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Abstract

We discuss some of the issues pertaining to modelling and estimating long memory in volatility. The

main focus is on semi parametric estimation of the memory parameter in the long memory stochastic

volatility model. We present the asymptotic properties of the log periodogram regression estimator of

the memory parameter in this model. A modest simulation study of the estimator is also presented to

study its behaviour when the volatility possesses only short memory. We conclude with a discussion

of the appropriate choice of transformation of returns to measure persistence in volatility.

1. Introduction:

There has been great interest recently in modelling the temporal dependence in the volatility of financial

time series such as stock and exchange rate returns. See, for example, Robinson (1991), Ding,

Granger and Engle (1993), de Lima and Crato (1993), Breidt, Crato and de Lima (1996), Andersen

and Bollerslev (1997 a and b), Andersen, Bollerslev, Diebold and Labys (1999), Baillie, Bollerslev

and Mikkelsen (1996) and Henry and Payne (1998). Using measures of volatility such as powers or

logarithms of squared returns, these authors have found that the sample autocorrelation function of

volatility decays slowly to zero at high lags.
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A series fXtg is said to have long memory if its correlation function ½ (¢) is of the form

½ (j) » C1j2d¡1 j ! 1; (1)

where C1 6= 0 and 0 < d < 0:5: The parameter d is called the long memory parameter and controls

the rate of decay of the correlations. Note that the correlations in a long memory series decay at a

hyperbolic rate and are not absolutely summable as opposed to the exponential rate which is obtained

in short memory series such as ARMA models. An alternative definition of a long memory series is

through its spectral density f (¢) : Under this definition, a series fXtg is said to possess long memory

if its spectral density is of the form

f (¸) » C2¸¡2d ¸ ! 0; (2)

where C2 > 0 and 0 < d < 0:5: Under certain conditions, the two definitions (1) and (2) are equivalent.

In general, neither condition implies the other. See Robinson (1995a).

In this paper, we will discuss some of the issues pertaining to modelling and estimating long memory

in volatility. In section 2, we present some models of long memory in volatility and discuss their

properties. In section 3, we discuss estimation of the long memory parameter in these models, focusing

mainly on semiparametric estimation in the particular class of long memory stochastic volatility models.

2. Models for Long Memory in volatility:

Models for volatility of returns must possess two attributes based upon economic theory and empirical

observation: Returns are martingale differences and hence uncorrelated but powers of absolute values

of returns are correlated. There are two popular classes of models which have been proposed to

account for these phenomena: The observation driven models and the latent variable models.
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The observation driven models for the return series frtg are of the form

rt = ¾tvt; (3)

where vt is an independent identically distributed series with mean zero and finite variance and

¾t 2 Ãt¡1; the sigma algebra of frt¡1; rt¡2; :::g : The model (3) was first introduced by Engle (1982),

who specified ¾2t = ®0+
Pq
i=1 ®ir2t¡i; where ®0;®1; :::; ®q are unknown parameters such that ®0 > 0;

0 · ®i < 1 for i = 1; :::; q and
Pq
i=1 ®i < 1. Engle (1982) called this model the ARCH(q)

(AutoRegressive Conditional Heteroscedasticity) model. It is easy to verify that E (rtj Ãt¡1) = 0 and

that
©
r2t

ª
is correlated in the ARCH model. However, the ARCH (q) model is such that the correlation

function of
©
r2t

ª
decays exponentially.

In an attempt to incorporate long memory in squared returns, Robinson (1991) gave two general

specifications of ¾t in (3). The first specification was of the form

¾2
t = ®0 +

1X

i=1
®ir2t¡i; (4)

which can be considered to be an ARCH(1) model in the spirit of Engle’s ARCH(q) model. A partic-

ular version of this model where the f®jg coefficients were taken to be those from an ARFIMA(p;d; q)

model was discussed by Baillie et al (1996), who named it the FIGARCH process. Robinson (1991)

also proposed another specification of the form

¾2
t =

0
@¾ +

1X

j=1
®jrt¡j

1
A

2

: (5)

Giraitis, Robinson and Surgailis (1999) have shown that there exist weakly stationary solutions to

equations (3) and (5), which exhibit long memory in
©
r2t

ª
: More specifically, they have proved that

if the coefficients f®jg in (5) satisfy

®j » C3jd¡1 0 < d < 0:5;
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then under additional conditions on
P

®2
j ; the process frtg defined by (3) and (5) is weakly stationary

and satisfies

Corr
³
r2t ; r2t¡j

´
» C4j2d¡1;

where C4 is a positive constant. Giraitis, Kokoskza and Leipus (1998) have obtained sufficient

conditions for weakly stationary solutions to equations (3) and (4), which do not cover long memory

in the correlation function ½r2t (¢) of the squared returns. Thus, as Robinson and Henry (1999) point

out, the character of solutions of (3) and (4) remains open to further study.

Latent variable models for the return series frtg are of the form

rt = ¾tvt; (6)

where vt is an independent identically distributed series with mean zero and finite variance and ¾2
t

is taken to be a positive function of an unobservable latent process fhtg which is assumed to be

independent of fvtg : Latent variable models were initially considered by Clark (1973) in an attempt

to incorporate the effect of flow of information on the returns. Clark (1973) assumed however that the

fhtg process was an independent series and thus did not allow for dependence in the squared returns.

Taylor (1986) incorporated this dependence by modelling f¾tg as

¾t = exp (ht=2) ; (7)

where fhtg is a stationary short memory Gaussian process independent of fvtg. In simultaneous work,

Breidt et al (1998) and Harvey (1993) extended the model by allowing fhtg to be a long memory

Gaussian process with memory parameter d 2 (0; 0:5) : In the special case where fvtg is normally

distributed, this model can be thought of as a natural discrete time analogue of the continuous time

model developed by Comte and Renault (1996). In this paper, we will refer to the model given by

(6) and (7), where fhtg is a Gaussian long memory series independent of fvtg, as the Long Memory
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Stochastic Volatility (LMSV) model.

Using the moment generating function of a Gaussian distribution, it can be shown for the LMSV

model that

½r2t (j) » Cj2d¡1 j ! 1;

and hence the squared returns possess long memory. As a matter of fact, it can be shown that for any

positive value s;

½s (j) » Csj2d¡1 j ! 1;

where ½s (j) denotes the correlation of fjrtjsg at lag j: Thus, the correlations of the absolute returns

raised to any power s have hyperbolic decay and always decay at the same rate which is governed by

d:

Another latent variable volatility model has been suggested recently by Robinson and Zaffaroni

(1998), who model the scale parameter ¾t in (6) as

¾t = ¹ +
1X

i=1
®i"t¡i: (8)

They consider two specifications for f"tg : In one specification, they set "t = vt; and thus the model

for the returns frtg depends on only one shock fvtg : In the other specification, f"tg is a zero mean

independent series independent of fvtg : This second model thus incorporates two shocks. Under

suitable conditions on the asymptotic behaviour of f®jg in (8); Robinson and Zaffaroni (1998) show

that
©
r2t

ª
has long memory.

In the next section, we discuss results on parametric and semiparametric estimation of long memory

in volatility for the LMSV model.

3. Estimation of LM in volatility:



R. S. DEO and C. M. HURVICH 6

Fully parametric estimation of long memory may be done by either using the time domain maxi-

mum likelihood estimator (MLE) or the frequency domain approximate maximum likelihood estimator

(Whittle 1962) referred to as the quasi maximum likelihood estimator (QMLE). Asymptotic results

on such estimators of linear long memory series have been established by Fox and Taqqu (1986) and

Dahlhaus (1989) among others. There are a few results on fully parametric estimation of long memory

in volatility in the literature. Zaffaroni (1998) has shown the asymptotic normality of the QMLE based

on
©
r2t

ª
in the stochastic volatility model (6) and (8), when "t = vt:

Hosoya (1997) has obtained results on fully parametric maximum likelihood estimators for multi-

variate linear long memory series. His results are also valid when the observed series has a state space

representation. As we show below, the LMSV model, upon appropriate transformation, possesses a

state space representation. Hence, Hosoya’s results may be applied to obtain the limiting distribution

of the QMLE of d in the LMSV model. Let yt = log r2t ;where frtg follows the LMSV model. It then

follows that

yt = ¹ + ht + ut; (9)

where ¹ = E
¡
log v2t

¢
and ut = log v2t ¡E

¡
log v2t

¢
is a zero mean series independent of fhtg : Since

futg will also be independently distributed, the series fytg will possess long memory with the same

memory parameter d as possessed by fhtg : From equation (9), we see that fytg has the required state

space representation.

Several semiparametric estimators of long memory have been proposed and studied in detail for

linear long memory time series. Two leading semiparametric estimators are the Geweke Porter-Hudak

(GPH) estimator (Geweke and Porter-Hudak (1983)) and the Gaussian Semiparametric (GSE) Estimator

(Künsch (1987), Robinson (1995b)). Robinson (1995a) and Hurvich Deo and Brodsky (1998) have

established the asymptotic normality of the GPH estimator when the observed series is Gaussian,
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while Robinson (1995b) has shown that the GSE is asymptotically normal when the observed series

is a linear series in martingale differences with constant conditional variance. It is very tempting to

appeal to this second result in justifying the use of the GSE in estimating d in volatility for either

squares or absolute values of returns, which are clearly non-Gaussian. However, it should be noted

that there is no known model which guarantees a martingale difference structure for returns, admits

a linear representation in martingale differences for either powers or logarithms of squared returns

and also allows for long memory in volatility. Currently, the only results available on semiparametric

estimation of long memory in volatility are due to Deo and Hurvich (1999). We now describe these

results.

Let frtg follow the LMSV model described in Section 2. Deo and Hurvich (1999) assumed that

fhtg has spectral density fh (¢) which is of the form

fh (¸) =
¯̄
¯̄2 sin

µ ¸
2

¶¯̄
¯̄
¡2d

g¤ (¸) ; (10)

where d 2 (0; 0:5) and g¤ (¢) is a spectral density continuous on [¡¼;¼] bounded above and away from

zero with first derivative g¤0 (0) = 0 and second and third derivatives bounded in a neighbourhood

of zero. An example of a process with spectral density satisfying (10) is a stationary invertible

ARFIMA(p;d; q). Deo and Hurvich (1999) also assumed that futg as defined in (9) has a finite

eighth moment. A sufficient condition for this is that fvtg have a probability density that be bounded

at the origin and obey a power law decay in the tails as would occur, for example, in all t or stable

distributions.

Let fytg be defined as in (9) and define the periodogram of the observations y0; y1; :::; yn¡1 at the

jth Fourier frequency !j = 2¼j=n as

Ij =
1

2¼n

¯̄
¯̄
¯
n¡1X

t=0
yt exp(¡it!j)

¯̄
¯̄
¯

2

:
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The GPH estimator of d using the first m Fourier frequencies is then

d̂ = ¡ 1
2Sxx

mX

j=1
aj log Ij;

where aj = Xj ¡ ¹X; Xj = log j2 sin(!j=2)j ; ¹X = m¡1 Pm
j=1 Xj and Sxx =

Pm
j=1a2j : Note that the

GPH estimator is invariant to the mean of fytg since it is based upon the periodogram at non-zero

Fourier frequencies. Deo and Hurvich (1999) obtained the following two theorems about d̂:

Theorem 1 Let n ! 1; m ! 1 and n¡2dm2d log2 m ! 0: Then

E
³
d̂¡ d

´
= ¡ (2¼)2d

¾2
u

2¼g¤ (0)
d

(2d +1)2

Ã
m2d

n2d

!
+ O

Ã
log3 m

m

!
+ o

Ã
m2d

n2d

!

and

V ar
³
d̂
´

=
¼2

24m
+ o

³
m¡1

´
+O

Ã
m4d

n4d log2 m
!

:

Theorem 1 implies that d̂ is consistent for d if m = Kn± for any 0 < ± < 1: The first term in the

bias, which is due to the noise futg ; is dominant if and only if ± > (2d +1)¡1 2d: Hence, d̂ will tend

to have an increasingly negative bias as m becomes sufficiently large. The quantity ¾2
u= (2¼g¤ (0)) is a

measure of the relative importance of the noise term futg compared to the short memory component of

fhtg : As ¾2
u increases, the bias in d̂ increases. Under stronger conditions on m;asymptotic normality

is obtained for d̂:

Theorem 2 Let n ! 1; m ! 1 and n¡4dm4d+1 log2m ! 0 and log2 n = o (m) : Then

m1=2
³
d̂ ¡d

´
D! N

Ã
0;

¼2

24

!
:

Theorem 2 shows that the limiting distribution of d̂ remains unchanged compared to the Gaussian

case considered by Robinson (1995a) and Hurvich Deo and Brodsky (1998). However, the conditions

on m here are much stronger. The limiting distribution will hold if and only if ± < (4d + 1)¡14d;
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which can be arbitrarily small if d is sufficiently close to zero. Hence, it is crucial for the finite

sample performance that the lowest frequencies not be dropped when computing the GPH estimator in

the LMSV framework. Deo and Hurvich (1999) found in their simulation study that, due to leverage

effects, even the deletion of just the first two frequencies caused a substantial inflation in the MSE of

the estimator for samples of size n = 6144:

Robinson (1995a) obtained the limiting distribution of a modified version of d̂ for a Gaussian long

memory process fZtg under the assumption that its spectral density was of the form

fZ (¸) = C¸¡2d
³
1 +O

³
¸¯

´´
¸ ! 0;

where C > 0 and 0 < ¯ · 2: He showed that the feasible range of values for m required to obtain

asymptotic normality for d̂ depended on ¯: More specifically, Robinson showed that the condition on

m was of the form m2¯+1=n2¯ ! 0: In the LMSV context, it can be easily shown that for the fytg

process,

fy (¸) = ¸¡2dg¤ (0)
h
1 +O

³
¸2d

´i
:

This is similar to Robinson’s formulation with ¯ = 2d and hence it is not surprising that the conditions

on m in Theorem 2 depend on d:

4. Monte Carlo:

An issue not addressed in the work of Deo and Hurvich (1999) is the asymptotic distribution of d̂ when

d = 0 in the LMSV model. This distribution would be required for construction of tests of the null

hypothesis that d = 0; i.e. the absence of long memory in volatility. When d > 0; the periodogram

of the logarithm of the squared returns near the origin behaves like the periodogram of the Gaussian

process fhtg. This fact was exploited in Deo and Hurvich (1999) in obtaining the limiting distribution
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of d̂ for d > 0: When d = 0; however, the contribution from the periodograms of both fhtg and futg

are of the same order. Hence, it is hard to see how the periodogram of
©
log r2t

ª
could be approximated

by the periodogram of a linear series, much less a Gaussian one. Here we study the performance of

d̂ when d = 0 in the LMSV model via simulations.

We generated 500 replications of the time series frtg of length n = 6144 given by the process (6)

and (7), where fhtg was a Gaussian autoregressive process of order 1 with unit innovation variance

and lag one autocorrelation of 0.9. The fvtg process was taken to be a Gaussian white noise process

with unit variance. For every replication, d̂ was computed using three values of m; viz. m =
£
n0:3¤ ;

m =
£
n0:4

¤
and m =

£
n0:5¤

: In Table 1 we report the simulation means and standard deviations of

the values of d̂. For comparison, we also report the value ¼=
p

24Sxx; which is an approximation to

the standard deviation of d̂ motivated by ordinary linear regression heuristics. Simulation results in

Deo and Hurvich (1999) have shown that this quantity is a closer approximation to the true standard

deviation than ¼=
p

(24m) in the case d > 0: As can be seen from Table 1, d̂ is slightly positively

biased due to the large autoregressive coefficient but the standard deviation is quite close to the value

¼=
p

24Sxx: In spite of the lack of rigorous theoretical results regarding the limiting distribution of d̂

when d = 0; we conjecture that the limiting distribution of Theorem 2 remains valid and hence tests

of d = 0 may be constructed as usual.

As noted in Section 2, any positive power of jrtj possesses long memory with the same value

of d in the LMSV model. We thus carried out another simulation to study the extent to which this

invariance holds in d̂ based upon different such transformations. We generated 500 replications of

the time series frtg of length n = 6144 given by the process (6) and (7). The fhtg series was an

ARFIMA(0; d;0) given by

(1 ¡ B)d ht = ´t;
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where f´tg is Gaussian white noise with variance ¾2
´ = 0:8: The fvtg process was Gaussian white

noise with unit variance. For each realization, we computed d̂log; d̂abs and d̂sq; based on log r2t ; jrtj

and r2t respectively using the same three values of m as above: For each estimator of d; the bias

becomes more negative as m increases, as predicted in Theorem 1 for the case logr2t . Furthermore,

for a given value of m; the squared returns show less persistence than either absolute returns or log

squared returns. This is in keeping with the observation made by Ding, Granger and Engle (1993) in

their empirical analysis of stock return volatility.

The lower persistence in squared returns can be attributed to the fact that sample correlations of

squared returns at a given lag tend to be substantially smaller than sample correlations at the same

lag for absolute or log squared returns. This effect can be seen in the left side of Figure 1, in which

we have plotted the sample correlation function of r2t ; jrtj and log r2t for a single realization of a

(0; d;0) LMSV model with d = 0:47: We propose here a graphical explanation for this phenomenon.

Note first that the sample correlation at lag j for a stationary series xt is almost identical to the slope

in the least squares regression of xt on xt¡j : The right side of Figure 1 shows the scatter plot and

corresponding least squares regression line at lag 20 for the three transformations of rt: The slope of

this line is largely determined by a relatively few outliers in the lagged variable r2t¡20, which act as

highly influential points due to their high leverage. Since the corresponding r2t values for these points

are small, the slope of the regression line is damped substantially. Though there are some extreme

values of r2t occurring at small values of r2t¡20; these are not highly influential due to the presence of a

large number of smaller values of r2t in that region. This damping effect of the influential observations

translates into small values of the sample correlations and thus lead to strongly negatively biased

estimates of d based on r2t : By contrast, the outliers do not possess such a great damping effect in the

case of jrtj ; and the outliers are completely nullified by the log r2t transformation.
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