
Towards a Query Optimizer for Text-Centric Tasks

Panagiotis G. Ipeirotis
New York University

Eugene Agichtein
Emory University

Pranay Jain
Columbia University

Luis Gravano
Columbia University

October 28, 2006

Abstract

Text is ubiquitous and, not surprisingly, many important applications rely on textual data for
a variety of tasks. As a notable example, information extraction applications derive structured
relations from unstructured text; as another example, focused crawlers explore the web to locate
pages about specific topics. Execution plans for text-centric tasks follow two general paradigms
for processing a text database: either we can scan, or “crawl,” the text database or, alternatively,
we can exploit search engine indexes and retrieve the documents of interest via carefully crafted
queries constructed in task-specific ways. The choice between crawl- and query-based execution
plans can have a substantial impact on both execution time and output “completeness” (e.g.,
in terms of recall). Nevertheless, this choice is typically ad-hoc and based on heuristics or plain
intuition. In this article, we present fundamental building blocks to make the choice of execution
plans for text-centric tasks in an informed, cost-based way. Towards this goal, we show how to
analyze query- and crawl-based plans in terms of both execution time and output completeness.
We adapt results from random-graph theory and statistics to develop a rigorous cost model for
the execution plans. Our cost model reflects the fact that the performance of the plans depends
on fundamental task-specific properties of the underlying text databases. We identify these
properties and present efficient techniques for estimating the associated parameters of the cost
model. We also present two optimization approaches for text-centric tasks that rely on the cost-
model parameters and select efficient execution plans. Overall, our optimization approaches
help build efficient execution plans for a task, resulting in significant efficiency and output
completeness benefits. We complement our results with a large-scale experimental evaluation
for three important text-centric tasks and over multiple real-life data sets.

1 Introduction

Text is ubiquitous and, not surprisingly, many applications rely on textual data for a variety of
tasks. For example, information extraction applications retrieve documents and extract structured
relations from the unstructured text in the documents. Reputation management systems download
web pages to track the “buzz” around companies and products. Comparative shopping agents
locate e-commerce web sites and add the products offered in the pages to their own index.

To process a text-centric task over a text database (or the web), we can retrieve the relevant
database documents in different ways. One approach is to scan or crawl the database to retrieve its
documents and process them as required by the task. While such an approach guarantees that we
cover all documents that are potentially relevant for the task, this method might be unnecessarily
expensive in terms of execution time. For example, consider the task of extracting information on
disease outbreaks (e.g., the name of the disease, the location and date of the outbreak, and the

1



number of affected people) as reported in news articles. This task does not require that we scan
and process, say, the articles about sports in a newspaper archive. In fact, only a small fraction
of the archive is of relevance to the task. For tasks such as this one, a natural alternative to
crawling is to exploit a search engine index on the database to retrieve –via careful querying– the
useful documents. In our example, we can use keywords that are strongly associated with disease
outbreaks (e.g., “World Health Organization,” “case fatality rate”) and turn these keywords into
queries to find news articles that are appropriate for the task.

The choice between a crawl- and a query-based execution strategy for a text-centric task is
analogous to the choice between a scan- and an index-based execution plan for a selection query
over a relation. Just as in the relational model, the choice of execution strategy can substantially
affect the execution time of the task. In contrast to the relational world, however, this choice
might also affect the quality of the output that is produced: while a crawl-based execution of a
text-centric task guarantees that all documents are processed, a query-based execution might miss
some relevant documents, hence producing potentially incomplete output, with less-than-perfect
recall. The choice between crawl- and query-based execution plans can then have a substantial
impact on both execution time and output recall. Nevertheless, this important choice is typically
left to simplistic heuristics or plain intuition.

In this article, we introduce fundamental building blocks for the optimization of text-centric
tasks. Towards this goal, we show how to rigorously analyze query- and crawl-based plans for a
task in terms of both execution time and output recall. To analyze crawl-based plans, we apply
techniques from statistics to model crawling as a document sampling process; to analyze query-
based plans, we first abstract the querying process as a random walk on a querying graph, and
then apply results for the theory of random graphs to discover relevant properties of the querying
process. Our cost model reflects the fact that the performance of the execution plans depends on
fundamental task-specific properties of the underlying text databases. We identify these properties
and present efficient techniques for estimating the associated parameters of the cost model.

In brief, the contributions and content of the article are as follows:

• A novel framework for analyzing crawl- and query-based execution plans for text-centric tasks
in terms of execution time and output recall (Section 3).

• A description of four crawl- and query-based execution plans, which underlie the implemen-
tation of many existing text-centric tasks (Section 4).

• A rigorous analysis of each execution plan alternative in terms of execution time and re-
call; this analysis relies on fundamental task-specific properties of the underlying databases
(Section 5).

• Two optimization approaches that estimate “on-the-fly” the database properties that affect
the execution time and recall of each plan. The first alternative follows a “global” optimization
approach, to identify a single execution plan that is capable of reaching the target recall for
the task. The second alternative partitions the optimization task into “local” chunks; this
approach potentially switches between execution strategies by picking the best strategy for
retrieving the “next-k” tokens at each execution stage (Section 6).

• An extensive experimental evaluation showing that our optimization strategy is accurate and
results in significant performance gains. Our experiments include three important text-centric
tasks and multiple real-life data sets (Sections 7 and 8).

2



… … …
Cholera 1999 Nigeria
Yellow fever 2005 Mali
DiseaseName Date Country

From what we know, 28 fatal cases 
of yellow fever were reported to
Mali’s national health authorities 

within 2005…

The New York Times
Archive

...from what we know, 28 fatal cases 
of yellow fever were reported to
Mali’s national health authorities 

within 2005….

...from what we know, 28 fatal cases 
of yellow fever were reported to
Mali’s national health authorities 

within 2005….

...from what we know, 28 fatal cases 
of yellow fever were reported to
Mali’s national health authorities 

within 2005….

Cholera outbreaks occurred in May 
1999 in  Nigeria (176 cases, 56 
deaths). The outbreak is now

...from what we know, 28 fatal cases 
of yellow fever were reported to
Mali’s national health authorities 

within 2005….

Cholera outbreaks occurred in May 
1999 in  Nigeria (176 cases, 56 

deaths). The outbreak is now under 
control…

DiseaseOutbreaks in 
The New York Times Archive 

Figure 1: Extracting DiseaseOutbreaks tuples

Finally, Section 9 discusses related work, while Section 10 provides further discussion and concludes
the article. This article expands on earlier work by the same authors [IAJG06,AIG03], as discussed
in Section 9.

Note to Referees

This article contains material from an earlier conference publication [IAJG06] (which, in turn, built
on an even earlier workshop publication [AIG03]). The current submission substantially extends
the published material. More specifically:

• In this article, we present a detailed description of our methodology for estimating the pa-
rameter values required by our cost model (Sections 6.1.1 through 6.1.4). In [IAJG06], due
to space restrictions, we only gave a high-level overview of our techniques.

Another substantial new contribution with respect to [IAJG06] is that now our optimizers do
not rely on knowledge of the |Tokens| statistics, but instead estimate this parameter “on-the-
fly” as well, during execution of the task.

• In this article, we present a new, “local” optimizer that potentially builds “multi-strategy”
executions by picking the best strategy for each batch of k tokens (Section 6.2). In contrast,
the “global” optimizer in [IAJG06] only attempts to identify a single execution plan that is
capable of reaching the full target recall.

We implemented the new local optimization approach and compared it experimentally against
the global approach of [IAJG06]; the results of the comparison are presented in Figures 26,
27, 28, and 29, in Section 8. The results show the superiority of the local optimizer over the
global optimizer.

2 Examples of Text-Centric Tasks

In this section, we briefly review three important text-centric tasks that we will use throughout the
article as running examples, to illustrate our framework and techniques.

3



….

Microsoft 145
Word Frequency

….…. ….
….

….

Retailers prepare for 
launch day of 

Microsoft’s Xbox 360

Best Buy takes to 
the desert to 

celebrate Xbox 
launchSony BMG offers 

MP3 files and disks 
for unsafe CDs

Sony 96
Xbox 124

...

...
...
...

Content Summary of 
Forbes.comForbes.com

Figure 2: Content summary of Forbes.com

2.1 Task 1: Information Extraction

Unstructured text (e.g., in newspaper articles) often embeds structured information that can be
used for answering relational queries or for data mining. The first task that we consider is the
extraction of structured information from text databases. An example of an information extraction
task is the construction of a table DiseaseOutbreaks(DiseaseName, Date, Country) of reported
disease outbreaks from a newspaper archive (see Figure 1). A tuple 〈yellow fever, 2005, Mali〉
might then be extracted from the news articles in Figure 1.

Information extraction systems typically rely on patterns —either manually created or learned
from training examples— to extract the structured information from the documents in a database.
The extraction process is usually time consuming, since information extraction systems might rely
on a range of expensive text analysis functions, such as parsing or named-entity tagging (e.g., to
identify all person names in a document). See [Gri97] for an introductory survey on information
extraction.

A straightforward execution strategy for an information extraction task is to retrieve and pro-
cess every document in a database exhaustively. As a refinement, an alternative strategy might use
filters and do the expensive processing of only “promising” documents; for example, the Proteus sys-
tem [GHY02] ignores database documents that do not include words such as “virus” and “vaccine”
when extracting the DiseaseOutbreaks relation. As an alternative, query-based approaches such as
QXtract [AG03] have been proposed to avoid retrieving all documents in a database; instead, these
approaches retrieve appropriate documents via carefully crafted queries.

2.2 Task 2: Content Summary Construction

Many text databases have valuable contents “hidden” behind search interfaces and are hence ig-
nored by search engines such as Google. Metasearchers are helpful tools for searching over many
databases at once through a unified query interface. A critical step for a metasearcher to process a
query efficiently and effectively is the selection of the most promising databases for the query. This
step typically relies on statistical summaries of the database contents [CLC95, GGMT99]. The
second task that we consider is the construction of a content summary of a text database. The
content summary of a database generally lists each word that appears in the database, together
with its frequency. For example, Figure 2 shows that the word “xbox” appears in 124 documents
in the Forbes.com database. If we have access to the full contents of a database (e.g., via crawl-
ing), it is straightforward to derive these simple content summaries. If, in contrast, we only have
access to the database contents via a limited search interface (e.g., as is the case for “hidden-
web” databases [Ber01]), then we need to resort to query-based approaches for content summary
construction [CC01, IG02].

4



London Hotels 

Encyclopedia of 
Plants

Plant Physiology

Weather Information Hepaticophyta
www.plantphysiol.org
waynesword.palomar.edu/...
www.botanyworld.com
URL

Botany Documents on the WebWeb

...

Figure 3: Focused resource discovery for Botany pages

2.3 Task 3: Focused Resource Discovery

Text databases often contain documents on a variety of topics. Over the years, a number of
specialized search engines (as well as directories) that focus on a specific topic of interest have been
proposed (e.g., FindLaw). The third task that we consider is the identification of the database
documents that are about the topic of a specialized search engine, or focused resource discovery.

As an example of focused resource discovery, consider building a search engine that specializes
in documents on botany from the web at large (see Figure 3). For this, an expensive strategy would
crawl all documents on the web and apply a document classifier [Seb02] to each crawled page to
decide whether it is about botany (and hence should be indexed) or not (and hence should be
ignored). As an alternative execution strategy, focused crawlers (e.g., [CvdBD99,CPS02,MPS04])
concentrate their effort on documents and hyperlinks that are on-topic, or likely to lead to on-topic
documents, as determined by a number of heuristics. Focused crawlers can then address the focused
resource discovery task efficiently at the expense of potentially missing relevant documents. As yet
another alternative, Cohen and Singer [CS96] propose a query-based approach for this task, where
they exploit search engine indexes and use queries derived from a document classifier to quickly
identify pages that are relevant to a given topic.

3 Describing Text-Centric Tasks

While the text-centric examples of Section 2 might appear substantially different on the surface,
they all operate over a database of text documents and also share other important underlying
similarities.

Each task in Section 2 can be regarded as deriving “tokens” from a database, where a token is
a unit of information that we define in a task-specific way. For Task 1, the tokens are the relation
tuples that are extracted from the documents. For Task 2, the tokens are the words in the database
(accompanied by the associated word frequencies). For Task 3, the tokens are the documents (or
web pages) in the database that are about the topic of focus.

The execution strategies for the tasks in Section 2 rely on task-specific document processors to
derive the tokens associated with the task. For Task 1, the document processor is the information
extraction system of choice (e.g., Proteus [GHY02], DIPRE [Bri98], Snowball [AG00]): given a
document, the information extraction system extracts the tokens (i.e., the tuples) that are present
in the document. For Task 2, the document processor extracts the tokens (i.e., the words) that are
present in a given document, and the associated document frequencies are updated accordingly in
the content summary. For Task 3, the document processor decides (e.g., via a document classifier
such as Naive Bayes [DH73] or Support Vector Machines [Vap98]) whether a given document is

5



about the topic of focus; if the classifier deems the document relevant, the document is added as a
token to the output and is discarded otherwise.

The alternate execution strategies for the Section 2 tasks differ in how they retrieve the input
documents for the document processors, as we will discuss in Section 4. Some execution strategies
fully process every available database document, thus guaranteeing the extraction of all the tokens
that the underlying document processor can derive from the database. In contrast, other execution
strategies focus, for efficiency, on a strict subset of the database documents, hence potentially
missing tokens that would have been derived from unexplored documents. One subcategory applies
a filter (e.g., derived in a training stage) to each document to decide whether to fully process it or
not. Other strategies retrieve via querying the documents to be processed, where the queries can
be derived in a number of ways that we will discuss. All these alternate execution strategies thus
exhibit different tradeoffs between execution time and output recall.

Definition 3.1 [Execution Time] Consider a text-centric task, a database of text documents
D, and an execution strategy S for the task, with an underlying document processor P . Then, we
define the execution time of S over D, Time(S, D), as

Time(S, D) = tT (S) +
∑

q∈Qsent

tQ(q) +
∑

d∈Dretr

(
tR(d) + tF (d)

)
+

∑
d∈Dproc

tP (d) (1)

where

• Qsent is the set of queries sent by S,

• Dretr is the set of documents retrieved by S (Dretr ⊆ D),

• Dproc is the set of documents that S processes with document processor P (Dproc ⊆ D),

• tT (S) is the time for training the execution strategy S,

• tQ(q) is the time for evaluating a query q,

• tR(d) is the time for retrieving a document d,

• tF (d) is the time for filtering a retrieved document d, and

• tP (d) is the time for processing a document d with P .

Assuming that the time to evaluate a query is constant across queries (i.e., tQ = tQ(q), for every
q ∈ Qsent) and that the time to retrieve, filter, or process a single document is constant across
documents (i.e., tR = tR(d), tF = tF (d), tP = tP (d), for every d ∈ D), we have:

Time(S, D) = tT (S) + tQ · |Qsent |+
(
tR + tF

)
· |Dretr |+ tP · |Dproc | (2)

2

Definition 3.2 [Recall] Consider a text-centric task, a database of text documents D, and an
execution strategy S for the task, with an underlying document processor P . Let Dproc be the set
of documents from D that S processes with P . Then, we define the recall of S over D, Recall(S, D),
as

Recall(S, D) =
|Tokens(P,Dproc)|
|Tokens(P,D)|

(3)

where Tokens(P,D) is the set of tokens that the document processor P extracts from the set of
documents D. 2

6



Input: database D, recall threshold τ , document processor P
Output: tokens Tokensretr

Tokensretr = ∅, Dretr = ∅, recall = 0
while recall < τ do

Retrieve an unprocessed document d and add d to Dretr

Process d using P and add extracted tokens to Tokensretr

recall = |Tokensretr |/|Tokens|
end
return Tokensretr

Figure 4: The Scan strategy

Our problem formulation is close, conceptually, to the evaluation of a selection predicate in an
RDBMS. In relational databases, the query optimizer selects an access path (i.e., a sequential scan
or a set of indexes) that is expected to lead to an efficient execution. We follow a similar structure
in our work. In the next section, we describe the alternate evaluation methods that are at the core
of the execution strategies for text-centric tasks that have been discussed in the literature.1 Then,
in subsequent sections, we analyze these strategies to see how their performance depends on the
task and database characteristics.

4 Execution Strategies

In this section, we review the alternate execution plans that can be used for the text-centric tasks
described above, and discuss how we can “instantiate” each generic plan for each task of Section 2.
Our discussion assumes that each task has a target recall value τ , 0 < τ ≤ 1, that needs to be
achieved (see Definition 3.2), and that the execution can stop as soon as the target recall is reached.

4.1 Scan

The Scan (SC) strategy is a crawl-based strategy that processes each document in a database D
exhaustively until the number of tokens extracted satisfies the target recall τ (see Figure 4).

The Scan execution strategy does not need training and does not send any queries to the
database. Hence, tT (SC) = 0 and |Qsent | = 0. Furthermore, Scan does not apply any filtering,
hence tF = 0 and |Dproc | = |Dretr |. Therefore, the execution time of Scan is:

Time(SC, D) = |Dretr | · (tR + tP ) (4)

The Scan strategy is the basic evaluation strategy that many text-centric algorithms use when
there are no efficiency issues, or when recall, which is guaranteed to be perfect according to Def-
inition 3.2, is important. We should stress, though, that |Dretr | for Scan is not necessarily equal
to |D|: when the target recall τ is low, or when tokens appear redundantly in multiple documents,
Scan may reach the target recall without processing all the documents in D. In Section 5, we show
how to estimate the value of |Dretr | that is needed by Scan to reach a target recall τ .

1While it is impossible to analyze all existing techniques within a single article, we believe that we offer valuable
insight on how to formally analyze many query- and crawl-based strategies, hence offering the ability to predict
a-priori the expected performance of an algorithm.

7



Input: database D, recall threshold τ , classifier C, document processor P
Output: tokens Tokensretr

Tokensretr = ∅ , Dretr = ∅, recall = 0
while recall < τ and |Dretr | < |D| do

Retrieve an unprocessed document d and add d to Dretr

Use C to classify d as useful for the task or not
if d is useful then

Process d using P and add extracted tokens to Tokensretr

end
recall = |Tokensretr |/|Tokens|

end
return Tokensretr

Figure 5: The Filtered Scan strategy

A basic version of Scan accesses documents in random order. Variations of Scan might impose
a specific processing order and prioritize, say, “promising” documents that are estimated to con-
tribute many new tokens. Another natural improvement of Scan is to avoid processing altogether
documents expected not to contribute any tokens; this is the basic idea behind Filtered Scan, which
we discuss next.

4.2 Filtered Scan

The Filtered Scan (FS) strategy is a variation of the basic Scan strategy. While Scan indistin-
guishably processes all documents retrieved, Filtered Scan first uses a classifier C to decide whether
a document d is useful, i.e., whether d contributes at least one token (see Figure 5). Given the
potentially high cost of processing a document with the document processor P , a quick rejection
of useless documents can speed up the overall execution considerably.

The training time tT (FS) for Filtered Scan is equal to the time required to build the classifier
C for a specific task. Training represents a one-time cost for a task, so in a repeated execution of
the task (i.e., over a new database) the classifier will be available with tT (FS) = 0. This is the
case that we assume in the rest of the analysis. Since Filtered Scan does not send any queries,
|Qsent | = 0. While Filtered Scan retrieves and classifies |Dretr | documents, it actually processes
only Cσ · |Dretr | documents, where Cσ is the “selectivity” of the classifier C, defined as the fraction
of database documents that C judges as useful. Therefore, according to Definition 2, the execution
time of Filtered Scan is:

Time(FS, D) = |Dretr | ·
(
tR + tF + Cσ · tP

)
(5)

In Section 5, we show how to estimate the value of |Dretr | that is needed for Filtered Scan to reach
the target recall τ .

Filtered Scan is used when tP is high and there are many database documents that do not
contribute any tokens to the task at hand. For Task 1, Filtered Scan is used by Proteus [GHY02],
which uses a hand-built set of inexpensive rules to discard useless documents. For Task 2, the
Filtered Scan strategy is typically not applicable, since all the documents are useful. For Task 3,
the Filtered Scan strategy corresponds to a “hard” focused crawler [CvdBD99] that prunes the
search space by only considering documents that are pointed to by useful documents.

8



Input: database D, recall threshold τ , tokens Tokensseed , document processor P
Output: tokens Tokensretr

Tokensretr = ∅, Dretr = ∅, recall = 0
while Tokensseed 6= ∅ do

Remove a token t from Tokensseed

Transform t into a query q and issue q to D
Retrieve up to maxD documents matching q
foreach newly retrieved document d do

Add d to Dretr

Process d using P and add newly extracted tokens to Tokensretr and Tokensseed

recall = |Tokensretr |/|Tokens|
if recall ≥ τ then

return Tokensretr

end
end

end
return Tokensretr

Figure 6: The Iterative Set Expansion strategy

Both Scan and Filtered Scan are crawl-based strategies. Next, we describe two query-based
strategies, Iterative Set Expansion, which emulates query-based strategies that rely on “bootstrap-
ping” techniques, and Automatic Query Generation, which generates queries automatically, without
using the database results.

4.3 Iterative Set Expansion

Iterative Set Expansion (ISE) is a query-based strategy that queries a database with tokens as they
are discovered, starting with a typically small number of user-provided seed tokens Tokensseed . The
intuition behind this strategy is that known tokens might lead to unseen tokens via documents that
have both seen and unseen tokens (see Figure 6). Queries are derived from the tokens in a task-
specific way. For example, a Task 1 tuple 〈Cholera, 1999,Nigeria〉 for DiseaseOutbreaks might be
turned into query [Cholera AND Nigeria]; this query, in turn, might help retrieve documents that
report other disease outbreaks, such as 〈Cholera, 2005,Senegal〉 and 〈Measles, 2004,Nigeria〉.

Iterative Set Expansion has no training phase, hence tT (ISE) = 0. We assume that Iterative
Set Expansion has to send |Qsent | queries to reach the target recall. In Section 5, we show how to
estimate this value of |Qsent |. Also, since Iterative Set Expansion processes all the documents that
it retrieves, tF = 0 and |Dproc | = |Dretr |. Then, according to Definition 3.1:

Time(ISE ,D) = |Qsent | · tQ + |Dretr | ·
(
tR + tP

)
(6)

Informally, we expect Iterative Set Expansion to be efficient when tokens tend to co-occur in the
database documents. In this case, we can start from a few tokens and “reach” the remaining ones.
(We define reachability formally in Section 5.4.) In contrast, this strategy might “stall” and lead
to poor recall for scenarios when tokens occur in isolation, as was analyzed in [AIG03].

Iterative Set Expansion has been successfully applied in many tasks. For Task 1, Iterative Set
Expansion corresponds to the Tuples algorithm for information extraction [AG03], which was shown
to outperform crawl-based strategies when |Duseful | � |D|, where Duseful is the set of documents in

9



Input: database D, recall threshold τ , document processor P , queries Q
Output: tokens Tokensretr

Tokensretr = ∅, Dretr = ∅, recall = 0
foreach query q ∈ Q do

Retrieve up to maxD documents matching q
foreach newly retrieved document d do

Add d to Dretr

Process d using P and add extracted tokens to Tokensretr

recall = |Tokensretr |/|Tokens|
if recall ≥ τ then

return Tokensretr

end
end

end
return Tokensretr

Figure 7: The Automatic Query Generation strategy

D that “contribute” at least one token for the task. For Task 2, Iterative Set Expansion corresponds
to the query-based sampling algorithm by Callan et al. [CCD99], which creates a content summary
of a database from a document sample obtained via query words derived (randomly) from the
already retrieved documents. For Task 3, Iterative Set Expansion is not directly applicable, since
there is no notion of “co-occurrence.” Instead, strategies that start with a set of topic-specific
queries are preferable. Next, we describe such a query-based strategy.

4.4 Automatic Query Generation

Automatic Query Generation (AQG) is a query-based strategy for retrieving useful documents for
a task. Automatic Query Generation works in two stages: query generation and execution. In the
first stage, Automatic Query Generation trains a classifier to categorize documents as useful or not
for the task; then, rule-extraction algorithms derive queries from the classifier. In the execution
stage, Automatic Query Generation searches a database using queries that are expected to retrieve
useful documents. For example, for Task 3 with botany as the topic, Automatic Query Generation
generates queries such as [plant AND phylogeny ] and [phycology ]. (See Figure 7.)

The training time for Automatic Query Generation involves downloading a training set Dtrain

of documents and processing them with P , incurring a cost of |Dtrain | · (tR + tP ). Training time
also includes the time for the actual training of the classifier. This time depends on the learning
algorithm and is, typically, at least linear in the size of Dtrain . Training represents a one-time cost
for a task, so in a repeated execution of the task (i.e., over a new database) the classifier will be
available with tT (AQG) = 0. This is the case that we assume in the rest of the analysis. During
execution, the Automatic Query Generation strategy sends |Qsent | queries and retrieves |Dretr |
documents, which are then all processed by P , without any filtering2 (i.e., |Dproc | = |Dretr |). In
Section 5, we show how to estimate the values of |Qsent | and |Dretr | that are needed for Automatic

2Note that we could also consider “filtered” versions of Iterative Set Expansion and Automatic Query Generation,
just as we do for Scan. For brevity, we do not study such variations: filtering is less critical for the query-based
strategies than for Scan, because queries generally retrieve a reasonably small fraction of the database documents.

10



Query Generation to reach a target recall τ . Then, according to Definition 3.1:

Time(AQG, D)= |Qsent | · tQ + |Dretr | ·
(
tR + tP

)
(7)

The Automatic Query Generation strategy was proposed under the name QXtract for Task
1 [AG03]; it was also used for Task 2 in [IG02] and for Task 3 in [CS96].

The description of the execution time has so far relied on parameters (e.g., |Dretr |) that are
not known before executing the strategies. In the next section, we focus on the central issue of
estimating these parameters. In the process, we show that the performance of each strategy depends
heavily on task-specific properties of the underlying database; then, in Section 6 we show how to
characterize the required database properties and select the best execution strategy for a task.

5 Estimating Execution Plan Costs

In the previous section, we presented four alternative execution plans and described the execution
cost for each plan. Our description focused on describing the main factors of the actual execution
time of each plan and did not provide any insight on how to estimate these costs: many of the
parameters that appear in the cost equations are outcomes of the execution and cannot be used to
estimate or predict the execution cost. In this section, we show that the cost equations described in
Section 4 depend on a few fundamental task-specific properties of the underlying databases, such
as the distribution of tokens across documents. Our analysis reveals the strengths and weaknesses
of the execution plans and (most importantly) provides an easy way to estimate the cost of each
technique for reaching a target recall τ . The rest of the section is structured as follows. First,
Section 5.1 describes the notation and gives the necessary background. Then, Sections 5.2 and 5.3
analyze the two crawl-based techniques, Scan and Filtered Scan, respectively. Finally, Sections 5.4
and 5.5 analyze the two query-based techniques, Iterative Set Expansion and Automatic Query
Generation, respectively.

5.1 Preliminaries

In our analysis, we use some task-specific properties of the underlying databases, such as the
distribution of tokens across documents. We use g(d) to represent the “degree” of a document d
for a document processor P , which is defined as the number of distinct tokens extracted from d
using P . Similarly, we use g(t) to represent the “degree” of a token t in a database D, which is
defined as the number of distinct documents that contain t in D. Finally, we use g(q) to represent
the “degree” of a query q in a database D, which is defined as the number of documents from D
retrieved by query q.

In general, we do not know a-priori the exact distribution of the token, document, and query
degrees for a given task and database. However, we typically know the distribution family for
these degrees, and we just need to estimate a few parameters to identify the actual distribution for
the task and database. For Task 1, the document and token degrees tend to follow a power-law
distribution [AIG03], as we will see in Section 7. For Task 2, token degrees follow a power-law
distribution [Zip49] and document degrees follow roughly a lognormal distribution [Mit04]; we
provide further evidence in Section 7. For Task 3, the document and token distributions are, by
definition, uniform over Duseful with g(t) = g(d) = 1. In Section 6, we describe how to estimate the
parameters of each distribution.

11



t1 t2 tM

d1

d2

d3

dN

...

...

D

Tok ens

Sampling
for t1

Sampling
for t2

Sampling
for tM

Figure 8: Modeling Scan as multiple sampling processes, one per token, running in parallel over D

5.2 Cost of Scan

According to Equation 4, the cost of Scan is determined by the size of the set Dretr , which is
the number of documents retrieved to achieve a target recall τ .3 To compute |Dretr |, we base our
analysis on the fact that Scan retrieves documents in no particular order and does not retrieve
the same document twice. This process is equivalent to sampling from a finite population [Ros02].
Conceptually, Scan samples for multiple tokens during execution. Therefore, we treat Scan as
performing multiple “sampling from a finite population” processes, running in parallel over D (see
Figure 8). Each sampling process corresponds to a token t ∈ Tokens. According to probability
theory [Ros02, page 56], the probability of observing a token t k times in a sample of size S follows
the hypergeometric distribution. For k = 0, we get the probability that t does not appear in the
sample, which is

(|D|−g(t)
S

)
/
(|D|

S

)
. The complement of this value is the probability that t appears in

at least one document in the set of S retrieved documents. So, after processing S documents, the
expected number of retrieved tokens for Scan is:

E[|Tokensretr |] =
∑

t∈Tokens

1− (|D| − g(t))! (|D| − S)!
(|D| − g(t)− S)!|D|!

(8)

Hence, we estimate4 the number of documents that Scan should retrieve to achieve a target recall
τ as: ̂|Dretr | = min{S : E[|Tokensretr |] ≥ τ |Tokens|} (9)

The number of documents |Dretr | retrieved by Scan depends on the token degree distribution. In
Figure 9, we show the expected recall of Scan as a function of the number of retrieved documents,

3We assume that the values of tR and tP are known or that we can easily estimate them by repeatedly retrieving
and processing a few sample documents.

4To avoid numeric overflows during the computation of the factorials, we first take the logarithm of the ratio
(|D|−g(t))!(|D|−S)!
(|D|−g(t)−S)!|D|! and then use the Stirling approximation ln x! ≈ x ln x − x + ln x

2
+ 1

2
ln 2π to efficiently compute

the logarithm of each factorial. After computing the value of the logarithm of the ratio, we simply compute the
exponential of the logarithm to estimate the original value of the ratio.

12



g(t)=1
g(t)=2
g(t)=4.4

 

0

0.2

0.4

0.6

0.8

1

Re
ca

ll

20 40 60 80 100
100%  |Dretr| / |D|

Figure 9: Recall of the Scan strategy as a function of the fraction of retrieved documents, for
g(t) = 1, g(t) = 2, and g(t) = 4.4

when g(t) is uniform for all tuples. For many databases, the distribution of g(t) is highly skewed
and follows a power-law distribution: a few tokens appear in many documents, while the majority
of tokens can only be extracted from only a few documents. For example, the Task 1 tuple 〈SARS ,
2003, China〉 can be extracted from hundreds of documents in the New York Times archive, while
the tuple 〈Diphtheria, 2003, Afghanistan〉 appears only in a handful of documents. The recall of
Scan for a given sample size S is lower over a database with a power-law token degree distribution
compared to the recall over a database with uniform token degree distribution, when the token
degree distributions have the same mean value (see Figure 10). This is expected: while it is easy
to discover the few very frequent tokens, it is hard to discover the majority of tokens, with low
frequency. By estimating the parameters of the power-law distribution, we can then compute the
expected values of g(t) for the (unknown) tokens in D and use Equations 8 and 9 to derive the
expected cost of Scan. In Section 6, we show how to perform such estimations on-the-fly.

The analysis above assumes a random retrieval of documents. If the documents are retrieved
in a special order, which is unlikely for the task scenarios that we consider, then we should model
Scan as “stratified” sampling without replacement: instead of assuming a single sampling pass, we
decompose the analysis into multiple “strata” (i.e., into multiple sampling phases), each one with
its own g(·) distribution. A simple instance of such technique is Filtered Scan, which (conceptually)
samples useful documents first, as discussed next.

5.3 Cost of Filtered Scan

Filtered Scan is a variation of the basic Scan strategy, therefore the analysis of both strategies is
similar. The key difference between these strategies is that Filtered Scan uses a classifier to filter
documents, which Scan does not. The Filtered Scan classifier thus limits the number of documents
processed by the document processor P . Two properties of the classifier C are of interest for our
analysis:

• The classifier’s selectivity Cσ: if Dproc is the set of documents in D deemed useful by the
classifier (and then processed by P ), then Cσ = |Dproc |

|D| .

13



Power Law (beta=1.75)

Uniform
 

0.2

0.4

0.6

0.8

1

Re
ca

ll

20 40 60 80 100
100%  |Dretr| / |D|

Figure 10: Recall of the Scan strategy as a function of the fraction of retrieved documents, compar-
ing the cases when g(t) is constant for each token t and when g(t) follows a power-law distribution
(the mean value of g(t) is the same in both cases, E[g(t)] = 4.4)

• The classifier’s recall Cr: this is the fraction of useful documents in D that are also classified
as useful by the classifier. The value of Cr affects the effective token degree for each tuple t:
now each token appears, on average, Cr · g(t) times5 in Dproc , the set of documents actually
processed by P .

Using these observations and following the methodology that we used for Scan, we have:

E[|Tokensretr |] =
∑

t∈Tokens

1− (Cσ ·|D| − Cr ·g(t))! (Cσ ·|D| − S)!
(Cσ ·|D| − Cr ·g(t)− S)! (Cσ ·|D|)!

(10)

Again, similar to Scan, we have:

̂|Dretr | =
̂|Dproc |
Cσ

=
min{S : E[|Tokensretr |] ≥ τ |Tokens|}

Cσ
(11)

Equations 10 and 11 show the dependence of Filtered Scan on the performance of the classifier.
When Cσ is high, almost all documents in D are processed by P , and the savings compared to Scan
are minimal, if any. When a classifier has low recall Cr, then many useful documents are rejected
and the effective token degree decreases, in turn increasing |Dretr |. We should also emphasize that
if the recall of the classifier is low, then Filtered Scan is not guaranteed to reach the target recall
τ . In this case, the maximum achievable recall might be less than one and |Dretr | = |D|.

5.4 Cost of Iterative Set Expansion

So far, we have analyzed two crawling-based strategies. Before moving to the analysis of the Iterative
Set Expansion query-based strategy, we define “queries” more formally as well as a graph-based
representation of the querying process, originally introduced in [AIG03].

5We assume uniform recall across tokens, i.e., that the classifier’s errors are not biased towards a specific set of
tokens. This is a reasonable assumption for most classifiers. Nevertheless, we can easily extend the analysis and
model any classifier bias by using a different classifier recall Cr(t) for each token t.

14



T D

t1

t3

t2

t4

d1

d3

d2

d4

t2

t1

t5

t
3

t4

t5 d5

Figure 11: Portion of the querying and reachability graphs of a database

Definition 5.1 [Querying Graph] Consider a database D and a document processor P . We
define the querying graph QG(D,P ) of D with respect to P as a bipartite graph containing the
elements of Tokens and D as nodes, where Tokens is the set of tokens that P derives from D. A
directed edge from a document node d to a token node t means that P extracts t from d. An edge
from a token node t to document node d means that d is returned from D as a result to a query
derived from the token t. 2

For example, suppose that token t1, after being suitably converted into a query, retrieves a document
d1 and, in turn, that processor P extracts the token t2 from d1. Then, we insert an edge into QG
from t1 to d1, and also an edge from d1 to t2. We consider an edge d → t, originating from
a document node d and pointing to a token node t, as a “contains” edge, and an edge t → d,
originating from a token node t and pointing to a document node d, as a “retrieves” edge.

Using the querying graph, we analyze the cost and recall of Iterative Set Expansion. As a simple
example, consider the case where the initial Tokensseed set contains a single token, tseed . We start
by querying the database using the query derived by tseed . The cost at this stage is a function of
the number of documents retrieved by tseed : this is the number of neighbors at distance one from
tseed in the querying graph QG. The recall of Iterative Set Expansion, at this stage, is determined
by the number of tokens derived from the retrieved documents, which is equal to the number of
neighbors at distance two from tseed . Following the same principle, the cost in the next stage (after
querying with the tokens at distance two) depends on the number of neighbors at distance three
and recall is determined by the number of neighbors at distance four, and so on.

The previous example illustrates that the recall of Iterative Set Expansion is bounded by the
number of tokens “reachable” from the Tokensseed tokens; the execution time is also bounded by the
number of documents and tokens that are “reachable” from the Tokensseed tokens. The structure
of the querying graph thus defines the performance of Iterative Set Expansion. To compute the
interesting properties of the querying graph, we resort to the theory of random graphs: our approach
is based on the methodology suggested by Newman et al. [NSW01] and uses generating functions to
describe the properties of the querying graph QG. We define the generating functions Gd0(x) and

15



Gt0(x) to describe the degree distribution6 of a randomly chosen document and token, respectively:

Gd0(x) =
∑

k

pdk · xk, Gt0(x) =
∑

k

ptk · xk (12)

where pdk is the probability that a randomly chosen document d contains k tokens (i.e., pdk =
Pr{g(d) = k}) and ptk is the probability that a randomly chosen token t retrieves k documents
(i.e., ptk = Pr{g(t) = k}) when used as a query.

In our setting, we are also interested in the degree distribution for a document (or token,
respectively) chosen by following a random edge. Using the methodology of Newman et al. [NSW01],
we define the functions Gd1(x) and Gt1(x) that describe the degree distribution for a document
and token, respectively, chosen by following a random edge:

Gd1(x) = x
Gd′0(x)
Gd′0(1)

, Gt1(x) = x
Gt′0(x)
Gt′0(1)

(13)

where Gd′0(x) is the first derivative of Gd0(x) and Gt′0(x) is the first derivative of Gt0(x), respec-
tively. (See [NSW01] for the proof.)

For the rest of the analysis, we use the following useful properties of generating functions [Wil90]:

• Moments: The i-th moment of the probability distribution generated by a function G(x) is
given by the i-th derivative of the generating function G(x), evaluated at x = 1. We mainly
use this property to compute efficiently the mean of the distribution described by G(x).

• Power : If X1, . . . , Xm are independent, identically distributed random variables generated by
the generating function G(x), then the sum of these variables, Sm =

∑m
i=1 Xi, has generating

function [G(x)]m.

• Composition: If X1, . . . , Xm are independent, identically distributed random variables gener-
ated by the generating function G(x), and m is also an independent random variable generated
by the function F (x), then the sum Sm =

∑m
i=1 Xi has generating function F (G(x)).

Using these properties and Equations 12 and 13, we can proceed to analyze the cost of Iterative
Set Expansion. Assume that we are in the stage where Iterative Set Expansion has sent a set Q of
tokens as queries. These tokens were discovered by following random edges on the graph; therefore,
the degree distribution of these tokens is described by Gt1(x) (Equation 13). Then, by the Power
property, the distribution of the total number of retrieved documents (which are pointed to by
these tokens) is given by the generating function:7

Gd2(x) = [Gt1(x)]|Q| (14)

Now, we know that Dretr in Equation 6 is a random variable and its distribution is given
by Gd2(x). We also know that we retrieve documents by following random edges on the graph;
therefore, the degree distribution of these documents is described by Gd1(x) (Equation 13). Then,

6We use undirected graph theory despite the fact that our querying graph is directed. Using directed graph results
would of course be preferable, but it would require knowledge of the joint distribution of incoming and outgoing
degrees for all nodes of the querying graph, which would be challenging to estimate. So we rely on undirected graph
theory, which requires only knowledge of the two marginal degree distributions, namely the token and document
degree distributions.

7This is the number of non-distinct documents. To compute the number of distinct documents, we use the sieve
method. For details, see [Wil90, page 110].

16



by the Composition property8, the distribution of the total number of tokens |Tokensretr | retrieved
by the Dretr documents is given by the generating function:9

Gt2(x) = Gd2(Gd1(x)) = [Gt1(Gd1(x))]|Q| (15)

Finally, we use the Moments property to compute the expected values for |Dretr | and |Tokensretr |,
after Iterative Set Expansion sends Q queries.

E[|Dretr |] =
[

d

dx
[Gt1(x)]|Q|

]
x=1

(16)

E[|Tokensretr |] =
[

d

dx
[Gt1(Gd1(x))]|Q|

]
x=1

(17)

Hence, the number of queries |Qsent | sent by Iterative Set Expansion to reach the target recall τ is:

̂|Qsent | = min{Q : E[|Tokensretr |] ≥ τ |Tokens|} (18)

Our analysis, so far, did not account for the fact that the tokens in a database are not always
“reachable” in the querying graph from the tokens in Tokensseed . As we have briefly discussed,
though, the ability to reach all the tokens is necessary for Iterative Set Expansion to achieve good
recall. Before elaborating further on the subject, we describe the concept of the reachability graph,
which we originally introduced in [AIG03] and is fundamental for our analysis.

Definition 5.2 [Reachability Graph] Consider a database D, and an execution strategy S
for a task with an underlying document processor P and querying strategy R. We define the
reachability graph RG(D,S) of D with respect to S as a graph whose nodes are the tokens that P
derives from D, and whose edge set E is such that a directed edge ti → tj means that P derives tj
from a document that R retrieves using ti. 2

Figure 11 shows the reachability graph derived from an underlying querying graph, illustrating
how edges are added to the reachability graph. Since token t2 retrieves document d3 and d3 contains
token t3, the reachability graph contains the edge t2 → t3. Intuitively, a path in the reachability
graph from a token ti to a token tj means that there is a set of queries that start with ti and lead
to the retrieval of a document that contains the token tj . In the example in Figure 11, there is a
path from t2 to t4, through t3. This means that query t2 can help discover token t3, which in turn
helps discover token t4. The absence of a path from a token ti to a token tj in the reachability
graph means that we cannot discover tj starting from ti. This is the case for the tokens t2 and t5
in Figure 11.

The reachability graph is a directed graph and its connectivity defines the maximum achievable
recall of Iterative Set Expansion: the upper limit for the recall of Iterative Set Expansion is equal
to the total size of the connected components that include tokens in Tokensseed . In random graphs,
typically we observe two scenarios: either the graph is disconnected and has a large number of
disconnected components, or we observe a giant component and a set of small connected compo-
nents. Chung and Lu [CL02] proved this for graphs with a power-law degree distribution, and also
provided the formulas for the composition of the size of the components. Newman et al. [NSW01]

8We use the Composition property and not the Power property because |Dretr | is a random variable.
9Again, this is the number of non-distinct tokens. To compute the number of distinct tokens, we use the sieve

method. For details, see [Wil90, page 110].

17



provide similar results for graphs with arbitrary degree distributions. Interestingly for our problem,
the size of the connected components can be estimated for many degree distributions using only a
small number of parameters (e.g., for power-law graphs we only need an estimate of the average
node out-degree [CL02] to compute the size of the connected component; in Section 6 we explain
how we obtain such estimates). By estimating only a small number of parameters, we can thus
characterize the performance limits of the Iterative Set Expansion strategy.

As discussed, Iterative Set Expansion relies on the discovery of new tokens to derive new que-
ries. Therefore, in sparse and “disconnected” databases, Iterative Set Expansion can exhaust the
available queries and still miss a significant part of the database, leading to low recall. In such
cases, if high recall is a requirement, different strategies are preferable. The alternative query-based
strategy that we examine next, Automatic Query Generation, showcases a different querying ap-
proach: instead of deriving new queries during execution, Automatic Query Generation generates
a set of queries offline and then queries the database without using query results as feedback.

5.5 Cost of Automatic Query Generation

Section 4.4 showed that the cost of Automatic Query Generation consists of two main components:
the training cost and the querying cost. Training represents a one-time cost for a task, as discussed
in Section 4.4, so we ignore it in our analysis. Therefore, the main component that remains to be
analyzed is the querying cost.

To estimate the querying cost of Automatic Query Generation, we need to estimate recall after
sending a set Q of queries and the number of retrieved documents |Dretr | at that point. Each query
q retrieves g(q) documents, and a fraction p(q) of these documents is useful for the task at hand.
Assuming that the queries are biased only towards retrieving useful documents and not towards
any other particular set of documents, the queries are conditionally independent10 within the set of
documents Duseful and within the rest of the documents, Duseless . Therefore, the probability that a
useful document is retrieved by a query q is p(q)·g(q)

|Duseful | . Hence, the probability that a useful document
d is retrieved by at least one query is:

1− Pr{d not retrieved by any query}=1−
|Q|∏
i=1

(
1− p(qi) · g(qi)

|Duseful |

)
So, given the values of p(qi) and g(qi), the expected number of useful documents that are retrieved
is:

E[|Duseful
retr |] = |Duseful | ·

1−
|Q|∏
i=1

(
1− p(qi) · g(qi)

|Duseful |

) (19)

and the number of useless documents retrieved is:

E[|Duseless
retr |]= |Duseless | ·

1− |Q|∏
i=1

(
1− (1− p(qi)) · g(qi)

|Duseless |

) (20)

Assuming that the “precision” of a query q is independent of the number of documents that q
retrieves,11 we get simpler expressions:

E[|Duseful
retr |]= |Duseful | ·

(
1−

(
1− E[p(q)] · E[g(q)]

|Duseful |

)|Q|
)

(21)

10The conditional independence assumption implies that the queries are only biased towards retrieving useful
documents, and not towards any subset of useful documents.

11We observed this assumption to be true in practice.

18



E[|Duseless
retr |]= |Duseless | ·

(
1−

(
1− (1− E[p(q)]) · E[g(q)]

|Duseless |

)|Q|
)

(22)

where E[p(q)] is the average precision of the queries and E[g(q)] is the average number of retrieved
documents per query. The expected number of retrieved documents is then:

E[|Dretr |] = E[|Duseful
retr |] + E[|Duseless

retr |] (23)

To compute the recall of Automatic Query Generation after issuing Q queries, we use the
same methodology that we used for Filtered Scan. Specifically, Equation 21 reveals the total
number of useful documents retrieved, and these are the documents that contribute to recall.
These documents belong to Duseful . Hence, similarly to Scan and Filtered Scan, we model Automatic
Query Generation as sampling without replacement ; the essential difference now is that the sampling
is over the Duseful set. Therefore, we have an effective database size |Duseful | and a sample size
equal to |Duseful

retr |.12 By modifying Equation 8 appropriately, we have:

E[|Tokensretr |] =
∑

t∈Tokens

1−
(|Duseful | − g(t))!

(
|Duseful | − |Duseful

retr |
)
!(

|Duseful | − g(t)− |Duseful
retr |

)
!|Duseful |!

(24)

A good approximation of the average value of |Tokensretr | can be derived by setting S to be the
mean value of the |Duseful

retr | distribution (Equation 21). Similarly to the analysis for Iterative Set
Expansion, we have: ̂|Qsent | = min{Q : E[|Tokensretr |] ≥ τ |Tokens|} (25)

In this section, we analyzed four alternate execution plans and we showed how their execution
time and recall depend on fundamental task-specific properties of the underlying text databases.
Next, we show how to exploit the parameter estimation and our cost model to significantly speed
up the execution of text-centric tasks.

6 Putting it All Together

In Section 5, we examined how we can estimate the execution time and the recall of each execution
plan by using the values of a few parameters, including the target recall τ and the token, document,
and query degree distributions. In this section, we present two different optimization schemes. In
Section 6.1, we present a “global” optimizer, which tries to pick the best execution strategy for
reaching the target recall. Then, in Section 6.2 we present a “local” optimizer, which partitions
the execution in multiple stages, and selects the best execution strategy for each stage. As we will
show in our experimental evaluation in Section 8, our optimization approaches leads to efficient
executions of the text-centric tasks.

6.1 Global Optimization Approach

The goal of our global optimizer is to select an execution plan that will reach the target recall in
minimum amount of time. The optimizer starts by choosing one of the execution plans described
in Section 4, using the cost model that we presented in Section 5.

12The documents Duseless
retr increase the execution time but do not contribute towards recall and we ignore them for

recall computation.

19



Our cost model relies on a number of parameters, which are generally unknown before executing
a task. Some of these parameters, such as classifier selectivity and recall (Section 5.3), can be
estimated efficiently before the execution of the task. For example, the classifier characteristics
for Filtered Scan and query degree and precision for Automatic Query Generation can be easily
estimated during classifier training using cross-validation [CMN98].

Other parameters of our cost model, namely the token and document distributions, are challeng-
ing to estimate. Rather than attempting to estimate these distributions without prior information,
we rely on the fact that for many text-centric tasks we know the general family of these distri-
butions, as we discussed in Section 5.1. Hence, our estimation task reduces to estimating a few
parameters of well-known distribution families,13 which we discuss below.

To estimate the parameters of a distribution family for a concrete text-centric task and database,
we could resort to a “preprocessing” estimation phase before we start executing the actual task. For
this, we could follow —once again— Chaudhuri et al. [CMN98], and continue to sample database
documents until cross-validation indicates that the estimates are accurate enough. An interesting
observation is that having a separate preprocessing estimation phase is not necessary in our scenario,
since we can piggyback such estimation phase into the initial steps of an actual execution of the task.
In other words, instead of having a preprocessing estimation phase, we can start processing the task
and exploit the retrieved documents for “on-the-fly” parameter estimation. The basic challenge in
this scenario is to guarantee that the parameter estimates that we obtain during execution are
accurate. Below, we discuss how to perform the parameter estimation for each of the execution
strategies of Section 4.

6.1.1 Scan

Our analysis in Section 5.2 relies on the characteristics of the token and document degree dis-
tributions. After retrieving and processing a few documents, we can estimate the distribution
parameters based on the frequency of the initially extracted tokens and documents. Specifically,
we can use a maximum likelihood fit to estimate the parameters of the document degree distribu-
tion. For example, the document degrees for Task 1 tend to follow a power-law distribution, with
a probability mass function Pr{g(d) = x} = x−β/ζ(β), where ζ(β) is the Riemman zeta function
ζ(β) =

∑+∞
n=1 n−β that serves as a normalizing factor. Our goal is to estimate the most likely

value of β, for a given sample of document degrees g(d1), . . . , g(ds). Using a maximum likelihood
estimation (MLE) approach, we identify the value of β that maximizes the likelihood function:

l(β|g(d1), . . . , g(ds)) =
s∏

i=1

g(di)−β

ζ(β)

Taking the logarithm, we have the log-likelihood function:
13Our current optimization framework follows a parametric approach, by assuming that we know the form of

the document and token degree distributions but not their exact parameters. Our framework can also be used in
a completely non-parametric setting, in which we make no assumptions on the degree distributions; however, the
estimation phase would be more expensive in such a setting. The development of an efficient, completely non-
parametric framework is a topic for interesting future research.

20



L(β|g(d1), . . . , g(ds)) = log l(β|g(d1), . . . , g(ds))

=
s∑

i=1

(−β log g(di)− log ζ(β))

= −s · log ζ(β)− β

s∑
i=1

log g(di) (26)

To find the maximum of the log-likelihood function, we identify the value of β that makes the first
derivative of L be equal to zero:

d

dβ
L(β|g(d1), . . . , g(ds)) = 0

−s · ζ ′(β)
ζ(β)

−
s∑

i=1

log g(di) = 0

ζ ′(β)
ζ(β)

= −1
s

s∑
i=1

log g(di) (27)

where ζ ′(β) is the first derivative of the Riemman zeta function. Then, we can estimate the value
of β using numeric approximation. Similar approaches can be used for other distribution families.

The estimation of the token degree distribution is typically more challenging than the estimation
of the document degree distribution. While we can observe the degree g(d) of each document d
retrieved in a document sample, we cannot directly determine the actual degree g(t) of each token
t extracted from sample documents. In general, the degree g(t) of a token t in a database is larger
than the degree of t in a document sample extracted from the database. Hence, before using the
maximum likelihood approach described above, we should estimate, for each extracted token t, the
token degree g(t) in the database.

We denote the sample degree of a token t as s(t), defined over a given document sample. Using,
again, a maximum likelihood approach, we find the most likely token frequency g(t) that maximizes
the probability of observing the token frequency s(t) in the sample:

Pr{g(t)|s(t)} =
Pr{s(t)|g(t)} · Pr{g(t)}

Pr{s(t)}
(28)

Since Pr{s(t)} is constant across all possible values of g(t), we can ignore this factor for this
maximization problem. From Section 5.2, we know that the probability of retrieving s(t) times a
token t when it appears g(t) times in the database follows a hypergeometric distribution, and then:

Pr{s(t)|g(t)} =

(g(t)
s(t)

)(|D|−g(t)
S−s(t)

)(|D|
S

)
To estimate Pr{g(t)}, we rely on our knowledge of the distribution family of the token degrees.
For example, the token degrees for Task 1 follow a power-law distribution, with Pr{g(t)} =
g(t)−β/ζ(β). Then, for Task 1, we find the value of g(t) that maximizes the following:

Pr{s(t)|g(t)} · Pr{g(t)} =

(g(t)
s(t)

)(|D|−g(t)
S−s(t)

)(|D|
S

) · g(t)−β

ζ(β)
(29)

21



For this, we take the logarithm of the expression above and use the Stirling approximation14 to
eliminate the factorials. We then find the value of g(t) for which the derivative of the logarithm of
the expression above with respect to g(t) is equal to zero. Given the database size |D|, the sample
size S, and the sample degree s(t) of the token, we can estimate efficiently the maximum likelihood
estimate of g(t), for different values of the parameter(s) of the token degree distribution. Then,
using these estimates of the database token degrees, we can proceed as in the document distribution
case and estimate the token distribution parameters.

The final step in the token distribution estimation is the estimation of the value of |Tokens|,
which we need, as we will see, to evaluate Equation 8. Unfortunately, the Tokens set is, of course,
unknown and so are the g(t) degrees on which Equation 8 relies. But during execution, we know the
number of tokens that we extract from the documents that we retrieve, and this actual number of
extracted tokens should match the E[|Tokensretr |] prediction of Equation 8 for the corresponding
values of the sample size S. Furthermore, we know the values of |D|, S, and the probabilities
Pr{g(t) = k}. Therefore, the value |Tokens| ·Pr{g(t) = k} is an estimate of how many tokens have
degree k in the database. Hence, the only unknown value in Equation 8 is the value of |Tokens|,
and E[|Tokensretr |] is monotonically increasing with |Tokens|. We can then estimate the value of
|Tokens| that solves Equation 8 by observing which value of |Tokens| is most likely to result in
executions that extract E[|Tokensretr |] tokens for the given sample size S.

6.1.2 Filtered Scan

The analysis for Filtered Scan is analogous to the analysis of Scan. Assuming that the only classifier
bias is towards useful documents (see Section 5.3), we use the document degree distribution in the
retrieved sample to estimate the database degree distribution. To estimate the token distribution,
the only difference with the analysis for Scan is that the probability of retrieving a token s(t) times
when it appears g(t) times in the database is now:

Pr{s(t)|g(t)} =

(Cr·g(t)
s(t)

)(Cσ ·|D|−Cr·g(t)
S−s(t)

)(Cσ ·|D|
S

) (30)

where Cr is the classifier’s recall and Cσ is the classifier’s selectivity (see Section 5.3).

6.1.3 Iterative Set Expansion

The crucial observation in this case is that, during querying, we actually sample from the distribu-
tions generated by the Gt1(x) and Gd1(x) functions, rather than from the distributions generated
by Gt0(x) and Gd0(x) (see Section 5.4). Still, we can use our estimation procedure that we applied
for Scan to return the parameters for the distributions generated by Gt1(x) and Gd1(x), based on
the sample document and token degrees observed during querying. However, these estimates are
not the actual parameters of the token and document degree distributions, which are generated by
the Gt0(x) and Gd0(x) functions, respectively, not by Gt1(x) and Gd1(x). Hence, our goal is to
estimate the parameters for the distributions generated by the Gt0(x) and Gd0(x) functions, given
the parameter estimates for the distributions generated by the Gt1(x) and Gd1(x) functions.

For this, we can use Equations 12 and 13, together with the distributions generated by Gt1(x)
and Gd1(x), to estimate the Gt0(x) and Gd0(x) distributions. Intuitively, Gt1(x) and Gd1(x)
overestimate Pr{g(t) = k} and Pr{g(d) = k} by a factor of k, since tokens and documents with

14The Stirling approximation is ln x! ≈ x ln x− x + ln x
2

+ 1
2

ln 2π.

22



degree k are k times more likely to be discovered during querying than during random sampling.
Therefore,

Pr{g(t) = k} = Kt ·
̂PrISE{g(t) = k}

k

Pr{g(d) = k} = Kd ·
̂PrISE{g(d) = k}

k

where ̂PrISE{g(t) = k} and ̂PrISE{g(d) = k} are the probability estimates that we get for the
distributions generated by Gt1(x) and Gd1(x), and Kt and Kd are normalizing constants that
ensure that the sum across all probabilities is one.

6.1.4 Automatic Query Generation

For the document degree distribution, we can proceed analogously as for Scan. The crucial difference
is that Automatic Query Generation underestimates Pr{g(d) = 0}, the probability that a document
d is useless, while it overestimates Pr{g(d) = k}, for k ≥ 1. The correct estimate for Pr{g(d) = 0}
is:

Pr{g(d) = 0} =
|Duseless |
|D|

=
|Duseless |

|Duseful |+ |Duseless |
(31)

To estimate the correct values of |Duseful | and |Duseless |, we use Equations 19 and 20. For each
submitted query qi, we know its precision p(qi) and its degree g(qi). We also know the number
of useful documents retrieved |Duseful

retr | and the number of useless documents retrieved |Duseless
retr |.

Hence, the only unknown variable in Equation 19 is |Duseful |, while the only unknown variable
in Equation 20 is |Duseless |. It is difficult to solve these equations analytically for |Duseful | and
|Duseless |. However, Equations 19 and 20 are monotonic with respect to |Duseful | and |Duseless |,
respectively, so it is easy to estimate numerically the values of |Duseful | and |Duseless | that solve the
equations. Then, we can estimate Pr{g(d) = 0} using Equation 31. After correcting the estimate
for Pr{g(d) = 0}, we proportionally adjust the estimates for the remaining values Pr{g(d) = k},
for k ≥ 1, to ensure that

∑+∞
i=0 Pr{g(d) = i} = 1.

To estimate the parameters of the token distribution, we assume that, given sufficiently many
queries, Automatic Query Generation will have perfect recall. In this case, we assume that Auto-
matic Query Generation performs random sampling over the Duseful documents, rather than over
the complete database. We then set:

Pr{s(t)|g(t)} =

(g(t)
s(t)

)(|Duseful |−g(t)
S−s(t)

)
(|Duseful |

S

) (32)

where S = |Duseful
retr |. Then, we proceed with the estimation analogously as for Scan.

6.1.5 Choosing an Execution Strategy

Using the estimation techniques from Sections 6.1.1 through 6.1.4, we can now describe our overall
global optimization approach. Initially, our optimizer is informed of the general token and docu-
ment degree distribution (e.g., the optimizer knows that the token and document degrees follow a
power-law distribution for Task 1 ). As discussed, the actual parameters of these distributions are
unknown, so the optimizer assumes some rough constant values for these parameters (e.g., β = 2 for

23



Input: database D, recall threshold τ , alternate strategies S1, . . . ,Sn

Output: tokens Tokensretr , documents Dretr

statistics = ∅, Dretr = ∅, Tokensretr = ∅, recall = 0
while recall < τ and |Dretr | < |D| do

/* Locate best possible strategy */
foreach Si ∈ {S1, . . . ,Sn} do

Use available statistics to estimate Time(Si, D), the time for Si to reach target recall
τ

end
strategy = arg min

Si

{Time(Si, D)}, where Si ∈ {S1, . . . ,Sn}

/* Execute strategy */
Execute strategy over N unprocessed documents and update Dretr and Tokensretr

accordingly
Refine statistics using Dretr and Tokensretr

end
return Tokensretr , Dretr

Figure 12: The “global” optimization approach, which chooses an execution strategy that is able
to reach a target recall τ

power-law distributions) —which will be later refined— to decide which of the execution strategies
from Section 4 is most promising.15

Our optimizer’s initial choice of execution strategy for a task may of course be far from opti-
mal, since this choice is made without accurate parameter estimates for the token and document
degree distributions. Therefore, as documents are retrieved and tokens are extracted using this
initial execution strategy, the optimizer updates the distribution parameters using the techniques
of Sections 6.1.1 through 6.1.4, checking the robustness of the new estimates using cross-validation.

At any point in time, if the estimated execution time for reaching the target recall, Time(S, D),
of a competing strategy S is smaller than that of the current strategy, then the optimizer switches to
executing the less expensive strategy, continuing from the execution point reached by the current
strategy. In practice, we refine the statistics and reoptimize only after the chosen strategy has
processed N documents.16 (In our experiments, we set N = 100.) Figure 12 summarizes this
algorithm.

6.2 Local Optimization Approach

The global optimization approach (Section 6.1) attempts to pick an execution plan to reach a
target recall τ for a given task. The optimizer only revisits its decisions as a result of changes in
the token and document statistics on which it relies, as we discussed. In fact, if the optimizer were
provided with perfect statistics, it would pick a single plan (out of Scan, Filtered Scan, Iterative
Set Expansion, and Automatic Query Generation) from the very beginning and continue with this

15Incidentally, this general approach is also followed by relational query processors [SAC+79], where rough constant
values are used in the absence of reliable statistics for query optimization (e.g., the selectivity of certain selection
conditions might be arbitrarily assumed to be, say, 1

10
).

16An interesting direction for future research is to use confidence bounds for the statistics estimates, which dictate
how often to reoptimize. Intuitively, the estimates become more accurate as we process more documents. Hence, the
need to reconsider the optimization choice decreases as the execution progresses.

24



Input: database D, recall threshold τ , alternate strategies S1, . . . ,Sn, optimization interval
k

Output: tokens Tokensretr

statistics = ∅, Dretr = ∅, Tokensretr = ∅
while recall < τ and |Dretr | < |D| do

/* Optimize for the next-k tokens */
{Tokens ′retr , D

′
retr} = GlobalOptimizer(D −Dretr , k

|Tokens|−|Tokensretr | , S1, . . . ,Sn)
Tokensretr = Tokensretr ∪ Tokens ′retr
Dretr = Dretr ∪D′

retr

Refine statistics for D −Dretr , using Dretr and Tokensretr

end
return Tokensretr

Figure 13: The “local” optimization approach, which chooses a potentially different execution
strategy for each batch of k tokens

plan until reaching the target recall.
Interestingly, often the best execution plans for a text-centric task might use different execution

strategies at different stages of the token extraction process. For example, consider Task 1 with a
target recall τ = 0.6. For a given text database, the Iterative Set Expansion strategy (Section 4.3)
might stall and not reach the target recall τ = 0.6, as discussed in Section 5.4. So our global
optimizer might not pick this strategy when following the algorithm in Figure 12. However, Iterative
Set Expansion might be the most efficient strategy for retrieving, say, 50% of the tokens in the
database. So a good execution plan in this case might then start by running Iterative Set Expansion
to reach a recall value of 0.5, and then switch to another strategy, say Filtered Scan, to finally achieve
the target recall, namely, τ = 0.6. We now introduce a local optimization approach that explicitly
considers such combination executions that might include a variety of execution strategies.

Rather than choosing the best strategy —according to the available statistics— for reaching a
target recall τ , our local optimization approach partitions the execution into “recall stages” and
successively identifies the best strategy for each stage. So initially, the local optimization approach
chooses the best execution strategy for extracting the first k tokens, for some predefined value of
k, then identifies the best execution strategy for extracting the next k tokens, and so on, until
the target recall τ is reached. Hence, the local optimization approach can be regarded as invoking
the global optimization approach repeatedly, each time to find the best strategy for extracting the
next k tokens (see Figure 13). As a result, the local optimization approach can generate flexible
combination executions, with different execution choices for different recall stages.

At each optimization point for a task over a database, the local optimization approach chooses
the execution strategy for extracting the next batch of k tokens. The new tokens will be extracted
from the unseen documents in the database, so the optimizer adjusts the statistics on which it
relies accordingly, to ignore the documents that have already been processed in the task execution.
Typically, the most frequent tokens are extracted early in the execution; the document and token
degree distributions in the unseen portion of the database are thus generally different from the
corresponding distributions in the complete database. To account for these differences, at each op-
timization point the local optimization approach follows the estimation procedures of Sections 6.1.1
through 6.1.4 to characterize the distributions over the complete database; then, the optimizer uses
the distribution statistics for the complete database —as well as the statistics for the retrieved doc-
uments and tokens— to estimate the distribution statistics over the unseen portion of the database:

25



Token Degree Distribution

y = 5492.2x-2.0254

R2 = 0.8934

1

10

100

1000

10000

1 10 100 1000

Token Degree

N
um

be
r 

of
 T

ok
en

s

Figure 14: Token distribution for Task 1 ’s DiseaseOutbreaks

we can easily compute the degree distribution for the unseen tokens and documents by subtracting
the distribution for the retrieved documents from the distribution for the complete database.

Next, we report the results of our experimental evaluation of our optimization approaches, to
highlight their strengths and weaknesses for choosing execution strategies that reach the target
recall τ efficiently.

7 Experimental Setting

We now describe the experimental setting for each text-centric task of Section 2, including the real-
world data sets for the experiments. We also present interesting statistics about the task-specific
distribution of tokens in the data sets.

7.1 Information Extraction

Document Processor: For this task, we use the Snowball information extraction system [AG00]
as the document processor (see Section 3). We use two instantiations of Snowball: one for extracting
a DiseaseOutbreaks relation (Task 1a) and one for extracting a Headquarters relation (Task 1b). For
Task 1a, the goal is to extract all the tuples of the target relation DiseaseOutbreaks (DiseaseName,
Country), which we discussed throughout the article. For Task 1b, the goal is to extract all the tuples
of the target relation Headquarters (Organization,Location), where a tuple 〈o, l〉 in Headquarters
indicates that organization o has headquarters in location l. A token for these tasks is a single
tuple of the target relation, and a document is a news article from the New York Times archive,
which we describe next.
Data Set: We use a collection of newspaper articles from The New York Times, published in
1995 (NYT95) and 1996 (NYT96). We use the NYT95 documents for training and the NYT96
documents for evaluation of the alternative execution strategies. The NYT96 database contains
182,531 documents, with 16,921 tokens for Task 1a and 605 tokens for Task 1b. Figures 14 and 15
show the token and document degree distribution (Section 5) for Task 1a: both distributions follow
a power-law, a common distribution for information extraction tasks. The distributions are similar

26



Document Degree Distribution

y = 43060x-3.3863

R2 = 0.9406

1

10

100

1000

10000

100000

1 10 100
Document Degree

N
um

be
r 

of
 D

oc
um

en
ts

Figure 15: Document distribution for Task 1 ’s DiseaseOutbreaks

for Task 1b.
Execution Plan Instantiation: For Filtered Scan we use a rule-based classifier, created using
RIPPER [Coh96]. We train RIPPER using a set of 500 useful documents and 1,500 not useful
documents from the NYT95 data set. We also use 2,000 documents from the NYT95 data set as
a training set to create the queries required by Automatic Query Generation. Finally, for Iterative
Set Expansion, we construct the queries using the conjunction of the attributes of each tuple (e.g.,
tuple 〈typhus,Belize〉 results in query [typhus AND Belize]).

7.2 Content Summary Construction

Document Processor: For this task, the document processor is a simple tokenizer that extracts
the words that appear in the eligible documents, defined as a sequence of one or more alphanumeric
characters and ignoring capitalization.
Data Set: We use the 20 Newsgroups data set from the UCI KDD Archive [BM98]. This data set
contains 20,000 messages from 20 Usenet newsgroups. We also randomly retrieve additional Usenet
articles to create queries for Automatic Query Generation. Figures 16 and 17 show the token and
document degree distribution (Section 5) for this task. The document degree follows a lognormal
distribution [Mit04] and the token degree follows, as expected [Zip49], a power-law distribution.
Execution Plan Instantiation: For this task, Filtered Scan is not directly applicable, since
all documents are “useful.” For Iterative Set Expansion, the queries are constructed using words
that appear in previously retrieved documents; this technique corresponds to the Learned Resource
Description strategy for vocabulary extraction presented by Callan et al. [CCD99]. Finally, for
Automatic Query Generation, we constructed the queries as follows: first, we separate the docu-
ments into topics according to the high-level name of the newsgroup (e.g., “comp”, “sci”, and so
on); then, we train a rule-based classifier using RIPPER, which creates rules to assign documents
into categories (e.g., cpu AND ram → comp means that a document containing the words “cpu”
and “ram” is assigned to the “comp” category). The final queries for Automatic Query Genera-
tion contain the antecedents of the rules, across all categories. This technique corresponds to the
Focused Probing strategy for vocabulary extraction presented by Ipeirotis and Gravano [IG02].

27



Token Degree Distribution

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000
Token Degree

N
um

be
r 

of
 T

ok
en

s

Figure 16: Token distribution for Task 2

7.3 Focused Resource Discovery

Document Processor: For this task, the document processor is a multinomial Naive Bayes
classifier, which detects the topic of a given web page [CvdBD99]. The topic of choice for our
experiments is “Botany.”
Data Set: We retrieved 8,000 web pages listed in Open Directory17 under the category “Top
→ Science → Biology → Botany.” We selected 1,000 out of the 8,000 documents as training
documents, and created a multinomial Naive Bayes classifier that decides whether a web page is
about Botany. Then, for each of the downloaded Botany pages, we used Google to retrieve all
its “backlinks” (i.e., all the web pages that point to that page); again, we classified the retrieved
pages and for each page classified as “Botany” we repeated the process of retrieving the backlinks,
until none of the backlinks was classified under Botany. This process results in a data set with
approximately 12,000 pages about Botany, pointed to by approximately 32,000 useless documents
deemed irrelevant to the Botany topic. To augment the data set with additional useless documents,
we picked 10 more random topics from the third level of the Open Directory hierarchy and we
downloaded all the web pages listed under these topics, for a total of approximately 100,000 pages.
After downloading the backlinks for these pages, our data set contained a total of approximately
800,000 pages, out of which 12,000 are relevant to Botany.
Execution Plan Instantiation: For this task, the Scan plan corresponds to an unfocused crawl,
with a classifier deciding whether each of the retrieved pages belongs to the category of choice.
As an instantiation of Filtered Scan, we use the “hard” version of the focused crawler described
in [CvdBD99]. The focused crawler starts from a few Botany web pages, and then visits a web
page only when at least one of the documents that points to it is useful. Finally, to create queries
for Automatic Query Generation, we train a RIPPER classifier using the training set, and create a
set of rules that assign documents into the Botany category. We use these rules to query the data
set and retrieve documents.

17http://www.dmoz.org

28



Document Degree Distribution

0

20

40

60

80

100

120

140

160

180

1 10 100 1000 10000
Document Degree

N
um

be
r 

of
 D

oc
um

en
ts

Figure 17: Document distribution for Task 2

8 Experimental Evaluation

In this section, we present our experimental results. Our experiments focus on the execution times
of each alternate execution strategy (Section 4) for the tasks and settings described in Section 7.
We compute the actual execution times and compare them against our estimates from Section 5.
First, we compute our estimates with exact values for the various parameters on which they rely
(e.g., token degree distribution). Then, we measure the execution time using our optimization
strategies, which rely on approximate estimates of these parameters, as described in Section 6.

Accuracy of Cost Model with Correct Information: The goal of the first set of ex-
periments is to examine whether our cost model of Section 5 captures the real behavior of the
alternate execution strategies of Section 4, when all the parameters of the cost model (e.g., token
and document degrees, classifier characteristics) are known a-priori. For this, we first measure the
actual execution time of the strategies, for varying values of the target recall τ . The lines SC time,
FS time, ISE time, AQG time in Figures 18, 19, 20, and 21 show the actual execution time of
the respective strategies for the tasks described in Section 7. Then, to predict the execution time
of each strategy, we used our equations from Section 5. The lines SC pred, FS pred, ISE pred,
AQG pred in Figures 18, 19, 20, and 21 show our execution time estimates for varying values of
the target recall τ . The results were exceptionally accurate, confirming the accuracy of our theo-
retical modeling. The prediction error is typically less than 10% for all values of target recall τ .
Furthermore, our modeling captures the characteristics and the limitations of each execution plan.
For example, Automatic Query Generation is the fastest execution plan for Task 1a (Figure 18)
when the target recall τ is under 0.15. However, due to the limited number of queries generated
during the training phase, Automatic Query Generation does not reach higher recall values in our
scenario and implementation. (We generated 72 queries for this task.) Our analysis correctly cap-
tures this limitation and shows that, for higher recall targets, other strategies are preferable. This
limitation also appears for the Iterative Set Expansion strategy, confirming previously reported
results [AIG03]. The results are similar for Task 2 and Task 3 : our analysis correctly predicts the
execution time and the recall limitations of each strategy.

Quality of Choice of Execution Strategies: After confirming that our cost models accu-

29



10

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)
SC_time SC_pred

FS_time FS_pred

ISE_time ISE_pred

AQG_time AQG_pred

Figure 18: Actual vs. estimated execution times for Task 1a, as a function of the target recall τ

rately capture the actual execution time of the alternate execution strategies, we examine whether
our optimization strategies lead to the choice of the fastest plan for each value of target recall τ .
We start executing each task by using the strategy that is deemed best for the target recall and the
available statistics. These statistics are the expected distribution family of the token and document
degrees for the task, with some “default” parameters, such as β = 2 for power-law distributions
(see Section 7). As we retrieve documents and extract tokens during the actual execution, the
available statistics are refined and progressively lead to better estimates of the document and token
degree distributions for the complete database. The global optimization approach reconsiders its
choice of execution plan every N documents (see Figure 12). For our experiments, we use N = 100,
which allows the statistics to change sufficiently between reoptimizations, but —at the same time—
without allowing a suboptimal algorithm to run for too long. The local optimization approach de-
fines “combination” executions by picking the best strategy for selecting k tokens at a time (see
Figure 13). For our experiments, we set k = 0.05 · |Tokens|.

The Global line in Figures 22, 23, 24, and 25 shows the actual execution time, for different recall
thresholds, using our global optimization approach. Typically, our global optimizer finishes the task
in the same time as the best possible strategy, resulting in execution times that can be up to 10 times
faster than alternative plans that we might have picked based on plain intuition or heuristics. For
example, consider Task 1b with recall target τ = 0.35 (Figure 23): without our cost modeling, we
might select Iterative Set Expansion or Automatic Query Generation, both reasonable choices given
the relatively low target recall τ = 0.35. However, Automatic Query Generation cannot achieve
a recall of 0.35 and Iterative Set Expansion is more expensive than Filtered Scan for that task.
Our optimizer, on the other hand, correctly predicts that Filtered Scan should be the algorithm of
choice. In this example, our optimizer initially picked Iterative Set Expansion, but quickly revised
its decision and switched to Filtered Scan after gathering statistics from only 1-2% of the database.

We should note here that our optimizer’s actual time estimates are often far from the actual
execution times, especially at the beginning of the execution when parameter estimates are rough
and usually inaccurate. Fortunately, these time estimates are only used to pick the best available
strategy, therefore even coarse estimates are sufficient. We observed high time estimation errors
frequently in our experiments but, due to the large differences in execution time between the

30



10

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)
SC_time SC_pred
FS_time FS_pred
ISE_time ISE_pred
AQG_time AQG_pred

Figure 19: Actual vs. estimated execution times for Task 1b, as a function of the target recall τ

strategies, our optimizer still managed to pick good execution plans. As the execution progresses,
the estimates become increasingly accurate and the optimizer not only identifies the best execution
plans but also provides accurate time estimates as well.

As another interesting observation derived from out experiments, our prediction algorithm some-
times overestimates the achievable recall of a strategy (e.g., for Automatic Query Generation). In
such cases, our (incorrectly picked) strategy runs to completion; then, naturally, our technique picks
the “next best” strategy and continues the execution from the point reached by the (incorrectly
picked) strategy. In such cases, we sometimes observed a small performance gain derived from
this initial mistake, since the “incorrect” strategy outperforms the “correct” strategy for the first
part of the execution. This result shows that a multi-strategy execution can often perform better
than an optimization strategy that attempts to pick a single execution plan, which is precisely the
rationale behind our local optimization approach.

The Local line in Figures 26, 27, 28, and 29 shows the actual execution time, for different recall
thresholds, using our local optimization approach. Not surprisingly, the local optimizer behaves
similarly to the global optimizer for low recall targets, where both optimization approaches proceed
similarly. However, the local optimizer becomes noticeably preferable for higher target recall values
that are beyond the reach of the fastest execution strategies: the global optimizer, by design, ignores
an execution plan if this plan cannot reach the target recall. In contrast, the local optimizer can
choose a fast execution strategy for extracting the initial batches of tokens, even if such strategy
could not reach the overall target recall; then the local optimizer can pick a slower strategy to
continue from the point where the fastest plan has stopped. Interestingly, the advantage of the
local optimizer diminishes over time, and its execution times slowly converge towards the execution
times of the global optimizer: the local optimizer targets the most promising parts of the database
early on, through fast early executions, and the associated speed-ups in the execution diminish as
the distribution of tokens over the unseen documents becomes sparser and sparser.

Conclusions: We demonstrated how our modeling approach can be used to create an optimizer
for text-centric tasks. The presented approach allows for a better understanding of the behavior
of query- and crawl-based strategies, in terms of both execution time and recall. Furthermore,
our modeling works well even with on-the-fly estimation of the required statistics, and results in

31



0.1

1.0

10.0

100.0

1,000.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)

SC_pred SC_time
ISE_pred ISE_time
AQG_pred AQG_time

Figure 20: Actual vs. estimated execution times for Task 2, as a function of the target recall τ

close-to-optimal execution times. Our work provides fundamental building blocks towards a full
query optimizer for text-centric tasks: given a specific target recall (e.g., “find 40% of all disease
outbreaks mentioned in the news”), the query optimizer can automatically select the (combination
of) best execution strategies to achieve this recall.

9 Related Work

In this article, we analyzed and estimated the computational costs of text-centric tasks. We concen-
trated on three important tasks: information extraction (Task 1 ), text database content summary
construction (Task 2 ), and focused resource discovery (Task 3 ).

Implementations of Task 1 (Section 2.1) traditionally use the Scan strategy of Section 4.1,
where every document is processed by the information extraction system (e.g., [Gri97, YG98]).
Some systems use the Filtered Scan strategy of Section 4.2, where only the documents that match
specific URL patterns (e.g., [Bri98]) or regular expressions (e.g., [GHY02]) are processed further.
Agichtein and Gravano [AG03] presented query-based execution strategies for Task 1, corresponding
to the Iterative Set Expansion strategy of Section 4.3 and Automatic Query Generation strategy
of Section 4.4. More recently, Etzioni et al. [ECD+04] used what could be viewed as an instance of
Automatic Query Generation to query generic search engines for extracting information from the
web. Cafarella and Etzioni [CE05] presented a complementary approach of constructing a special-
purpose index for efficiently retrieving promising text passages for information extraction. Such
document (and passage) retrieval improvements can be naturally integrated into our framework.

For Task 2, the execution strategy in [CCD99] can be cast as an instance of Iterative Set Ex-
pansion, as discussed in Section 4.3. Another strategy for the same task [IG02] can be considered
an instance of Automatic Query Generation (Section 4.4). Interestingly, over large crawlable data-
bases, where both query- and crawl-based strategies are possible, query-based strategies have been
shown to outperform crawl-based approaches for a related database classification task [GIS02], since
small document samples can result in good categorization decisions at a fraction of the processing
time required by full database crawls.

For Task 3, focused resource discovery systems typically use a variation of Filtered Scan [CvdBD99,

32



10

100

1,000

10,000

100,000

1,000,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)

SC_time SC_pred
FS_time FS_pred
AQG_time AQG_pred

Figure 21: Actual vs. estimated execution times for Task 3, as a function of the target recall τ

CPS02,DCL+00,MPS04], where a classifier determines which links to follow for subsequent compu-
tationally expensive steps of retrieval and processing. Other strategies, which we model as variants
of Automatic Query Generation, may also be effective for some scenarios [CS96].

Other important text-centric tasks can be modeled in our framework. One such task is text
filtering (i.e., selecting documents in a text database on a particular topic) [Oar97], which can
be executed following either Filtered Scan, or, if appropriate, Automatic Query Generation. An-
other task is the construction of comparative web shopping agents [DEW97]. This task requires
identifying appropriate web sites (e.g., by using an instance of Automatic Query Generation) and
subsequently extracting product information from a subset of the retrieved pages (e.g., by using
an implementation of Filtered Scan). For the task of training named entity recognition systems,
Jones [Jon05] showed that named-entity co-occurrence graphs (e.g., involving person and location
names) follow a power-law degree distribution, which suggests that the execution of this task might
also be modeled in our framework. As another example, web question answering systems [BBDL02]
usually translate a natural language question into a set of web search queries to retrieve documents
for a subsequent answer extraction step over a subset of the retrieved documents. This process
can thus be viewed as a combination of Automatic Query Generation and Filtered Scan. Recently,
Ntoulas et al. [NZC05] presented query-based strategies for exhaustively “crawling” a hidden web
database while issuing as few queries as possible.

Estimating the cost of a query execution plan requires estimating parameters of the cost model.
We adapted effective database sampling techniques (e.g., [CMN98, LS95]) for our problem, as we
discussed in Section 6. Our work is similar in spirit to query optimization over structured relational
databases, adapted to the intrinsic differences of executing text-centric tasks; our work is also
related to previous research on optimizing query plans with user-defined predicates [CS99], in
that we provide a robust way of estimating costs of complex text-centric “predicates.” Our work
can then be regarded as developing specialized, efficient techniques for important special-purpose
“operators” (e.g., as was done for fuzzy matching [CGGM03]).

Our optimization approach is conceptually related to adaptive query execution techniques de-
veloped for relational data. In particular, Ives et al. [IFF+99] describe the Tukwila system for
distributed processing of joins over autonomous data sources, with no information about table

33



10

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)
SC_time FS_time

ISE_time AQG_time

Global

Figure 22: Actual execution times for the four basic execution strategies, as well as for the global
optimization approach, for Task 1a and as a function of the target recall τ

cardinalities or value distributions and with unpredictable network delays and data arrival rates.
Hence any initially chosen execution plan is expected to be adjusted during query execution, as the
availability of sources changes or better relevant statistics are obtained. Our optimization approach
also revisits the choice of execution strategies for a text-centric task, as documents are retrieved
and tokens extracted and, consequently, the statistics on document and token distributions are
refined. Our focus in this article is on processing text-centric tasks over a single text “database,”
and not on gracefully recovering from unpredictable delays when executing a particular operator in
a join pipeline. Our optimization approach is also conceptually related to the eddies work, where a
query execution plan is continuously reevaluated after each output tuple [AH00]. The eddies work
thus focuses on effective join processing, allowing flexible re-ordering of the query operators.

Our optimization approach is also related to the re-optimization methods presented by Kabra
and DeWitt [KD98]: the statistics are updated at key points during query execution to re-allocate
memory resources for active operators and to potentially adjust the plan for the rest of the execution.
The general re-optimization approach of [KD98] for relational data was extended by Markl et
al. [MRS+04], where the cardinality estimation errors detected during query execution may trigger
a re-optimization step for the execution plan. Our general optimization approach behaves similarly,
albeit for text-centric tasks, which require different parameter estimation techniques.

This article substantially extends our previous work in [AIG03, IAJG06]. Our earlier pa-
per [AIG03] presented preliminary results on modeling and estimating the achievable recall of Iter-
ative Set Expansion, for Task 1 (information extraction) and Task 2 (database content summary
construction). Later, in [IAJG06], we developed and evaluated rigorous cost models for Iterative Set
Expansion, as well as for three additional general execution strategies, namely Scan, Filtered Scan,
and Automatic Query Generation. In [IAJG06], we also presented a principled, cost-based global
optimization approach for selecting the most efficient execution strategy automatically. The current
article substantially extends the analysis and experimental evaluation in [IAJG06]. In this article,
we present a detailed description of our methodology for estimating the parameter values required
by our cost model (Sections 6.1.1 through 6.1.4), whereas in [IAJG06], due to space restrictions,
we only gave a high-level overview of our techniques. Another substantial new contribution with

34



10

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)

SC_time FS_time
ISE_time AQG_time
Global

Figure 23: Actual execution times for the four basic execution strategies, as well as for the global
optimization approach, for Task 1b and as a function of the target recall τ

respect to [IAJG06] is that now our optimizers do not rely on knowledge of the |Tokens| statistics,
but instead estimate this parameter “on-the-fly” as well, during execution of the task. Further-
more, in this article, we present a new, “local” optimizer that potentially builds “multi-strategy”
executions by picking the best strategy for each batch of k tokens (Section 6.2). In contrast, the
“global” optimization approach in [IAJG06] only attempts to identify a single execution plan that
is capable of reaching the full target recall. We implemented the new local optimization approach
and compared it experimentally against the global approach of [IAJG06]; the results of the com-
parison are presented in Figures 26, 27, 28, and 29, in Section 8. The results show the superiority
of the local optimizer over the global optimizer.

Finally, Jain et al. [JDG07] have very recently presented a query optimization approach for
simple SQL queries over (structured data extracted from) text databases. This work heavily re-
lies on information extraction systems and is thus closely related to our Task 1 scenario. Jain
et al. [JDG07] consider multiple document retrieval strategies to process a SQL query, including
Scan, Automatic Query Generation, and other query-based strategies. Unlike our setting, how-
ever, [JDG07] focuses on extraction scenarios that typically involve multiple information extraction
systems, whose output might then need to be integrated and joined to answer a given SQL query.
The SQL query optimization approach in [JDG07] accounts for errors originating in the information
extraction process, and characterizes alternate query executions —which might differ in their choice
of extraction systems— based on their precision, as well as on their execution time and recall. An
interesting research direction is to incorporate the time and recall estimation models presented in
this article into the query processing model of [JDG07].

10 Conclusion

In this article, we introduced a rigorous cost model for several query- and crawl-based execution
strategies that underlie the implementation of many text-centric tasks. We complement our model
with a principled cost estimation approach. Our analysis helps predict the execution time and
output completeness of important query- and crawl-based algorithms, which until now were only

35



0.1

1.0

10.0

100.0

1,000.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)
SC_time ISE_time

AQG_time Global

Figure 24: Actual execution times for the three basic execution strategies, as well as for the global
optimization approach, for Task 2 and as a function of the target recall τ

empirically evaluated, with limited theoretical justification. We demonstrated that our modeling
can be successfully used to create optimizers for text-centric tasks, and showed that our optimizers
help build efficient execution plans to achieve a target recall, resulting in executions that can be
orders of magnitude faster than alternate choices.

Our work can be extended in multiple directions. For example, the current framework assumes
that the document processors have perfect “precision,” in that they always produce accurate results.
Relaxing this assumption and, correspondingly, predicting the precision of the output produced by
different strategies is a natural next step. Another interesting direction is to apply our model to
other text-centric tasks and also study how to minimize our reliance on task-specific prior knowledge
of the token and document distributions for our analysis.

References

[AG00] Eugene Agichtein and Luis Gravano. Snowball: Extracting relations from large plain-
text collections. In Proceedings of the Fifth ACM Conference on Digital Libraries (DL
2000), 2000.

[AG03] Eugene Agichtein and Luis Gravano. Querying text databases for efficient informa-
tion extraction. In Proceedings of the 19th IEEE International Conference on Data
Engineering (ICDE 2003), 2003.

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query processing.
In Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data (SIGMOD 2000), pages 261–272, 2000.

[AIG03] Eugene Agichtein, Panagiotis G. Ipeirotis, and Luis Gravano. Modeling query-based
access to text databases. In Proceedings of the Sixth International Workshop on the
Web and Databases, WebDB 2003, pages 87–92, 2003.

36



10

100

1,000

10,000

100,000

1,000,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)

SC_time FS_time

AQG_time Global

Figure 25: Actual execution times for the three basic execution strategies, as well as for the global
optimization approach, for Task 3 and as a function of the target recall τ

[BBDL02] Michele Banko, Eric Brill, Susan Dumais, and Jimmy Lin. AskMSR: Question answer-
ing using the World Wide Web. In Proceedings of the 2002 AAAI Spring Symposium
on Mining Answers from Texts and Knowledge Bases, 2002.

[Ber01] Michael K. Bergman. The Deep Web: Surfacing hidden value. Journal of Electronic
Publishing, 7(1), August 2001.

[BM98] Catherine L. Blake and Christopher John Merz. UCI repository of machine learning
databases. http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

[Bri98] Sergey Brin. Extracting patterns and relations from the world wide web. In Proceedings
of the First International Workshop on the Web and Databases, WebDB 1998, pages
172–183, 1998.

[CC01] James P. Callan and Margaret Connell. Query-based sampling of text databases. ACM
Transactions on Information Systems, 19(2):97–130, 2001.

[CCD99] James P. Callan, Margaret Connell, and Aiqun Du. Automatic discovery of language
models for text databases. In Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data (SIGMOD’99), pages 479–490, 1999.

[CE05] Michael J. Cafarella and Oren Etzioni. A search engine for natural language applica-
tions. In Proceedings of the 14th International World Wide Web Conference (WWW
2005), pages 442–452, 2005.

[CGGM03] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. Robust
and efficient fuzzy match for online data cleaning. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data (SIGMOD 2003), pages
313–324, 2003.

[CL02] Fan Chung and Linyuan Lu. Connected components in random graphs with given
degree sequences. Annals of Combinatorics, 6:125–145, 2002.

37



10

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s) Global

Local

Figure 26: Actual execution times for the global and local optimization approaches, for Task 1a
and as a function of the target recall τ

[CLC95] James P. Callan, Zhihong Lu, and William Bruce Croft. Searching distributed collec-
tions with inference networks. In Proceedings of the 18th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR’95,
pages 21–28, 1995.

[CMN98] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. Random sampling
for histogram construction: How much is enough? In Proceedings of the 1998 ACM
SIGMOD International Conference on Management of Data (SIGMOD’98), pages 436–
447, 1998.

[Coh96] William Weston Cohen. Learning trees and rules with set-valued features. In Pro-
ceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), Eighth
Conference on Innovative Applications of Artificial Intelligence (IAAI-96), pages 709–
716, 1996.

[CPS02] Soumen Chakrabarti, Kunal Punera, and Mallela Subramanyam. Accelerated focused
crawling through online relevance feedback. In Proceedings of the 11th International
World Wide Web Conference (WWW11), pages 148–159, 2002.

[CS96] William Weston Cohen and Yoram Singer. Learning to query the web. In AAAI
Workshop on Internet-Based Information Systems, pages 16–25, 1996.

[CS99] Surajit Chaudhuri and Kyuseok Shim. Optimization of queries with user-defined pred-
icates. ACM Transactions on Database Systems, 24(2):177–228, 1999.

[CvdBD99] Soumen Chakrabarti, Martin van den Berg, and Byron Dom. Focused crawling: A new
approach to topic-specific web resource discovery. Computer Networks, 31(11-16):1623–
1640, May 1999.

38



10

100

1,000

10,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)
Global

Local

Figure 27: Actual execution times for the global and local optimization approaches, for Task 1b
and as a function of the target recall τ

[DCL+00] Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, C. Lee Giles, and Marco Gori.
Focused crawling using context graphs. In Proceedings of the 26th International Con-
ference on Very Large Databases (VLDB 2000), pages 527–534, 2000.

[DEW97] Robert B. Doorenbos, Oren Etzioni, and Daniel S. Weld. A scalable comparison-
shopping agent for the world-wide web. In AGENTS ’97: Proceedings of the First
International Conference on Autonomous Agents, pages 39–48, 1997.

[DH73] Richard Oswald Duda and Peter Elliot Hart. Pattern Classification and Scene Analysis.
Wiley, 1973.

[ECD+04] Oren Etzioni, Michael J. Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu,
Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Web-scale
information extraction in KnowItAll (preliminary results). In Proceedings of the 13th
International World Wide Web Conference (WWW 2004), pages 100–110, 2004.

[GGMT99] Luis Gravano, Héctor Garćıa-Molina, and Anthony Tomasic. GlOSS: Text-source dis-
covery over the Internet. ACM Transactions on Database Systems, 24(2):229–264, June
1999.

[GHY02] Ralph Grishman, Silja Huttunen, and Roman Yangarber. Information extraction
for enhanced access to disease outbreak reports. Journal of Biomedical Informatics,
35(4):236–246, August 2002.

[GIS02] Luis Gravano, Panagiotis G. Ipeirotis, and Mehran Sahami. Query- vs. crawling-based
classification of searchable web databases. IEEE Data Engineering Bulletin, 25(1):43–
50, March 2002.

[Gri97] Ralph Grishman. Information extraction: Techniques and challenges. In Information
Extraction: A Multidisciplinary Approach to an Emerging Information Technology,
International Summer School, (SCIE-97), pages 10–27, 1997.

39



0.1

1.0

10.0

100.0

1,000.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)

Global

Local

Figure 28: Actual execution times for the global and local optimization approaches, for Task 2 and
as a function of the target recall τ

[IAJG06] Panagiotis G. Ipeirotis, Eugene Agichtein, Pranay Jain, and Luis Gravano. To search or
to crawl? Towards a query optimizer for text-centric tasks. In Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data (SIGMOD 2006),
pages 265–276, 2006.

[IFF+99] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Y. Levy, and Daniel S.
Weld. An adaptive query execution system for data integration. In Proceedings of the
1999 ACM SIGMOD International Conference on Management of Data (SIGMOD’99),
pages 299–310, 1999.

[IG02] Panagiotis G. Ipeirotis and Luis Gravano. Distributed search over the hidden web:
Hierarchical database sampling and selection. In Proceedings of the 28th International
Conference on Very Large Databases (VLDB 2002), pages 394–405, 2002.

[JDG07] Alpa Jain, AnHai Doan, and Luis Gravano. SQL queries over unstructured text da-
tabases (poster paper). In Proceedings of the 23rd IEEE International Conference on
Data Engineering (ICDE 2007), 2007. To appear.

[Jon05] Rosie Jones. Learning to Extract Entities from Labeled and Unlabeled Text. PhD thesis,
Carnegie Mellon University, School of Computer Science, 2005.

[KD98] Navin Kabra and David J. DeWitt. Efficient mid-query re-optimization of sub-optimal
query execution plans. In Proceedings of the 1998 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’98), pages 106–117, 1998.

[LS95] Yibei Ling and Wei Sun. An evaluation of sampling-based size estimation methods
for selections in database systems. In Proceedings of the 11th IEEE International
Conference on Data Engineering (ICDE 1995), pages 532–539, 1995.

[Mit04] Michael Mitzenmacher. Dynamic models for file sizes and double pareto distributions.
Internet Mathematics, 1(3):305–334, 2004.

40



10

100

1,000

10,000

100,000

1,000,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)

Global

Local

Figure 29: Actual execution times for the global and local optimization approaches, for Task 3 and
as a function of the target recall τ

[MPS04] Filippo Menczer, Gautam Pant, and Padmini Srinivasan. Topical web crawlers: Eval-
uating adaptive algorithms. ACM Transactions on Internet Technology, 4(4):378–419,
November 2004.

[MRS+04] Volker Markl, Vijayshankar Raman, David Simmen, Guy Lohman, Hamid Pirahesh,
and Miso Cilimdzic. Robust query processing through progressive optimization. In
Proceedings of the 2004 ACM SIGMOD International Conference on Management of
Data (SIGMOD 2004), pages 659–670, 2004.

[NSW01] Mark E. J. Newman, Steven H. Strogatz, and Duncan J. Watts. Random graphs with
arbitrary degree distributions and their applications. Physical Review E (Statistical,
Nonlinear, and Soft Matter Physics), 64(2):026118 (1–17), August 2001.

[NZC05] Alexandros Ntoulas, Petros Zerfos, and Junghoo Cho. Downloading textual hidden web
content by keyword queries. In Proceedings of the Fifth ACM+IEEE Joint Conference
on Digital Libraries (JCDL 2005), 2005.

[Oar97] Douglas W. Oard. The state of the art in text filtering. User Modeling and User-
Adapted Interaction, 7(3):141–178, 1997.

[Ros02] Sheldon M. Ross. Introduction to Probability Models. Academic Press, 8th edition,
December 2002.

[SAC+79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lo-
rie, and Thomas G. Price. Access path selection in a relational database management
system. In Proceedings of the 1979 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD’79), pages 23–34, 1979.

[Seb02] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Com-
puting Surveys, 34(1):1–47, March 2002.

41



[Vap98] Vladimir Naumovich Vapnik. Statistical Learning Theory. Wiley-Interscience, Septem-
ber 1998.

[Wil90] Herbert S. Wilf. Generatingfunctionology. Academic Press Professional, Inc., 1990.

[YG98] Roman Yangarber and Ralph Grishman. NYU: Description of the Proteus/PET system
as used for MUC-7. In Proceedings of the Seventh Message Understanding Conference
(MUC-7), 1998.

[Zip49] George Kingsley Zipf. Human Behavior and the Principle of Least Effort. Addison-
Wesley, 1949.

42


