, "Real-Time Multivariate Density Forecast Evaluation and Calibra- 
tion: Monitoring the Risk of High-Frequency Returns on Foreign Exchange," Manuscript, 
Department of Economics, University of Pennsylvania (1998b1. 

EFRON, B. AND R.J. TIBSHIRANI, An Inlp.oduction ta the Booatrap (New York: Chapman and Hall, 
1993) 

GELW, A,, J B. CARLIN, H.S. STERN, AND D.B. RUBIN, Bayesian Dato Anabsis (London: Chapman 
and Hall, 1995). 

GRAHGER, C.W.J. AND M.H. PESARAN, "A Decision Theoretic Approach to Forecast Evaluation," 
Manuscript, Department of Economics, UCSD and Cambridge University, 1996. 

MINER, J. ma V. ZARNOWITZ, "The Evaluation of Economic Forecasts," In J. Mincer, ed., 
Economic Forecasts and Expectuthns (New York: National Bureau of Economic Research, 
1969). 

ROSENBLATT, M., "Remarks on a Multivariate Transformation," Altnuls of Marhemtical Statistics 23 
11952), 470-472. 



EVAL.UATING DENSITY FORECASTS 883 

SODERL~ND, P. AND L.E.O. SVENSSON, "New Techniques to Extract Market Expectations from 
Financial Instruments," National Bureau of Economic Research Working Paper 5877, 1997. 

WALLIS, K.F., Comment on J.H. Stock and M.W. Watson, "A Procedure for Predicting Recessions 
wkth Leading Indicators," in J.H Stock and M.W. Watson, eds., BMSCWS Cycles, Indicators a d  
Foremstkg (Chicago: University of Chicago Press for NBER, 1993, 153-156). 

WEST, R.D., "Asymptotic Inference About Predictive Ability," Economtrica 64 (19961, 1067-1084. 
- AND M.W. MCCRACKEN, "Regression-Based Tests of Predictive Ability," InletnatiunaI 

Ecowmic Review (19981, this issue, pp. 817-840. 
-, H.J. EDISON, AND D. CHO, "A Utility-Basad Comparison of Some Models of Exchange Rate 

Volatility," Journal of lalematwional Economics 35 (1993), 23-45. 


