
Strategic Sales Management Guided By

Economic Regimes

Wolfgang Ketter, John Collins, Maria Gini⋆, Alok Gupta†, and Paul Schrater

Department of Computer Science and Engineering
†Department of Information and Decision Sciences

University of Minnesota, Minneapolis, MN 55455, USA
{ketter,jcollins,gini,schrater}@cs.umn.edu, agupta@csom.umn.edu

Abstract. We present methods to characterize market conditions from
historical data, and we describe how this knowledge can be used to make
strategic and tactical sales decisions. The methods are based on learning
dominant market conditions, such as over-supply or scarcity, from his-
torical data using computational methods to represent the price density
function. We show how to use this knowledge, together with real-time ob-
servable information, to identify the current dominant market condition
and to forecast market changes over a planning horizon. We validate our
methods by presenting experimental results in a case study, the Trading
Agent Competition for Supply Chain Management.

1 Introduction

Business organizations have an increasing need for software that can assist
decision makers by gathering and analyzing information and making recom-
mendations and business decisions. Advanced decision support systems and au-
tonomous software agents promise to address this need by acting rationally on
behalf of humans in numerous application domains. Examples include procure-
ment [1, 2], scheduling and resource management [3, 4], and personal information
management [5, 6].

The approach we present in this paper is based on using machine learning
algorithms to support rational decision making by an autonomous agent that
operates in a supply chain environment. In our method we characterize market
conditions by distinguishable statistical patterns, that we call regimes. We show
how such patterns can be learned from historical data and identified from observ-
able data. We outline how to identify regimes and forecast regime transitions.
This prediction, in turn, can be used to allocate resources to current and future
sales in a way that maximizes resource value. While this type of prediction about
the economic environment is commonly used at the macro economic level [7],
such predictions are rarely done for a micro economic environment.

We use a competitive trading environment, the Trading Agent Competition
for Supply Chain Management [8] (TAC SCM) as a testbed for our methodology.

⋆ Partial funding is acknowledged from NSF under grant IIS-0414466.



TAC SCM is a market simulation in which six autonomous agents buy parts,
assemble personal computers, and sell them to consumers in daily auctions.

A TAC SCM agent must base its decision on how to allocate its resources
and how to set prices using limited information about the state of the market
and the strategies of the other agents. Agents must simultaneously compete in
two separate but interrelated markets: the market from which the agents must
buy their supplies and the market to which the agents must sell their finished
products. Agents have a large number of decisions to make in a limited time, so
computational efficiency of the decision-making process is essential. Therefore,
TAC SCM is an appropriate and comprehensive testbed for our methodology.

Although in this paper we present regime identification, prediction, and re-
source allocation in the context of TAC SCM, our method is applicable to other
domains, both for autonomous decision making by an agent and as a decision
support technology. Examples of domains to which our proposed approach can
be applied include agents for automated trading in financial markets, such as the
Penn-Lehman Automated Trading Project [9], auction-based contracting envi-
ronments, such as MAGNET [10], and other auctions, such as auctions for IBM
PCs [11] or PDA’s on eBay [12].

After a review of relevant literature, we describe in a general way the infor-
mation needed to make strategic and tactical sales decisions. We follow with a
discussion of the concept of “economic regimes” and their representation using
learned probability density functions. We then describe how this method is used
in an automated trading agent. For reader’s convenience, we present a summary
of our notation in the Appendix.

2 Related Literature

Massey and Wu [13] show in their analysis that the ability of decision makers
to correctly identify the onset of a new regime can mean the difference between
success and failure. Furthermore they found strong evidence that individuals pay
inordinate attention to the signal (price in our case), and neglect diagnosticity
(regime probabilities) and transition probability (Markov matrix), the aspects
of the system that generates the signal. Individuals who do not pay enough
attention to regime identification and prediction have the tendency to over- or
underreact to market conditions.

In [14] the authors empirically analyze the degree to which used products
cannibalize new product sales for books on Amazon.com. In their study they
show that product prices go through different regimes over time. Marketing
research methods have been developed to understand the conditions for growth
in performance and the role that marketing actions can play to improve sales.
For instance, in [15], an analysis is presented on how in mature economic markets
strategic windows of change alternate with long periods of stability.

Much work has focused on models for rational decision-making in autonomous
agents. Ng and Russel [16] show that an agent’s decisions can be viewed as a set
of linear constraints on the space of possible utility (reward) functions. However,



the simple reward structure they used in their experiments will not scale to what
is needed to predict prices in more complex situations such as TAC SCM.

Sales strategies used in previous TAC SCM competitions have attempted
to model the probability of receiving an order for a given offer price, either
by estimating the probability by linear interpolation from the minimum and
maximum daily prices [17], or by estimating the relationship between offer price
and order probability with a linear cumulative density function (CDF) [18], or
by using a reverse CDF and factors such as quantity and due date [19].

All these methods fail to take into account market conditions that are not
directly observable. They are essentially regression models, and do not represent
qualitative differences in market conditions. Our method, in contrast, is able
to detect and forecast a broader range of market conditions. Regression based
approaches (including non-parametric variations) assume that the functional
form of the relationship between dependent and independent variables has the
same structure. An approach like ours that models variability and does not
assume a functional relationship provides more flexibility and detects changes in
relationship between prices and sales over time.

An analysis [20] of the TAC SCM 2004 competition shows that supply and
demand (expressed as regimes in our method) are key factors in determining
market prices, and that agents which were able to detect and exploit these con-
ditions had an advantage.

3 Sales Strategy

We assume that a rational agent will attempt to maximize its profit. In an
environment where production capacity and component supplies are limited,
sales must be focused on getting the highest possible prices for the resources the
agent has available over some planning horizon. Suboptimal sales decisions may
result in a situation where inventory is sold out during a period when prices are
low, leaving the agent with nothing available to sell later when prices are higher.

Typically, an agent makes sales decisions in two steps. The first step is a
strategic decision, where resources are allocated over a planning horizon in a
way that maximizes expected profit. The second step is a tactical decision, which
determines the prices that are expected to sell the quantities determined by the
strategic decision, given the current customer demand and pricing model. In this
paper we focus primarily on the strategic decisions.

Figure 1 gives a high-level architecture of the components involved in making
sales decisions. As illustrated, some data are expected to be external to the agent
and observable in the market. This includes things such as daily price reports,
data on customer demand, and data on sales made recently. Some information,
such as inventory status, resource constraints, and cost basis, is expected to be
internal to the agent and not directly visible to any other agent. Some informa-
tion is expected to be derived by the agent using its own prediction methods.

The two major components that are used for decision making are the “Eco-
nomic Regime Model” and the “Allocation” modules. The “Economic Regime
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Fig. 1. Pricing Chain. Economic regime modeling (double borders) is the focus of this
paper. It is a tool for tactical and strategic decision making. The calculation of the
offer prices by the Allocation module is a tactical decision.

Model” uses current and past sales data to predict regimes and price density of
the goods to be sold over some time horizon. The “Allocation” module sets the
quantity (sales quota) the agent wishes to sell through some time horizon. The
decision is made taking into account resource constraints, current inventory sta-
tus, cost basis, and expected demand. This can be done, for example, by solving
a linear program that maximizes the total profit over the selected horizon and
over the set of finished goods that the agent can potentially sell. If the agent can
predict the approximate market price for each product to be sold in the planning
horizon, then it can compute the predicted profit per unit of good.

4 Economic Regimes

Market conditions change over time, and this should affect the strategy used by
an agent in procurement, production planning, and product pricing. Economic
theory suggests that economic environments exhibit 3 dominant market patterns:
scarcity, balanced, and over-supply. We define a scarcity condition if there is
more customer demand than product supply in the market, a balanced condition
if demand is approximately equal to supply, and an over-supply condition if
there is less customer demand than product supply in the market. When there
is scarcity, prices are higher, so the agent should price more aggressively. In
balanced situations, prices are lower and have more spread, so the agent has a
range of options for maximizing expected profit. In over-supply situations prices
are lower. The agent should primarily control costs, and therefore either do
pricing based on costs, or wait for better market conditions.



We believe that even though the market is constantly changing, there are
some underlying dominant patterns which characterize the aforementioned mar-
ket conditions. We define a specific mode a market can be in as a regime. A way
of solving the decision problem an agent is faced with is to characterize those
regimes and to apply specific decision making methods to each regime. This re-
quires an agent to have methods for figuring out what is the current regime and
for predicting which future regimes will be in its planning horizon.

4.1 Analysis of historical data to characterize market regimes

The first phase in our approach is to identify and characterize market regimes
by analyzing data from past sales. The assumption we make is that enough his-
torical data are available for the analysis and that historical data are sufficiently
representative of possible market conditions. Information observable in real-time
in the market is then used to identify the current regime and to forecast regime
transitions.

Since product prices are likely to have different ranges for different products,
we normalize them. We call np the normalized price and define it as follows:

np =
ProductPrice

NominalProductCost

=
ProductPrice

AssemblyCost +
∑j=numParts

j=1 NominalPartCostj

where NominalPartCostj is the nominal cost of the j-th part, numParts is the
number of parts needed to make the product, and AssemblyCost is the cost of
manufacturing the product. An advantage of using normalized prices is that we
can easily compare price patterns across different products.

Historical data are used to estimate the price density, p(np), and to char-
acterize regimes. We start by estimating the price density function by fitting a
Gaussian mixture model (GMM) to historical normalized price, np, data. We
use a GMM since it is able to approximate arbitrary density functions. Another
advantage is that the GMM is a semi-parametric approach which allows for fast
computing and uses less memory than other approaches. We use the Expectation-
Maximization (EM) Algorithm [21] to determine the Gaussian components of
the GMM, N [µi, σi](np), and their prior probabilities, P (ci). The density of the
normalized price can be written as:

p(np) =
N

∑

i=1

p(np|ci) P (ci)

where p(np|ci) is the i-th Gaussian from the GMM, i.e.,

p(np|ci) = p(np|µi, σi) =
1

σi

√
2π

e

[

−(np−µi)
2

2×σ2
i

]



where µi is the mean and σi is the standard deviation of the i-th Gaussian from
the GMM. An example of a GMM is shown in Figure 2. While the choice of
N , the number of Gaussians’, in a GMM is arbitrary, the choice should reflect
a balance in derived accuracy and computational overhead. We chose N = 10,
because we found experimentally that this provides good quality. We tried other
values, ranging from 5 to 15, with similar results.
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Fig. 2. The price density density function, p(np), (right y-axis) estimated by the Gaus-
sian mixture model fits well the historical normalized price data (left y-axis represents
product quantity) for a sample market. Data are from 18 games from semi-finals and
finals of TAC SCM 2005.

Using Bayes’ rule we determine the posterior probability of the i-th Gaussian
of the GMM given a normalized price, np, as follows:

P (ci|np) =
p(np|ci) P (ci)

∑N

i=1 p(np|ci) P (ci)
∀i = 1, · · · , N

We then define the posterior probabilities of all Gaussians’ given a normalized
price, np, as the following N-dimensional vector:

η(np) = [P (c1|np), P (c2|np), . . . , P (cN |np)].

For each normalized price npj we compute the vector of the posterior normalized
price probabilities, η(npj), which is η evaluated at each observed normalized
price npj .

We cluster these collections of vectors using the k-means algorithm. Each
cluster corresponds to a regime. The center of each cluster is a probability vector
that corresponds to regime r = Rk for k = 1, · · · , M , where M is the number of
regimes. Collecting these vectors into a matrix yields the conditional probability
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Fig. 3. An example of learned regime probabilities , P (Rk|np), over normalized price
np, for a sample market in TAC SCM after training.

matrix P(c|r). The matrix has N rows, one for each component of the GMM,
and M columns, one for each regime.

In Figure 3 we distinguish five regimes, which we can call extreme over-supply
(R1), over-supply (R2), balanced (R3), scarcity (R4), and extreme scarcity (R5).
Regimes R1 and R2 represent a situation where there is a glut in the market,
i.e. an over-supply situation, which depresses prices. Regime R3 represents a
balanced market situation, where most of the demand is satisfied. In regime R3

the agent has a range of options of price vs sales volume. Regimes R4 and R5

represent a situation where there is scarcity of products in the market, which
increases prices. In this case the agent should price as close as possible to the
estimated maximum price a customer is willing to pay.

For the TAC SCM domain, the number of regimes was selected a priori,
after examining the data and looking at economic analyses of market situations.
In our experiments we found out that the number of regimes chosen does not
significantly affect the results regarding price trend predictions. The computation
of the GMM and k-means clustering were tried with different initial conditions,
but consistently converged to the same results.

We marginalize the product of the density of the normalized price, np, given
the i-th Gaussian of the GMM, p(np|ci), and the conditional probability clus-
tering matrix, P (ci|Rk), over all Gaussians ci. We obtain the density of the
normalized price np dependent on the regime Rk:

p(np|Rk) =
N

∑

i=1

p(np|ci) P (ci|Rk).



The probability of regime Rk dependent on the normalized price np can be
computed using Bayes rule as:

P (Rk|np) =
p(np|Rk) P (Rk)

∑M

k=1 p(np|Rk) P (Rk)
∀k = 1, · · · , M.

where M is the number of regimes. The prior probabilities, P (Rk), of the different
regimes are determined by a counting process over past data. Figure 3 depicts
the regime probabilities for a sample market in TAC SCM. Each regime is clearly
dominant over a range of normalized prices.

The intuition behind regimes is that prices communicate information about
future expectations of the market. However, absolute prices do not mean much
because the same price point can be achieved in a static mode (i.e., when prices
don’t change), when prices are increasing, or when prices are decreasing. In the
construction of a regime the variation in prices (the nature, variance, and the
neighborhood) are considered thereby providing a better assessment of market
conditions.

The last step is the computation of a Markov transition matrix to be used by
the agent for regime prediction. We model regime prediction as a Markov process.
We construct a Markov transition matrix, Tpredict(rt+1|rt) by a counting process
over past data. This matrix represents the posterior probability of transitioning
at time step t + 1 to regime rt+1 given the current regime rt at time step t.

4.2 Identification of current regime

Previous sales data are used to learn the characterization of different market
regimes. In real-time an agent can then use this regime information to identify the
dominant regime. This can be done by calculating (or estimating) the normalized
prices for the current time step, t.

Since complete current price information might not be available, we indicate
the estimated normalized price at time t by npt. Depending on the application
domain, the price estimate can be accurate, or can be an approximation.

The agent selects the regime which has the highest probability, i.e.

argmax
1≤k≤M

P (Rk|npt).

4.3 Regime prediction

The prediction of regime probabilities is based on two distinct operations:

1. a correction (recursive Bayesian update) of the posterior probabilities for
the regimes based on the history of measurements of the estimated median
normalized prices obtained since the time of the last regime change until the
previous time step.

2. a prediction of regime posterior probabilities for the current time step. The
prediction of the posterior distribution of regimes n time steps into the future
is done recursively.



The agent can use the regime identification and the forecast of regime tran-
sitions to adapt its procurement, production, and pricing strategies accordingly.

5 A Case Study: TAC SCM

The Trading Agent Competition for Supply Chain Management [8] (TAC SCM)
is a market simulation in which six autonomous agents compete to maximize
profits in a computer-assembly scenario. The simulation takes place over 220
virtual days, each lasting fifteen seconds of real time. Agents earn money by
selling computers they assemble out of parts they purchase from suppliers. Each
agent has a bank account with an initial balance of zero. The agent with the
highest bank balance at the end of the game wins.
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Fig. 4. Schematic overview of a typical TAC SCM game scenario.

To obtain parts, an agent must send a request for quotes (RFQ) to an ap-
propriate supplier. Each RFQ specifies a component type, a quantity, and a due
date. The next day, the agent will receive a response to each request. Suppliers
respond by evaluating each RFQ to determine how many components they can
deliver on the requested due date, considering the outstanding orders they have
committed to and at what price. If the supplier can produce the desired quan-
tity on time, it responds with an offer that contains the price of the supplies. If
not, the supplier responds with two offers: (1) an earliest complete offer with a
revised due date and a price. This revised due date is the first day in which the
supplier believes it will be able to provide the entire quantity requested; and (2)
a partial offer with a revised quantity and a price with the requested due date.
The agent can accept either of these alternative offers, or reject both. Suppliers



may deliver late, due to uncertainty in their production capacities. Suppliers
discount part prices according to the ratio of supply to demand.

Every day each agent receives a set of RFQs from potential customers. Each
customer RFQ specifies the type of computers requested, along with quantity,
due date, reserve price, and penalty for late delivery. Each agent may choose to
bid on some or all of the day’s RFQs. Customers accept the lowest bid that is at
or below the reserve price, and notify the winning agent. The agent must ship
customer orders on time, or pay the penalty for each day an order is late. If a
product is not shipped within five days of the due date the order is canceled,
the agent receives no payment, and no further penalties accrue.

An agent can produce 16 different types of computers, that are categorized
into three different market segments (low, medium, and high). Demand in each
market segment varies randomly during the game. Other variables, such as stor-
age costs and interest rates also vary between games.

The other agents playing in the same game affect significantly the market,
since they all compete for the same parts and customers. This complicates the
operational and strategic decisions an agent has to make every day during the
game, which include how many parts to buy, when to get the parts delivered,
how to schedule its factory production, what types of computers to build, when
to sell them, and at what price.

5.1 Experimental setup

For our experiments, we used data from a set of 24 games (18 for training1 and
6 for testing2) played during the semi-finals and finals of TAC SCM 2005. The
mix of players changed from game to game, the total number of players was 12
in the semi-finals and 6 in the finals.

Since supply and demand in TAC SCM change in each of the market segments
(low, medium, and high) independently of the other segments, our method is
applied to each individual market segment.

Each type of computer has a nominal cost, which is the sum of the nominal
cost of each of the parts needed to build it. In TAC SCM the cost of the facility
is sunk, and there is no per-unit assembly cost. We normalize the prices across
the different computer types in each market segment.

5.2 Online identification of current regime

Every day the agent receives a report which includes the minimum and maximum
prices of the computers sold the day before, but not the quantities sold. We use
the mid-range price, np, the price between the minimum and maximum, to

1 3694@tac3, 3700@tac3, 4229@tac4, 4234@tac4, 7815@tac5, 7821@tac5,
5638@tac6, 5639@tac6, 3719@tac3, 3720@tac3, 3721@tac3, 3722@tac3, 3723@tac3,
4255@tac4,4256@tac4, 4257@tac4, 4258@tac4, 4259@tac4 – To obtain the complete
path name append .sics.se to each game number.

2 3717@tac3, 3718@tac3, 3724@tac3, 4253@tac4, 4254@tac4, 4260@tac4



approximate the mean price. This approximation sometimes is quite poor. An
example which shows how the mid-range value differs from the mean value is in
Figure 5. The mean value is computed after the game, when the entire game data
are available. We observe that the mid-range price is different from the mean
price. In this example, around day 40 and occasionally beyond day 120, we
observe a high spike in the maximum price. This was caused by an opportunistic
agent who discovered a small amount of unsatisfied demand, but most of that
day’s orders were sold at a much lower price. To get a better approximation,
we apply a double exponential smoother on the mid-range price. Figure 5 shows
that the smoothed mid-range price, ñp, is closer to the mean price.
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Fig. 5. Minimum, maximum, mean, mid-range, and smoothed mid-range daily normal-
ized prices of computers sold. All prices except the mean are computed from the data
reported during the game every day. The mean price is computed after the game using
the game data, which include complete information on all the transactions. Data are
for the high market segment in 4257@tac4, one of the final games.

During the game, the agent estimates on day t the current regime by cal-
culating the smoothed mid-range normalized price ñpt−1 for the previous day
(recall that the agent every day receives the minimum and maximum prices for
the previous day) and by selecting the regime which has the highest probability,
i.e. argmax1≤k≤M P (Rk|ñpt−1).

Figure 6 shows the relative probabilities of each regime over the course of a
game. The graph shows that different regimes are dominant at different points in
the game, and that there are brief intervals during which two regimes are almost
equally likely. An agent can use this information to decide which strategy, or
mixture of strategies, to follow. When making decisions the agent should consider
not only the current regime (tactical decision), but also upcoming regime changes
(strategic decision). Therefore an agent needs to predict future regimes.
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5.3 Regime prediction

Since in the context of TAC SCM each time step corresponds to a single day
we train the Markov matrix, Tpredict(rt+1|rt), on regime changes from day t to
day t + 1 by a counting process over past games. The correction and prediction
steps are applied to the current regime probabilities as outlined in Section 4.3.
Examples of regime predictions for a sample game for the high market segment
are shown in Figure 7 and Figure 8.

The figures show the real regimes measured after the game from the game
data and the predictions made by our method during the game. As it can be
seen in the figures, the match between predictions and real data is very good.

Figure 7 shows a predicted change from extreme-scarcity to scarcity. In this
case the agent should try to sell more aggressively the current day, since prices
will be decreasing in the next days. On the other hand we see in Figure 8 a
change from an extreme-oversupply situation to an oversupply situation. This
means that the agent should sell less today and build up more inventory for
future days when prices will be higher.

We have reported in [22] and [23] a correlation analysis of the market pa-
rameters to regimes and more details on regime identification and prediction.

5.4 Tactical Sales Decision

The regime model we have described can help the agent to make strategic de-
cisions that can drive procurement, production, and sales behaviors. We now
briefly outline how our agent makes tactical sales decisions.

Given the daily sales quotas, price trend predictions, and the current demand
for each product, the final tactical decision is to set the offer price for each
product to a value that is expected to sell the desired quota. We assume that
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ment.

the computed price is offered for the entire demand. This is done with the help
of a pricing model that approximates the probability that customers will accept
an offer at a given price. The agent uses a simple linear approximation, given the
expected median price (derived from ñp and from a feedback loop that monitors
the agent’s sales performance) and slope of the acceptance probability function.
Offer prices are slightly randomized, and actual sales performance is used to
update the model.

6 Conclusions and Future Work

We have presented an approach for identifying and predicting market conditions
in markets for durable goods. We have demonstrated the effectiveness of our
approach using games played in the semi-finals and finals from TAC SCM 2005.
An advantage of the proposed method is that it works in any market for durable
goods, since the computational process is completely data driven and that no
classification of the market structure (monopoly vs competitive, etc) is needed.

Our approach recognizes that different market situations have qualitative
differences that can be used to guide the strategic and tactical behavior of an
agent. Unlike regression-based methods that try to predict prices directly from
demand and other observable factors, our approach recognizes that prices are
also influenced by non-observable factors, such as the inventory positions of the
other agents.

Our method promises to enable an agent to anticipate and prepare for regime
changes, for example by building up inventory in anticipation of better prices in
the future or by selling in anticipation of an upcoming oversupply situation. In
future work we plan to apply our method to data from Amazon.com or eBay.com.



7 Appendix: Summary of Notation

Symbol Definition

np Normalized price
np Mid-range normalized price
ñp Smoothed mid-range normalized price
p(np) Density of the normalized price
GMM Gaussian Mixture Model
N Number of Gaussians of the GMM
p(np|ci) Density of the normalized price, np, given i-th Gaussian of the

GMM
µi Mean of i-th Gaussian of the GMM
σi Standard deviation of i-th Gaussian of the GMM

P (ci) Prior probability of i-th Gaussian of the GMM
P (ci|np) Posterior probability of the i-th Gaussian of the GMM given a

normalized price np
η(np) N-dimensional vector with posterior probabilities, P (ci|np), of

the GMM
M Number of regimes
Rk k-th Regime, k = 1, · · · , M

P(c|r) Conditional probability matrix (N rows and M columns) re-
sulting from k-means clustering

p(np|Rk) Density of the normalized price np dependent on the regime
Rk

P (Rk|np) Probability of regime Rk dependent on the normalized price
np

t Current time
t0 Time of last regime change
Tpredict(rt+1|rt) Markov transition matrix
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