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ABSTRACT 
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Among other things, the multivariate framework lets us evaluate the adequacy of density forecasts 

involving cross-variable interactions, such as time-varying conditional correlations. We also 
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improve deficient density forecasts. Finally, motivated by recent advances in financial risk 

management, we provide a detailed application to multivariate high-frequency exchange rate 

density forecasts. 
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1. Introduction 

The forecasting literature has traditionally focused primarily on point forecasts. 

Recently, however, attention has been given to interval forecasts (Chatfield, 1993) and 

density forecasts (Diebold, Gunther and Tay, 1998). The reasons for the recent interest in 

interval and density forecasts are both methodological and substantive. On the 

methodological side, recent years have seen the development of powerful models of time- 

varying conditional variances and densities (Bollerslev, Engle and Nelson, 1994; Ghysels, 

Harvey and Renault, 1996; Hansen, 1994; Morvai, Yakowitz and Algoet, 1997). On the 

substantive side, density forecasts and summary statistics derived from density forecasts have 

emerged as a key part of the explosively-growing field of financial risk management (Dufiie 

and Pan, 1997; Jorion, 1997), as well in as more traditional areas such as macroeconomic 

inflation forecasting (Wallis, 1998). Moreover, explicit use of predictive densities has long 

been a prominent feature of the Bayesian forecasting literature (Harrison and Stevens, 1976; 

West and Harrison, 1997), and recent advances in Markov Chain Monte Carlo (Gelman, 

Cadin, Stern and Rubin, 1995) have increased the pace of progress. The closely related 

"prequential" Bayesian literature (Dawid, 1984) also features density forecasts prominently. 

Interest in forecasts of various sorts creates a derived demand for methods of 

evaluating forecasts. In parallel with the historical emphasis on point forecasts, most 

literature has focused on the evaluation of point forecasts (Diebold and Lopez, 1996), but 

recent interest in interval and density forecasts has spurred development of methods for their 

evaluation (Christoffersen, 1998; Diebold, Gunther and Tay, 1998). Diebold, Gunther and 

Tay, in particular, motivate and approach the problem of density forecast evaluation from a 
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risk management perspective, drawing upon an integral transform dating at least to Rosenblatt 

(1952), extended by Seillier-Moiseiwitsch (1993) and used creatively by Shephard (1994). 

Here we extend the density forecast evaluation literature in three ways. First, we treat 

the multivariate case, which lets us evaluate the adequacy of density forecasts involving 

cross-variable interactions, such as time-varying conditional correlations, which are crucial in 

financial settings. Second, we provide conditions under which a technique of density forecast 

"calibration" can be used to improve deficient density forecasts. Finally, we provide a 

detailed application to the evaluation of density forecasts of multivariate high-frequency 

exchange rates, which is of direct substantive interest in addition to illustrating the ease with 

which the methods can be implemented. 

2. Density Forecast Evaluation and Calibration 

We begin with a brief summary of certain key univariate evaluation results from 

Diebold, Gunther and Tay (1998), in order to establish ideas and fix notation. We then 

describe our methods of univariate calibration, after which we extend both the evaluation and 

calibration methods to the multivariate case. Throughout, we intentionally ignore parameter 

estimation uncertainty. We take density forecasts as primitives, and in  particular, we do not 

require that they be based on an estimated model.' We take this approach because many 

density forecasts of interest do not come from models with estimated parameters, as for 

example when density forecasts are extracted from surveys (Diebold, Tay and Wallis, 1997) 

or from prices of options written at different strike prices (Alt-Sahalia and Lo, 1998; 

' Some progress, however, is also being made at evaluating density forecasts produced 
from estimated models; see Bai (1997) and Inoue (1997). 
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Soderlind and Svensson, 1997; Campa, Chang and Reider, 1998). This is the case for some 

of the exchange rate density forecasts that we evaluate in section 4. 

Univariate Evaluation 

Consider one arbitrary period, t, and let y, be the variable of interest with conditional 

density f(y, I Q,_,), where Q,_, represents the collection of past information available at time 

t-1, and let pi_, (y,) be a density forecast of y,. Let z, be the probability integral transform of 

y, with respect to p,_, (y,); that is, 

z, = J-;pt-,(u)du + Pt-,(yt). 

Then assuming that 
~P,I: (z,) 

is continuous and non-zero over the support of z,, Z, has 
dz, 

support on the unit interval with density function 

In particular, if p,_,(yJ = f(y, I a,-,), then 

1 if O<z,<l 
qt(zJ = 

0 otherwise, 

so that z, - U(0,l). 

Now consider a series of m density forecasts and realizations, rather than just one. 

Diebold, Gunther and Tay (1998) show that if {y,}E, is a series of realizations generated 



from the series of conditional densities {f(y,l ~ , _ , ) } E , ,  and if a series of 1-step-ahead density 

forecasts {p,_, (y,) }El coincides with {f(y,l Q,. , ) )~ , ,  then assuming a non-zero Jacobian 

with continuous partial derivatives, the series of probability integral transforms of { y,}]ll, 
iid 

with respect to {p,_, (y,));, is iid U(0,l). That is, ( z , ) ~ = ,  - U(0 , l ) .  Thus, to assess 

whether a series of density forecasts coincides with the corresponding series of true 

conditional densities, we need only assess whether an observed series is iid U(0,l). 

Univariate Calibration 

An important practical question is how to improve suboptimal forecasts. In the point 

forecast case, for example, we can regress the y's on the 9's (the predicted values) and 

potentially use the estimated relationship to construct an improved point forecast. Such a 

regression is sometimes called a Mincer-Zarnowitz regression, after Mincer and Zarnowitz 

(1969). In this paper we will use an analogous procedure, which we call density forecast 

"calibration," for improving density forecasts that produce an iid but non-uniform z series. 

Suppose that we are in period m and possess a density forecast of ym+,  . From our 

earlier discussion, 

But if z is iid, then we can drop the subscript on q and write 

We thank Charlie Thomas for pointing out that the basic idea of univariate density 
forecast calibration traces at least to Fackler and King (1990). Shortly, however, we will 
extend the calibration idea to the multivariate case. Moreover, we will emphasize that density 
forecast calibration is not universally applicable and develop a sufficient condition for its 
application in both the univariate and multivariate cases. 
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Thus if we knew q(zm+,), we would know the actual conditional distribution f(y,+, lam).3 

Because q(zm+,)  is unknown, we use an estimate G(z,+,) formed using ( z , ) ~ = ,  to construct 

an estimate la,). In finite samples, of course, there is no guarantee that the 

"improved" forecast will actually be superior to the original, because it is based on an 

estimate of q rather than the true q, and the estimate could be very poor. The practical 

efficacy of our improvement methods is an empirical matter, which will be assessed shortly, 

but with the large sample sizes typically available in financial applications we expect that 

precise estimation of q will often be straightforward. 

Multivariate Evaluation 

The principles that govern the univariate techniques discussed thus far extend readily 

to the multivariate case. Suppose that y, is now an Nxl vector, and that we have a series of m 

multivariate forecasts and their corresponding multivariate realizations. Further suppose that 

we are able to factor each period's joint forecast into the product of the conditionals, 

P , -~ (Y~ , ,  YZ,, ..., Y,,) = P,-~(Y~,I  YN-I,,, ..., ylt) ... P , - I ( Y ~ , ~  ~ 1 , )  P,-I(Y~,). 

Then for each period we can transform each element of the multivariate observation 

( ylt, y,, ..., y,,) by its corresponding conditional distribution. This procedure produces a set 

of N z series that will be iid U(0,l) individually, and also when taken as a whole, if the 

multivariate density forecasts are correct. The proof of this assertion is obtained by simply 

arranging the multivariate series as a series of univariate observations comprising 

Note that z is uniquely determined by y, so that for any given value of y, we can 
always compute f b )  as p(y)q(z). 
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{... , y,,, yzt ,..., y,, , ...) .4 The result for the univariate case can then be applied to show that 

the resulting Nm vector z is iid U(O,l), and hence the z series corresponding to any particular 

series of conditional forecasts is also iid U(0,l). 

Note that N! z series can be produced, depending on how the joint density forecasts 

are factored, giving us a wealth of information with which to evaluate the forecasts. To take 

the bivariate case as an example, we can decompose the forecasts in two ways: 

(9 P , - ~ ( Y , , ~ Y ~ ~ ) = P , - , ( Y , , ) P , - , ( Y , ~ Y , J ~ ~ ~  

(ii) Pt-1 (Yl,, Y,,) = PI-, ( ~ 2 $  PI-, ( ~ l t l  ~zt),  

t = 1, ..., m, and label the respective z series z,, z2,,, 3 and z where we obtain z i  by 

taking the probability integral transform of yi with respect to p,_, (yi), and we obtain z i i j  by 

transforming yi with respect to p,_,(yil yj). Good multivariate forecasts will produce 

z,, %,,, Z, and z l lz  that are each iid U(0, I), as well as combined series {... , z ,,,, zz l l , , ,  ... 1 

and { ..., z ,,,, z ...) that are also iid U(0,l). 

In many cases of economic and financial interest, such as the application to density 

forecasting of DM/$ and Yen/$ returns in section 4 of this paper, the dimension N of the set 

of variables being forecast is low. A classic example is density forecasting of returns across 

different aggregate asset classes, such as equity, foreign exchange and fixed income. In such 

cases, it is straightforward to examine and learn from each of the N! sets of z series. 

Sometimes, however, N may be large, as for example when a density forecast is generated for 

each of the stocks in a broad-based market index, such as the S&P 500, in which case 

That is, we begin with had m observations on an N-variate variable, and we convert 
them to a univariate series with Nm observations. 
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methods such as those of Clements and Smith (1998) may be used to aggregate the 

information in the individual z series. 

Multivariate Calibration 

In parallel with the key formula underlying our discussion of univariate calibration, in 

the multivariate case we have that 

f ( ~ l , m + l ,  Yz,rn+l,..., Y N , ~ + ~  I am) = ~rn(~l,rn+l, Y z , ~ + ~  , . . . r  Y N , ~ + ~ )  ' l ( ~ l , ~ + l ,  Zz,m+l ,... , +,mil  1. 

Moreover, factoring both of the right-hand-side densities, we can write the formula in a way 

that precisely parallels our multivariate evaluation framework, 

As before, an estimate of q may be used to implement the calibration empirically, yielding 

Note that the multivariate calibrating density is the same (in population), regardless of which 

of the possible N! factorizations is used. 

3. More on Density Forecast Calibration 

Here we elaborate on various aspects of density forecast calibration. First we give a 

sufficient condition for an iid integral transform series, which is required for application of the 

calibration method. Next we discuss subtleties associated with estimation of the density of an 

integral transform, which by construction has compact support on the unit interval. Finally, 
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we show how the calibration method can be used to generate good density forecasts even 

when the conditional density is unknown. In this section we use the generic notation "z" to 

denote an integral transform; it is a scalar integral transform in the univariate case and a 

vector of integral transforms in the multivariate case. 

Conditions Producing an iid z Series 

In empirical work, the legitimacy of the assumption that z is iid can be assessed in a 

number of ways, ranging from examination of correlograms of various powers of z to formal 

tests such as those discussed in Brock, Hsieh and LeBaron (1991). It is nevertheless desirable 

to characterize theoretically the conditions under which z will be iid, in order to deepen our 

understanding of whether and when we can reasonably hope for an iid z series. Here we 

establish a sufficient condition: if the 1-step-ahead density f(y,lQ,_,) belongs to a location- 

scale family, and if the forecast p,_,(yJ adequately captures dynamics (in a sense to be made 

precise shortly) but is mistakenly assumed to be in another location-scale family, then z will 

be iid. 

More precisely, suppose that f(y,lQ,_,) belongs to a location-scale family; that is, the 

random variable - ~ ( ~ ' - ' )  is iid with unknown density f(e) It then follows that 

Now suppose that we misspecify the model by another location-scale family, pt-,(yt), in 

which we specify p(Q,_,) and o(Q,_,) correctly, in  spite of the fact that we use an incorrect 
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conditional density. Thus we issue the density forecast 

The probability integral transform of the realization with respect to the forecast is therefore 

Now make the change of variable 

which yields 

But this means that z is iid, as claimed, because z, = P(u,) and u, is iid. 

Estimation of a(z) 

Estimation of q(z) requires care, because z has support only on the unit interval. One 

could use a global smoother on the unit interval, such as a simple two-parameter beta 

distribution, but the great workhorse beta family is unfortunately not flexible enough to 

accommodate the multimodal shapes of q(z) that arise routinely, as documented in Diebold, 

Gunther and Tay (1998). One could perhaps stay in the global smoothing framework by 

using some richer parametric family or a series estimator, as discussed for example by Hardle 

(1991). 

In keeping with much of the recent literature, however, we prefer to take a local 
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smoothing approach, as  for example with a kernel density estimator. But it has long been 

recognized that standard kernel estimation of densities with bounded support suffers from a 

"boundary problem" in that the density estimates at the boundaries are biased. One cause of 

this problem is that near the boundary approximately half of the kernel mass falls outside the 

range of the data (assuming a symmetric kernel). Therefore, kernel density estimates near 

boundaries have expectations approximately equal to  half the true underlying density. 

Let us elaborate. For i.i.d. data z,, ..., z, with sufficiently smooth density q(z)on [O, 

I], the kernel estimator 4(z) of q(z)is 

1 Z-Z, 
Xz) = 5 E K( 

1=1 

where K(.) is a symmetric and suff~ciently smooth kernel of choice and b>O is bandwidth. 

Begin by noting that 



Now suppose as usual that the bandwidth is chosen such that b-0 and Tb-- as T-m. For z 

well in the interior of [O, I], we then have 

E [4(z)l = q(z) + 0 (b 2 ) .  

On the other hand, the kernel density estimates have expectations approximately equal to only 

half of the true underlying density at boundaries: 

It can be shown that similar bias occurs at points near the boundaries 

There are a number of ways to address the boundary problem. One is to use a 

modified kernel density estimator such as the one suggested by Miiller (1993), which is 

designed to have less bias near boundaries. Another local smoothing approach is to estimate 

q(z) with a simple histogram. A histogram is a special type of kernel density estimator where 

the kernel never exceeds the boundaries of the distribution. Therefore we expect that it would 

not suffer from the problem associated with kernels that exceed the boundaries, and 

See Hardle (1990, 130-131), for example, for related discussion in the context of 
kernel regression, as opposed to density estimation. 
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experimentation revealed it to be superior in the present context; we make extensive use of 

histograms as visual estimates of q(z) in the empirical application in section 5. Finally, we 

can bypass the density estimation problem altogether by casting our evaluation and calibration 

methods in terms of c.d.f.'s rather than densities, and using empirical c.d.f.'s instead of 

estimated densities. 

Alternatively, we may write the calibration formula in terms ofjoint c.d.f.'s rather than 

joint densities, as 

F(~l,m+l,....~N.m+l lam) = Q ( P m ( ~ l , m + l > . . . r ~ N , m + l ) ) ,  

which we make operational by replacing population c.d.f.'s with estimated (empirical) 

c.d.f.'s, 

'(~I.m+l?'",~N,m+l lam) = Q ( P ~ ( Y ~ . ~ + ~ , . . . , Y ~ . ~ + I ) ) .  

Although empirical c.d.f.'s are not as visually digestible as estimated densities, they have a 

number of attractive features: they are guaranteed to be 0 for z=O and 1 for z=1, and there is 

no need for bandwidth selection bandwidth selection in the estimation of Q. We make 

extensive use of empirical c.d.f.'s for doing the calibration transformations in the empirical 

application in section 5. 

Generating Densitv Forecasts When the Conditional Densitv is Unknown 

It is interesting to note that our calibration methods can be used to generate density 

forecasts even when the conditional density is unknown. Consider, for example, the problem 

of 1-step-ahead density forecasting in models with unknown 1-step-ahead conditional density 

and time-varying volatility. The problem is of intrinsic interest, and moreover, it is quite 

general. In particular, it also covers h-step-ahead density forecasting, which in financial 
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contexts is equivalent to 1-step-ahead forecasting of h-period r e t ~ r n s . ~  

As is well known, even under heroic assumptions such as conditionally Gaussian 1- 

step-ahead returns, the h-step-ahead conditional density, or equivalently the h-period return, 

will not be Gaussian and has no known closed form. Several earlier papers bear on the 

problem, but all are lacking in certain respects. Baillie and Bollerslev (1992), for example, 

study h-step-ahead prediction but must assume a Gaussian 1-step-ahead conditional density 

and even in that case provide only Cornish-Fisher approximations to the multi-step densities. 

Engle and Gonzalez-Rivera (1991) use a different but closely related strategy; let us 

contrast the two. Engle and Gonzalez-Rivera exploit the Bollerslev-Wooldridge (1992) result 

that GARCH volatility parameters are consistently estimated by maximum likelihood even 

when the conditional density is misspecified. Hence (assuming for convenience a zero 

conditional mean) one can assume a Gaussian conditional distribution (incorrectly, in 

general), maximize the Gaussian likelihood, and standardize the data by the estimated series 

of conditional standard deviations. In large samples the resulting series will be iid but not, in 

general, Gaussian; but its density can be estimated using nonparametric techniques. 

In tackling this problem, our calibration procedure also exploits the Bollerslev- 

Wooldridge (1992) quasi-MLE result. We proceed by maximizing the likelihood, which we 

assume to be Gaussian (incorrectly, in general). We then take the estimated volatility 

parameters and use them to make conditionally Gaussian density forecasts (again incorrectly), 

and we compute the probability integral transforms of the realizations with respect to those 

forecasts. In large samples, under the conditions given earlier, the series of integral 

See, for example, Duan (1995) and Duan, Gauthier and Simonato (1997). 
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transforms will be iid but not U(0,l); we therefore calibrate the forecasts using either a 

histogram or a c.d.f. fit to the series of integral transforms. 

The key difference between the Engle-Gonzalez-Rivera approach and our calibration 

approach is that the first involves nonparametric estimation of a density with infinite support, 

whereas the second maps the problem into one of nonparametric estimation of a density with 

bounded support. Given that in risk management contexts our interest centers on tail events, 

the Engle and Gonzalez-Rivera approach may be problematic, due to the well-known 

"bumpy-tail" p r ~ b l e m . ~  The bumpy-tail problem may be overcome by applying larger 

bandwidths at the tails, but instead of applying some ad hoc method of choosing variable 

bandwidth, the integral transformation implicitly provides an empirically reasonable variable 

bandwidth, so long as the density forecasts are close to the true density. In addition, we note 

that our procedure is not limited to the GARCH paradigm, and is applicable to any situation 

where the forecasts generate z series that are iid. As discussed previously, extensions to 

multivariate density forecasting contexts are also straightforward. 

The empirical application to which we now turn illustrates all of the ideas developed 

thus far: we begin by evaluating a series of multivariate density forecasts that are revealed to 

be poor by virtue of associated iid but non-uniform integral transform series, we estimate the 

appropriate calibrating density, and we use it to transform the poor density forecasts into good 

ones. 

4. Evaluating and Calibrating Multivariate Density Forecasts of High-Frequency 

Returns on Foreign Exchange 

See, for example, Silverman (1986). 
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Here we present a detailed application of our methods of multivariate density forecast 

evaluation and calibration to a bivariate system of asset returns. In particular, we study high- 

frequency DM/$ and YEN/$ exchange rate returns, and we generate density forecasts from a 

forecasting model in the tradition of JP Morgan's RiskMetrics (JP Morgan, 1996), which is a 

popular benchmark in the risk management industry. 

We use our multivariate density forecast evaluation tools to assess the adequacy of the 

RiskMetrics approximation the dynamics in  high frequency exchange rate returns, as well as 

the adequacy of the conditional normality assumption, after which we attempt to improve the 

forecasts using calibration methods. We begin with a description of the data and a discussion 

of the statistical properties of the returns series. We then describe the forecasting model, after 

which we evaluate and calibrate the density forecasts that it produces. 

Data 

The data, kindly provided by Olsen and Associates, are indicative bid and ask quotes 

posted by banks, spanning the period from January 1, 1996, to December 31, 1996. The data 

are organized around a grid of half-hour intervals; Olsen provides the quotes nearest the half- 

hour time stamps. Foreign exchange trading occurs around the clock during weekdays, but 

trading is very thin during weekends, so we remove them, as is customary.* We consider the 

weekend to be the period from Friday 21:30 GMT to Sunday 21 :00 GMT, as this period 

appears to correspond most closely to the weekly blocks of zero returns. Thus a trading week 

spans Sunday 21:30 GMT to Friday 21:OO GMT, and each of the five trading days therein 

spans 21:30 GMT on one day to 21:OO GMT the next day. We label the days "Monday" 

See, for example, Anderson and Bollerslev (1997). 
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through "Friday." This layout implies that we have one partial week of data, followed by 51 

full weeks, followed by another partial week of data. Each full week of data has 5x48=240 

data points. The first partial week has 233 observations (just less than five days of data), and 

the sample ends with a partial week of 102 observations (about 2 days), for a total of 12,575 

observations. 

Com~uting Returns 

We compute returns by computing bid and ask rates at each grid point as the linear 

interpolation of the nearest previous and subsequent quotes, as in Andersen and Bollerslev 

(1997). The rate of return on the exchange rate is then the difference between the mid-point 

of the log bid and ask rate at consecutive grid points. That is, letting x , , ~ ~ , , , ~ ~  denote the log 

ask 1 bid quote at the grid point t, x,,asklbid,previouslnext represent the nearest previoustnext- 

occurring bid or ask quote at time t, and timet,previouslnexf be the time between the grid point 

and the previouslnext quote, we obtain the exchange rate at time t, x,, as 

where 

- - 
't, asklbid - In Xt, asklbid, previous + 

. (In xt,ask/bid,next In ~ t ,  ask,bid,previous) ' 

'met, previous + ti'"',, ne, 

The exchange rate return at time t, r,, is then rt = xt - x ,  . It will sometimes be necessary 

to refer to the return at a particular time of a particular day. In such cases, we will use rLi to 

represent the return at time t of day i .  

The returns exhibit the MA(1) conditional mean dynamics commonly found in asset 

returns. Because our focus in this paper is on volatility dynamics and their relation to density 
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forecasting, we follow standard practice and remove the MA(1) dynamics from each return. 

We do so by fitting MA(1) models and treating the residuals as our returns series. Hereafter, 

r, will refer to returns series with the MA(1) component removed. 

Properties of r,* r: and r, 1 

There are strong intra-day calendar effects in both Yen/$ and DM/$ returns; Figure 1 

displays the first 200 autocorrelations of r,, r: and Ir,l. The calendar effects are particularly 

pronounced in the absolute returns of both series; they occur because trading is more active at 

certain times of day than at others. For instance, trading is much less active during the 

Japanese lunch hour, and much more active when the U.S. markets open for trading. Figure 

2, which plots volatility at the 48 half-hour intervals across an average day as measured by 

mean absolute returns, clearly reveals these phenomena. The intra-day volatility pattern 

corresponds closely to the pattern obtained by Andersen and Bollerslev (1997) for 5-minute 

DM/$ returns. 

As with the conditional mean of the returns process, intra-day calendar effects in 

return volatility are not of primary concern to us; hence we remove them. Taking r, = s,,,Z, 

where Z, represents the "nonseasonal" portion of the process, we remove volatility calendar 

effects by fitting time-of-day dummies to 21oglr,l = 2logsCsi + 2logZ,. The F tests of no 

time-of-day effects confirm that calendar effects are present in both series; the F(47, 12527) 

statistics are 17.34 and 8.927 for the DM/$ and Yen/$ respectively and have zero p-values. 

Suitably normalized so that s , ,~ summed over the entire sample would be equal to one, we use 

these time-of-day dummies to standardize the returns. 

Figure 3 displays the autocorrelations of the levels, absolute and squared standardized 
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returns of both currencies. The standardization removes the intraday calendar effects in 

volatility, and as in Andersen and Bollerslev (1997), their removal highlights a feature of the 

data that, at least in the case of the DM/$, was not obvious: the autocorrelations of absolute 

returns decay very slowly. 

Construction of Multivariate Density Forecasts 

We construct density forecasts of the two exchange rates using the exponential 

smoothing approach of RiskMetrics, which assumes that the returns are generated from a 

multivariate normal distribution, yielding the bivariate density forecasts 

where - 
(Jl1,tlt-1 - A (Ji1.1-lit-2 + ( 1  - ~ ) Y ? t - l  

- 
a 2 2 , t l t 1  - Aa22 , t - 1 , t - 2  + (1 - 9 Y ; t - I  

- 
a l z , t l t - l  - A a lz , t -11 t -2  + (1 - A)YI,~-I Y2.t-1, 

and A is the decay factor. RiskMetrics applies the same decay factor to each of the variances 

and covariances, which ensures that the variance-covariance matrix is positive definite. 

Densitv Forecast Evaluation 

As discussed earlier, we evaluate the bivariate density forecasts generated by the 

RiskMetrics approach decomposing the forecasts in two ways: 

(9 P(Ylt9 Yzt) = P(YIt) P(Y2tl Ylt) and 

(ii) P(YIt, YzJ = P(Y2t) P(Yl,l YzS. 

t = 1, ..., T. We label the respective z series z,,  zZl , ,  z2 and z I 2 ,  where we obtain z i  by 
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taking the probability integral transform of yi with respect to p(yi), and we obtain z i l j  by 

transforming y, with respect to p(yil yj). Good multivariate forecasts will produce 

z,,  zz and zl12 that are each iid U(0, 1). 

To illustrate the multivariate density forecast evaluation procedures we split the 

sample in  two, the first running from January 1, 00:30 GMT to June 30, 21:OO GMT (6234 

observations) and the second running from June 30,21:30 GMT to December 3 1, 23:30 GMT 

(643 1 observations); we call them the "estimation sample" and the "forecast sample," 

respectively. We first evaluate forecasts generated using a decay factor of A=0.95, which is 

typical of RiskMetrics implementations. Figures 4a and 4b display the histograms and 

correlograms of z , ,  zzI l ,  z2 and z l Iz ;  the histograms show clearly that the normality 

assumption is inappropriate, and the correlograms show clearly that the decay factor A=0.95 

does not produce forecasts that capture the dynamics in return volatilities and correlations. 

Although the correlograms of levels of z's look fine, the correlograms of squares of z's 

indicate strong serial dependence. The positive serial correlation suggests that the decay 

factor of 0.95 produces volatilities that adapt too slowly. Thus it appears that a smaller decay 

factor would be appropriate. 

We next turn to forecasts generated with an "optimal" decay factor, which we obtain 

from the estimation sample as the decay factor that produced integral transforms that visually 

appeared closest to iid, as assessed in our usual way, via correlograms of z and its powers. As 

expected, a smaller decay factor (A=0.83) turns out to be optimal. Figures 5a and 5b display 

the histograms and correlograms of z,, z z l l ,  zz and z,,, and their squares, based on the 

estimation sample, each with its mean removed before the correlograms are computed. The 
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correlograms indicate that the forecasts capture adequately the dynamics in return volatilities 

and correlations (that is, z, ,  z . ~ ,  , z, and z,,, and their squares appear serially uncorrelated) 

The histograms, in contrast, show clearly that the normality assumption is a poor one. 

The smaller decay factor of 0.83 also produces much better out-of-sample joint 

forecasts of the two exchange rate returns. Figures 6a and 6b display the histograms and 

correlograms of z, ,  z,,,, z2 and z l l z  and their squares, based on the forecast sample, 

corresponding to density forecasts produced using )c=0.83. The histograms again show 

clearly that the normality assumption is inadequate. The correlograms of squares, on the 

other hand, all show clear improvement and indicate little, if any, serial correlation. 

Densi tv Forecast Calibration 

We now attempt to improve the h=.83 RiskMetrics forecasts, which seemed to capture 

dynamics adequately but which were plagued by an inappropriate normality assumption, by 

calibrating. Recall that we use the transformation 

We obtain Q(*) from the z series based on the estimation sample. Although we favor the 

presentation of histograms for density forecast evaluation, calibration is facilitated by using 

the empirical c.d.f. form. We present the histograms and correlograms of the four z series 

corresponding to the calibrated forecasts in Figures 7a and 7b; clearly the histograms of the 

calibrated forecasts are substantially improved relative to their non-calibrated counterparts, 
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and the correlograms remain good (that is, they are not affected by the calibration.) 

5. Concluding Remarks and Directions for Future Research 

We have proposed a framework for multivariate density forecast evaluation and 

calibration. The multivariate forecast evaluation procedure is a generalization of the 

univariate procedure proposed in Diebold, Gunther and Tay (1998) and shares its constructive 

nature and ease of implementation. We illustrated the power of the procedure to detect and 

remove defects in bivariate exchange rate density forecasts generated by a popular method. 

An interesting direction for future research involves using recursive techniques for 

real-time monitoring for breakdown of density forecast adequacy. Real-time monitoring 

using CUSUM techniques is a simple matter in the univariate case, because under the 

adequacy hypothesis the z series is iid U(0,1), which is free of nuisance parameters. 

Appropriate boundary crossing probabilities for the CUSUM of the z series can be computed, 

as in Chu, Stinchcombe and White (1996), using results on boundary crossing probabilities of 

sample sums such as those of Robbins and Siegmund (1970). Multivariate CUSUM schemes 

are also possible, as with the multivariate protile charts of Fuchs and Benjamini (1994). 
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Figure 4a 
Histograms of z (decay factor=0.95, forecast sample) 
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Figure 4b 
Correlograms of powers of z (decay factor=0.95, forecast sample) 
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Figure 5a 
Histograms of z (decay factor=0.83, estimation sample) 
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Figure 5b 
Correlograms of powers of z (decay factor=0.83, estimation sample) 
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Figure 6a 
Histograms of z (decay factor=0.83, forecast sample) 
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Figure 6b  
Correlograms of powers of z (decay factor=0.83, forecast sample) 
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Figure 7a 
Histograms of z (decay factor=0.83, forecast sample, calibrated) 
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Figure 7b 
Correlograms of powers of z (decay factor=0.83, forecast sample, calibrated) 


