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We consider the asymptotic behavior of log-periodogram regression estimators of
the memory parameter in long-memory stochastic volatility models, under the null
hypothesis of short memory in volatility+ We show that in this situation, if the
periodogram is computed from the log squared returns, then the estimator is as-
ymptotically normal, with the same asymptotic mean and variance that would hold
if the series were Gaussian+ In particular, for the widely used GPH estimatorZdGPH

under the null hypothesis, the asymptotic mean ofm102 ZdGPH is zero and the as-
ymptotic variance isp2024 wherem is the number of Fourier frequencies used in
the regression+ This justifies an ordinary Wald test for long memory in volatility
based on the log periodogram of the log squared returns+

1. INTRODUCTION

Many recent works have discussed the phenomenon of long memory in the
volatility of financial and economic time series+ Early empirical observations
on persistence in volatility were given by Ding, Granger, and Engle~1993! and
de Lima and Crato~1993!+ Two models that capture this phenomenon are the
fractionally integrated GARCH~FIGARCH! model of Baillie, Bollerslev, and
Mikkelsen ~1996! and the long memory stochastic volatility~LMSV ! model
proposed independently by Breidt, Crato, and de Lima~1998! and Harvey~1998!+
Semiparametric estimation of the memory parameter in LMSV models is justi-
fied theoretically by Deo and Hurvich~2001!, who consider the widely used
log periodogram~GPH! estimator of Geweke and Porter-Hudak~1983!, com-
puted from the logarithms of the squared returns of the series+ Deo and Hur-
vich ~2001! establish the consistency and asymptotic normality of this estimator
under conditions that require the assumption that long memory is in fact present
in the volatility+ Although this justifies the use of the estimator under certain
circumstances, it does not justify the widespread practice of using the GPH
estimator to construct a test for long memory in volatility+ ~Using this method
on squared returns, Andersen and Bollerslev~1997a, 1997b! and Andersen, Bol-
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lerslev, Diebold, and Labys~2001! find evidence of long memory in volatility+!
The difficulty is that to construct a test for long memory in volatility, it is nec-
essary to know the asymptotic distribution of the test statistic under the null
hypothesis of short memory in the volatility, a case that is not covered in the
semiparametric theory of Deo and Hurvich~2001! or in the theory for the fully
parametric case presented by Hosoya~1997!+ Here, we derive the asymptotic
distribution of the GPH estimator based on log squared return data under an
LMSV model in the short-memory case+ This serves to justify the correspond-
ing test for long memory in volatility+ In practice, it is important to have such a
test, as the long-range forecasts of volatility are crucially altered by the pres-
ence of long memory in volatility+

Giraitis, Kokoszka, and Leipus~1999! have constructed a test for long mem-
ory in volatility, but the model generating the stochastic volatility, developed in
Giraitis, Robinson, and Surgailis~2000!, is quite different from either the LMSV
or FIGARCH frameworks, and the test does not yield a corresponding estimator
of the memory parameter+ Furthermore, Lobato and Robinson~1998! provide a
test for long memory of a linear process, and this test is used by Lobato and Savin
~1998! on squared stock returns to test for long memory in volatility+ P+M+ Rob-
inson, in his discussion of the paper of Lobato and Savin~1998!, conjectures that
their test statistic, applied to squared returns, has the appropriatex1

2 limit distri-
bution under theI ~0! null hypothesis, under suitable strong mixing conditions+

The LMSV model for returns$rt % takes the formrt 5 h exp~Yt 02!et where
h . 0 is a scale parameter, $et % are independent and identically distributed
~i+i+d+! shocks with zero mean, and$Yt % is a stationary Gaussian process, inde-
pendent of$et %, with spectral densityfY~x! ; Cx22d as x r 01 ~C . 0! and
memory parameterd such that 0# d , 1

2
_ + Deo and Hurvich~2001! assume that

fY~x! 5 62 sin~x02!622dg*~x!,

whereg*~{! is continuous on@2p,p# , bounded above and bounded away from
zero+ In this paper we focus on the cased 5 0+ Under the LMSV model, the
logarithms of the squared returns, Xt 5 log~rt

2!, may be expressed as

Xt 5 m 1 Yt 1 Zt , (1)

wherem 5 log h2 1 E @ log et
2# and $Zt % 5 $ log et

2 2 E @ log et
2#% is i+i+d+ with

mean zero and variances2+
Define the periodogram of the observationsX1, + + + ,Xn at thekth Fourier fre-

quencyxk 5 2pk0n by

In, k
X 5

1

2pn *(
t51

n

Xt e
itxk*

2

+

The GPH estimator ofd using the firstm Fourier frequencies may be written as

ZdGPH 5 2
1

2Sww
(
k51

m

ak log In, k
X ,
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whereak 5 Wk 2 RW, Wk 5 log62 sin~xk02!6 ~k 5 1, + + + ,m!, RW 5 m21 (k51
m Wk,

andSww 5 (k51
m ak

2+
Deo and Hurvich~2001! have established that for the LMSV model,

m102~ ZdGPH 2 d! is asymptotically normal with mean zero and variancep2024
assuming that 0, d , 1

2
_ , subject to restrictions onm that become more strin-

gent asd approaches zero+ The results in Deo and Hurvich~2001! are based on
the fact that whend . 0 the spectral density ofYt dominates that ofZt at low
frequencies+ Therefore, it does not seem likely that the methodology used in
Deo and Hurvich~2001! can be easily generalized to treat the cased 5 0+

Theorem 1 establishes thatm102 ZdGPH is asymptotically normal with mean zero
and variancep2024 whend 5 0, thereby justifying the usual Wald test ofd 5 0
versusd . 0 based on ZdGPH in the LMSV model+ Note that the asymptotic
distribution of ZdGPH in this case is the same as that derived earlier for Gaussian
processes by Robinson~1995! and Hurvich, Deo, and Brodsky~1998!+ Theo-
rem 1 was conjectured by Deo and Hurvich~2002! on the basis of simulation
results for ZdGPH in the case ofd 5 0+ Combining Theorem 1 with the results of
Deo and Hurvich~2001!, it is clear that the Wald test ofd 5 0 would be consis-
tent against any alternatived5 d1 . 0 but that its local power would be low+ On
the other hand, it is not clear that any other test would have higher local power+

As in Hurvich et al+ ~1998! and Deo and Hurvich~2001!, we avoid the need
for trimming of low frequencies in ZdGPH+ The low frequencies present no spe-
cial problems here, because our theory is derived for the cased 5 0+ Because
the noise termZt does not affect the regularity of the spectral density ofXt

whend 5 0, we are also able to avoid the restrictive conditions onm required
in Deo and Hurvich~2001!+

Theorem 2, which includes Theorem 1 as a special case, establishes the as-
ymptotic normality of a general linear combination of logIn, k

X when d 5 0+
Theorem 2 can be easily generalized to include the FEXP estimator proposed
by Janacek~1982!, and studied in Robinson~1994!, Moulines and Soulier
~1999!, and Hurvich and Brodsky~2001!, although the properties of the frac-
tional exponential~FEXP! estimator whend . 0 in the LMSV model have
not yet been established+

Theorem 2 only requires thatZt have finite moments up to the fourth order+
This is a less stringent assumption than was made in Deo and Hurvich~2001!
for d . 0+ Those authors assumed thatZt has finite moments up to the eighth
order+ Theorem 2 is first proved under the provisional assumption thatZt has
finite moments of all orders+ The proof is by the method of moments, using
Edgeworth expansions for discrete Fourier transforms~DFTs! of an i+i+d+ series
developed in Fay and Soulier~2001!+ Lemma 2 then shows that the moment
assumption onZt can be weakened+ Theorem 2 does not require conditions on
the characteristic function such as those assumed by Velasco~2000! on the in-
novations in his work on log-periodogram regression for linear, non-Gaussian
processes+ We are able to avoid such assumptions by conditioning first on the
DFTs of Zt , so that the Edgeworth expansion is for the density of a smooth
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function of the DFTs ofZt + This point, and also the overall validity of our Edge-
worth expansions, is explained more fully in Section 3+3+

2. ASSUMPTIONS AND MAIN RESULT

We now introduce a precise assumption on the processY+ Because we only
consider functions of the periodogram at nonzero Fourier frequencies, we set
m 5 0 in ~1! without loss of generality+

~A1!

~1! Y is a centered stationary Gaussian process with spectral densityfY that is bounded
above and away from zero and

(
p51

`

p6cov~Y0,Yp!6 , `+ (2)

~2! Z is a sequence of i+i+d+ centered random variables with variances2 and finite
moments up to the fourth order+

~3! The processesY andZ are independent+

Assumption~2! implies thatf is continuously differentiable over the whole
frequency range+

Define In 5 @~n 2 1!02# +

THEOREM 1+ Suppose that Assumption (A1) holds. Letb be the largest real
number in@1,2# for which there exist positive reals x* and c such that for all
x [ @2x*, x*# ,

6 fY~x! 2 fY~0!6 # c6x6b+ (3)

Let m :5 m~n! be a nondecreasing sequence of integers such thatlimnr`

m21 1 m2b11n22b 5 0. Then m102 ZdGPH is asymptotically normal with zero mean
and variancep2024.

It is frequently assumed in the literature that for a short-memory processY,
fY is C2 on @2p,p# , which implies that~2! holds and~3! holds with b 5 2
~because a spectral density is even, hence its first derivative vanishes at 0!+
Under this assumption, the GPH estimator is asymptotically normal for any
choice ofmn such that limnr`mn

50n4 5 0+

3. A THEOREM FOR GENERAL LINEAR COMBINATIONS
OF LOG-PERIODOGRAM ORDINATES

Theorem 1 is a consequence of a more general result for linear combinations of
log-periodogram ordinates+ We will require the following conditions on the
weights in the linear combinations+
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~A2! ~bn, k!1#k# In is a triangular array of real numbers such that

(
k51

In

bn, k
2 5 1, (4)

bn :5 max
1#k# In

6bn, k65 o~1!, (5)

mn :5 #$k : bn, k Þ 0% 5 o~n!, (6)

∀ e . 0, ∃C~e!, mnbn
2 # C~e!mn

e + (7)

Remark+ Assumptions~4! and~5! are the classical Lindeberg–Liapounov con-
ditions that ensure asymptotic normality of a weighted sum(k51

In bn, kYn, k, for
i+i+d+ summandsYn, k+ Assumption~6! is not necessary; it is assumed here only
to simplify the proof of Theorem 2+ Assumption~7! is a technical restriction
that is easily checked+ Note that Assumptions~4! and~5! imply thatmn tends to
infinity+ Define X 5 Y1 Z and letf 5 fY 1 ~s202p! be the spectral density of
the processX+ Let g 5 0+577216 + + + be Euler’s constant+

THEOREM 2+ If Assumptions (A1) and (A2) hold, then(k51
In bn, k 3

@ log~In, k
X 0f ~xk!! 1 g# tends weakly to the Gaussian distribution with zero mean

and variancep206.

Proof of Theorem 2+ We first introduce more notation+ Throughout the pa-
per, a standard complex Gaussian variable means a complex random variable
with i+i+d+ N ~0, 12_! components+ A function h of v complex variables will be
identified with a function of 2v real variables and will be denoted indifferently
h~z!, h~z1, + + + , zv!, h~u!, or h~u1, + + + ,u2v! or using any other convenient sym-
bol+ For any processU, denotedn, k

U 5 ~2pn!2102 (t51
n Ut e

itxk andIn, k
U 5 6dn, k

U 62+
Let e be a zero mean Gaussian white noise with variances2 and define the
processj 5 Y 1 e so thatj is a Gaussian process with spectral densityf+ For
z [ C, denotef~z! 5 log~6z62! 1 g and fn, k~z! 5 log~6z620f ~xk!! 1 g+ It is
well known that ifz is standard complex Gaussian, E@f~z!# 5 0 andE@f2~z!# 5
p206+

The main tools used to prove Theorem 2 are Lemma 5~applied witha 5 1!,
which is stated and proved in Section 3+2, and Edgeworth expansions of the
joint density of DFTs of a white noise, based on the results of Fay and Soulier
~2001!+ The theory of Edgeworth expansions for DFTs is reviewed and shown
to be valid in the present context in Section 3+3+

The proof of Theorem 2 is based on the method of moments+ Thus we first
assume that all moments of the noiseZ are finite+ Under that assumption, we
must first prove that the moments offn, k~dn, k

X ! are bounded uniformly with
respect ton andk+
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LEMMA 1 + If Assumptions (A1) and (A2) hold and ifE@6Z06q# , ` for some
integer q$ 2, then for all sufficiently large n, there exists a constant Cq such
that

E@6fn, k~dn, k
X !6q# # Cq+

Proof of Lemma 1+ As will be shown in Section 3+3, a first-order Edgeworth
expansion is valid and yields

E@6fn, k~dn, k
X !6q# 5 E@6fn, k~dn, k

j !6q# 1 o~n2102!,

where the termo~n2102! is uniform with respect tok ~but not necessarilyq!+
Applying Lemma 5~with a 5 1! we also have

E@6fn, k~dn, k
j !6q# 5 E@6f~z!6q# 1 O~n2102!,

wherez is standard complex Gaussian and the termO~n2102! is uniform with
respect tok ~but not necessarilyq!+ Becausef~z! is distributed as the~cen-
tered! logarithm of an exponential random variable, it follows thatE@6f~z!6q#
is finite for all q, and the proof of Lemma 1 is complete+ n

DefineSn 5 (k51
In bn, kfn, k~dn, k

X !+ We now prove that if all moments ofZ are
finite, the the moments ofSn tend to those of a Gaussian variable with zero
mean and variancep206; i+e+, for all even positive integersq,

lim
nr`

E@Sn
q# 5

q!~p206!q02

~q02!!2q02 (8)

and limnr` E@Sn
q# 5 0 for all odd integersq+

Denotehn, k 5 fn, k~dn, k
X !+

E~Sn
q! 5 (

v51

q

(v,q
' q!

q1! + + +qv !

1

v!
An~q1, + + + ,qv !,

An~q1, + + + ,qv ! 5 (v, n
''

)
j51

v

bn, kj

qj EF)
i51

v

hn, ki

qi G+
The term(v,q

' extends on allv-tuples of positive integers~q1, + + + ,qv! such that
q1 1 {{{ 1 qv 5 q and (v, n

'' extends on allv-tuples ~k1, + + + , kv! of pairwise
distinct integers in the range$1, + + + , In% + For av-tuple ~q1, + + + ,qv! such thatq1 1
{{{ 1 qv 5 q, let s be the number of indicesi such thatqi 5 1 and letu be the
number of indicesi such thatqi 5 2+ We will consider three cases:

s5 0 and 2u , q ~or equivalently 2v , q!: the corresponding sums are easily proved
to beo~1!;

s 5 0 and 2u 5 q ~or equivalently 2v 5 q!: these terms are the leading term; a first-
order Edgeworth expansion proves thatZ can be replaced bye;

s . 0: for these terms we will use a higher order Edgeworth expansion and Lemma 3
in Fay and Soulier~2001! to prove that they do not contribute to the limit+
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Case 1~s 5 0, 2u , q!+ Becauses 5 0 and 2u , q, it follows that 2v , q+
Becauseq1 1 {{{ 1 qv5 q, we moreover find that(i51

v ~qi 2 2! 5 q 2 2v . 0+
Applying Lemma 1 and Hölder’s inequality, it always holds thatE@) i51

v hn, ki

qi #
is uniformly bounded byCq+ Recall thatbn 5 max1#k# In6bn, k6+ Thus,

6An~q1, + + + ,qv !6 # Cqbn
q22v(v, n

''
)
j51

v

bn, kj

2 # Cqbn
q22vS(

k51

In

bn, k
2 Dv 5 Cqbn

q22v +

By assumption, bn 5 o~1!, and thusAn~q1, + + + ,qv! 5 o~1!+

Case 2~s 5 0, 2u 5 q!+ In this case, u 5 v 5 q02 andq1 5 {{{ 5 qv 5 2+
Denotek 5 ~k1, + + + , kq02! and letck be defined as

ck ~u1, + + + ,uq02! 5 EF)
i51

q02

fn, ki

2 ~dn, ki

X !6dn, k1

Z 5 u1, + + + ,dn, kq02

Z 5 uq02G
5 EF)

i51

v

fn, ki

2 ~dn, ki

Y 1 ui !G+
With this notation, we get

EF)
i51

q02

hn, ki

2 G 5 E@ck ~dn, k1

Z , + + + ,dn, kq02

Z !# +

A first-order Edgeworth expansion yields

E@ck ~dn, k1

Z , + + + ,dn, kq02

Z !# 5 E@ck ~dn, k1

e , + + + ,dn, kq02

e !# 1 o~n2102!,

where the termo~n2102! is uniform with respect tok+ By definition of the pro-
cessj and the functionsfn, k,

E@ck ~dn, k1

e , + + + ,dn, kq02

e !# 5 EF)
i51

q02

fn, ki

2 ~dn, ki

j !G +
Applying Lemma 5, we now get that

EF)
i51

q02

fn, ki

2 ~dn, ki

j !G 5 ~p206!q02 1 O~n2102!,

where the termO~n2102! is uniform with respect tok1, + + + , kq02+ Recall that

(k51
In bn, k

2 5 1 andbn 5 max1#k# In6bn, k6+ Thus it is easily seen that

(q02, n
''

)
i51

q02

bn, ki

2 # 1, (q02, n
''

)
i51

q02

bn, ki

2 5 1 1 O~bn
2!+

HenceAn~2, + + + ,2! 5 ~p206!q02~1 1 O~bn
2!! 1 O~n2102!+ Because it is assumed

that bn 5 o~1!, we conclude that limnr`An~2, + + + ,2! 5 ~p206!q02+

TESTING FOR LONG MEMORY IN VOLATILITY 1297



Case 3~s . 0!+ Denotek 5 ~k1, + + + , kv! andq 5 ~q1, + + + ,qv!, and letck,q be
defined as

ck,q~u1, + + + ,uv ! 5 EF)
i51

v

fn, ki

qi ~dn, ki

Y 1 dn, ki

Z !6dn, k1

Z 5 u1, + + + ,dn, kv
Z 5 uvG

5 EF)
i51

v

fqi ~dn, ki

Y 1 ui !G+
With this notation, we get

EF)
i51

v

hn, k
qi G 5 E@ck,q~dn, k1

Z , + + + ,dn, kv
Z !# +

Using the notation of Section 3+3, an sth-order Edgeworth expansion can be
written as

E@ck,q~dn, k1

Z , + + + ,dn, kv
Z !# 5 (

r50

s

n2r02Er @ck,q # 1 o~n2s02!,

where the termo~n2s02! is uniform with respect tok , E0@ck ,q# 5
E@ck,q~dn, k1

e , + + + ,dn, kv
e !# and, for r $ 1,

Er @ck,q # 5 (
t51

r 1

t! (r, t
* Er, t, k~n1, + + + ,nt ,ck,q !,

where(r, t
* and the quantitiesEr, t, k are defined in~19! and~20!, which follow+

Define

Sn, r, t ~n1, + + + ,nt ! 5 n2r02 (v, n
''

)
i51

v

bn, ki

qi Er, t, k~n1, + + + ,nt ,ck,q !,

Sn, r 5 (
t51

r 1

t! (r, t
*

Sn, r, t ~n1, + + + ,nt !+

Two kinds of arguments will be used to prove that the termsSn, r, t are asymp-
totically negligible+ The orthogonality properties of the sine and cosine func-
tions computed at Fourier frequencies will restrict the number of multi-indices
~k1, + + + , kv! such thatEr, t, k~n1, + + + ,nt ,ck,q! Þ 0 and the expectations appearing
in Er, t, k will be bounded by Lemma 5+ Let U be a 2v-dimensional Gaussian
vector whose components are the real and imaginary parts ofdn, ki

e YYM ~s204p!,
i 5 1, + + + , v+ Becausee is a Gaussian white noise, the components ofU are i+i+d+
N ~0,1!+ Following Section 3+3, Er, t, k~n1, + + + ,nt ,ck,q! is expressed as

Er, t, k~n1, + + + ,nt ,ck,q ! 5
xn1

~k! + + +xnt
~k!

n1! + + +nt !
E@Hn11 + + +1nt

~U !ck,q~dn, k1

e , + + + ,dn, kv
e !# ,
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wherenj , j 5 1, + + + , t are multi-indices inN2v such that~21! ~which follows!
holds, and the multidimensional Hermite polynomialHn is defined in~22!+ Re-
call thats among the indicesq1, + + + ,qv are equal to 1+ Assume for convenience
and without loss of generality thatq1 5 {{{ 5 qs 5 1+ Let a, b, and c be the
number of indicesj # s such thatn1~2j 2 1! 1 n1~2j ! 1 {{{ 1 nt~2j 2 1! 1
nt~2j ! 5 0, 5 1, and$ 2, respectively+ By definition, a 1 b 1 c 5 s+ Assume
also for simplicity that forj # a, n1~2j 2 1! 1 n1~2j ! 1 {{{ 1 nt~2j 2 1! 1
nt~2j ! 5 2+ Then Hn actually does not depend on its first 2a arguments+ The
following arguments are the key tools to conclude the evaluation ofAn~q1, + + + ,qv!+

Let Efn, k be a function defined onC2 by Efn, k~z1, z2! 5 fn, k~Ms202pz1 1

M fY~xk!z2!+ Then Efn, k, considered as a function of four real variables, has Her-
mite rank 2+ Indeed, it is easily checked that ifz1 andz2 are i+i+d+ standard complex
Gaussian, thenE@zi Efn, k~z1,z2!# 5 0 ~i 5 1,2!+ Now define

EFk,q~z1, + + + , z2v ! 5 Hn~M2~z1, + + + , zv !! )
i51

v

Efn, ki

qi ~z2i21, z2i !+

As was noted previously, Hn, considered as a function ofv complex Gaussian
variables, actually does not depend onz1, + + + , za+ Hence, EFk,q obviously has
Hermite rank at least 2s 2 b 2 2c, because it can be written as

EFk,q~z1, + + + , z2v ! 5 )
i51

a

Efn, ki

qi ~z2i21, z2i ! ZFk,q~za11, + + + , z2v !,

where ZF is implicitly defined+ Applying Lemma 5 yields

E@Hn11{{{1nt
~U !ck,q~dn, k1

e , + + + ,dn, kv
e !#

5 EFHn11{{{1nt
~U ! )

i51

v

fn, ki

qi ~dn, ki

e 1 dn, ki

Y !G (9)

5 E@ EFk,q~dn, k1

e YYMs202p,dn, k1

Y YYM fY~xk!, + + + ,dn, k1

e YY

Ms202p,dn, k1

Y YYM fY~xk!!# (10)

5 E@ EFk,q~z1, + + + ,z2v !# 1 O~n2s1c1b02! (11)

uniformly with respect tok+ Moreover, if c , s the last expectation vanishes
because the Hermite rank ofEFk,q is then positive+

If n1, + + + ,nt satisfy ~21!, with c defined as before, then it is shown in the proof of
Lemma 3 in Fay and Soulier~2001! the number of k [ Nv such that
xn1

~k! + + +xnt
~k! Þ 0 is of ordermn

v1~r2c!0221 at most+ This is a consequence of the
orthogonality properties of the sine and cosine functions evaluated at the Fourier
frequencies+
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Thus, for r , s,

Sn, r 5 O~mn
v1~r2c!0221bn

qn2s1b021c2r02! 5 O~~mn0n!r02mn
v2s0221bn

q! 5 o~1!+

The last bound is a consequence of the fact that by definition ofs, v, and q,
v 2 s02 # q02 and Assumption~A2! ~7!+

For r 5 s, because by assumptionmn 5 o~n!, and becauseEs~ck,q! is uni-
formly bounded with respect tok, we get thatn2s02Es~ck,q! 5 O~~mn0n!s! 5
o~1!+ Finally, we conclude that

(
r50

s

n2s02Er @ck,q # 5 o~1!+

Hence limnr`An~q1, + + + ,qv! 5 0 in the cases . 0+

There now only remains to prove that we can get rid of the assumption that
all moments ofZ are finite+ For any integerM, defineZt

~M ! 5 Zt 1$6Zt 6#M % and
X ~M ! 5 Y1 Z~M ! + For eachM, Sn~M ! :5 (k51

In bn, kf~dn, k
X ~M !

! converges weakly
to N ~0,p206!+ Lemma 2 implies that

lim
Mr`

lim sup
n

EFS(
k51

In

bn, k$f~dn, k
X ! 2 f~dn, k

X ~M !

!%D2G 5 0+

Hence we can apply Theorem 4+2 in Billingsley ~1968! to conclude thatSn con-
verges weakly toN ~0,p206!+ n

3.1. Proof of Theorem 1

In the case of the GPH estimator, we apply Theorem 2 withbn, k 5 2akYYMSww,
using the convention thatak 5 0 for k . m+ By construction, (k51

In bn, k 5 0+
Thus,

(
k51

In

bn, k log~In~xk!! 5 (
k51

In

bn, k @ log~In~xk!! 1 g#

5 (
k51

In

bn, k @ log~In~xk!0f ~xk!! 1 g#

1 (
k51

In

bn, k log~ f ~xk!0f ~0!! 5: Sn 1 Rn+

It has been shown that max1#k#m6bn, k65 O~ log~m!0m! ~see, e+g+, Hurvich et al+,
1998!+ Thus Assumption~A2! holds as long asmn 5 o~n!+ Hence Theorem 2
implies thatSn is asymptotically normal with zero mean and variancep206+
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We must now prove that limnr`Rn 5 0+ By applying Hölder’s inequality,
we get

6Rn6 # H(
k51

In

bn, k
2 J102 H(

k51

mn

log2~ f ~xk!0f ~0!!J102

5 H(
k51

mn

log2~ f ~xk!0f ~0!!J102

+

Becausef is bounded away from zero, log~ f ! has the same regularity asf+ Be-
causem0n r 0, for large enoughn, xk , x* ; hence

6Rn6 # CH(
k51

mn

~k0n!2bJ102

# Cmn
b1102n2b 5 o~1!,

where the constantC depends only on the functionf+
To conclude the proof of Theorem 1, note that limnr`m21Sww 5 1

4
_ + n

3.2. Lemmas

LEMMA 2 + If Assumptions (A1) and (A2) hold, then

lim
Mr`

lim sup
n

EFS(
k51

In

bn, k$f~dn, k
X ! 2 f~dn, k

X ~M !

!%D2G 5 0+

Proof of Lemma 2+ DefinesM
2 5 E@Zt

21$6Zt 6#M % # , IsM
2 5 E@Zt

21$6Zt 6.M % # , and
EZt
~M ! 5 Zt 1$6Zt 6.M % + Recall thathn, k 5 fn, k~dn, k

X ! and denote similarlyhn, k
~M ! 5

f~dn, k
X ~M !

!+ Then

EFS(
k51

In

bn, k$f~dn, k
X ! 2 f~dn, k

X ~M !

!%D2G
5 (

k51

In

bn, k
2 E@~hn, k 2 hn, k

~M ! !2#

1 (
1#jÞk# In

bn, j bn, kE@~hn, j 2 hn, j
~M ! !~hn, k 2 hn, k

~M ! !# 5: An,M 1 Bn,M +

The termAn,M would be easily dealt with if the functionf~x! 5 log~6x62! 1 g
was replaced by a bounded function with polynomially bounded derivatives+
To that purpose, we must use a tightness argument+

Let Ef denote eitherf or a C` function with compact support or a linear
combination of these+ If Z has three finite moments, we get, by a first-order
Edgeworth expansion~which is shown to be valid in Section 3+3! and follow-
ing the same line of reasoning as in the proof of~8!,

E@ Ef2~dn, k
X YYM f ~xk!!# 5 E@ Ef2~dn, k

j YYM f ~xk!!# 1 o~n2102!,
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where againj denotes a Gaussian process with the same spectral density asX+
Applying Lemma 5 then yields

E@ Ef2~dn, k
j YYM f ~xk!!# 5 E@ Ef2~z!# 1 O~n2102!,

wherez is a standard complex Gaussian+ In the last two equations, the terms
o~n2102! and O~n2102! are uniform with respect tok+ Hence, given that

(k51
In bn, k

2 5 1,

lim
nr`

(
k51

In

bn, k
2 E@ Ef2~dn, k

X 0f ~xk!!# 5 E@ Ef2~z!# + (12)

Let fM be a sequence ofC` functions with compact support such that

lim
Mr`

E@$f~z! 2 fM ~z!%2# 5 0+

The sequencefM can be chosen such that limMr`7fM
' 7` IsM 5 0, wherefM

' is
the first derivative of the functionfM and 7+7` is the supremum norm+ Now
An,M is split into three terms:

An,M # 3 (
k51

In

bn, k
2 E@$f~dn, k

X ! 2 fM ~dn, k
X !%2#

1 3 (
k51

In

bn, k
2 E@$f~dn, k

X ~M !

! 2 fM ~dn, k
X ~M !

!%2#

1 3 (
k51

In

bn, k
2 E@$fM ~dn, k

X ! 2 fM ~dn, k
X ~M !

!%2# +

Applying ~12! with Ef 5 f 2 fM , we get

lim sup
n

(
k51

In

bn, k
2 E@$f~dn, k

X ! 2 fM ~dn, k
X !%2#

5 lim sup
n

(
k51

In

bn, k
2 E@$f~dn, k

X ~M !

! 2 fM ~dn, k
X ~M !

!%2#

5 E@$f~z! 2 fM ~z!%2# +

Applying the mean value theorem, it is trivially seen that

(
k51

In

bn, k
2 E@$fM ~dn, k

X ! 2 fM ~dn, k
X ~M !

!%2# # 7fM
' 7`2 IsM

2 +

Altogether, we get that

lim
Mr`

lim sup
n

An,M 5 0+
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Consider now the termBn,M + It can be expanded as

Bn,M 5 (
1#jÞk# In

bn, j bn, kE@hn, j hn, k# 1 (
1#jÞk# In

bn, j bn, kE@hn, j
~M ! hn, k

~M ! # (13)

2 2 (
1#jÞk# In

bn, j bn, kE@hn, j hn, k
~M ! # + (14)

The terms that involve only one noise can be dealt with easily using the same
arguments as in the proof of~8!+ A second-order Edgeworth expansion, which
is valid as soon asZ has four finite moments~see Section 3+3!, and an applica-
tion of Lemma 5 yield

lim
nr`

(
1#jÞk# In

bn, j bn, kE@hn, j hn, k# 5 0+ (15)

Because all that is needed for~15! to hold is thatZ has four finite moments, the
preceding limit obviously holds withhn, k

~M ! instead ofhn, k+ Thus we need only
consider the termscM~ j, k! 5 E@hn, khn, j

~M ! # + For short, defineaM
2 5 sM

202p and
IaM
2 5 IsM

202p+ Define

cj, k~u, v! 5 E@f~dn, k
X 1 aM u 1 IaM v!f~dn, j

X 1 aM u!# +

With this notation,

cM ~ j, k! 5 E@cj, k~aM
21dn, k

Z~M !

, IaM
21dn, k

EZ~M !

!# +

A second-order Edgeworth expansion ofcM~ j, k! can be shown valid as in Sec-
tion 8+1 in Fay and Soulier~2001! and can be written as

cM ~ j, k! 5 E@cj, k~z1,z2!# 1 n2102E1 @cj, k# 1 O~n21!,

wherez1 and z2 are i+i+d+ standard complex Gaussian and the termO~n21! is
uniform with respect tok andj+ If the processY were Gaussian white noise, the
termsE@cj, k~z1,z2!# andE1@cj, k# would vanish identically+ Here, using Lemma
5, it is seenE@cj, k~z1,z2!# 5 O~n21! andE1@cj, k# 5 O~n2102!, uniformly with
respect tok and j+ Hence,

(
1#k,j# In

6bn, k bn, j cM ~ j, k!6 5 O~mn0n!+

Note that all the previous bounds depend onM, but for any fixedM, we have
proved that

lim
nr`

Bn,M 5 0+ n

LEMMA 3 + Let F be a function such that7F72 :5 ~2p!2a02 3
*Ra F2~x!e2xTx02 dx , ` and with Hermite rank at leastt. Let X be an a-
dimensional centered Gaussian vector with covariance matrixG such that the
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spectral radiusr of Ia 2 G satisfiesr , 1
3
_ 2 e for some0 , e , 1

3
_. Then there

exists a constant c~e,t,a! that depends only one, t, and a such that

6E@F~X !#6 # c~e,t,a!7F7rt02+

Proof of Lemma 3+ DenoteD 5 G21 2 Ia andn 5 @~t 1 1!02# +

6G6102E@F~x!# 5E
Ra

F~x!e2xTDx02e2xTx02
dx

~2p!a02

5 (
k50

n21 ~2102!k

k!
E
Ra

F~x!~xTDx!ke2xTx02
dx

~2p!a02

1E
Ra

F~x!rn~x!e2xTx02
dx

~2p!a02 ,

wherern is the remainder term in thenth order Taylor expansion ofe2xTDx02+
BecauseF has Hermite rankt, the terms in the sum from 0 ton 2 1 all vanish+
Moreover, it is well known that

6rn~x!6 #
6xTDx6n

2nn!
e6x

TDx602+

Let d be the spectral radius ofD+

6G6102 6E@F~x!#6 #
1

2nn!
E
Ra
6F~x!66xTDx6ne6x

TDx602e2xTx02
dx

~2p!a02

#
dn

2nn!
7F7HE

Ra
~xTx!2nedxTxe2xTx02

dx

~2p!a02 J102

+

If d # 1
2
_ 2 e for somee . 0, then the last integral in the preceding expression

is finite and depends only one, t, anda+ Moreover, by continuity of the func-
tion det, 6G6 is bounded away from zero, and thus there exists a constant that
depends only one, t, anda such that

6E@F~X !#6 # c~e,t,a!7F7dn # c~e,t,a!7F7dt02+

Finally, it is easily seen that as soon asd , 1, G is invertible andG21 2 Ia 5

(k51
` ~Ia 2 G!k; thus r # d0~1 2 d!, and d , 1

3
_ 2 e implies r , 1

2
_ 2 e ' for

somee ' . 0+ This concludes the proof of Lemma 3+ n

LEMMA 4 + Let U be a stationary process with finite second moment. Let fU

be the spectral density andg be the covariance function of U. Ifg satisfies the
following condition:

(
p50

`

pa 6g~ p!6 , `, (16)
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for somea . 0, then for all1 # k Þ j # In,

E@In, k
U # 5 fU ~xk! 1 O~n2~a∧1! !,

6E@dn, k
U dn, j

U #61 6E@dn, k
U dn, j

U #6 5 O~n2~a∧1! !+

Proof of Lemma 4+ For 1# k # In and2 In # j # In,

E@dn, k
U dn, j

U # 5 ~2pn!21 (
p512n

n21

g~ p!eipxk (
s51

n

1$1#s1p#n% e
is~xk1xj !+

Note thatfU~x! 5 ~2p!21 (p[Z g~ p!eipx+ If k 1 j 5 0, under assumption~16!,
denotingpL :5 (p51

` p6g~ p!6 we get

6E@In, k
U # 2 fU ~xk!6 # ~pn!21 (

p51

n21

6p66g~ p!61 p21 (
p$n

6g~ p!6

# p21n2~a∧1! (
p51

`

pa 6g~ p!6# Ln2~a∧1!+

If 1 # 6k 1 j 6 # 2 In, then 6(1#s#n 1$1#s1p#n% e
is~xk1xj ! 6 # p; thus

6E@dn, k
U dn, j

U #6 # ~pn!21 (
p51

n21

p6g~ p!6# p21n2~a∧1! (
p51

`

pa 6g~ p!6# Ln2~a∧1!+ n

Let Gv denote the covariance matrix of the vector of DFTsdn, k1

U YY
M fU ~xk1

!, + + + ,dn, kv
U YYM fU ~xkv !, considered as a 2v-dimensional real Gaussian

vector+ Lemma 4 yieldsGv 5 1
2
_I2v 1 Dn, v where the spectral radius ofDn, v is of

orderO~n2~a∧1! !+ Thus Lemmas 3 and 4 yield the following lemma+

LEMMA 5 + Let U be a stationary Gaussian process with spectral density fU

that satisfies condition (16) for somea [ ~0,1# . Let z1, + + + ,zu be i.i.d. standard
complex Gaussian. LetF be a function defined onCu such that7F72 :5
E@F2~z1, + + + ,zu!# , `. If the Hermite rank ofF 2 E@F~z1, + + + ,zu!# is t, then

6E@F~dn, k1

U YYM fU ~xk1
!, + + + ,dn, ku

U YYM fU ~xku
!!# 2 E@F~z1, + + + ,zu!#6

# c~t,u!7F7n2ta02

uniformly with respect to k1, + + + , ku.

3.3. Edgeworth Expansions

In this section, we check the validity of the Edgeworth expansions used in the
proof of Theorem 2+ It can be deduced from Theorem 3+17 in Götze and Hipp
~1978! that if c is aC` function with polynomially bounded derivatives of all
order, such that~i! supz[Ca 6c~z!60~1 1 7z7s! , ` and ~ii ! E@6Z06s12# , `,
then for anya-tuple of pairwise distinct integersk 5 ~k1, + + + , ka!, an Edgeworth
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expansion ofE@c~dn, k1

Z , + + + ,dn, ka

Z !# up to the orders is valid, and the remainder
term is uniform with respect tok1, + + + , ka and depends only on bounds for the
function c and its derivatives+ ~For more details, see Fay and Soulier, 2001,
Sec+ 8+1+! In the present context, all the functionsc considered areC` and
their derivatives are polynomially bounded, because they can be written as con-
volutions of the Gaussian kernel+ Moreover, they are uniformly bounded by a
power of log~7z7!+ Thus, the second-order expansions used in Lemma 2 are
valid if Z has finite fourth moment+ Let us illustrate this claim with the case of
the functionc defined onC asc~u! 5 E@ log6dn

Y~xk! 1 u62# + IdentifyingC and
R2, and denotingGn, k the covariance matrix of the real and imaginary parts of
dn

Y~xk!, we have

c~u! 5E
R2

log~7x 1 u72!e2102~x2u!TGn, k
21~x 2 u!

dx

2p6Gn, k6102
+

Under the assumptions on the spectral density ofY, Gn, k0fY~xk! converges uni-
formly with respect tok to 1

2
_I2, where I2 is the two-dimensional identity ma-

trix+ BecausefY is assumed bounded above and away from zero, there exist
positive constantsc , C such that for allx [ R2 and for all sufficiently large
n, c7x72 # xTGn, k

21x # C7x72+ Thus, to prove ~i!, it is enough to check that
*R2 log2~7x7!e27x2u72 dx # C log2~7u7!, and to prove thatc is C` with uni-
formly ~with respect tok andn! polynomially bounded derivatives, it suffices
to prove that for all positive integern, *R27x7n log2~7x72!e27x2u72 dx is
bounded by a power of7u7 on R2+ Splitting the integral over the domains
$7x7 # 1% and $7x7 $ 1% , we get

E
$7x7#1%

7x7n log2~7x7!e27x2u72 dx # e27u72127u7E
$7x7#1%

6 log~7x7!6 dx# C,

E
$7x7.1%

7x7n log2~7x7!e27x2u72 dx 5E
$7x1u7.1%

7x 1 u7n log2~7x 1 u7!e27x72 dx+

If 7x 1 u7 . 1, then log~7x 1 u7! # log~7x7! 1 log~7u7! and log~7x 1 u7! #
7x 1 u7+ This yields

E
$7x1u7.1%

log2~7x 1 u7!e27x72 dx

# 2E log2~7x7!e27x72 dx1 2 log2~7u7!Ee27x72 dx5 A 1 B log2~7u7!,

E
$7x1u7.1%

7x 1 u7n log2~7x 1 u7!e27x72 dx

# 2nE~7x7n11 1 7u7n11!e27x72 dx# C 1 D7u7n11,

whereA, B, C, andD are numerical constants+
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We now give an explicit expression for this valid Edgeworth expansion+ Let
U1, + + + ,U2a be 2a i+i+d+ N ~0,1! random variables and denoteU 5 ~U1, + + + ,U2a!T+
Let c be a function such thatE@c2~Ms204pU !# , `+ A formal Edgeworth
expansion ofE@c~dn, k1

Z , + + + ,dn, ka

Z !# up to thesth order can be written as

E@c~dn, k1

Z , + + + ,dn, ka

Z !# 5 (
r50

s

n2r02Er, k~c! 1 n2s02vn Rn~c!, (17)

where the sequencevn depends only on the distribution ofZ0 ands and satis-
fies limnr`vn 5 0; Rn~c! is uniformly bounded with respect ton andk1, + + + , ka:

E0, k~c! 5 E@c~Ms204pU !# , (18)

Er, k~c! 5 (
t51

r 1

t! (r, t
* Er, t, k~c!, (19)

Er, t, k~c! 5
xn1

~k! + + +xnt
~k!

n1! + + +nt !
E@Hn11{{{1nt

~U !c~Ms204pU !# , ~r . 0!;

(20)

(r, t
* extends over allt-tuples sn of multi-indices nl :5 ~nl ~1!, + + + ,nl ~2a!! [

N2a, l 5 1, + + + , t such that

6nl 6 :5 nl ~1! 1{{{1 nl ~2a! $ 3, l 5 1, + + + , t and (
l51

t

6nl 65 r 1 2t; (21)

for k [ $1, + + + ,K %a andn [ N2a, xn~k! 5 26n602k6n6An~k! with

An~k! 5 n21 (
t51

n

)
j51

a

cos~txkj
!n2j21 sin~txkj

!n2j ;

andk6n6 is the cumulant of order6n6 of Z0; Hn denotes a multidimensional Her-
mite polynomial:

Hn~U ! 5 )
j51

2a

Hn~ j !~Uj !, (22)

and fork [ N, Hk is the usual Hermite polynomial of orderk+ For further de-
tails on multidimensional Hermite polynomials, see, e+g+, Arcones~1994!+
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