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ABSTRACT
The paper presents a method that uses aggregate ratings
provided by various segments of users for various categories
of items to derive better estimations of unknown individual
ratings. This is achieved by converting the aggregate ratings
into constraints on the parameters of a rating estimation
model presented in the paper. The paper also demonstrates
theoretically that these additional constraints reduce rating
estimation errors resulting in better rating predictions.

Categories and Subject Descriptors: H.1.2 [Models and
Principles]: User/Machine Systems - Human information
processing. H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval - Information filtering.

General Terms: Algorithms, Design, Theory

Keywords: Recommender systems, Hierarchical Bayesian
models, predictive models, aggregate ratings, OLAP

1. INTRODUCTION
Consider a movie recommender system, such as the one

provided by Netflix, and assume that we know an aver-
age rating that graduate students provide for action movies
from a reliable external source. Can we use this type of
aggregate rating information to improve quality of individ-
ual recommendations? More generally, ratings of individual
items provided by individual users can be aggregated into
OLAP-based aggregation hierarchies [1], and various aggre-
gate ratings for different groups of users and groups of items
at different levels of the OLAP hierarchy can be known to
the recommender system. For example, the IMDB database
provides average ratings of movies by various categories of
users, such as Male vs. Female ratings. In this paper, we
describe how this aggregate rating information from external
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sources can be leveraged for providing better recommenda-
tions of individual items to individual users.

We study this problem in the context of the hierarchical
regression models, both Bayesian and frequentist, that were
independently proposed by statisticians [5] and marketers [3]
studying recommender systems. We decided to use this type
of hierarchical regression models [12] for the following rea-
sons. First, they constitute hybrid models integrating both
user and item characteristics into a single recommendation
model. Generally, hybrid models tend to outperform col-
laborative and content-based recommendation methods in
many cases [2]. In fact, the Hierarchical Bayesian model pre-
sented in [3] outperformed a collaborative filtering model [3].
Second, these models are based on strong statistical theory
and have nice statistical properties that can be analyzed
theoretically, as is done in this paper. However, the gen-
eral approach presented in this paper is not limited to this
particular type of models and can be generalized to various
other statistical and data mining models and approaches.
For example, [4] presents a method for using aggregate in-
formation about traversal of hypertext pages by a group of
users in order to provide better recommendations of hyper-
text pages to individual members of the group. In contrast
to this top-down approach, [11] presents a bottom-up ap-
proach in which the goal is to provide recommendations to
a group of users. Then these group recommendations are
based on the aggregate ratings that are computed based on
the individual ratings of the members of the group.

In this paper we show theoretically that the extra knowl-
edge of the external aggregate ratings indeed leads to more
accurate recommendations. We also show how this aggre-
gate rating information can be converted into additional con-
straints on model parameters leading to better estimations
of individual unknown ratings. Finally, we present a par-
ticular semi-parametric frequentist method for estimating
parameters of hierarchical regression models and show how
the method incorporates aggregate information.

Before presenting the aggregate method, we first describe
hierarchical regression models in Sections 2.1 and 3 and how
they are used for estimating unknown individual ratings.



2. HIERARCHICAL BAYESIAN REGRES-
SION MODEL

2.1 Model specification
As explained in Section 1, [3] describes a hybrid approach

to rating estimation that uses the following Hierarchical
Bayesian (HB) linear regression model:(

rij = x′ijµ + z′iγj + w′
jλi + εij ,

εij ∼ N(0, σ2), γj ∼ N(0, Γ), λi ∼ N(0, Λ),
(1)

where observed values of the model are ratings rij assigned
by user i for item j, zi is a vector1 of attributes of user i,
such as age, gender, etc., wj is a vector of attributes2 of item
j, such as price, weight, etc., and vector xij = zi ⊗ wj ,
where ⊗ is the Kronecker product. Intuitively, xij is a long
vector containing all possible cross-products between indi-
vidual elements of zi and wj .

Vector µ represents unobserved slope of the regression,
vectors γj and λi represent unobserved item heterogene-
ity and user heterogeneity effects respectively. Moreover,
the model (1) assumes that vector γj ∼ N(0, Γ) and λi ∼
N(0, Λ), where Γ and Λ are unobserved covariance matrices,
and that each observation rij has also an i.i.d. disturbance
εij ∼ N(0, σ2), where σ is also an unobserved parameter.

Thus, vectors µ, {γj} and {λi}, scalar σ, covariance ma-
trices Γ and Λ constitute the unknown parameters of model
(1). Prior belief about these parameters is introduced in [3],
and the parameters are estimated from the known ratings rij

and known user/item data using Markov Chain Monte Carlo
(MCMC) method [6], which constitutes one of the Bayesian
estimation techniques for finding the expected value of the
posterior distributions of parameters.

[3] compared predictive performance of their Hierarchical
Bayesian model (1) against the classical collaborative filter-
ing methods and demonstrated that model (1) outperformed
the collaborative filtering considered in [3].

2.2 Why this model?
The natural question to ask is why to use this particular

type of model and why the model has the specification it
has.

Consider the following steps in deriving this model:

1. Assume we regress movie ratings rij solely on movie
attributes wj .

rij = w′
jβi + εij , εij ∼ N(0, σ2) (2)

So we run separate regressions for each user i and
we get the user-specific vector of coefficients βi. In-
tuitively, j-th element of each vector βi is a (user-
specific) “appreciation” to the j-th characteristic of
movies. For example, if j-th characteristic of a movie
is movie release year, then j-th element of βi will rep-
resent average “attitude” of user i towards newer or
older movies.

2. Now we say that since the vector of coefficients βi is
user-specific, we can try to explain each element of

1We typed vectors in bold font as opposed to matrices and
scalars that are typed in regular font.
2We also include constant term both in zi as a user attribute
and in wj as an item attribute.

it from known user attributes zi.

βi = Ziµ + λi, λi ∼ N(0, Λ) (3)

where matrix Zi is constructed from the vector-column
of the user attributes zi as follows:

Zi =

0BBB@
z′i 0 · · · 0
0 z′i · · · 0

0 0
. . . 0

0 · · · 0 z′i

1CCCA
Intuitively, each element of µ here represents a gen-
eral “effect” of some user characteristic on his “appre-
ciation” of some movie characteristic. For example, if
j-th movie characteristic is movie release year, k-th
user characteristic is user age and size of vector zi is
|z|. Then the element µ(j−1)|z|+k can be interpreted
as the general effect of user age on his attitude towards
movie release year. This interpretation is very similar
to the interpretation of regressions with included in-
teraction terms that are widely used in social research.

3. Now we substitute eq.(3) into eq.(2) and get

rij = w′
jβi + εij = w′

j(Ziµ + λi) + εij =

= w′
jZi| {z }

x′ij

µ + wjλi + εij

This is how we define the vector xij and if we examine
the vector in detail this vector contains all “interac-
tions” (cross-products) between elements of vectors zi

and wj .

So right now we got the model

rij = x′ijµ + w′
jλi + εij (4)

Now if we repeat the same procedure but at the step
1) we will regress rij on user attributes zi, instead of
movie attributes wj , we will get the model

rij = x′ijµ + z′iγj + εij (5)

(since this task is purely symmetrical of movie at-
tributes and user attributes)

4. Now we unite the two models from eq.(4) and eq.(5)
into a single model (just sum them!) and we finally
get our exact model

rij = x′ijµ + z′iγj + w′
jλi + εij

2.3 Use of the model
In most practical cases, the number of parameters to be

estimated for model (1) is very large. For example, for 1000
users defined by 5 user attributes and 1000 movies defined
by 20 movie attributes, we will need to estimate more than
25,000 free parameters in the model. Since we will be dealing
with parameter constraints, it is of our interest to examine
properties of the model subject to constraints. In general,
according to [7], constrained Bayesian estimation techniques
are notorious for their computational difficulty, especially in
high-dimensional parameter spaces, as is the case with model
(1).



It is possible to come up with a constrained sampling pro-
cedure that theoretically eventually converges to its popu-
lation counterpart. For example, Metropolis-Hastings Al-
gorithm [15] can be used. Metropolis-Hastings Algorithm
allows to impose the constraint not on the posterior distri-
bution of parameters that can have a complicated analyt-
ical expression, but on more simple jumping distribution.
Due to properties of Metropolis-Hastings Algorithm, the re-
sulting sequence will converge to the constrained posterior
distribution as if the constraint was actually imposed on
the posterior distribution of parameters. However, in prac-
tice convergence of this algorithms in the space with tens of
thousands dimensions is not feasible.

To address this difficulty, we propose to use a frequentist
semi-parametric approach that we present in the next sec-
tion for solving the aggregate rating problem instead of the
Bayesian parametric method defined by (1).

3. GENERALIZED LINEAR REGRESSION
MODEL

Consider the same model as in (1), but from a frequentist
semi-parametric perspective3:8>>><>>>:

rij = x′ijµ + z′iγj + w′
jλi + εij ,

E [εij ] = 0, Var [εij ] = σ2,

E
ˆ
γj

˜
= 0, Var

ˆ
γj

˜
= Γ,

E [λi] = 0, Var [λi] = Λ.

(6)

For a frequentist, γj and λi constitute random effects, so
that the model (6) constitutes a mixed-effects model [8].

We introduce the notion of a compound disturbance ηij by
grouping together all the random effects in (6) as follows

rij = x′ijµ + z′iγj + w′
jλi + εij| {z }

ηij

, (7)

thus making it a Generalized Least Squares linear regression
model (GLS). Moreover, µ can be consistently4 estimated by
using ordinary least squares estimator (OLS) if we assume
that γj and λi are not correlated with xij .

The covariance structure of residuals ηij can be deter-
mined from equations (6) and (7) as follows:8>>>>><>>>>>:

Eηij = 0,

Eηijηkl = 0, if i 6= k and j 6= l,

Eηijηik = w′
jΛwk, if j 6= k,

Eηijηkj = z′iΓzk, if i 6= k,

Eη2
ij = σ2 + z′iΓzi + w′

jΛwj ,

(8)

where expected value E(·) is taken over εij , λi and γj .
To show why this is the case, consider for example

E[ηijηik] =

= E
ˆ
(z′iγj + w′

jλi + εij)(z
′
iγk + w′

kλi + εik)
˜

=

= E
ˆ
z′iγjγ

′
kzi + w′

jλiγ
′
kzi + εijγ

′
kzi)+

3Semi-parametric perspective makes no assumptions about
the shape of distributions. For example, we don’t assume
that the residuals are normally distributed. Instead, we
make assumptions only about the moments of the residual
distribution, not about the shape of the distribution.
4Although, not efficiently [8].

+z′iγjλ
′
iwk + w′

jλiλ
′
iwk + εijλ

′
iwk+

+z′iγjεik + w′
jλiεik + εijεik

˜
=

= E
ˆ
w′

jλiλ
′
iwk

˜
= w′

jΛwk

The last equality holds because the expected values of all
other terms are zeros, since we assumed that εij are i.i.d, λi

are i.i.d, γj are i.i.d., and also γj , λi and εij are independent
∀i, j.

Other equations in (8) are derived similarly.
Let Ω be the covariance matrix of a very long vector of

residuals η = ||ηij ||; that is Ω = Var(η). From (8), we
conclude that Ω depends just on a few unknown parameters:
σ, Γ and Λ. Thus σ, Γ and Λ can be consistently estimated
from OLS residuals. For example, we can use the following
(overdetermined) system of linear equations:8>>>>>>>>>>><>>>>>>>>>>>:

X
ijk

j 6=k,i∈SU

w′
jΛwk =

X
ijk

j 6=k,i∈SU

eijeik, ∀SU

X
ijk

i6=k,j∈SI

z′iΓzk =
X
ijk

i6=k,j∈SI

eijekj , ∀SI

σ2 =
1

N

X
ij

ˆ
e2

ij − z′iΓzi −w′
jΛwj

˜
,

Λ′ = Λ, Γ′ = Γ,

(9)

where eij is the OLS residual corresponding to observa-
tion rij , N is the total number of observations and SU and
SI are some subsets of users and items respectively.

Parameter µ of the model (6) can be estimated asymptot-
ically efficiently using the Feasible GLS (FGLS) estimator
approach [8] as follows:

µ̂ =
“
X ′Ω̂−1X

”−1

X ′Ω̂−1r, (10)

where r is a column-vector of observed scalars rij stacked
on top of each other, so the first element of the vector is a
scalar ri1j1 , the second element is ri2j2 and so on. X is a
matrix of row-vectors x′ij stacked on top of each other one-
by-one; thus the first row of the matrix X is a row-vector
x′i1j1 corresponding to observation ri1j1 , the second row of

the matrix X is the row-vector x′i2j2 and so on. Ω̂ is an
estimate of Ω.

Once we estimated consistently parameters σ, Γ and Λ, we
can consistently estimate expressions X ′Ω−1X and X ′Ω−1r
using the estimates σ̂, Γ̂, Λ̂ and expression (8), and then
obtain consistent and asymptotically efficient estimate of µ
using expression (10).

To demonstrate that µ̂ consistently estimates the true
value µ we can proceed as follows. It follows from (7) that

r = Xµ + η, where E
ˆ
ηη′

˜
= Ω

Then from equation (10) we have

µ̂ =
“
X ′Ω̂−1X

”−1

X ′Ω̂−1(Xµ + η) =

= µ +
“
X ′Ω̂−1X

”−1

X ′Ω̂−1η| {z }
goes to 0 as N→∞

Thus random variable µ̂ converges in probability to the
true value µ

µ̂ → µ as N →∞



The use of “weighting matrix” Ω̂−1 is explained in [8].

Intuitively, Ω̂−1 is a weighting matrix that minimizes the
asymptotic variance of µ̂, making the estimator asymptoti-
cally efficient.

As long as we assume that for each user Ni → ∞ and
for each item Nj → ∞ as N → ∞ for asymptotic analysis,
we are able to estimate consistently individual item hetero-
geneities {γj} and {λi} from the following (overdetermined)
system of linear equations

η̂ij = z′iγj + w′
jλi + εij ∀ observations (i, j), (11)

where η̂ij is a consistent estimator of ηij , for example, it can
be an OLS residual η̂ij = eij .

System (11) can be interpreted as an ordinary linear re-
gression with dependent variables η̂ij , regressors zi and wj ,
and i.i.d. disturbances εij . Since η̂ij is a consistent estimator

of ηij , the OLS estimators λ̂i and γ̂j consistently estimate
λi and γj given our assumption about asymptotic behavior
of the model. Thus, the frequentist model (6) gives as much
of individual heterogeneity information as Bayesian model
(1).

As it follows from (10), estimation of µ requires inverting

matrix Ω̂ that is of size N ×N , where N is the total number
of observations. Matrix Ω̂ is sparse, symmetric and positive-
semidefinite and one can use Cholesky decomposition for
sparse matrices Ω̂ = LL′, where L is the lower-triangular
matrix, in order to calculate and store the inverse.

Note that we don’t have to store Ω̂−1 itself, we only need
to calculate the X ′Ω̂−1X and X ′Ω̂−1r. We also notice that
Ω̂−1 = L−1′L−1 and L−1 is itself lower-triangular. Thus,

X ′Ω̂−1X = X ′L−1′L−1X = (L−1X)′(L−1X), (12)

X ′Ω̂−1r = X ′L−1′L−1r = (L−1X)′(L−1r). (13)

Unfortunately, matrix Ω̂ is not a band matrix, so the re-
quired storage for Cholesky decomposition matrix L can be
as large as O

`
N2

´
of memory, that is too high for large

problems. Computational complexity for naive algorithms
can be as large as O(N3). However, the problem is paralleliz-
able. For example, the inversion of triangular matrix takes
O(log2 N) operations with O(N3/ log N) processors [10].

Determination of how to invert the sparse matrix Ω̂ more
efficiently, and thus making the whole aggregate rating prob-
lem scalable, constitutes one of our future research topics.

4. INTRODUCING AGGREGATE RATING
The main research question addressed in this paper is how

to use the aggregate ratings in our statistical models to pro-
vide better estimators of individual ratings.

Formally, assume that in addition to the classical indi-
vidual ratings rij , user data zi and item data wj used in
equations (1) and (6), we also know the expected value5 of
an average rating across some segment S of user-item pairs.
For example, assume that we know for certain from external
sources that average rating of all graduate students for all
Chaplin movies is 9.1 out of 10. So the segment S in this
case is a Cartesian product of the set of graduate students
and the set of Chaplin movies.

Assume that there are k total possible user-item pairs in

5Here we take expected value only over ε, not γj and λi

the segment S, thus

Eε

" P
i,j rij

k

#
= a, (14)

where sum is taken over all user-item pairs (i, j) ∈ S. As
another example, assume that the expected average rating
of some 100 action movies provided by 20 graduate CS stu-
dents, based on k = 2000 possible user-item pairs, is a = 7.8.

Substituting the expression for rij from our model equa-
tions (1) or (6), we conclude that

E

» P
rij

k

–
= E

" P `
x′ijµ + z′iγj + wjλi + εij

´
k

#
= (15)

=

P
x′ij
k

µ +

P
z′iγj

k
+

P
wjλi

k
= a. (16)

Note that both the Bayesian model (1) and the frequentist
model (6) have the same expression for rij , thus the equation
(16) has the same form for both. However, interpretation of
the equation (16) can be different for the two approaches.

For the Bayesian model (1), the new information from
equation (16) about the expected average rating is inter-
preted as a linear equality constraint on unknown parame-
ters µ, {γj}, {λi}. For the frequentist model (6), the new
information from equation (16) about the expected average
rating is interpreted as an additional observation. To see

this, denote x̃ =
P

xij

k
and η̃ =

P
z′iγj

k
+

P
wjλi

k
. Then

equation (16) is equivalent to having an additional observa-
tion in the model

a = x̃′µ + η̃, (17)

where the residual η̃ has a known covariation structure with
other residuals ηij defined in (7):

E[η̃ηij ] =
X

t:
(i,t)∈S

w′
jΛwt

k
+

X
t:

(t,j)∈S

z′iΓzt

k
, (18)

E[η̃2] =
X
i,j,t:

(i,j)∈S,
(i,t)∈S

w′
jΛwt

k2
+

X
i,j,t:

(i,j)∈S,
(t,j)∈S

z′iΓzt

k2
. (19)

Therefore, the constrained model still fits the GLS paradigm
presented in Section 3. Note that for the FGLS estimator,
equations (18) and (19) introduce an additional row and a
column to matrix Ω corresponding to covariances (18) and
(19). That is,

Ω̃ =

„
Ω ∗
∗ ∗

«
,

where ∗ denotes these additional column and row.
So by including this additional observation we create the

corresponding matrix Ω̃ from the matrix Ω.

5. MULTIPLE AGGREGATE RATINGS
In the previous section, we considered only one true ag-

gregate rating a for one particular segment of ratings. In
this section, we assume that there is a whole aggregation hi-
erarchy defined for the ratings matrix. One example would
be an OLAP-based hierarchy [9] of aggregate ratings.

OLAP-based hierarchy is a concept that is used here to
reflect that both users and items can be classified into some
hierarchy. For example, users can be divided into groups



“Students” and “Not students”. “Students” group can be
further divided into “freshmen”, “sophomores” etc., so each
user has his corresponding “path” in that hierarchy.

Same ideas about hierarchy can be applied to items as
well. For example, movies can be divided into “Comedies”
and “Not comedies”. Each comedy can be divided even fur-
ther into “Comedies with Chaplin” and “Comedies without
Chaplin” etc.

OLAP-based hierarchy is intended to represent the two hi-
erarchies for users and for items in a single concept. The unit
of hierarchy is called OLAP cell and represents some unit of
user hierarchy connected to some unit of item hierarchy. For
example, valid cells here would be “Freshmen”×“Comedies”,
or “Students”×“Comedies”, or “Freshmen”×“Comedies with
Chaplin”, etc.

Given an OLAP hierarchy for users and items, where rat-
ings constitute measures defined for the OLAP cells [9], con-
sider a particular category of items Cp, a particular segment
of users Sq and the cell CELLpq in the OLAP hierarchy cor-
responding to Cp and Sq. Also let Dpq be all the ratings
that users in segment Sq provided for items in category Cp,
and let Raggr

pq be the aggregate rating for CELLpq that was
independently assigned by the expert to that cell.

Clearly, the expert can assign numerous ratings Raggr to
various OLAP cells at different levels of the OLAP hierarchy.
Using the results from Section 4, each aggregate rating Raggr

produces a constraint of the form (16). This means that
various aggregate ratings Raggr

pq produce multiple constraints
for different values of p and q and that these constraints come
from various levels of aggregation in the OLAP hierarchy.

In fact, we may introduce so many such constraints that
the estimator itself will be largely determined by the con-
straints and not the real observation data. The solution to
this problem for the aggregation model presented in this pa-
per is that we may have different levels of confidence in the
aggregate ratings. For example, we may be more sure that
the average rating provided by graduate CS students from
University of XYZ for action movies is 6.5 than in that the
average rating by physics students for drama movies is 7.8.

To model this “degree of confidence” in aggregate ratings,
we assume that the aggregate ratings are “noisy,” which can
be formally represented as:(

Eε

h P
i,j rij

k

i
= α,

a = α + ξ, Eξ = 0, Var(ξ) = σ2
ξ ,

(20)

where ξ is an unknown noise component, α is an unknown
true value, a is the observed value for the aggregate rating
and σ2

ξ is some known parameter.
Including this noise into expression (14) results in the fol-

lowing fuzzy constraint rather than the crisp constraint (16):

a =

P
x′ij
k| {z }
x̃

µ +

P
z′iγj

k
+

P
wjλi

k
+ ξ| {z }

η̃

. (21)

From the frequentist prospective, the model still can be
interpreted as an additional observation of type (17). There-
fore, the multiple aggregation model with different degrees
of certainty in various aggregate ratings can still be defined
with the GLS framework, and the same analysis presented
in Sections 3 and 4 still holds. By including this additional
observation (21), we create the corresponding matrix Ω̃ from

the matrix Ω defined in Section 4. It can be shown that Ω̃

is not singular.
Parameter σ2

ξ in (20) has the following intuition: it can
be interpreted as the weight that we place on the corre-
sponding constraint. It is clear that the larger σ2

ξ is, the less
the FGLS method will try to satisfy the constraint. Intu-
itively, σ2

ξ represents how strong the noise component is in
our observation, so it makes sense to give higher weight to
observations with low noise and give lower weight to very
noisy observations. FGLS uses this fact for more efficient
estimation [8].

Moreover, when we consider multiple constraints, we can
put different weights on different constraints by assigning
to each constraint i its own “weight” σ2

ξi
. In this way, we

can accommodate a real situation when some external rating
information is more reliable than the other.

The following proposition demonstrates that the constrained
models using aggregate ratings, such as FGLS, provide bet-
ter individual rating estimations than the unconstrained ones.

Proposition 1. The expected mean squared error (MSE)
on a test set of the constrained FGLS estimator is smaller
than the one of the unconstrained FGLS estimator.

Proof. Intuitively, the proof is based on the idea that spec-
ifying an aggregate rating is equivalent to adding a new ob-
servation and on the idea that the sample size matters, i.e.,
the expected MSE on the test set of the estimator trained
on the bigger sample size will be smaller than the expected
MSE on the test set of the estimator trained on the subset
of the sample.

More formally, consider the model as we have it in (7)

y = Xµ + η, Eηη′ = Ω (22)

Denote m — the GLS estimator of µ. This model doesn’t
take into account additional information, so we call m un-
restricted estimator.

Consider also the following model

y∗ = X∗µ + η∗, Eη∗η
′
∗ = Ω∗

where we just added one observation to eq.(22). So X∗ is
just X with one additional row corresponding to the ob-
servation and Ω∗ is just Ω with additional row and column
corresponding to covariances of the additional observation
with all other observations. That is,

y∗ =

„
y
∗

«
X∗ =

„
X
∗

«
and

Ω∗ =

„
Ω ∗
∗ ∗

«
Denote m∗ — the estimator for this model. The model

takes into account the additional observation, so we call it
restricted estimator.

Denote V = Var[m] and V∗ = Var[m∗].
As we know from [8]

Var[m] =
`
X ′Ω−1X

´−1

and Cholesky decomposition of Ω:

Ω = C′C

Thus

Ω−1 = C−1 `
C−1´′



Now do the same thing for Ω∗:

Ω∗ = C′
∗C∗

Actually, C∗ is equal to C with an additional column (and
an additional row of zeros). That is,

C∗ =

„
C ∗
0 ∗

«
It is a trivial fact since Ω∗ differs from Ω just by existance
of additional column and additional row. It is also a trivial
fact that C−1

∗ is equal to C−1 with an additional column.
That is,

C−1
∗ =

„
C−1 ∗

0 ∗

«
Consider

(Var[m])−1 = X ′Ω−1X = X ′C−1 `
C−1´′

X

Consider also

(Var[m∗])
−1 = X ′

∗Ω
−1
∗ X∗ = X ′

∗C
−1
∗

`
C−1
∗

´′
X∗

As we noted, C−1
∗ is equal to C−1 with an additional

column, thus
`
C−1
∗

´′
is equal to

`
C−1

´′
with an additional

row. It is also easy to notice that
`
C−1
∗

´′
X∗ differs from`

C−1
´′

X only by the addition of the last row. Denote this
last row as row-vector x̃′. Then,`

C−1
∗

´′
X∗ =

„ `
C−1

´′
X

x̃′

«
It means that

(Var[m∗])−1z }| {“`
C−1
∗

´′
X∗

”′ `
C−1
∗

´′
X∗ = (23)

=
“`

C−1´′
X

”′ `
C−1´′

X| {z }
(Var[m])−1

+ x̃x̃′|{z}
positive semidefinite

(24)

For positive-semidefinite matrices A and B, we write that
A � B if ∃ positive-semidefinite matrix C such as

A = B + C

In terms of these positive-semidefinite inequalities, we can
rewrite eq.(23) as follows

(Var[m∗])
−1 � (Var[m])−1

As we know from theory of positive-semidefinite inequal-
ities [13], it means that

Var[m∗]| {z }
V ∗

� Var[m]| {z }
V

So there is a precise sense in which we can say that the
covariance matrix of the restricted estimator V ∗ is actually
smaller than the covariance matrix V of the unrestricted
one.

Now consider predictions that we make from these two
models for some vector of regressors x:(

ŷ = x′m, E[x′m] = x′µ, Var[x′m] = x′V x

ŷ∗ = x′m∗, E[x′m] = x′µ, Var[x′m] = x′V ∗x

We know that V ∗ � V . We also assume that x̃ 6≡ 0 in
eq.(23), that is the constraint is informative. Algebraically,
it means that(

∀x : x′V ∗x ≤ x′V x

∃x such that x′V ∗x < x′V x
(25)

Denote y a true value at test data point. That is, the
test data point itself is going to be a noisy measurement of
this true value:

yt = y + η

Denote x, z, w corresponding observables. According to
the famous equation for expected MSE [14], the MSE be-
tween the true value and predicted value for the unrestricted
estimator is

E[MSEU |x] = E[ŷ − y]2 = bias2 + Var[ŷ] = x′V x

since given our assumption about independence of residuals
and regressors, the GLS estimator is unbiased, so bias = 0.

Similarly, expected MSE of the restricted estimator is

E[MSER|x] = x′V ∗x

Taking into account eq.(25), we get that(
∀x : E[MSER|x] ≤ E[MSEU |x]

∃x such that E[MSER|x] < E[MSEU |x]

So assuming not pathological data generation mechanism
for x, that is it can possibly generate x such as inequality
holds in eq.(25), then it is clear that

Ex [E[MSER|x]]| {z }
E[MSER]

< Ex [E[MSEU |x]]| {z }
E[MSEU ]

Thus,

E[MSER] < E[MSEU ]

So we proved that a single additional observation reduces
E[MSE]. We apply this idea inductively and conclude that
adding an additional observation can only reduce E[MSE].
Thus, introduction of multiple information on aggregate rat-
ings can only reduce E[MSE].

Q.E.D.

6. CONCLUSIONS
In this paper, we replaced the Bayesian approach pre-

viously deployed in [3, 5] with a corresponding frequentist
estimation method Feasible GLS (FGLS) and demonstrated
how aggregate ratings can be used to produce additional
constraints on the parameters of the FGLS model. We also
showed that these additional constraints reduce rating esti-
mation errors of the FGLS model resulting in theoretically
better rating estimation methods, thus demonstrating how
aggregate ratings can improve individual recommendations.

The main issue with the FGLS method is that it works
mainly on small to medium-sized problems because of the
difficulty with inversion of matrix Ω̂ for large problems.
Therefore, as a future research, we plan to work on devel-
oping more scalable methods for estimating the FGLS and
other types of frequentist estimation models that work well
for large problems. Also, the next step in our research would
be to test our theoretically-based conclusions about superior
performance of the constrained models on real data and try



to show that empirical results confirm our theoretical anal-
ysis. Finally, we intend to extend Proposition 1 from the
FGLS to more general types of estimators.
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