
A Model of Market Segmentation with Risk 
 

Ori Marom 
William E. Simon Graduate School 

of Business Administration 

University of Rochester, Rochester, NY 14627 

marom@simon.rochester.edu 

Abraham Seidmann 
William E. Simon Graduate School 

of Business Administration  

University of Rochester, Rochester, NY 14627 

seidmannav@simon.rochester.edu 

 

 

Abstract 

We characterize an optimal scheme for the 

sale of multiple items of a good by a 

monopolist in a market comprised of risk 

averse buyers. It is established that by 

randomizing prices in one channel while also 

offering a risk-free alternative in another a 

seller may obtain segmentation benefits. The 

optimal vehicle of such price randomization is 
a draw from a discrete two-points probability 

distribution function. We use the model to offer 

explanations for observed on-line sellers’ 

behavior and discuss implementation issues in 

view of recent e-commerce environments. 

 

1. Introduction 

In internet based commerce, it is often observed 
that some sellers use (either separately or 
simultaneously) multiple distribution channels for the 
sale of standard consumer goods. For example, we 
found that within a two weeks period Carnival cruise 
lines has offered units of the same cabin class on one of 
its ships while using three distinct on-line selling 
methods: standard posted price, first price auction and 
‘last minute’ clearance sale.   A possible explanation for 
such behavior is that sellers such as Carnival are 
deliberately embedding price uncertainties into their 
sales channels in order to employ second degree price 
discrimination among buyers who are risk averse.  
Buyers who assign higher values to the offered product 
are typically more reluctant to risk compromising their 
surplus and are therefore prone towards an early ‘risk 
free’ purchase at a higher posted price while buyers with 
lower values may be willing to wait and attempt to 
acquire the product at a bargain price.   

We begin the discussion by introducing a numerical 
example. A cruise line operator has 400 cabins left for 
sale on one of her ships. There are 1000 potential clients 

in the market whose values (v) for the cruise are 
uniformly and independently distributed between $0 and 
$1000. Suppose that buyers in this market are known to 
be highly risk averse; once they set their minds on a 
specific cruise and avail time away from work they 
would truly detest changing their plans due to 
unavailability.  The seller accordingly estimates buyers’ 

utility to be represented by the function 4/1)( pvU −=  

where the term in the parentheses is net surplus from 
consumption of cruise vacations.  In case of no purchase 
a buyer’s utility is zero. 

The setup is such that the cruise operator has 
exactly three possible selling methods: a posted price, a 
multi-unit online auction and a random ‘last minute’ 
sale event, held with probability of . The seller may use 
any combination of the three in designing a selling 
scheme and we assume that all buyers are kept fully 
informed regarding her choice.  

For instance, the seller may choose to sell units for 
a posted price of $700, auction off (with certainty) 15 
units, and then offer any remaining unit at a clearance 
sale 14 days prior to departure, but only with probability 
of =50% (so that with probability of 50% some 
capacity may remain unsold).  

 

As the optimal solution, we would prescribe the 
following:  

• Set the posted price at $658 per cabin. 

• Announce that with probability of 79% a ‘last 
minute’ sale will take place, in which units will 
be sold for $600 each.  

• Do not auction off units at any time. 

In the resulting equilibrium 303 cabins are sold 
immediately and 97 cabins are reserved for the ‘last 
minute’ clearance sale. Consequently, the seller’s 
revenues are $245,720 or about 2.4% higher than what 
she could obtain otherwise by charging only a spot price 
of $600 while selling all 400 available units with 
certainty. 
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1.2 Related literature 
The potential segmentation benefits which may 

arise from price randomization have long been 
recognized.  Stiglitz [15] suggested that incentive 
schemes yielding random outcomes may be desirable 
when agents are risk averse but has not described 
optimal policies that involve such randomization. In 
contrast, Riley and Zeckhauser [14] have shown that 
when buyers are risk neutral and the seller has no 
capacity constraint a deterministic one-price scheme is 
always optimal.  In two independent seminal studies, 
Matthews [11] and Maskin and Riley [10] have 
characterized optimal auctions with risk averse buyers 
under different sets of assumptions. While assuming, as 
we do in this paper, that buyers have uniform utility 
functions and differ only in their valuation of the good, 
both studies establish that the seller can devise a truth 
revelation mechanism that strictly dominates any one-
price scheme while inducing an equilibrium in which 
almost all buyers are faced with risk. Within such an 
‘optimal auction’ every buyer is induced to reveal his 
value of the good; based on this report he is then 
assigned a schedule that includes a ‘bid submission’ fee, 
a probability of winning the item, and finally, an 
‘acquisition  price’ to be paid only if the item is won. 
Matthews established that in the particular case in which 
buyers exhibit constant absolute risk aversion (CARA) 
the acquisition price of any schedule should optimally 
be deterministic. Maskin and Riley deviated form this 
rather restrictive assumption at the cost of not obtaining 
necessary and sufficient conditions for the optimality of 
their suggested mechanism.  Furthermore, it appears that 
the main barrier to the implementation of mechanisms 
resembling such ‘optimal auctions’ in real-world 
markets is their inherent complexity. In fact, to the best 
of our knowledge no such selling scheme was ever used. 

Varian [16] explained price dispersions in markets 
in which multiple sellers compete for sales of a 
homogenous good. He argues that when buyers differ in 
their ability to access price information the optimal 
selling scheme involves price randomization as the 
unique symmetric equilibrium outcome. The motivation 
behind such randomization is the desirability for sellers 
to avoid head-on Bertrand competition.  Baye and 
Morgan [2] extended this model to include a 
monopolistic electronic intermediary that facilitates the 
transmission of price information while charging 
participating sellers and buyers nominal access fees.  
Interestingly, they found that at the resulting 
equilibrium, sellers’ decision to participate takes the 
shape of a random event with probability  while their 
advertised price is a random variable drawn from a 
continuous distribution F(p). While both aforementioned 
papers are closely related to our work, we consider a 
monopoly seller rather than a competitive environment 

and thus our paper entails an alternative exploration into 
the problem of characterizing optimal price 
randomization schemes. 

In this paper, a simple two-period model of 
segmentation with random prices is constructed. We are 
assuming a specific utility function and only two 
possible available pricing schemes: a ‘risk free’ channel 
which consists of a single posted price, and a ‘risky’ 
channel in which price is a random variable drawn from 
a probability distribution. We do not impose any 
restrictions on the shape of this distribution. Within this 
framework, we are able to fully characterize the profit 
maximizing policy and investigate its behavior under 
different degrees of buyers’ risk aversion and seller’s 
available capacity levels. We show that when the 
sellers’ available capacity is unlimited and buyers 
exhibit strict risk aversion the optimal instrument of 
price randomization is a discrete two-points distribution. 
In contrast, when buyers are risk neutral or when the 
seller’s available capacity falls below a threshold which 
is a concave function of the degree of buyers relative 
risk aversion, it is found that the optimally policy is a 
one-price scheme.  One feature of our model is that it 
allows for a compact parametric representation of the 
uncertainty faced by buyers in equilibrium. We find that 
the optimal level of price uncertainty is a monotonically 
decreasing function of buyers’ degree of risk aversion. 
Optimal pricing policies will also be discussed. While 
the optimal ‘risk free’ posted price is found to be 
monotonically increasing with respect to the degree of 
buyers’ risk aversion, the average price in the ‘risky’ 
channel is monotonically decreasing with respect to it. 
In addition, it will shown that the seller’s optimal 
response to any incremental increase in buyers’ risk 
aversion is to increase in the new equilibrium the 
proportion of the available capacity sold (on average) at 
the ‘risky’ channel. 

The remainder of the paper is organized as follows. 
In Section §2 we begin by constructing a model without 
a capacity constraint. This is followed by an analysis of 
the resulting equilibrium (theorems 1 and 2). In section 
§3 we add a capacity constraint to the basic model and 
discuss this more general case (theorem 3). In section §4 
we bring forth some welfare implications of the model. 
Section §5 includes a discussion of a number of relevant 
implementation issues in view of recent IT enabled 
markets. 

 

2. Model  

We consider the problem of a risk neutral seller 
who wishes to maximize her expected revenue from the 
sale of a good. The seller is a monopolist in the market 
and we normalize her constant marginal cost of 
production to be zero. For this part of the analysis, we 
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also assume that the seller’s production capacity is 
unlimited. The model consists of two periods. In the first 
period, the seller offers the good for sale at some posted 
per-unit price we denote by p1; whereas in the second 
period, the price p2 is a random draw from a discrete 

probability distribution f(x,a). The term n
iixx 1}{ ==  is a 

vector of n non-negative prices which are indexed in an 

increasing order { ji xxji ≤→< }, and n
iia 1}{ == α  is a 

vector of n probabilities such that iixp α== ]Pr[ 2  for 

all {i=1,2,..,n},  and  

=

≤
n

i

i

1

1α .  

Using the above terms, we let the vector S={p1,x,a} 
represent the seller’s ‘pricing policy’. The seller 
announces the policy S at the beginning of the first 
period of the model and we assume that she can credibly 
commit to truthfully following it. The discussion of 
issues that are related to this assumption is intentionally 
left outside the scope of this paper, for the sake of 
brevity. 

 Remark:    although we consider only discrete price 
distributions, any interesting continuous distribution 
may be approximated by a discrete form and hence no 
generality is lost.  

The market is comprised of a large number of 
buyers whose values for the good are independently and 

uniformly distributed over a unit interval ]1,0[~ Uvi  

and each buyer’s demand is for a single unit of the good. 
Buyers are risk averse and their preferences uniformly 
represented by the utility function 

ρ−−= 1)(),( pvpvu ii  . The parameter  is common 

to all buyers and may range between 0 and 1, this term 
is often referred to in related literature as the degree of 

buyers’ relative risk aversion.   
The dynamics of the model are described as 

follows. At the beginning of the first period, all buyers 
freely observe the policy S. Each buyer then 
individually chooses whether to purchase the good at a 
price of p1 or delay his decision until the next period. At 
the second period, the realization of the random variable 
p2 becomes known and all buyers whose values exceed 
this price make their purchases. At the same time, 
buyers with values lower than p2 end up with no 
purchase and with a utility of zero. 

 

2.1 Buyers’ Behavior  

 
A buyer with value is v will optimally purchase the 

good at the first period if and only if the following two 
conditions are met  

 0)()p-(v(v)    ) (2

p     v(1)

)(

1

-1-1
1

1

≥−−=∆

≥

=

vm

i

ii xv ρρ α
 

Where )(vm is the index of the highest price not 

exceeding v. The function (v) represents a buyer’s 

excess utility from a risk free purchase . It can be shown 
that (v) is everywhere continuous with respect to 
buyers’ value but is not always monotone with respect 
to it. The following lemma offers an important 
necessary condition for random-price channel 
participation 

Lemma 1:  A buyer will delay his purchase at the first 

period only if he expects an (average) price discount to 
materialize at the second period:  

=

∈≥≤
m(v)

1i

11i1 ,1][p v,xp0(v) all  

All proofs in this paper are contained in the 
Appendix. Lemma 1 seems very intuitive. We learn 
from it that even though positive probabilities may be 
assigned to second period prices that are higher than the 
first period posted price (p1), the average revenue 
generated to the seller by any second period buyer 
would always be lower than that of a first period buyer.  

We dedicate the next sub-section to the study of the 
family of policies that include a two points price 
distribution at the second stage (n=2). Furthermore, we 
shall restrict one of those prices to be sufficiently high 
so that no buyer would be willing to transact at it.  This 
form is of special importance as it will be shown at the 
next section that the seller can always find an optimal 
policy which belongs to it.  

 Market Equilibria with ‘Two-Price’ Policies: For 
added clarity, we repeat in plain words the market 
scenario of this case. In the first period, the seller posts a 
‘spot’ price of p1 and announces that with probability of 

 she will hold a random ‘sale’ event in the second 
period, and that the ‘sale’ price will be p2. However, if a 
‘sale’ is eventually not held, the seller will refuse selling 
the product in the second period altogether. 

In our previous notations, the above takes the form 
of the following policy     

},,{ 1 axpS = , },{ 2 hpx = , }1,{ αα −=a  

Where h is any number strictly greater than 1, 
which is the highest possible value a buyer may assume 
in our model. Throughout the paper we shall use the 

convention ∞=h .  In the particular case of the above 

policy S, it can be shown that buyers’ excess utility from 
risk free purchase (v) is a monotonically increasing 
function with respect to v for any parameter value and 
therefore has, at most, a single crossing at a level of  
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zero.  This threshold value may therefore assume a 
functional form. This is given by 

(3)    
−
−

== −

−
1,

1
),,(

)1/(1

2
)1/(1

1
,2,1 ρ

ρ

α
αρα pp

Minppbb  

All buyers with values higher than b optimally 
make their purchases in the first period whereas all 
buyers with values between p2 and b make purchases at 
the second period whenever a ‘sale’ is held. Quite 
expectedly, the function b is found to be monotonically 
increasing with respect to both p1 and , and 
monotonically decreasing with respect to both p2, and .  

 

2.2 Firm’s behavior and the characterization of 

a profit maximizing policy 

 
The seller’s aim is to select a policy in order to 

maximize her expected profits while assuming that all 
buyers are kept fully informed and behave rationally. 
Without any loss of generality, we restrict our attention 
to the domain ( ) of policies which induce a partition 
of buyers into first and second demand sets that are 
contiguous and touching at a single point b(S, ). This 
restriction requires that if a buyer prefers to make his 
purchase in the first period then so will all buyers with 
values higher than his.   

To save on notations we use simply  and b. With 
that, the seller’s optimization problem takes the form 

(4) 

=
Θ∈

−+−
)(

1

1 )()1(

bm

i

iii
S

xxbbpMax α  

Before proceeding to the solution, we provide a 
simple example in order to illustrate the considerations 
involved in the seller’s selection of a policy. For this 
example, suppose that the seller compares only the 
following two policy alternatives: 

S1={½ ,{Ø},{Ø}}         S2={ , { , },{½ , ½ }} 

We shall refer to S1 as ‘the benchmark policy’. This 
is the optimal one-price policy by which the seller may 
turn a profit of ¼ simply by charging a fixed price of ½ 
in a single period. We now turn to calculate demand 
under the policy S2. Because we assume that buyers 
value are uniformly distributed, the proportion of buyers 
who makes purchases in the first period after observing 
the policy S2 is given by (1-b) where b is described by 
equation (3); the second period demand is similarly 
given by ½·(b- ) and the overall profit from this 
strategy is given by  

)12(18

825
)(

)1/(1

)1/(1

2 −⋅
−⋅=Π −

−

ρ

ρ
S  

The above profit function is monotonically 
increasing with respect to the degree of buyers’ relative 
risk aversion and exceeds the benchmark profit if and 
only if  is greater than 0.644.  Figure 1 assists us in 
describing the different effects which come into play in 
the comparison between the alternative equilibria under 
the policies S1 and S2. In segment I better surplus 
extraction is attained by using the policy S2, at the same 
time, the seller loses revenues from buyers whose values 
fall within in segment II due to a cannibalization (or 
leakage) effect; whereas in segment III the seller 
benefits from extending her market to newly include 
lower valued buyers. The key question is whether (and 
under what circumstances) the seller may find a policy 
which would generate an overall increase in profits as 
the sum result of all three effects.  

 

 
    

           Figure 1.  Market segmentation (example) 

 
 
Our first theorem asserts that when buyers are risk 

neutral the seller can not attain a profitable 
segmentation.  

 
Theorem 1:   Let buyers be uniformly risk neutral 

( =0) and let ),,(
^^

1

^^

αxpS =  be a policy that induces a 

non-empty subset of buyers to make purchases in the 

first period.  Then,  

)1()( 1

^

1

^^

ppS −≤Π    

Surprisingly, we find that the fact that introducing a 
random second period price is never optimal does not 
depend on the optimality of the first period price in a 
policy.  Our next task is to show how buyers’ risk 
aversion may change the nature of the seller’s solution. 
Intuitively, a sufficiently high degree of buyers’ risk 
aversion might mitigate the negative effects of 
cannibalization to an extent that would enable the seller 
to exploit price uncertainty in order to increase her 
profit. In fact, we found that for any degree of risk 
aversion the seller may indeed find a two prices policy 
that is strictly better than the fixed price benchmark. We 
now turn to formalize the main result of this paper. 

 

Segment 

IV 

Segment 

I 

 

 

  

Segment 

II 

Segment 

III 

b  ½  10
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Theorem 2:    For any degree of strict risk 

aversion }10{ << ρ  there exists a profit maximizing 

policy )}(),(),({)( ***
1

* ρρρρ axpS =  that involves two 

distinct second period prices }),({)( 2
* ∞= ρρ px to be 

charged with two corresponding strictly positive 

probabilities )}(1),({)(* ραραρ −=a . This optimal 

policy strictly dominates any one-price scheme 

{ (S*)>1/4}.  
 
A central implication of theorem 2 is that the 

optimal vehicle of price randomization within a two 
channel structure is a draw from a discrete two-points 
probability distribution function where one of the points 
represents a price that is prohibitively high. We could 
not, however, find a strong economic intuition behind 
this result.  

 

2.3 Comparative Statics 

 
In this section we describe the effects of changes in 

the degree of buyers’ risk aversion on various 
equilibrium variables of the model.  From the appendix, 
the two prices of profit maximizing policy are 
formulated by equations (5) and (6): 

 (5)  
2)1/(*

)1/(1*
*
1

))(1(4

))(1(2
ρρ

ρ

αα
α

−

−

+−
−=p  

(6)   
2)1/(*

)1/(*)1/(1*
*
2

))(1(4

))(1)()(1(
ρρ

ρρρ

αα
αα

−

−−

+−
+−=p   

Where the probability * is determined as the unique 
feasible solution to the equation       

01)
1

1
(

)
1

)(()7(

)1/(

))1/(1()1/()1(

=+
−
+−

−
+

−

−−+

ρ
ρα

ρ
ραα

ρρ

ρρρ

        

We use the above derivations in order to investigate 
the relationships between buyers’ risk aversion and the 
seller’s optimal policy variables (see Figures 2A and 
2B), and attempt to explain their meanings.   

It is an intuitive result that the first period price is 
found to be strictly increasing with risk aversion (see 
figure 2A); the increased reluctance on the part of 
buyers to incur price uncertainty intensifies the demand 
for purchases in the first period and results in a 
correspondingly higher posted price (p1*). At the same 
time, the optimal ‘sale’ price (p2*) of the second period 
is a decreasing function of buyers’ risk aversion since a 
reduced cannibalization effect allows the seller to charge 
a price which is closer to the ex-post efficient level 
given by b(S*)/2 (this is the price that the seller would 
charge at the second period if she were to defect from 
truthfully following her declared policy).  Interestingly, 

the optimal probability of a ‘sale’ ( *) is found to be 
monotonically increasing with risk aversion (see figure 
2B). In other words, in environments where buyers 
would be more reluctant to incur transaction risk the 
model advocates  installing mechanisms which assign 
higher probabilities to lower prices. Still, as figure 2C 
shows, with increased risk aversion it is observed that a 
ratio of average sales in the two periods always tilts in 
favor of the second period channel (!).  Lastly, it is an 
obvious result that the monopoly’s payoff increases 
monotonically with risk aversion (see figure 2D). This 
phenomenon is a direct consequence of the monopoly’s 
enhanced capacity to segment its market. 

 

2.4 Third party re-sellers  

 
In the preceding analysis we assumed that the seller 

is not only the monopoly producer of the good but also 
the only risk neutral agent in the market. We now 
consider an alternative case in which an arbitrary 
number of risk neutral re-sellers also exist in the market. 
The re-sellers are not authorized by the wholesaler and 
are therefore compelled to buy the good at a forward 
retail price in hope to sell it later at a profit once its 
value appreciates. We assume that no re-seller derives 
any direct utility from consumption of the good. From 
the buyers’ perspective, we ignore some implications, 
such as lack of warranty, and assume that all buyers are 
indifferent between buying from the monopoly producer 
and buying from a re-seller. The question we then ask is  
whether or not it would be possible for any number of 
re-sellers to turn arbitrage profits in the market. It turns 
out that the answer to this question is negative, as we 
show next. 

In case a sale does not take place by the producer in 
the second period, let us assume that all re-sellers charge 
the price  in a symmetric equilibrium.  Each re-seller’s 
expected (per-unit) profit is then given by 

12)1()()8( pprs −+−=Π αψαψ  

Therefore, the minimal equilibrium price  which 
would result in a non-negative profit for a re-seller is 

α
αψ

−
−

=
1

)9( 21
min

pp
 

However, since the utility function of buyers is 
concave, it is straightforward to verify that no buyer 
would be willing to buy at this price. Indeed, by the 
definition of strict concavity we get 

ρρρ ψαα −−− −<−−+− 1
1

1
min

1
2 )())(1()()10( pvvpv  

We conclude that the monopoly’s capacity to profitably 
segment the market with risk may not be impaired by 
the presence of risk neutral re-sellers. 
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Figures 2(A)– (D).  Uncapacitated model behavior 

 

3. Limited capacity   

In this section, we incorporate a capacity constraint 
into the model and analyze the resulting equilibrium. 
The most important point we will show is that when 
merchandize is in short supply relative to demand, the 
seller should optimally charge only one price. 

For this part, we assume that buyers freely observe 
the seller’s available production capacity (denoted k) at 
the first period of the model. The entire lot is readily 
available for sale at the first period and any unsold unit 
can be costlessly carried over by the seller to the second 
period.  In order to be brief, we do not model ‘stock 
outs’; that is, we assume that within any chosen policy 
the seller does not assign positive probabilities to 
scenarios in which demand exceeds supply.  Hence, the 
minimal price that may be charged at any equilibrium is 
(1-k).  With that, we present the following result 

 
Theorem 3:    Let  be the degree of buyers’ 

relative risk aversion }10{ <≤ ρ and let k be the overall 

(two period) seller’s available capacity }10{ ≤≤ k .  

Then, there exists a profit maximizing policy 

)},(),,(),,({),( ***
1

* kakxkpkS ρρρρ =  that involves 

two second period prices }),,({),( *
2

* ∞= kpkx ρρ  and 

two corresponding probabilities 

)},(1),,({)( *** kka ραραρ −=  and strictly dominates 

any one-price charge, if and only if buyers are risk 

averse )0( >ρ  and the seller’s capacity  exceeds a 

concave threshold function: 
ρ
ρ

−
−>

2

1
k . 

 
The proof of theorem 3 is available upon request. When 
production capacity is limited the seller targets buyers 

Figure 2D: Seller's Profit
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Figure 2A: Optimal 'Spot' and 'Sale' Prices

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Degree of Relative Risk Aversion (Rho) 

P1: 'Spot'

P2: 'Sale'

Figure 2B: Optimal Probability of a 'Sale' Event (Alpha) 
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Figure 2C: Two-Channels Sales Breakdown
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with higher values for the good and has a lesser or no 
incentive to use segmentation tools in order to include 
buyers with relatively low values. In addition, the 
opportunity cost of unsold capacity in realizations in 
which the second period price turns up to be ‘high’, is 
more significant. We find that both effects results in 
optimal channeling of a smaller proportion of available 
capacity to the second period, or even the elimination of 
second period sales in scenarios with very low capacity 
level.     

 

4. Welfare implications 

 
The following contains a brief discussion of the welfare 
implications of the model. Assuming the stand point of a 
social planner, we define total welfare as the 
aggregation of net expected consumer surplus and the 

seller’s equilibrium profit: Π+= CSW ; Under the 

optimal two price policy of either the capacitated or the 
uncapacitated  cases we have 

   
2

))(1()1( 2
2

2
1 pbp

CS
−−−−

=
α

 

   2211 )()1( ppbpp −+−=Π α  

By analyzing the equilibrium values of the above 
parameters, we find that regardless of risk aversion and 
available capacity levels consumers are always worse 
off at the aggregate as compared to a one price 
monopoly scenario. This result holds in an even stronger 
sense because at the above we ignored buyers’ disutility 
from bearing risk. When available capacity is unlimited 
the total social welfare always increases as a result of 
increased production. In cases where the capacity 
constraint is binding in equilibrium, however, this result 
becomes ambiguous. Social welfare may decrease.  

 

5. Conclusions and IT perspectives  

 In this paper we established the following: (1) 
firms with monopoly power can segment markets while 
using relatively simple schemes that involve price 
randomization. (2) In implementing such policies firms 
should monitor available sales capacity levels and assess 
buyers’ attitudes towards risk, and then design the profit 
maximizing schemes accordingly. 

A number of open questions remain: (1) Could 
firms with less than full degree of monopoly power 
utilize such strategies? (2)   What would be the effects 
of positive transaction, search and venue costs? (3) 
What could be the effects of non linear cost functions? 

In view of practical implementation issues which 
are related to our model we regard IT enabled markets 
as playing a central role. Indeed, the internet has 
facilitated new and more elaborate selling methods, such 
as multi-unit auctions (see Pinker et al. [13]). Moreover, 

it allows sellers to offer items on multiple web channels 
at the same time without incurring large incremental 
costs, such as inventory holding costs, per each featured 
channel.  Also, new technologies of on-line inventory 
and customer data management systems allow the 
sellers new capabilities to dynamically set their prices 
over time in order to maximize profits (see Choudhary 
et al. [4]).  

The internet had reduced buyers search costs 
significantly (for a discussion see Bakos [1]) and new 
questions arise as to the impact that this may have on 
sellers’ profitability and competitiveness. Brynjolfsson 
and Smith [3] and Clemons et al. [5] argue that in both 
commodity and differentiated product e-markets 
significant price dispersions are found. Those papers 
provide evidence that sellers who use the internet do not 
necessarily turn to compete on price alone and that 
many buyers are willing to pay a premium in order to 
purchase a good on-line from a seller of their choice. In 
this paper we provide an argument for the case that the 
reduction in buyers’ search costs may actually increase 
sellers’ segmentation benefits by allowing them to 
position items on multiple channels while facilitating 
buyers choice as to the price/product selling scheme that 
fits them best.   
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Appendix I: Proofs 

 

Lemma 1:   The utility function is concave and 
monotonically increasing with respect to value. 
Therefore, (v)<0 implies 
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Theorem 1: The set of equilibrium first period 
buyers is non-empty. If the set of equilibrium second 
period buyers is empty then () is trivially satisfied and 
we are done. Let us assume then that the second period 
buyers’ set is non-empty. When =0, the function (v) 
given in equation (2) is a continuous and monotonically 
increasing function and its domain is a closed interval. 
Hence, by the mean value theorem there exists a unique 

value b∈(0,1) such that (b)=0. The seller’s profit 
function when buyers are risk neutral is given by 
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that the variance of the second period price, within the 
equilibrium induced by the optimal policy, must be zero. 
The required variance term is formulated by 
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Equations (9) and (10) yield the following 

expressions, respectively  
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Once we incorporate the expressions for the left 

hand side terms in (11) and (12) into the profit function 
(8) we finally get our required result: 

2
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)1()( σ−−=Π ppS . From the non-negativity of the 

above variance term we know that the policy 
^

S  is 

dominated by a policy where only one price 
^

1p is 

charged and our proof is thus complete. Note that we 
proved more than the theorem asserted: not only does 
the seller optimal policy consists of a single fixed price 
but also the profit function is monotonically decreasing 

in the second price variability ( 2σ ).  
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Theorem 2:   We will first show that for any >0 
there exists a two price policy that yields >¼  and will 
then argue that there exist no n-price policy that strictly 

dominates it. Let },,{ 1 axpS = , },{ 2 ∞= px , 

}1,{ αα −=a be a two price policy. It can be easily 

shown that this policy may induce, at most, a single 
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Fortunately, we found that whenever >0 none of 
above listed constraints may bind at any optimum and 
we therefore ignore them in what follows.  
 

 First order necessary conditions: 
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We assume for a moment that <1 and get by (14) and  

(15):  
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From (16) ,(17) and (18) we derive the following 
condition for the term  
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Equation (19) does not have a closed form solution 

and we used numerical methods to solve for *. Note 
that by equations (17) and (18) the entire optimal policy 
is uniquely determined by this value.  Still, it is to be 
verified that the numerical solution is indeed a global 
maximizer. We obtain the representation of profits 
under the hypothetical case where  is treated as a 
parameter 
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It can be checked that the above is a continuous and 
strictly concave function. Hence, the policy we found 
consists a global solution to the seller’s problem, as 
required. Since it holds that 
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is unimodal over its entire support [0,1] and its mode is 
always found at an interior point of the support (1> >0). 
The theorem’s assertion that *( )>1/4 for every >0 is 
thus proven. It remains to be verified that there does not 

exist another policy nS  which includes an n point 

second period price distribution (n>2) and yields the 
seller a (strictly) higher payoff than does the optimal 
two points distribution we analyzed above. We let: 
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Let us assume the contrary; that is, nS is the profit 

maximizing policy. Unlike a policy with a two-points 

distribution, the policy nS  with n>2 may result in more 

than one indifference point b. We pick, 
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Lemma 1 to derive an upper bound for profit  
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Let us suppose for a moment that the seller, while 

making her policy decision, optimistically assumes that 

her payoff will be )( nSΠ . Since nS is supposed to 

maximize the seller’s payoff, it must in particular, 

dominate any policy S such that 
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)()( nSbSb = . Therefore, we fix )( nSbb =  and 

)(
11

n
pp =  as exogenous parameters and require the 
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satisfy the first order KKT optimality conditions of the 
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With 0 and 1 as Lagrange multipliers, we write: 
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We are interested in the following two necessary 

conditions 
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By the strict concavity of the utility function we have 
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And by Lemma 1 , 
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Next, we assume without any loss of generality, that 

the probabilities variables { i} are all non zero. 
Alternatively, if any of the probabilities were zero we 
could just drop the corresponding price variable and 

deal with the form 1−nS ; we would then consummately 

require n-1>2.  
 
We get by (22) and (23)  
 

)(,...,2,1,

)())(1(

2
)25( 1

bmji

xb

x

xb

bx

j

j

i

i

=∀
−

=
−−
−

=
−− ρρρ

λ
 

 
However, this condition may possibly be satisfied 

by exactly two prices: 
ρ+1

b
 ,and b .   In order to see 

that, consider the following two functions 
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Now, we let d
b

y +
+
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ρ1

, where d is a constant. 

We evaluate the difference at this point 
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When by < both terms in brackets are strictly 

positive and the two functions intersect if and only if 

d=0. When by → , both functions approach zero and the 

difference between them becomes arbitrarily small. 
 
Finally, the above consists a contradiction to the 

optimality of the policy nS  with any n>2 and we 

conclude that the optimal policy with risk aversion 
entails charging exactly two prices.  
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