
A Quality-Aware Optimizer for Information Extraction

Panagiotis G. Ipeirotis
New York University

panos@nyu.edu

Alpa Jain
Columbia University

alpa@cs.columbia.edu

May 21, 2008

NYU Stern Research Working Paper
CeDER-08-02

Abstract

Large amounts of structured information is buried in unstructured text. Information extraction systems can extract
structured relations from the documents and enable sophisticated, SQL-like queries over unstructured text. Information
extraction systems are not perfect and their output has imperfect precision and recall (i.e., contains spurious tuples
and misses good tuples). Typically, an extraction system has a set of parameters that can be used as “knobs” and
tune the system to be either precision- or recall-oriented. Furthermore, the choice of documents processed by the
extraction system also affects the quality of the extracted relation. So far, estimating the output quality of an information
extraction task was an ad-hoc procedure, based mainly on heuristics. In this paper, we show how to use receiver
operating characteristic (ROC) curves to estimate the extraction quality in a statistically robust way and show how to
use ROC analysis to select the extraction parameters in a principled manner. Furthermore, we present analytic models
that reveal how different document retrieval strategies affect the quality of the extracted relation. Finally, we present
our maximum likelihood approach for estimating—on the fly—the parameters required by our analytic models to
predict the run time and the output quality of each execution plan. Our experimental evaluation demonstrates that our
optimization approach predicts accurately the output quality and selects the fastest execution plan that satisfies the
output quality restrictions.

1 Introduction
Unstructured text in large collections of text documents such as news paper articles, web pages, or email often embeds
structured information that can be used for answering structured, relational queries. To extract the structured information
from text documents, we can use an information extraction system, such as Snowball [3], Proteus [21], MinorThird [12],
or KnowItAll [16], which take as input a text document and produce tuples of the target relation. Often, the extraction
process relies on extraction patterns that can be used to extract instances of tuples.

Example 1 An example of information extraction task is the construction of a table of company headquarters Head-
quarters(Company, Location), from a newspaper archive. An information extraction system processes documents in the
archive (such as the archive of The New York Times –see Figure 1) and may extract the tuple 〈Army Research Laboratory,
Adelphi〉 from the news articles in the archive. The tuple 〈Army Research Laboratory, Adelphi〉 was extracted based on
the pattern “〈ORGANIZATION in LOCATION〉”, after identifying the organizations and locations in the given text using
a named-entity tagger.

Extracting structured information from unstructured text is inherently a noisy process, and the returned results do
not have perfect “precision” and “recall” (i.e., they are neither perfect nor complete). The erroneous tuples may be
extracted because of various problems, such as erroneous named-entity recognition or imprecise extraction patterns.
Additionally, the extraction system may not extract all the valid tuples from the document, e.g., because the words in the
document do not match any of the extraction patterns. To examine the quality of an extracted relation, we can measure
the number of good and bad tuples in the output to study the two types of errors committed during the extraction: the
“false negatives,” i.e., the number of tuples missing from the extracted relation and the “false positives,” i.e., the number
of incorrect tuples that appear in the output.

1

The New York Times Archive

Carnegie Group Inc., of Pittsburgh won a $627,068
contract from the Army Research Laboratory in

Adelphi for research and development.

Carnegie Group Inc., of Pittsburgh
won a $627,068 con-

tract from the Army Research
Laboratory in Adelphi for
research and development.

Greenpeace took backwards steps today as a
result of their failed protest of Exxon in New York.

Greenpeace took backwards
steps today as a result of their
failed protest of Exxon in New

York.

Army Research Laboratory Adelphi
Exxon New York

Company Location

Headquarters tuples from
The New York Times archive

Carnegie Group Inc. Pittsburgh

Figure 1: An example of an information extraction system extracting the relation HeadQuarters(Company, Location)
from The New York Times archive, and extracting a correct tuple, an incorrect tuple, and missing a tuple that appears in
the text.

Example 1 (continued.) For the HeadQuarters relation, in Figure 1, the extraction pattern ‘〈ORGANIZATION in
LOCATION〉” also generates the bad tuple 〈Exxon, New York〉. Figure 1 also shows a missing good tuple 〈Carnegie
Group Inc., Pittsburgh〉 in the document, which was not identified, because the extraction system does not include a
suitable pattern.

To control the quality of the extracted relations, extraction systems often expose multiple tunable “knobs” that
affect the proportion of good and bad tuples observed in the output. As an example of a simplistic knob, consider a
decision threshold τ that defines the number of rules employed by the extraction system for the task of extracting the
Headquarters relation. A small number of (precise) rules will generate a mostly correct tuples but may also miss many
tuples that appear in the documents but do not match any of the (small number of) active rules. By adding more rules
the system can capture more tuples (i.e., decrease the false negatives) but at the same time this also results in an increase
in the incorrect tuples in the output (i.e., increase in the false positives). Other examples of knobs may be decision
thresholds on the minimum confidence or minimum pattern support required before generating a tuple from the text.
In a more extreme setting, we may even have multiple extraction systems for the same relation, each demonstrating
different precision-recall tradeoffs.

A natural question that arises in a tunable extraction scenario is: How we can choose which extraction system to use
and the appropriate parameter settings for an extraction task, in a principled manner? Unfortunately, this important
task is currently performed empirically, or by following simple heuristics. In this paper, we approach the problem by
analyzing a set of information extraction systems using receiver operating characteristic (ROC) curves. As we will see,
this allows us to characterize IE systems in a statistically robust manner, and allows the natural modeling of parameters
that have a non-monotonic impact on the false positives and false negatives in the output. We show how ROC analysis
allows us to keep only the set of “Pareto optimal” configurations that cannot be fully dominated by other configurations.
Furthermore, we demonstrate how we take into consideration other parameters, such as execution time and monetary
cost, by using generalizing the basic ROC paradigm.

Beyond the choice of the extraction system and its settings, the quality characteristics of the extracted relation are
also affected by the choice of documents processed by the extraction system. Processing documents that are not relevant
to an extraction task may introduce many incorrect tuples, without adding any correct ones in the output. For instance,
processing documents from the “Food” section of a newspaper for the Headquarters relation not only delays the overall
extraction task, but also adds false tuples in the relation, such as 〈Crostini, Polenta〉, which are erroneously extracted
from sentences like “...enjoy this Polenta-based Crostini!”.

Until now, the choice of a document retrieval strategy was based only on the efficiency and the impact of this choice
on the quality of the output was ignored. However, as argued above, considering the impact of the document retrieval

2

strategy is also of critical importance. As an important contribution of this paper, we present a rigorous statistical
analysis of multiple document retrieval strategies that show how the output quality—and, of course, execution time—is
affected by the choice of document retrieval strategy. Our modeling approach results in a set of quality curves that
predict the quality characteristics of the output over time, for different retrieval strategies and different settings of the
extraction system.

The analytical models that we develop in this paper show predicting the execution time and output quality of an
execution strategy requires knowledge of some database-specific parameters which are typically not known a priori.
Using these analytical models, we show how we can estimate these database-specific parameters using a “randomized
maximum likelihood” approach. Based on our analytical models and the parameter estimation methods, we then present
an end-to-end quality-aware optimization approach that estimates the parameter values during execution and selects
efficient execution strategies to meet user-specific quality constraints. Our quality-aware optimization approach quickly
identifies whether the current execution plan is the best possible, or whether there are faster execution plans that can
output a relation that satisfies the given quality constraints.

In summary, the contributions of this paper are organized as follows:

• In Section 2, we provide the necessary notation and background.

• In Section 3, we formally define the problem of estimating the quality of an extraction output, we show how to use
ROC analysis for modeling an extraction system, and show how to select the Pareto-optimal set of configurations.

• In Section 4, we present our statistical modeling of multiple document retrieval strategies and examine their effect
on output quality and execution time.

• In Section 5, we describe our maximum-likelihood approach that estimates on the fly the necessary parameters
from the database, and in Section 6, we described a quality-aware optimizer that picks the fastest execution plan
that satisfies given quality and time constraints.

• In Sections 7 and 8, we describe the settings and the results of our experimental evaluation, that includes multiple
extraction systems and multiple real data sets.

Finally, Section 9 discusses related work and Section 10 concludes.

2 Notation and Background
We now introduce the necessary notation (Section 2.1) and briefly review various document retrieval strategies for
information extraction (Section 2.2).

2.1 Basic Notation
In general, an information extraction system E processes documents from a text database D. The documents are
retrieved from D using a document retrieval strategy, which is either query- or scan-based (see Section 2.2). The
extraction system E, after processing a document d from D, extracts a set of tuples that are either good or bad.1 Hence,
the database documents—with respect to a set of information extraction systems—contain two disjoint set of tuples: the
set Tgood of good tuples and the set Tbad of bad tuples among the collective pool of tuples generated by the extraction
systems.

The existence (or not) of good and bad tuples in a document, also separates the documents in D into three disjoint
sets: the good documents Dg , the bad documents Db , and the empty documents De . Documents in Dg contain at least
one good tuple (and potentially bad tuples); documents in Db do not contain any good tuples but contain at least one
bad tuple; documents in De do not contain any tuples. Figure 2 illustrates this partitioning of database documents and
tuples for an extraction task. Ideally we want to process only good documents; if we also process empty documents, the
execution time increases but the quality remains unaffected; if we process bad documents, we increase not only the
execution time but we worsen the quality of the output as well.

Finally, since a tuple t may be extracted from more than one document, we denote with gd(t) and bd(t) the number
of distinct documents in Dg and Db , respectively, that contain t. We summarize our notation in Table 1.

1The goodness of tuples is defined exogenously; for example 〈Microsoft,Redmond〉 is a good tuple, while 〈Microsoft,New York〉 is a bad one.

3

Table 1: Notation used in this paper

Symbol Description

E extraction system
S retrieval strategy

D database of text documents
Dg good documents in D, i.e., documents that “contain” at least one good tuple
Db bad documents in D, i.e., documents with bad tuples and without good tuples
De empty documents in D, i.e., documents with no good or bad tuples
Dr documents retrieved from D

Tgood good tuples in the text database
Tbad bad tuples in the text database
Tretr tuples extracted from Dproc using E

gd(t) number of distinct documents in Dg that contain t
bd(t) number of distinct documents in Db that contain t

θ configuring parameter(s) of the extraction system E
tp(θ) true positive rate of E for configuring parameter θ
fp(θ) false positive rate of E for configuring parameter θ

Db
De Retrieval

Strategy

Good

documents

Empty
documents

Bad
documents

E

E

E Good and
bad tuples

Bad tuples

No tuples

Dg

Figure 2: Partitioning database documents to analyze an extraction task.

2.2 Retrieval Strategies
In the previous section, we introduced the notion of good and bad tuples and the notion of good, bad, and empty
documents. As mentioned, a good retrieval strategy does not retrieve from the database any bad or empty documents,
and focuses on retrieving good documents that contain a large number of good tuples. Multiple retrieval strategies have
been used in the past [4] for this task; below, we briefly review a set of representative strategies that we analyze further
in Section 4:

• Scan is a scan-based strategy that retrieves and processes sequentially each document in the database D. While
this strategy is guaranteed to process all good documents, it is inefficient, especially when the number of bad and
empty documents is large. Furthermore, by processing a large number of bad documents, the Scan strategy may
introduce many bad tuples in the output.

• Filtered Scan is a refinement of the basic Scan strategy. Instead of processing naively all the retrieved documents,
Filtered Scan strategy [7, 21] uses a document classifier to decide whether a document is good or not. By avoiding
processing bad documents, the Filtered Scan method is generally more efficient than Scan, and tends to have
fewer bad tuples in the output. However, since the classifier may also erroneously reject good documents, Filtered
Scan also demonstrates a higher number of false negatives.

• Automatic Query Generation is a query-based strategy that attempts to retrieve good documents from the
database via querying. The Automatic Query Generation strategy sends queries to the database that are expected
to retrieve good documents. These queries are learnt automatically, during a training stage, using a machine

4

learning algorithm [4]. Automatic Query Generation tends to retrieve and process only a small subset of the
database documents, and hence has a relatively large number of false negatives.

Ipeirotis et al. [24, 25] analyzed these strategies and showed how to compute the fraction of all tuples that each
strategy retrieves over time. The analysis in Ipeirotis et al. [24, 25] implicitly assumed that the output of the extraction
system is perfect, i.e., that the extraction system E extracts all the tuples from a processed document, and that all the
extracted tuples are good. Unfortunately, this is rarely the case. In the rest of the paper, we show how to extend the
work in [24, 25] to incorporate quality estimation techniques in an overall optimization framework.

2.3 Query Execution Strategy and Execution Time
We define the combination of a document retrieval strategy S and an information extraction system E, configured using
a set of parameter settings θ, as an execution strategy. To compare the cost of alternative execution strategies, we define
the execution time of an execution strategy, which is the total time required to generated the desired output quality.
Specifically, we define the execution time for an execution strategy S over database D as:

Time(S,D) =

∑
d∈Dr

(tR(d) + tF (d)) +
∑

d∈Dproc

tE(d) +
∑

q∈Qsent

tQ(q)

 (1)

where

• Dr is the set of documents retrieved from D,

• tR(d) is the time to retrieve document d from D,

• tF (d) is the time to filter document d retrieved from D,

• Dproc is the set of documents processed using extraction system E with configuration θ,

• tE(d) is the time to process document d using extraction system E with configuration θ,

• Qsent is the set of queries sent to D,

• tQ(q) is the time to process query q on D.

We can simplify the above equation2 by assuming that the time to retrieve, filter, or process a document is constant
across documents (i.e., tR(d) = tR, tF (d) = tF , tE(d) = tE) and that the time to process a query is constant across
queries (i.e., tQ(q) = tQ). So,

Time(S,D) = (|Dr | · (tR + tF) + |Dproc | · tE + |Qsent | · tQ) (2)

2.4 Problem Statement
Given the definitions above, we can now describe the general form of our problem statement. Our goal is to analyze the
quality characteristics of an extraction task when using tunable information extraction systems, coupled with various
document retrieval strategies. More formally, we focus on the following problem:

Problem 2.1 Consider a relation R along with a set of appropriately trained information extraction systems, each
with its own set of possible parameter configurations, and a set of document retrieval strategies. Estimate the number
|T good

retr | of good tuples and the number |T bad
retr | of bad tuples in the output, generated by each extraction system, under

each possible configuration, for each retrieval strategy, and the associated execution time for each execution strategy.

2Even though this simplification may seem naive, if we assume that the each of the times tR(d), tF (d), tE(d), and tQ(q) follows a distribution
with finite variance, then we can show using the central limit theorem that our simplifying approximation is accurate if tR, tF , tE , and tQ are the
mean values of these distributions.

5

This problem statement is very generic and can subsume a large number of query processing objectives. For
example, in a typical problem setting, we try to minimize the execution time, while satisfying some quality constraints
of the output (e.g., in terms of false positives and false negatives). Alternatively, we may try to maximize the quality of
the output under the some constraint on the execution time. Yet another approach is to maximize recall, keeping the
precision above a specific level, under a constraint in execution time. Many other problem specifications are possible.
Nevertheless, given the number of good and bad tuples in the output along with the execution time required to generate
that output, we can typically estimate everything that is required for alternative problem specifications.

3 Characterizing Output Quality
We begin our discussion by showing how to characterize, in a statistically robust way, the behavior of a stand-alone
information extraction system. In Section 3.1, we explain why the traditional precision-recall curves are not well-suited
for this purpose and describe the alternative notion of receiver operating characteristics (ROC) curves. Then, in
Section 3.2, we show how to construct an ROC curve for an extraction system and how to use the ROC analysis to
select only the Pareto optimal set of configurations across a set of extraction systems. Finally, in Section 3.3 we present
our concept of quality curves that connect ROC curves and document retrieval strategies.

3.1 ROC Curves
One of the common ways to evaluate an extraction system E is to use a test set of documents, for which we already
know the set Tgood of correct tuples that appear in the documents. Then, by comparing the tuples Textr extracted by E
with the correct set of tuples Tgood , we can compute the precision and recall of the output as:

precision =
|Textr ∩ Tgood |
|Textr |

, recall =
|Textr ∩ Tgood |
|Tgood |

Typically, an extraction system E has a set of parameters θ that can be used to make E precision- or recall-oriented,
or anything in between. By varying the parameter values θ, we can generate configurations of E with different
precision and recall settings, and generate a set of precision-recall points that, in turn, can generate the “best possible”3

precision-recall curve. The curve demonstrates the tradeoffs between precision and recall for the given extraction
system. Unfortunately, precision-recall curves are not statistically robust measures of performance, and depend heavily
on the ratio of good and bad documents in the test set, as shown by the following example.

Example 2 Consider an extraction system E that generates a table of companies and their headquarters locations,
Headquarters(Company, Location) from news articles in The New York Times archive. To measure the performance of
E, we test the system by processing a set of documents from the “Business” and the “Sports” section. The “Business”
documents contain many tuples for the target relation, while “Sports” documents do not contain any. The information
extraction system works well, but occasionally extracts spurious tuples from some documents, independently of their
topic. If the test set contains a large number of “Sports” documents then the extraction system will also generate a
large number of incorrect tuples from these “bad” documents, bringing down the precision of the output. Actually, the
more “Sports” documents in the test set, the worse the reported precision, even though the underlying extraction system
remains the same. Notice, though, that the recall is not affected by the document distribution in the test set and remains
constant, independently of the number of “Sports” documents in the test set.

The fact that precision depends on the distribution of good and bad documents in the test set is well-known in
machine learning, from the task of classifier evaluation [32]. To evaluate classifiers, it is preferable to use ROC
curves [14], which are independent of the class distribution in the test set. We review ROC curves next.

Receiver operating characteristic (ROC) curves were first introduced in the 1950’s, where they were used to study
the performance of radio receivers to capture a transmitted signal in the presence of noise. In a more general setting,
ROC curves evaluate the ability of a decision-making process to discriminate true positives (signal) in the input, from
true negatives (noise). An ROC model assumes that signal and noise follow some probability distributions across a
decision variable x, which can be used to discriminate between the signal and noise. Figure 3 demonstrates a simple

3Since there is no guarantee that changes in θ will have a monotonic effect in precision and recall, some settings may be strongly dominated by
others and will not appear in the “best possible” precision-recall curve.

6

P
ro

ba
bi

lit
y

D
en

si
ty

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Decision variable (x)

P
ro

ba
bi

lit
y

D
en

si
ty

P
ro

ba
bi

lit
y

D
en

si
ty

θ=x1

0.0

1.0

1.0

Noise
Signal

Noise
Signal

Noise
Signal

False Negatives = 1 – True Positives

False Positives = 1 – True Negatives

x

x

x

θ=x2

θ=x3

θ=x1

θ=x2

θ=x3

Figure 3: Characterizing decision-making task as a threshold picking process, for a simple scenario where changing the
value of a configuring parameter results in a smooth tradeoff between true positives and false negatives.

decision-making process under this scenario, with a simple parameter. We classify an event as “noise” whenever the
decision variable x < θ and as “signal” when x ≥ θ. By varying the value of decision threshold θ, the ability of
detecting signal from noise varies. For instance, for θ = x1, the system does not classify any event as noise, and has a
high true positive rate; at the same time, a significant fraction of the noise is classified incorrectly as signal, generating
a high false positive rate. Analogously, for θ = x3, the system has low false positive rate, but also classifies significant
fraction of the signal as noise, resulting in a system with low true positive rate as well.

The ROC curves summarize graphically the tradeoffs between the different types of errors. When characterizing a
binary decision process with ROC curves, we plot the true positive rate tp (the fraction of positives correctly classified
as positives, i.e., recall) as the ordinate, and the false positive rate fp (the fraction of negatives incorrectly classified
as positives) as the abscissa. An ideal binary decision maker has tp = 1 and fp = 0; a random binary decision
maker lies anywhere on the line x = y. The ROC curves have strong statistical properties and are widely adopted
as performance evaluation metrics in a variety of areas, including machine learning [32], epidemiology [15], signal
detection theory [14], and others.

3.2 Generating ROC Curves for an Information Extraction System
Given that ROC curves are more robust than precision-recall curves, it would be natural to use ROC curves for
characterizing the performance and tradeoffs of different extraction systems. In principle, information extraction tasks
can also be viewed as a decision-making task: each document contains a set of good and bad tuples and some parameter
variable(s) are used to decide which of these tuples should appear in the output. However, there are some challenges
that need to be addressed before using ROC curves for information extraction:

1. To define each ROC point, i.e., tp(θ) and fp(θ), we need to know the set of all possible good and bad tuples in
each document. While we can conceivably locate all the good tuples in the document, the universe of bad tuples
is in principle infinite.

7

Input: extraction system E, gold standard Tgold , test set Dt, range of values for θ
Output: ROC curve: {tp(θ), fp(θ)} for all values of θ
Result = ∅;
Retrieve documents Dt in the test set;
/* Identify all candidate tuples T */
T = ∅;
foreach document d in Dt do

Extract tuples t(d) from d, using E with the maximum-sensitivity setting;
T = T ∪ t(d);

end
Tgood = T ∩ Tgold ; Tbad = T \ Tgold ;
/* Compute false positive and true positive rates for all values of θ */
foreach value v of θ do

Tr = ∅;
foreach document d in Dt do

Extract tuples t(d) from d, using E with θ = v;
Tr = Tr ∪ t(d);

end
tp(v) = |Tr∩Tgood |

|Tgood | ; fp(v) = |Tr∩Tbad |
|Tbad | ;

Result[v] = {tp(v), fp(v)};
end
return Result

Figure 4: Generating an ROC curve for an information extraction system.

2. Even after computing a point in the ROC curve, this is simply an instance of the performance in the test set, and
does not reveal the confidence bounds for each of the tp(θ) and fp(θ) values.

3. Finally, an information extraction system offers multiple parameter knobs and the behavior of these knobs may
be non-monotonic; thus, the simple decision process listed in Figure 3 does not describe the process anymore.

To solve the first problem, we need to find a way to measure the fp(θ) rate. We cannot measure the ratio of the
bad tuples that appear in the output if we do not know the total number of bad tuples. To define each ROC point, i.e.,
tp(θ) and fp(θ), we need to know the set of all possible good and bad tuples that serve as normalizing factors for
tp(θ) and fp(θ), respectively. For our work, we operationalize the definition of tp(θ) and fp(θ) using a pooling-based
approach: we define the set of good and bad tuples as the set of tuples extracted by an extraction system across all
possible configurations of the extraction system. In practice, we estimate the tp(θ) and fp(θ) values using a “test set”
of documents and a set of “ground truth” tuples.4

Using the pooling-based approach, we can proceed to generate the ROC curve for an extraction system. We first
need to generate the probability distributions for signal and noise across a decision variable θ of choice. Figure 4
describes the ROC construction algorithm. The first step is to use a test set of documents Dt, and a set of “gold standard”
tuples Tgold that are correct and comprehensive (e.g., extracted by manually inspecting the documents in Dt). Then, to
construct the ROC curve for an extraction system E, we begin with identifying the “maximum-sensitivity” setting of θ:
this is the value(s) of θ at which E extracts as many tuples (good and bad) as possible. Using the maximum-sensitivity
setting of E, we extract all possible candidate tuples T (good and bad); by examining the intersection of T with Tgold ,
we identify all the good tuples Tgood (signal) and the bad tuples Tbad (noise) that appear in Dt. The sets Tgood and
Tbad can then be used to estimate the true positive rate tp(θ) and the false positive rate fp(θ) for each θ value: to
achieve this, we simply examine how many of the Tgood and Tbad tuples are kept in the output, for different θ values.
This leads us to the definition:

4An alternative solution would be to use the “Free Response ROC (FROC) curves,” in which the ordinate remains un-normalized and corresponds
to the average number of bad tuples generated by each document. However, we will see in Section 4 that the probabilistic interpretation of tp(θ) and
fp(θ) in normal ROC curves is handy for our analysis.

8

Definition 3.1 [ROC Curve] A receiver operating characteristic (ROC) curve for an information extraction system
E is a set of 〈tp(θ), fp(θ),Time(θ)〉 values, where tp(θ) is the true positive rate, fp(θ) is the false positive rate, and
Time(θ) is the mean time required to process a document when the configuring parameters of E are set to θ. We
define as tp(θ) the probability of classifying a tuple t ∈ Tgood as good; similarly, we define as fp(θ) the probability of
classifying a tuple t ∈ Tbad as good. 2

The 〈tp(θ), fp(θ)〉 points of the ROC curve derived using the procedure above have one disadvantage: they do not
offer any information about the robustness of the tp(θ) and fp(θ) estimates. Hence, they describe the performance of
the extraction system E on the particular test set, used for the construction of the ROC curve, but do not reveal the
robustness of these estimates. To provide confidence bounds for each tp(θ) and fp(θ) point, we use a 10-fold cross
validation approach [17, 28]: When constructing the ROC curve, we split the test set into 10 partitions, and generate 10
different values for the tp(θ) and fp(θ) estimates for each setting θ. Using the set of these values we then generate the
confidence bounds for each 〈tp(θ), fp(θ)〉 point.

Finally, we need to address the issue of multiple parameters and of the non-monotonic behavior of some of these
parameters. The definition of the ROC curve given above is rather agnostic to the behavior of each parameter. Using the
algorithm of Figure 4, we generate an 〈tp(θ), fp(θ)〉 point for each setting θ. Some of these points may be strongly
dominated5 by other points; since the strongly dominated points are guaranteed to generate a suboptimal execution, we
simply ignore them and keep only the Pareto-optimal triplets 〈tp(θ), fp(θ),Time(θ)〉 for the computation of the ROC
curve. (This is similar to the construction of an ROC convex hull [32] but in our case we do not generate interpolated
points between the Pareto optimal triplets.) Extending the Pareto optimal approach to multiple of extraction systems,
we can easily generate a single ROC curve that contains only the non-dominated configurations across all systems.

An important characteristic of the ROC curves for our purpose is that, knowing the number of good and bad
documents that E processes, we can compute the number of good and bad tuples in the output. (We will show that in
more detail in Section 4.) Of course, the number of good and bad documents processed by E depends on the document
retrieval strategy. We discuss this next.

3.3 Quality Curves for an Execution Strategy
In Sections 3.1 and 3.2, we discussed how an ROC curve can describe the behavior of an extraction system when
extracting tuples from a single document. What we are interested in, though, is to summarize the behavior of an
extraction system when coupled with a specific retrieval strategy. If the retrieval strategy retrieves many bad documents,
then the extraction system also generates a large number of bad tuples, and similarly, the extraction system generates
a large number of good tuples if the strategy retrieves many good documents. Thus, the output composition for an
execution strategy at a given point in time depends on the choice of retrieval strategy and of the extraction system and
its configuration θ.

To characterize the output of an execution strategy, we define the concept of a quality curve. A quality curve of an
extraction system coupled with a retrieval strategy describes all possible compositions of the output at a given point
in time, when the extraction system, configured at setting θ processes documents retrieved by the associated retrieval
strategy. Specifically, we define quality curves as:

Definition 3.2 [Quality Curve(E, R, P)] The quality curve of an extraction system E, characterized by the triplets
〈tp(θ), fp(θ),Time(θ)〉, coupled with a retrieval strategy R is a plot of the number of good tuples as a function of
number of bad tuples, at the point in time P , for all available extraction systems E and all possible values6 of the
parameter(s) θ. 2

Figure 5 illustrates the concept of quality curves. The quality curves contains all the different possible outcomes
that can be achieved at a given point in time, by picking different extraction systems Ei and different settings θj . For
example, consider the point in time p1. If we pick system E1 and set it to its maximum sensitivity setting, we are able
to retrieve approximately 1,800 good tuples and 2,500 bad tuples. Alternatively, under the most conservative setting
for E1, again at time p1, we extract 1,100 good and 1,100 bad tuples. Another choice is to pick a different extraction
system, E2, which is much slower, but more accurate. In this case, at time p1 the system extracts 400 good tuples,
and only 100 bad tuples. The quality curve, demonstrates clearly the tradeoffs under the different settings. As time

5A triplet 〈tp(θ), fp(θ),Time(θ)〉 strongly dominates a triplet 〈tp(θ′), fp(θ′),Time(θ′)〉 iff tp(θ) ≥ tp(θ′), fp(θ) ≤ fp(θ′), and
Time(θ) ≤ Time(θ′).

6An alternative is to keep only the Pareto optimal set, as discussed in Section 3.2.

9

Good tuples

Ba
d

tu
pl

es

Time = p4

Time = p3

Time = p2

Time = p1
Slow, high-precision
execution using E2

Quality curves for E1

Iso-precision line

0

Fast, high-recall
execution using E1

Fast execution using E1 at
E1’s high-precision setting

1000 2000

1,000

2,000

Quality curves for E2

Time = p1

Time = p2

Time = p3

Time = p4

Figure 5: Quality curves for a retrieval strategy for different point in time, for two extraction systems.

progresses, and the extraction system processes more documents, the quality curve moves up and to the right, generating
more bad and good tuples.

Our goal is to estimate the shape of the quality curves for each point in time, describing essentially the behavior of
all possible execution strategies. Given the quality curves, we can then easily pick the appropriate strategy for a given
extraction task, Next, we present our formal analysis of these execution strategies, and we show how to estimate the
quality curves.

4 Estimating Output Quality
We begin our analysis by sketching a general model to study the output of an execution strategy in terms of the number
of good and bad tuples generated (Section 4.1). We then examine how the choice of the parameters θ affects the
output composition (Section 4.2), and finally present our rigorous analysis of each retrieval strategy, namely, Scan
(Section 4.3.1), Filtered Scan (Section 4.3.2), and Automatic Query Expansion (Section 4.3.3).

4.1 Analyzing An Execution Strategy: General Scheme
Consider an execution strategy with extraction system E, configured with parameters values θ, along with a document
retrieval strategy S for a text database D. Our goal is to determine the number of good tuples |T good

retr | and bad tuples
|T bad

retr | that this execution strategy will generate at any point in time. Based on these values, we can compute the quality
curve for the combination of E with S.

We know that the database consists of good documents Dg , bad documents Db , and empty documents De .
During the information extraction task, the strategy S retrieves documents Dr from D that E subsequently processes.
Specifically, E processes |Dgp | good documents, |Dbp | bad documents, and |Dep | empty documents.

In the first step of our analysis, we disentangle the effects of retrieval strategy from the effects of the extraction
system. For the number of retrieved good tuples |T good

retr |, we proceed as follows: The number of good tuples in the

10

extracted relation depends only on the number of good documents |Dgp | that are processed by E. The value |Dgp |
depends only on the retrieval strategy S. Given the number |Dgp |, the number of good tuples depends only on the
settings of the extraction system. Assuming that we know the value of |Dgp |, we have:

E[|T good
retr |] =

∑
t∈Tgood

Prg(t
∣∣|Dgp |) (3)

where Prg(t
∣∣|Dgp |) is the probability that we will see the good tuple t at least once in the extracted relation, after

processing |Dgp | good documents. The value Prg(t
∣∣|Dgp |) depends only on the extraction system and in Section 4.2

we will analyze it further.
The analysis is similar for the number of retrieved bad tuples. In this case, since both good and bad documents

contain bad tuples, the number of bad tuples in the extracted relation depends on the total number of good documents
and bad documents |Dgp |+ |Dbp | processed by E. Specifically, we have:

E[|T bad
retr |] =

∑
t∈Tbad

Prb(t
∣∣|Dgp |+ |Dbp |) (4)

where Prb(t
∣∣|Dgp |+ |Dbp |) is the probability that we will see the bad tuple t at least once in the extracted relation,

after processing a total of |Dgp |+ |Dbp | good and bad documents. The value Prb(t
∣∣|Dgp |+ |Dbp |) depends only on

the extraction system and in Section 4.2 we will analyze it further.
Equations 3 and 4 rely on knowing the exact number of the good and bad documents retrieved using S and processed

by E. In practice, however, we will only know the probability distribution of the good and bad documents in Dr , which
is different for each retrieval strategy. Therefore, after modifying the Equations 3 and 4 to reflect this, we have:

E[|T good
retr |] =

|Tgood |∑
i

·
|Dr |∑
j=0

Prg(t
∣∣|Dgp | = j) · Pr(|Dgp | = j) (5)

E[|T bad
retr |] =

|Tbad |∑
i

·
|Dr |∑
j=0

Prb(t
∣∣|Dgp |+ |Dbp | = j) · Pr(|Dgp |+ |Dbp | = j) (6)

The values of E[|T good
retr |] and E[|T bad

retr |] for different extraction strategies 〈E(θ), S〉 allow us to compute the quality
curves for different number of retrieved documents, and hence for different points in time. Furthermore, we have
disentangled the effect of the extraction system E(θ) from the effect of the document retrieval strategy S.

We now proceed, in Section 4.2, to analyze the factors Prg(t|j) and Prb(t|j) that depend only on the extraction
system. Then, in Sections 4.3.1, 4.3.2, and 4.3.3 we show how to compute the factors Pr(|Dgp | = j) and Pr(|Dgp |+
|Dbp | = j) for various document retrieval strategies.

4.2 Analyzing the Effect of the Information Extraction System
In this section, we examine the effect of the information extraction system on output quality. For our analysis, we
assume that we know the values of |Dgp | and |Dbp |. We will relax this assumption in the next sections.

The first step is to estimate the number of distinct good tuples that we extract. As we discussed in Section 2,
we can extract good tuples only from good documents (see also Figure 2, page 4). To estimate the number of good
tuples that are extracted from the retrieved documents, we model each retrieval strategy as multiple sampling without
replacement processes running over the documents in Dg . Each process corresponds to a tuple t ∈ Tgood , which we
assume to be independently distributed across the Dg documents. If we retrieve and process |Dgp | documents from
Dg then the probability of retrieving k documents that contain a good tuple t that appears in gd(t) good documents
follows a hypergeometric distribution. Specifically, the probability of retrieving k documents with the tuple t is
Hyper(|Dg |, |Dgp |, gd(t), k) where Hyper(D,S, g, k) =

(
g
k

)
·
(
D−g
S−k

)
/
(
D
S

)
is the hypergeometric distribution.

Even if we retrieve k documents with tuple t from Dg , the extraction system E may still reject the tuple k times7

with probability (1 − tp(θ))k. In this case, the tuple t will not appear in the output. Therefore, the probability that

7We assume that the appearances of t in different documents are independent, e.g., they do not always follow the same pattern.

11

we will see a good tuple t, which appears in gd(t) good documents in D, at least once in the extracted relation, after
processing |Dgp | good documents is equal to:

Prg(t
∣∣|Dgp |) = 1−

gd(t)∑
k=0

(
Hyper(|Dg |, |Dgp |, gd(t), k) · (1− tp(θ))k

)
To compute Prg, we need to know the value of gd(t) for the good tuple, which is rarely known. However, the
distribution Pr(gd(t)) tends to follow a power-law distribution [5, 24]. So, we can eliminate gd(t) and have a general
formula for all good tuples t:

Prg(t
∣∣|Dgp |) = 1−

|Dg |∑
gd(t)=1

Pr(gd(t)) ·
gd(t)∑
k=0

(
Hyper(|Dg |, |Dgp |, gd(t), k) · (1− tp(θ))k

)
(7)

The analysis is similar for the number of bad tuples. However, now both Dg and Db contain bad tuples. By
assuming that the level of noise is the same in Dg and Db , and analogously to the case of good tuples, the probability
that we will see at least once a bad tuple, which appears in gd(t) good documents and in bd(t) bad documents in D, is:

Prb(t
∣∣|Dgp |+ |Dbp |) = 1−

gd(t)+bd(t)∑
k=0

(
Hb(gd(t) + bd(t), k) · (1− fp(θ))k

)
(8)

where Hb(gd(t)+ bd(t), k) = Hyper(|Dg |+ |Db |, |Dgp |+ |Dbp |, gd(t)+ bd(t), k) and (1− fp(θ))k is the probability
of rejecting a bad tuple k times. Again, as in the case of good tuples, we can eliminate the dependency of gd(t) + bd(t)
by assuming that the frequency of bad tuples also follows a probability distribution. (As we will see in Section 7, the
frequency of bad tuples also follows a power-law distribution.)

In this section, we have described how to compute the values Prg and Prb that are needed to estimate E[|T good
retr |]

(Equation 5) and E[|T bad
retr |] (Equation 6). Next, we show how to compute the values for Pr(|Dgp | = j) and

Pr(|Dgp |+ |Dbp | = j) for each document retrieval strategy.

4.3 Analyzing the Effect of the Document Retrieval Strategy
4.3.1 Scan

Scan sequentially retrieves documents from D, in no specific order, and therefore, when Scan retrieves |Dr | documents
|Dgp |, |Dbp |, and |Dep | are random variables that follow the hypergeometric distribution. Specifically, the probability
of processing exactly j good documents is:

Pr(|Dgp | = j) = Hyper(|D|, |Dr |, |Dg |, j) (9)

Similarly, the probability of processing j good and bad documents is:

Pr(|Dgp |+ |Dbp | = j) = Hyper(|D|, |Dr |, |Dg |+ |Db |, j) (10)

Using the equations above in 5, we compute the expected number of good tuples in the extracted relation after Scan
retrieves and processes |Dr | documents from D.

4.3.2 Filtered Scan

The Filtered Scan retrieval strategy is similar to Scan with the exception of a document classifier that filters out documents
that are not good candidates for containing good tuples. Instead, only documents that survive the classification step will
be processed. Document classifiers are not perfect and they are usually characterized by their own true positive rate Ctp

and false positive rate Cfp . Intuitively, given a classifier C, the true positive rate Ctp is the fraction of documents in
Dg classified as good, and the false positive rate Cfp is the fraction of documents in Db incorrectly classified as good.
Therefore, the major difference with Scan is that now the probability of processing j good documents after retrieving
|Dr | documents from the database is:

12

Pr(|Dgp | = j) =
|Dr |∑
n=0

Hyper(|D|, |Dr |, |Dg |, n) · Binom(n, j, Ctp) (11)

where Binom(n, k, p) =
(
n
k

)
· pk · (1− p)n−k is the binomial distribution. In Equation 11, n is the number of retrieved

good documents. By definition, the remaining |Dr | − n are bad or empty documents. So, by extending Equation 11 we
can compute the probability of processing j good documents and bad documents after retrieving |Dr | documents from
the database:

Pr(|Dgp |+ |Dbp | = j) =
j∑
i=0

|Dr |∑
n=0

Hg(n) · Binom(n, i, Ctp) ·
|Dr |−n∑
m=0

Hb(m) · Binom(m, j − i, Cfp)

 (12)

where Hg(n) = Hyper(|D|, |Dr |, |Dg |, n) and Hb(m) = Hyper(|D|, |Dr |, |Db |,m).
By replacing the value of Pr(|Dgp | = j) from Equation 12 to Equation 5, we can easily compute the expected

number of distinct good tuples E[|T good
retr |] in the output. Similarly, for the bad tuples, we use Equation 12 to compute

Pr(|Dgp |+ |Dbp | = j) and then replace this value in Equation 6 to compute the expected number of bad tuples in the
output.

4.3.3 Automated Query Generation

The Automated Query Generation strategy retrieves documents from D by issuing queries, constructed offline and
designed to retrieve mainly good documents [24]. The retrieved documents are then processed by E.

To estimate the number of good and bad documents retrieved, consider the case where Automated Query Generation
has sent Q queries to the database. If the query q retrieves g(q) documents and has precision pg(q) for good documents,
i.e., expected fraction of good documents, then the probability for a good document to be retrieved by q is pg(q)·g(q)

|Dg | .
The query q may also retrieve some bad documents. If the expected fraction of bad documents retrieved by q is pb(q),
then the probability of a bad document to be retrieved by q is pb(q)·g(q)

|Db | . Assuming that the queries sent by Automated
Query Generation are only biased towards documents in Dg , the queries are conditionally independent within Dg . In
this case, the probability that a good document d is retrieved by at least one of the Q queries is:

Prg(d) = 1−
Q∏
i=1

(
1− pg(qi) · g(qi)

|Dg |

)
Similarly, the probability that a bad document d is retrieved by at least one of the Q queries:

Prb(d) = 1−
Q∏
i=1

(
1− pb(qi) · g(qi)

|Db |

)
To avoid having any dependencies on query-specific cardinalities g(q) and precisions pg(q) and pb(q), we can compute
the expected value for Prg(d) and Prb(d):

Prg(d) = 1−
(

1− E[pg(q)] · E[g(q)]
|Dg |

)Q
Prb(d) = 1−

(
1− E[pb(q)] · E[g(q)]

|Db |

)Q
(13)

where E[pg(q)] and E[pb(q)] are the average precisions of a query for good and bad documents, respectively, and
E[g(q)] is the average number of documents retrieved by a query.

Since each document is retrieved independently of each other, the number of good documents retrieved (and
processed) follows a binomial distribution, with |Dg | trials and Prg(d) probability of success in each trial. (Similarly
for the bad documents.)

13

Pr(|Dgp | = j) = Binom(|Dg |, j, Prg(d)) (14)
Pr(|Dbp | = k) = Binom(|Db |, k, Prb(d)) (15)

Therefore,

Pr(|Dgp |+ |Dbp | = j) =
j∑
i=0

Pr(|Dgp | = i) · Pr(|Dbp | = j − i) (16)

Similar to Scan and Filtered Scan, we can now estimate the values of E[|T good
retr |] and E[|T bad

retr |].

5 Estimating Model Parameters
In Section 4, we developed analytical models to derive quality curves for an extraction system, for different retrieval
strategies. We now discuss the task of estimating parameters used by our analysis.

To estimate the quality curves, our analysis relies on two classes of parameters, namely the retrieval-strategy-specific
parameters and the database-specific parameters. The retrieval-strategy-specific parameters include E[pg(q)], E[pb(q)],
and E[h(q)] for the Automatic Query Expansion queries or the classifier properties Ctp and Cfp for Filtered Scan.
The database-specific parameters include |Dg |, |Db |, and |De |, |Tgood | and |Tbad |, and the frequency distribution of
the good and bad tuples in the database. Of these two classes, the retrieval-strategy-specific parameters can be easily
estimated in a pre-execution, offline step: the classifier properties and the query properties are typically estimated using
a simple testing phase after their generation [24, 25]. On the other hand, estimating the database-specific parameters is
a more challenging task.

Our parameter estimation process relies on the general principles of maximum-likelihood estimation (MLE) [18]
along with the statistical models that we discussed earlier: in Section 4, we showed how to estimate the output given
various database parameters, and now we will infer the values of the database parameters by observing the output for a
sample of database documents. Specifically, we begin with retrieving and processing a sample Dr of documents from
the database D. After processing the documents in Dr , we observe some tuples along with their frequencies in these
retrieved documents. To this end, we identify the values for the database parameters that are most likely to generate
these observations. Specifically, given a tuple t obtained from Dr , if we observe t in s(t) documents in Dr , we are
trying to find the parameters that maximize the likelihood function:

L(parameters) =
∏

t∈observed tuples

Pr{s(t)|parameters} (17)

To effectively estimate the database-specific parameters, we need to address one main challenge: our understanding
of an execution strategy so far assumed that we know exactly whether a tuple is good or not (Section 4). However, in
a typical execution, we do not have such knowledge; at best, we have a probabilistic estimate on whether a tuple is
good or bad. In our parameter estimation framework, we decouple the issue of estimating parameters from the issue of
determining whether an observed tuple is good or bad. Specifically, we present our estimation process by first assuming
that we know whether a tuple is good or bad (Section 5.1). Then, we alleviate this (non-realistic) assumption and
present two parameter estimation approaches. Our first approach, called rejection-sampling-based MLE-partitioning,
randomly splits the tuples into good and bad following a rejection-sampling strategy, and then estimates the database
parameters (Section 5.2). Our second approach, preserves this uncertainty about the “goodness” or “badness” of a tuple
and simultaneously derives all the database parameters (Section 5.3).

5.1 Estimation Assuming Complete Knowledge
Our parameter estimation process begins with retrieving and processing documents using some execution strategy. After
processing the retrieved documents Dr , we observe some tuples along with their document frequencies. Furthermore,
for now we assume that we know for each observed tuple whether it is a good tuple or a bad tuple. Given this assumption,
we show how to derive the parameters |Dg |, |Db |, and |De |, and then we discuss how to estimate the tuples frequencies
for the good and bad tuples, and the values |Tgood |, and |Tbad |.

14

Estimating |Dg |, |Db |, and |De |: We begin by first identifying the good, the bad, and the empty documents in Dr .
For this, we process each document in Dr using the maximum-sensitivity setting of the extraction system E in the
initial execution strategy.8 Based on the type of tuples contained in each processed document, we can trivially compute
the number of good documents |Dgp |, the number of bad documents |Dbp |, and the number of empty documents |Dep |,
in Dr . These values, together with our analysis in Section 4, can be used to derive the values for |Dg |, |Db |, and |De |
in the entire database |D|. We now show how we derive |Dg |. (The derivation for |Db | and |De | is analogous.) Using
a maximum-likelihood approach, we find the value for |Dg | that maximizes the probability of observing |Dgp | good
documents in Dr :

Pr{|Dg |
∣∣|Dgp |} =

Pr{|Dgp |
∣∣|Dg |} · Pr{|Dg |}
Pr{|Dgp |}

(18)

Since the value Pr{|Dgp |} is constant across all possible values for |Dg |, we can ignore this factor for the purpose of
maximization. From Section 4, we know how to derive the factor Pr{|Dgp |

∣∣|Dg |} for each document retrieval strategy.
(See Equations 9, 11, and 14.) Specifically, for Scan, we know that Pr{|Dgp |

∣∣|Dg |} = Hyper(|D|, |Dr |, |Dg |, |Dgp |)
(Eq. 9). Finally, for the factor Pr{|Dg |} we assume a uniform distribution, i.e., no prior knowledge about the number
of good and bad documents in the database. We can now derive the value for |Dg | that maximizes Equation 18. For
instance, for Scan, we derive |Dg | as:

|Dg | = argmax
|Dg |

{Hyper(|D|, |Dr |, |Dg |, |Dgp |)} (19)

Analytically,9 the maximizing value of Dg is the solution for the equation z(Dg +1)+z(D−Dg −Dr +Dgp +1) =
z(Dg −Dgp + 1) + z(D −Dg + 1), where z(x) is the digamma function. Practically, z(x) ≈ ln(x), and we have:

|Dg | ≈
(
|D|+ 2
|Dr |

· |Dgp |
)
− 1 (20)

Following a similar MLE-based approach, we can derive values for |Db | and |De | using our analysis from Section 4
and the observed values |Dbp | and |Dep |.

Estimating βg and βb: The next task is to estimate the tuple-related parameters. One of the fundamental parameters
required by our analysis is the frequency of each tuple in the database (e.g., gd(t) and bd(t) for a tuple t). Of course,
we cannot know the frequency of the tuples before processing all documents in the database, but we may know the
general family of their frequency distributions. Following such a parametric approach, our estimation task reduces to
estimating a few parameters for these distributions. We rely on the fact that the tuple frequencies for both categories of
tuples (i.e., good and bad) tend to follow a power-law distribution (see related discussion in Section 7). Intuitively, for
both categories, a few tuples occur very frequently and most tuples occur rarely in the database.

For a random variable X that follows a power law distribution, the probability mass function for X is given as
Pr{X = i} = iβ

ζ(β) , where β is the exponent parameter of the distribution and ζ(β) =
∑∞
n=1 n

−β is the Riemann zeta
function [19]. Therefore, for the random variable gd(t), which represents the frequency of a good tuple, and the random
variable gd(t) + bd(t), which represents the frequency of a bad tuple, we have:

Pr{gd(t) = i} = iβg

ζ(βg)
(21)

Pr{gd(t) + bd(t) = i} = iβb
ζ(βb)

(22)

where βg and βb are the exponents of the power-law distributions for the frequencies of good tuples and bad tuples,
respectively. Now, we need to derive the values for the distribution parameters, namely, βg and βb. Below, we discuss
our approach for estimating βg; the estimation of βb is analogous.

Uncertainty-preserving Maximum Likelihood: To derive βg , we focus on the set Tgr of good tuples observed in Dr .
For a good tuple t, we denote by gs(t) the total number of documents that contain t in Dr . Our goal is to estimate the
value of βg that maximizes the likelihood of observing gs(t) times each of the extracted tuples t, which is given as:

L(βg) =
∏

t∈observed good tuples

Pr{gs(t)|βg} (23)

8For our discussion, we assume that we have available only one extraction system, but our estimation process can be easily extended for a set of
extraction systems.

9We set d
dDg

Hyper(|D|, |Dr |, |Dg |, |Dgp |) = 0 and use the fact that d
dn

n! = z(n + 1) · n!.

15

We have:

Pr{gs(t)|βg} =
|Dg |∑

k=gs(t)

Pr{gs(t)
∣∣k} · Pr{gd(t) = k|βg} (24)

We derive the factor Pr{gs(t)
∣∣k} using our analysis from Section 4.2 by generalizing Equation 7. In Equation 7, we

derived the probability of observing a good tuple at least once in the output, after processing |Dgp | good documents.
Now we are interested in deriving the probability of observing a good tuple gs(t) times in the output after we have
processed |Dgp | good documents. Therefore,

Pr{gs(t)
∣∣k} =

k∑
m=0

(Hyper(|Dg |, |Dgp |, k,m) · Binom(m, gs(t), tp(θ))) (25)

For the factor Pr{gd(t) = k|βg}, we use Equation 21. We can then estimate the value of βg using Equations 23, 24,
and 25.

Since it is difficult to derive an analytic solution for locating the value of βg that maximized L(βg), we proceed and
compute L(βg) for a set of values of βg and pick the value that maximizes Equation 24. We refer to this estimation
approach that exhaustively searches through the space of parameter values as Exh.

Iterative Maximum Likelihood: The exhaustive approach tends to be rather expensive computationally, since it
examines all potential gd(t) values for each tuple and then searches for the best possible value of βg. Rather than
searching through a space of parameter values, we also explored iteratively refining the estimated values for βg. This
alternative estimation approach iterates over the following two steps until the value for βg has converged:

Step 0 Initialize βg: We pick an initial value for βg .

Step 1 Estimate tuple frequencies, gd(t): In this step, for every good tuple t in Dr , we estimate its frequency in the
entire database, i.e., we derive gd(t) for t, based on its sample frequency gs(t). In contrast to the uncertainty-
preserving approach described above, we keep only a single value for gd(t). Specifically, we identify the value
for gd(t) that maximizes the probability of observing the tuple frequency gs(t) in the sample:

Pr{gd(t)
∣∣gs(t)} =

Pr{gs(t)
∣∣gd(t)} · Pr{gd(t)}
Pr{gs(t)}

(26)

We derive Pr{gs(t)
∣∣gd(t)} and Pr{gd(t)} as discussed above for the uncertainty-preserving approach. Notice

that Pr{gd(t)} depends on the value of βg .

Step 3 Estimate distribution parameter, βg: In this step, we estimate the most likely distribution parameter βg that
generates the tuple frequencies estimated in Step 2. We derive βg by fitting a power law. We explore two
methods to fit a power law: the maximum likelihood (MLE)-based approach [19, 30] and a less-principled (but
extensively used) log regression-based (LogR) method [1, 30]. We refer to the iterative estimation method that
uses MLE-based fitting as Iter-MLE, and we refer to the estimation method that uses log regression-based fitting
as Iter-LogR.

Step 4 Check for convergence of βg: If the βg values computed in two iterations of the algorithm are close, then stop.
Otherwise, repeat Step 2 and 3.

Estimating |Tgood | and |Tbad |: The final step in the parameter estimation process is to estimate |Tgood | and |Tbad |,
for which we numerically solve Equations 5 and 6. Specifically, we rewrite Equations 5 and 6 as:

E[|T good
retr |] = |Tgood | ·

|Dr |∑
j=0

Prg(ti
∣∣|Dgp | = j) · Pr(|Dgp | = j) (27)

E[|T bad
retr |] = |Tbad | ·

|Dr |∑
j=0

Prb(ti
∣∣|Dgp |+ |Dbp | = j) · Pr(|Dgp |+ |Dbp | = j) (28)

During the estimation process we know the number of good tuples observed after processing Dr ; this is essentially
E[|T good

retr |] in Equation 27. Furthermore, we can derive the probability Prg of observing a good tuple, after retrieving

16

Input: Tuple t, θo setting used to generate t
R = generate a random number between 0 and 1
if R <

|Tgood |
|Tgood |+|Tbad | ·

sig(θo)
sig(θo)+nse(θo)

then
mark t as good

else
mark t as bad

end

Figure 6: Classifying an observed tuple t as a good or bad tuple.

Dr documents, using the estimated values for βg and |Dg |. The only unknown in Equation 27 is |Tgood |. So, we solve
Equation 27 for |Tgood |. We can derive |Tbad | is the same manner using the observed bad tuples, i.e., E[|T bad

retr |], and
Prb in Equation 28.

To summarize, we showed how we can estimate the various database-specific parameters used in our analysis. Our
discussion so far assumed that we had complete knowledge of whether an observed tuple is good or not. In practice,
though, we do not know this. We now relax that assumption and discuss two methods to address this issue.

5.2 Rejection-sampling-based MLE-Partitioning Approach
When estimating parameters of a database, we retrieve and process a document sample using some execution strategy.
Upon observing a tuple in the output we do not know whether this tuple is good or bad. This assumption, however, is
the basis for the analysis that we presented so far. In this section, we show how we can alleviate this assumption by
using a technique based on the idea of rejection sampling. Intuitively, this technique randomly splits the set of extracted
tuples into good and bad, by using the ROC analysis from Section 3.2 and then uses the randomized split to perform the
analysis.

The basic idea behind this technique is that we do not necessarily need to know the absolutely correct classification
for each tuple. If we have a roughly correct classification of the tuples into good and bad, then the analysis presented
above should be able to handle the noise and still return good results.

Consider a tuple t generated, during the parameter estimation process, using an execution strategy consisting of an
extraction system E tuned at setting θo. This tuple may be good or bad. This depends on two main factors: (a) the
ability of E to differentiate between good tuples (signal) and bad tuples (noise), and (b) the prior distribution of the
good and bad tuples that we feed to E. (Intuitively, the more E can correctly identify a good tuple, the higher the
probability of an output tuple being a good tuple; similarly, the larger the number of good tuples that we feed to E
the higher the number of observed tuples that will be good.) Instead of preserving the uncertainty about the tuple, for
estimation purposes, we can make a decision and consider it either good or bad. To make this decision, we use the idea
of rejection sampling and classify tuple t at random, using a biased coin.

An important part for generating a representative split of tuples into good and bad is to select properly the bias of
the coin. This bias depends on the ability of the extraction system to distinguish signal from noise event. As discussed
in Section 3.2, the first step to generate an ROC curve is to derive the probability distributions for signal and noise
across all θ settings. For each setting, we know sig(θ), which is the fraction of all good tuples that are generated at θ
setting, and nse(θ), which is the fraction of bad tuples generated at θ setting. Therefore, for a tuple the probability
that it is good (signal) is sig(θ)

sig(θ)+nse(θ) ·
|Tgood |

|Tgood |+|Tbad | and we use that as a basis for the split. Figure 6 shows our overall
process for classifying a tuple t observed at setting θo using a biased coin.

One issue with this value is that we do not know the |Tgood | and |Tbad | values during the estimation process. So,
we begin with some initial value for |Tgood |

|Tgood |+|Tbad | and split the observed tuples based on this initial value. Using these
partitioned tuples, we proceed with the estimation process as discussed in Section 5.1 and derive values for |Tgood | and
|Tbad |; then, we update our initial guess. As we retrieve and process more documents, we further refines this value.

Using the above partitioning approach, we generate a deterministic split of all the observed tuples, and we can now
proceed with the estimation process as detailed in Section 5.1. In principle, our technique is similar to Monte Carlo
techniques [18], but instead of trying multiple potential splits we simply take one; we observed that a single partition
tends to work well in practice and is more efficient than multiple attempts.

17

5.3 Uncertainty-Preserving Approach
In the absence of any signal to noise ratio information or any other mechanism to partition the tuples, we can extend our
general theory from Section 4 to estimate the parameters only based on the tuples observed in a document sample. Our
second estimation approach preserves the uncertainty about the nature of a tuple, and estimates the desired parameters
by exhaustively considering all possible scenarios involving each observed tuple.

Given a document d that “contains” t0(d) tuples that we observe using the maximum-sensitivity setting (see
Section 5.1), we denote by g(d) the total number of good tuples and by b(d) the total number of bad tuples in d, such
that g(d) + b(d) = t0(d). We do not know the exact values for g(d) and b(d), and so we examine an entire range of
possible values for g(d) and b(d) given t0(d). Specifically, we consider all (x, y) pairs such that (x, y) ∈ g(d)× b(d).
Our goal then is to identify the parameter values that maximize the probability of observing the tuples for all documents,
for the given (x, y) pairs for each document. For efficiency, without loss of accuracy, we focus only on the most likely
“breakdown” of the tuples observed for each document instead of all possible breakdowns.

Estimating |Dg |, |Db |, |De |: We first identify the most likely breakdown of the observed tuples for each document.
Consider a document d that contains t0(d) tuples, of which we have observed s(d) tuples using the initial execution
strategy. Our goal is to identify the most likely values for g(d) and b(d) that generated s(d) tuples after processing d.
Using an MLE-based approach, we identify g(d) and b(d) that maximize:

Pr{g(d) = x, b(d) = y|s(d) = t, (x+ y) = t0(d)} =
Pr{s(d)|g(d) = x, b(d) = y} · Pr{g(d) = x} · Pr{b(d) = y}

Pr{s(d)}
(29)

We derive the first factor in the numerator, Pr{s(d)
∣∣g(d) = x, b(d) = y}, based on our discussion from Section 4.

Specifically, we know that the number of tuples extracted by the extraction system at θ setting follows a binomial
distribution with the probability of success given as tp(θ). Similarly, the number of bad tuples extracted by the
extraction system depends on fp(θ). So,

Pr{s(d)|x, y} =
s(d)∑
g=0

Binom (g, x, tp(θ)) ·Binom ((s(d)− g), y, fp(θ))

To compute the probability that a document d contains g(d) good tuples, we rely on prior knowledge of the document
frequency distribution, which tends to be power law. (We verified this experimentally.) If βgd is the distribution
parameter for the frequency of good tuples in a good document, we derive Pr{g(d) = x} as:

Pr{g(d) = x} =

{ |Db |
|D| + |De |

|D| , x = 0(
1− |Db |

|D| −
|De |
|D|

)
· x

−βgd

ζ(βgd)
, x > 0

Similarly, to compute the probability that a document d contains b(d) bad tuples, we also assume that the number of
bad tuples in a document tend to follow a power law distribution. If βbd is the distribution parameter for the frequency
of bad tuples in a document, we derive Pr{b(d) = y} as:

Pr{b(d) = y} =

{ |De |
|D| , y = 0(

1− |De |
|D|

)
· y

−βbd

ζ(βbd)
, y > 0

Finally, we compute the factor Pr{s(d)} in the denominator of Equation 29 based on the observed distribution for the
number of tuples in a document, after processing Dr . Using the above analysis, we search through a space of possible
values for |Dg |, |Db |, |De |, |βgd|, and |βbd| and identify the most likely parameter combination.

Estimating |βg|, |βb|, |Tgood |, |Tbad |: For the next task, we begin with identifying the most likely frequency of each
tuple t observed after processing Dr documents. As discussed in Section 5.1, the frequency of a tuple observed for Dr

may not be final. Consider a tuple t that occurs in s(t) documents among Dr . Our goal is to identify the most likely
tuple frequency d(t) of the tuple t in the entire database that maximizes the probability of observing t s(t) times:

Pr{d(t) = k
∣∣s(t)} = Pr{t ∈ Tgood |s(t)} · Pr{gd(t) = k|s(t)}

+ Pr{t ∈ Tbad |s(t)} · Pr{(gd(t) + bd(t)) = k|s(t)} (30)

18

Symbol Description

PT-Exh Rejection-sampling-based approach that exhaustively searches through a range of values
for the tuple frequency distribution parameters.

PT-Iter-MLE Rejection-sampling-based approach that iteratively refines the tuple frequency distribution
parameter values and uses MLE-based approach to fit the power law.

PT-Iter-LogR Rejection-sampling-based approach that iteratively refines the tuple frequency distribution
parameter values and uses log-based regression to fit the power law.

UP Uncertainty-preserving approach that exhaustively considers all possible cases
for each observed tuple.

Table 2: Techniques to estimate the database-specific parameters.

For brevity, we denote the first factor related to the case of good tuples by Pog, i.e., Pog = Pr{t ∈ Tgood |s(t)} ·
Pr{gd(t) = k|s(t)}; similarly we denote the second factor related to the case of bad tuples by Pob. Using Bayes rule,
we rewrite Pog in terms of values that we can derive using our analysis in Section 4. Specifically,

Pog = Pr{s(t)|t ∈ Tgood} ·
Pr{t ∈ Tgood}
Pr{s(t)}

· Pr{s(t)|gd(t) = k} · Pr{gd(t) = k}
Pr{s(t)}

(31)

The above equation consists of five distinct quantities of which we can derive two quantities using our earlier analysis.
Specifically, we discussed how to derive Pr{s(t)|t ∈ Tgood} and Pr{s(t)|gd(t) = k} by generalizing Equation 7 in
Section 5.1. To compute Pr{t ∈ Tgood} in Equation 31, we use |Tgood |

|Tgood |+|Tbad | , and to compute Pr{gd(t) = k}, we
follow Equation 21. Finally, to derive Pr{s(t)} in the denominator, we rely on the observed frequency distribution
after processing Dr documents.

So far, we discussed how to derive the quantity Pog for the case of good tuples. We proceed in a similar fashion for
Pob by generalizing our analysis from Section 4.2 to use gd(t) + bd(t) as random variables and derive the probability of
observing a bad tuple i times after processing Dr documents. Using the above derivations, we search through a range
of values for βg , βb, |Tgood |, and |Tbad |, and pick the combination that maximizes Equation 30. We can optimize this
estimation process by focusing on typical values of βg and βb, which tend to be between 1 and 5; similarly, we can
derive useful hints for the range of possible values for |Tgood | and |Tbad | using the proportion of good and bad tuples
observed when generating the ROC curves (Section 3.1).

To summarize, in this section we discussed our approach to estimate various database-specific parameters that are
necessary for our analysis in Section 4, by exploring several ways for deriving these parameters. We summarize these
methods in Table 2. These methods along with our analysis naturally lead to building a quality-aware optimization
approach that can compare a family of execution strategies and effectively pick an execution strategy that meets given
user-specified quality constraints. Next, we discuss our quality-aware optimizer, which builds on our analytical models.

6 Putting Everything Together
In Section 3, we introduced the concept of quality curves which characterize the output of an execution strategy (i.e.,
combination of retrieval strategy and an extraction system setting) over time. These curves allow us to compare different
execution strategies, both in terms of speed and in terms of output composition, i.e., the number of good and bad tuples
in the output. In Section 4, we showed how we can estimate the quality curves for an execution strategy, given a set of
database parameters. Finally, in Section 5, we presented various methods that estimate the necessary parameters for our
analysis given the output of the running execution strategy.

Using the analysis so far, we can outline the overall optimization strategy:

• Given the quality requirements, and in the absence of any real statistics about the database, pick an execution
strategy, based on heuristics or based on some “educated guesses” for the parameter values.

• Run the execution strategy, observing the generated output.

• Use the algorithms of Section 5 to estimate the parameter values.

19

• Use the analysis of Section 4 to estimate the quality curves, examining whether there is a better execution strategy
than the running one.

• Switch to a new execution strategy, or continue with the current one; go to Step 2.

In principle, the quality requirements of Step 1 depend on user preferences: sometimes users may be after “quick-
and-dirty” results, while some other times users may be after high-quality answers that may take long time to produce.
For this paper, as a concrete case of user-specified preferences, we focus on a “low-level” quality requirement where
users specify the desired quality composition in terms of the minimum number τg of good tuples and the maximum
number τb number of bad tuples that they are willing to tolerate. Even though, it may seem unrealistic to ask users to
specify such values. However, several other cost functions can be designed on top of this “low-level” model: examples
include minimum “precision,” or minimum “recall” or even a goal to maximize a combination of the precision and
recall within a pre-specified execution time budget.

Given the user-specified requirements, τg and τb, our quality-aware optimizer identifies execution strategies and
execution times that have E[|T good

retr |] ≥ τg and E[|T bad
retr |] ≤ τb. Then across the candidate strategies, the one with the

minimum execution time is picked, following the general optimization outline that described above.

7 Experimental Settings
We now describe our experimental settings for the experiments in Section 8, focusing on the text collections, extraction
systems, retrieval strategies, and baseline techniques used.

Information extraction systems: We used Snowball [3] and trained it for three relations: Headquarters(Company,
Location), from Section 1, Executives(Company, CEO), and Mergers(Company, MergedWith). For Executives, the
extraction system generates tuple 〈o, e〉, where e is the CEO of the organization o, whereas for Mergers, the extraction
system generates tuples 〈o,m〉, where organization o merged with the organization m. In our discussion, we focus only
on the case of extracting Headquarters and Executives; our observations on Mergers largely agree with those for these
two relations. We trained two instantiations of Snowball for each relation that differed in their extraction patterns. We
refer to the extraction systems for Executives as E1 and E2, and to the extraction systems for Headquarters as H1 and
H2. For θ, we picked minSimilarity, a tuning parameter exposed by Snowball, which is the threshold for the similarity
between the terms in the context of a candidate tuple and terms in the extraction patterns learned for an extraction task.

Data set: We used three data sets for our experiments, namely, a collection of 135,438 newspaper articles from The
New York Times from 1996 (NYT96), a collection of 50,269 documents from The New York Times from 1995 (NYT95),
and a collection of 98,732 newspaper articles from The Wall Street Journal (WSJ). We used NYT96 as the training set to
learn extraction patterns, and train the retrieval strategies. For our experiments that test the quality-aware optimizer, we
used NYT95 and WSJ. Since the results for WSJ were largely similar with the results for NYT95, for brevity we report
only the results for NYT95.

Retrieval strategies: To instantiate the retrieval strategies, we used a rule-based classifier (created using Ripper [11])
for Filtered ScanḞor Automatic Query Expansion we used QXtract [4] that uses machine learning techniques to
automatically learn queries that match documents with at least one tuple. In our case, we train QXtract to only match
good documents, avoiding at the same time the bad and empty ones (the original QXtract avoids only the empty
documents).

Tuple verification: Given the data sets and the retrieval strategies, we need to separate the tuples into good and bad.
For this, we used SDC Platinum,10, a paid service that provides authoritative information about financial governance
and financial transactions. Furthermore, we retrieved additional data from Wharton Research Data Services (WRDS)11

that also provides a comprehensive list of datasets that can be used to verify the correctness of the extracted tuples.
For each relation and data set, we extracted all possible tuples and classified them into good and bad tuples, using the
aforementioned resources. We observed that the tuple frequency distribution tends to follow a power-law for both good
and bad tuples. Figure 7 shows the token degree distributions of both and good and bad tokens for Headquarters and
similarly, Figure 8 shows the token frequency distributions for Executives.

10http://www.thomsonreuters.com/products_services/financial/sdc
11http://wrds.wharton.upenn.edu/

20

1

10

100

1000

1 10 100 1000
Tuple frequency

N
um

be
r o

f t
up

le
s

(a)

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000
Tuple frequency

N
um

be
r o

f t
up

le
s

(b)

Figure 7: (a) Good and (b) bad tuple frequency distribution for Headquarters.

1

10

100

1000

1 10 100
Tuple frequency

N
um

be
r o

f t
up

le
s

(a)

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000
Tuple frequency

N
um

be
r o

f t
up

le
s

(b)

Figure 8: (a) Good and (b) bad tuple frequency distribution for Executives.

ROC curves: We generated the ROC curves for each extraction system, by varying the values for minSimilarity
from 0 to 1, using the methodology described in Section 3 to pick the Pareto-optimal points. We also used 10-fold
cross-validatation to generate the confidence intervals [28] for each point. Figures 9(a) and 9(b) show the ROC curves
of the extraction systems for Headquarters and Executives respectively, along with the associated confidence intervals.

Execution strategies: For a given relation, we generate execution strategies by first deriving variations of the associated
extraction systems by varying values for minSimilarity and then combining each variation with each of the three
document retrieval strategies. Overall, for each relation we have 2 extraction systems, 4 different values for minSimilarity,
namely, 0.2, 0.4, 0.6, and 0.8, and 3 retrieval strategies, for a total of 24 different execution strategies per relation.

Baseline techniques: For our experiments, we refer to our quality-aware optimization approach as Qawr. We also
generated two baseline techniques. Our first baseline uses existing work [25] that predicts the fastest execution strategy
to reach a specified number of tuples. The optimizer in [25] assumes that the execution strategies only generate good
tuples (see Section 2). Therefore, we give as input to this optimizer the total tuples needed, which is the sum of good
and bad tuples, and select the fastest execution strategy using the method in [25]. We refer to this baseline as Qign (for
“quality-ignorant”).

Our second baseline technique relies on using heuristics from previously executed extraction tasks. Specifically, we
use an extraction task as a training task, i.e., we run it first and see what execution strategies perform best for different
types of quality requirements. Based on this information, we “learn” the most appropriate execution strategies for each
quality requirement. Then, when faced with another extraction task, involving the extraction of a different relation, we
use the same extraction strategies that performed well for the training task. We refer to this heuristics-based baseline as

21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
po

si
tiv

e
ra

te

False positive rate

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
po

si
tiv

e
ra

te

False positive rate

(b)

Figure 9: ROC curves for (a) Headquarters and (b) Executives.

Heur for (“heuristic”).

Combining manual and automated information extraction systems: To better illustrate some of the properties of
our framework, we also ran experiments involving a generalized setting, where we have to make a decision between
an automated extraction system and hiring people to read the documents and manually extract the target relations.
Specifically, in addition to processing documents using an automated extraction systems such as Snowball, we could
recruit human annotators using paid services such as Amazon Mechanical Turk. 12 In general, we expect manual
extractions to be more quality-oriented than the automated extractions, but at the same time more expensive in terms of
time and monetary cost. To build the “manual extraction system”, we used the Mechanical Turk Service as follows: for
any given document, we requested five annotators. The annotators had to read the entire document and identify tuple
instances of Headquarters from the document (if any), with no limit on the maximum number of reported instances.
We instructed the annotators to provide as answers only values that exist in the document, without any modifications
to any entity (e.g., if a document mentions a company, say “Microsoft Corp.”, the reported company name must be
identical to this and not other possible variations, such as, Microsoft Corporation). We used the number of annotators
that extracted a tuple as the θ: When θ = 1, we expect to see a high true positive rate but also a high false positive rate,
as some annotators may erroneously extract some tuples; similarly, we expect to see a low true positive rate but also a
low false positive rate when θ = 5.

Metrics: To compare the execution time of an execution plan chosen by our optimizer against a candidate plan, we
measure the relative difference in time by normalizing the execution time of the candidate plan by that for the chosen
plan. Specifically, we note the relative difference as tc

to
, where tc is the execution time for a candidate plan and to is the

execution time for the plan picked by our quality-aware optimizer.

8 Experimental Results
We now discuss our experimental results. Initially, we evaluate the accuracy of the models for predicting the output
composition for an extraction system under different retrieval strategies, given complete information (Section 8.1).
Then, we discuss the accuracy of our parameter estimation methods when we do not have information about the database
parameters (Section 8.2). Subsequently, we evaluate the accuracy of our optimizer for selecting an execution plan for a
desired output quality (Section 8.3) and, finally, we compare our approach against existing techniques for selecting an
execution plan (Section 8.4).

12http://www.mturk.com

22

102

103

104

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 g

oo
d

tu
pl

es

Percent of documents processed

Actual
Estimated

(a)

102

103

104

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 b

ad
 tu

pl
es

Percent of documents processed

Actual
Estimated

(b)

Figure 10: Actual vs. estimated number of (a) good tuples and (b) bad tuples using Scan and H1 with minSimilarity =
0.4, for Headquarters.

102

103

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 g

oo
d

tu
pl

es

Percent of documents processed

Actual
Estimated

(a)

101

102

103

104

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 b

ad
 tu

pl
es

Percent of documents processed

Actual
Estimated

(b)

Figure 11: Actual vs. estimated number of (a) good tuples and (b) bad tuples using Filtered Scan and H1 with
minSimilarity = 0.4, for Headquarters.

8.1 Accuracy of the Model
The first task of our evaluation examines the accuracy of the statistical models developed in Section 4. To verify
the accuracy of our analysis, we initially assume complete knowledge of the various parameters used in the analysis.
Specifically, we used the actual tuple degree distribution information along with the values for |Dg |, |Db |, and |De |.
Given a relation, for each associated execution plan we first estimate the output quality, i.e., E[|T good

retr |] and E[|T bad
retr |],

using the analysis of Section 4, for varying values of |Dr |. Then, for each |Dr | value, we measure the actual good and
bad tuples extracted by each plan. Figure 10 shows the actual and estimated values for the good (Figure 10(a)) and bad
(Figure 10(b)) tuples generated by the execution plan for Headquarters that uses Scan and H1 with minSimilarity =
0.4. Figures 11 and 12 show the corresponding results for the Automatic Query Expansionand Filtered Scanretrieval
strategies. In general, our estimated values are close to the actual ones, confirming the accuracy of our analysis. (The
results are highly similar for other settings.)

For the analysis for the bad tuples for Filtered Scan (e.g., Figure 11(b)), our models underestimate the number of
generated bad tuples, because of a modeling choice: we assume that the classifier output does not affect the probability
distribution of the noise (see Section 3.1). However, this is not always true in reality. In fact, the bad documents that
“survive” the classification step tend to contain bad tuples with noise distribution closer to the signal distribution; this
results in higher false positive rates for the bad tuples coming from bad documents that pass the document classification

23

101

102

103

 0 5 10 15 20 25 30

N
um

be
r

of
 g

oo
d

tu
pl

es

Percent of documents processed

Actual
Estimated

(a)

100

101

102

103

 0 5 10 15 20 25 30

N
um

be
r

of
 b

ad
 tu

pl
es

Percent of documents processed

Actual
Estimated

(b)

Figure 12: Actual vs. estimated number of (a) good tuples and (b) bad tuples using Automatic Query Expansion and H1

with minSimilarity = 0.4, for Headquarters.

100

101

102

103

-20 -15 -10 -5 0 5 10 15 20

N
um

be
r

of
 tu

pl
es

(Actual - estimated) times observed

(a)

100

101

102

103

-20 -15 -10 -5 0 5 10 15 20

N
um

be
r

of
 tu

pl
es

(Actual - estimated) times observed

(b)

100

101

102

103

104

-4 -2 0 2 4
N

um
be

r
of

 tu
pl

es

(Actual - estimated) times observed

(c)

Figure 13: Distribution of the estimation error for good tuples using (a) Scan, (b) Filtered Scan, and (c) Automatic
Query Expansion, for H1 with minSimilarity = 0.4 when |Dr | = |D|/2 (log-scale).

filter of Filtered Scan. For instance, we observed that, for a relatively small number of bad tuples in Headquarters, all
documents that contain these tuples survived the classification step, thus resulting in higher-than-estimated values for
the number of bad tuples.

As part of our experimental evaluation, we also study the estimated number of times that we observe a tuple
after processing |Dr | documents. Specifically, given |Dr |, we use our model along with the actual values for the
tuple frequencies to derive, for each tuple, the expected number of times that we will observe it in the output after
processing |Dr | documents. For each tuple, we also derive the actual number of times we observe the tuple in the output.
Given the estimated and the actual number of times we observe a tuple, we studied the distribution of the estimation
error, computed as the number of actual observations minus the estimated number of observations, across all tuples.
Figure 13 shows this distribution for good tuples for Scan (Figure 13(a)), Filtered Scan (Figure 13(b)), and Automatic
Query Expansion (Figure 13(c)); Figure 14 shows the numbers for bad tuples for Scan (Figure 14(a)), Filtered Scan
(Figure 14(b)), and Automatic Query Expansion (Figure 14(c)). For the case of good tuples, we observe that for about
99% of the tuples the estimation error is less than 1, meaning that our proposed analytical models fit well to a significant
fraction of the database tuples. Furthermore, for each of the document retrieval strategies, we observed the estimation
error to be approximately normally distributed around a mean of 0. This strengthens our previous observations: earlier,
we showed that the estimated number of good tuples for varying number of database documents retrieved is close to the
actual values. For the case of bad tuples we observe that for about 95% (for Scan) and about 99% (for Filtered Scan and
Automatic Query Expansion) of the tuples, the estimation error is zero. For Scan, the estimation error is approximately
normally distributed around the mean of 0. This is in line with our previous observations: Figure 10 suggested that our
model accurately estimates the output composition. On the other hand, as observed earlier, the estimation error for

24

100

101

102

103

104

105

-20 -10 0 10 20

N
um

be
r

of
 tu

pl
es

(Actual - estimated) times observed

(a)

100

101

102

103

104

105

-4 -2 0 2 4

N
um

be
r

of
 tu

pl
es

(Actual - estimated) times observed

(b)

100

101

102

103

104

105

-4 -2 0 2 4

N
um

be
r

of
 tu

pl
es

(Actual - estimated) times observed

(c)

Figure 14: Distribution of the estimation error for bad tuples using (a) Scan, (b) Filtered Scan, and (c) Automatic Query
Expansion, for H1 with minSimilarity = 0.4 when |Dr | = |D|/2 (log-scale).

 0

 1

 2

 3

 4

 5

 10 20 30 40 50 60 70 80 90 100

β g
oo

d

Percentage of documents processed

Act-MLE
 Act-LogR

PT-Exh
PT-Iter-MLE

 PT-Iter-LogR
UP

(a)

 0

 1

 2

 3

 4

 5

 10 20 30 40 50 60 70 80 90 100

β b
ad

Percentage of documents processed

Act-MLE
 Act-LogR

PT-Exh
PT-Iter-MLE

 PT-Iter-LogR
UP

(b)

Figure 15: Actual vs. estimated values of the frequency distribution parameters for (a) good tuples and (b) bad tuples.

Filtered Scan and Automatic Query Expansion is skewed towards negative values, due to the reasons that we discussed
earlier.

8.2 Accuracy of Parameter Estimation
In the evaluation presented above, we have seen that our techniques work well when they have access to the correct
parameter values for a database. Now, we examine the accuracy of our parameter estimation algorithms presented in
Section 5, which is critical to the accuracy of our optimizer. Specifically, we evaluate the performance of four estimation
approaches from Section 5, namely, PT-Exh, PT-Iter-MLE, PT-Iter-LogR, and UP (see Table 2).

Figure 15 shows the estimated and actual values for the power law exponent for the good tuples (i.e., βg, see
Figure 15(a)), and for the bad tuples (i.e., βb, see Figure 15(b)), as a function of the percentage of database documents
processed. The figures also show the actual value for βg and βb by fitting a power law to the actual tuple frequency
distribution using MLE and using log-based regression methods (Section 5.1). We refer to these actual values as
Act-MLE and Act-LogR, respectively. Figure 16 shows the estimated and actual values for |Tgood | (Figure 16(a)) and
|Tbad | (Figure 16(b)), for varying percentage of the database documents processed. Finally, Figure 17 shows the
estimated and actual values for |Db |

|D| and |De |
|D| .

The UP method tends to underestimate the parameter values associated with good tuples, i.e., the values for βg (see
Figure 15(a)) and |Tgood | (see Figure 16(a)). This is due to the fact that the overall number of good tuples in the database
is relatively lower than the total number of bad tuples, which results in a small value for the fraction |Tgood |

|Tgood |+|Tbad |
used by the UP approach (Section 5.3). In effect, a small value for this fraction reduces the MLE approach’s ability to
differentiate between different values for |Tgood |

|Tgood |+|Tbad | that we exhaustively plug-in, and thus UP picks a smaller-than-

25

102

103

104

 10 20 30 40 50 60 70 80 90 100

T
go

od

Percentage of documents processed

 Actual
 PT-Exh

 PT-Iter-MLE
 PT-Iter-LogR

UP

(a)

104

105

106

 10 20 30 40 50 60 70 80 90 100

T
ba

d

Percentage of documents processed

 Actual
 PT-Exh

PT-Iter-MLE
 PT-Iter-LogR

UP

(b)

Figure 16: Actual vs. estimated values for (a) |Tgood | and (b) |Tbad |.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

|D
ba

d|
/|D

| f
ra

ct
io

n

Percentage of documents processed

 Actual
PT
UP

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0 10 20 30 40 50 60 70 80 90 100

|D
e|/

|D
| f

ra
ct

io
n

Percentage of documents processed

 Actual
PT
UP

(b)

Figure 17: Actual vs. estimated values for (a) |Db |
|D| and (b) |De |

|D| .

actual value for |Tgood |. We can take this effect into consideration by using Bayesian priors [18, 19] on the parameter
values to guide our estimation process, by assuming some prior distribution for the parameter values. Interestingly,
though, the UP method converges quickly to a final value and is appealing for one-time parameter estimation scenarios.

Among the three different partition-based estimation methods (see Section 5.2), an important case is for PT-Iter-
LogR when estimating βg and |Tgood | for small values for |Dr |. As seen in Figure 16, PT-Iter-LogR requires relatively
larger database samples to generate an estimated value for |Tgood |. This can be traced to one main reason: for small
database samples, the observed tuple frequencies do not contain enough observations across different frequency values,
i.e., the tuple frequency for the observed tuples is identical. Since regression-based techniques require at least two data
points (i.e., we need to observe at least two different values of the tuple frequencies), PT-Iter-LogR fails to identify
the estimated parameters for small database samples. PT-Iter-LogR converges to the actual values only after we have
observed a good representative sample of the tuple frequency distributions.

To collectively examine the quality of the estimates generated by each technique, we compared the number of good
and bad tuples estimated for different numbers of database documents retrieved and for various execution strategies.
Figure 18 shows the estimated and actual number of good tuples (Figure 18(a)) and bad tuples (Figure 18(b)) for
each estimation method, after processing different percentages of the database with Scan. For reference, we show the
estimated values using actual tuple frequencies; see the lines labeled Est-All-Info. Our results show that our estimates of
the quality composition are close to the actual values, with PT-Iter-MLE outperforming other techniques especially for

26

102

103

104

 10 20 30 40 50 60 70 80 90 100

G
oo

d
tu

pl
es

Percentage of documents processed

 Actual
 Est-All-Info

 PT-Exh
 PT-Iter-MLE

 PT-Iter-LogR
UP

(a)

102

103

104

105

 10 20 30 40 50 60 70 80 90 100

B
ad

 tu
pl

es

Percentage of documents processed

 Actual
 Est-All-Info

 PT-Exh
 PT-Iter-MLE

 PT-Iter-LogR
UP

(b)

Figure 18: Actual vs. estimated number of (a) good tuples and (b) bad tuples derived for H1 with minSimilarity = 0.4
and Scan, using estimated parameters for Headquarters.

101

102

103

104

 10 20 30 40 50 60 70 80 90 100

G
oo

d
tu

pl
es

Percentage of documents processed

 Actual
 Est-ALL-Info

 PT-Exh
 PT-Iter-MLE

 PT-Iter-LogR
UP

(a)

101

102

103

104

 10 20 30 40 50 60 70 80 90 100

B
ad

 tu
pl

es

Percentage of documents processed

 Actual
 Est-All-Info

 PT-Exh
 PT-Iter-MLE

 PT-Iter-LogR
UP

(b)

Figure 19: Actual vs. estimated number of (a) good tuples and (b) bad tuples derived for H1 with minSimilarity = 0.4
and Filtered Scan, using estimated parameters for Headquarters.

good tuples.
To summarize, our experiments established the accuracy of an important aspect of our optimization approach,

namely, the parameter estimation step. As shown above, the MLE-based approaches outlined in Section 5 correctly
converge to the actual values of the parameters. Furthermore, using these estimated values in our analytical model leads
to correctly estimating the output compositions for various execution strategies.

8.3 Quality of Choice of Execution Strategies
After verifying the accuracy of the model and of the parameter estimation, we now study the accuracy of the optimizer
choices. Specifically, we examine whether the optimizer picks the fastest execution strategy for given output-composition
requirements. In particular, the optimizer takes as input two thresholds, τg and τb, specifying that the extraction relation
must contain at least τg good tuples and at most τb bad tuples, i.e., |T good

retr | ≥ τg and |T bad
retr | ≤ τb. (Alternatively, we

can specify thresholds for precision and recall of the output.)
For these experiments, we use the PT-Iter-MLE estimation method from Section 5 and our analysis of Section 4

to derive the quality curves for each combination of retrieval strategy and extraction system. Given the output

27

100

101

102

103

 10 20 30 40 50 60 70 80 90 100

G
oo

d
tu

pl
es

Percentage of queries processed

 Actual
 Est-All-Info

 PT-Exh
 PT-Iter-MLE

 PT-Iter-LogR
UP

(a)

100

101

102

103

 10 20 30 40 50 60 70 80 90 100

B
ad

 tu
pl

es

Percentage of queries processed

 Actual
 Est-All-Info

 PT-Exh
 PT-Iter-MLE

 PT-Iter-LogR
UP

(b)

Figure 20: Actual vs. estimated number of (a) good tuples and (b) bad tuples derived for H1 with minSimilarity = 0.4
and Automatic Query Expansion, using estimated parameters for Headquarters.

restrictions |T good
retr | ≥ τg and T bad

retr ≤ τb, we identify the points on the quality curves for which E[|T good
retr |] ≥ τg and

E[|T bad
retr |] ≤ τb. Then, across these qualifying candidate execution plans, we pick the one with the fastest execution

time.
To evaluate the choice of execution strategies for a query, we compare the execution time for the chosen plan S

against that of the alternate executions plans that also meet the τg and τb output quality requirements. Tables 3 and 4
show the results of our experiments for Headquarters and Executives, respectively, for different values of τg and τb.
For each choice of values for τg and τb, we show the number of candidate plans—among the total 24 plans considered
(Section 7)—that meet the τg and τb output quality requirements. Furthermore, we show the number of candidate plans
that result in faster executions than the plan chosen by our optimizer and the number of candidate plans that result in
slower executions than the chosen plan. Finally, to highlight the difference between the execution time for the chosen
execution strategy and other candidates, we compute the relative times for all plans as discussed in Section 7 and then
show the minimum and maximum values as range indicators for both plans that are faster and slower than the chosen
plan.

As shown in the results, our optimizer selects Automatic Query Expansion as the document retrieval strategy for
lower values of τg and τb, and progresses towards selecting Filtered Scan and eventually picking Scan for higher values
of τg. Automatic Query Expansion and Filtered Scan focus on the good documents and aim at generating relations
with fewer bad tuples as compared to Scan. However, the maximum achievable number of good tuples are limited for
Automatic Query Expansion and Filtered Scan (see Section 4) and thus, for higher τg values, the optimizer picks Scan
as the retrieval strategy. In our experiments, we observed that execution plans that employ Filtered Scan result in higher
execution times that those using Automatic Query Expansion and therefore, Automatic Query Expansion is picked over
Filtered Scan, whenever possible. For most cases, the optimizer selects the fastest execution plan among the candidate
plans as indicated by the low or zero values for the number of candidates with faster execution than the chosen plan.
For cases, where the chosen plan is not the fastest option, the execution time of faster candidates is very close to the one
of the chosen plan (e.g., relative time for faster plans is close to 1). On the other hand, the alternative slower plans,
eliminated by our optimizer, have execution times that can be an order of magnitude larger.

In our next experiment, we used our quality-aware optimizer for generating Headquarters, while considering
query execution strategies that involve both automated information extraction systems, such as Snowball, and manual
information extraction systems, generated using the Mechanical Turk service (see Section 7). We observed that, in
general, the manual extractions tend to be more quality-oriented than the automated extractions, but at the same time
more expensive in terms of time and monetary cost.

Table 5 shows the choices of execution strategies picked by the optimizer for a random set of 2,000 documents. As
seen in the table, using the automated extraction system (Au) results in “quick-and-dirty” executions, i.e., our optimizer
selects Au when the user-specified requirement for τb is relatively high. On the other hand, using the manual extraction
system (Ma) results in “slow-and-high-quality” executions and our optimizer appropriately selects Ma when users

28

Table 3: Statistics on the choice of execution strategies for different output quality requirements specified using τg and
τb, and for Headquarters. (IE stands for information extraction system, and X for document retrieval strategy.)

Output Quality # Candidate Chosen Plan # Faster # Slower Relative Time Range
Requirements Plans Plans Plans Faster Plans Slower Plans

τg τb IE θ X min max min max

8 1 9 H1 0.8 AQG 0 4 - - 7.87 49.75
8 4 13 H1 0.6 AQG 0 9 - - 7.83 51.19
8 8 15 H1 0.6 AQG 0 10 - - 7.83 51.19
8 16 20 H1 0.4 AQG 0 14 - - 7.83 51.19

16 3 12 H1 0.6 AQG 0 6 - - 19.33 74.71
16 8 15 H1 0.6 AQG 0 10 - - 17.73 76.88
16 16 20 H1 0.4 AQG 0 12 - - 11.33 76.88
16 32 21 H1 0.4 AQG 0 14 - - 11.33 76.88
16 80 24 H1 0.4 AQG 0 16 - - 11.33 76.88
32 6 12 H1 0.6 AQG 0 6 - - 29.79 129.27
32 16 15 H1 0.6 AQG 0 10 - - 28.70 129.27
32 32 20 H1 0.4 AQG 0 14 - - 26.94 129.27
32 64 21 H1 0.4 AQG 0 14 - - 26.94 129.27
32 160 24 H1 0.4 AQG 0 16 - - 26.94 129.27
64 12 11 H1 0.6 AQG 0 7 - - 33.25 134.86
64 32 15 H1 0.6 AQG 0 10 - - 31.52 134.86
64 64 19 H1 0.4 AQG 0 13 - - 25.92 134.86
64 128 23 H1 0.2 AQG 0 20 - - 1.64 221.73
64 320 24 H1 0.2 AQG 0 22 - - 1.64 221.73
128 25 11 H1 0.6 AQG 0 7 - - 51.38 167.21
128 64 15 H1 0.6 AQG 0 10 - - 47.16 167.21
128 128 18 H1 0.4 AQG 0 16 - - 1.46 244.31
128 256 23 H1 0.2 AQG 0 18 - - 1.46 244.31
128 640 24 H1 0.2 AQG 0 20 - - 1.46 244.31
256 51 12 H1 0.6 AQG 0 8 - - 75.11 329.66
256 128 17 H1 0.4 AQG 0 10 - - 72.54 329.66
256 256 19 H1 0.4 AQG 0 13 - - 64.01 329.66
256 512 21 H1 0.2 AQG 0 18 - - 1.17 384.85
256 1280 20 H1 0.2 AQG 0 18 - - 1.17 384.85
512 102 8 H2 0.6 FScan 6 1 0.25 0.95 1.06 1.06
512 256 11 H2 0.4 FScan 1 8 0.96 0.96 1.02 4.38
512 512 11 H2 0.4 FScan 2 8 0.85 0.96 1.02 4.38
512 1024 14 H2 0.2 FScan 1 12 0.94 0.94 1.07 4.87
512 2560 16 H2 0.2 Scan 9 6 0.27 0.85 1.02 1.40
1024 204 3 H2 0.6 FScan 0 2 - - 3.61 4.04
1024 512 11 H2 0.4 FScan 1 8 0.96 0.96 1.01 4.31
1024 1024 9 H2 0.4 FScan 2 6 0.85 0.96 1.07 4.31
1024 2048 14 H2 0.2 FScan 1 11 0.94 0.94 1.07 4.79
1024 5120 11 H2 0.2 Scan 1 6 0.85 0.85 1.00 1.46
2048 20480 2 H2 0.2 Scan 0 0 - - - -

29

Table 4: Statistics on the choice of execution strategies for different output quality requirements specified using τg and
τb, and for Executives. (IE stands for information extraction system, and X for document retrieval strategy.)

Output Quality # Candidate Chosen Plan # Faster # Slower Relative Time Range
Requirements Plans Plans Plans Faster Plans Slower Plans

τg τb IE θ X min max min max

10 8 8 E1 0.8 AQG 0 7 - - 1.12 23.97
10 10 10 E1 0.8 AQG 0 9 - - 1.12 23.97
10 60 20 E1 0.8 AQG 0 19 - - 1.00 23.97
10 110 20 E1 0.8 AQG 0 19 - - 1.00 23.97
30 24 8 E1 0.8 AQG 0 7 - - 1.13 45.00
30 30 8 E1 0.8 AQG 0 7 - - 1.13 45.00
30 180 20 E1 0.4 AQG 1 18 1.00 1.00 1.04 44.86
30 330 20 E1 0.4 AQG 1 18 1.00 1.00 1.04 44.86
45 36 8 E2 0.6 AQG 2 5 0.89 1.00 1.00 58.88
45 45 8 E2 0.6 AQG 2 5 0.89 1.00 1.00 58.88
45 270 20 E1 0.4 AQG 1 18 1.00 1.00 1.04 66.13
45 495 20 E1 0.4 AQG 1 18 1.00 1.00 1.04 66.13
70 56 8 E1 0.8 AQG 0 7 - - 1.13 46.63
70 70 8 E1 0.8 AQG 0 7 - - 1.13 46.63
70 420 20 E1 0.2 AQG 2 17 0.96 0.96 1.08 44.75
70 770 20 E1 0.2 AQG 2 17 0.96 0.96 1.08 44.75

150 200 3 E2 0.6 FScan 0 2 - - 1.02 1.09
150 300 5 E1 0.4 FScan 0 4 - - 1.09 1.25
175 225 1 E2 0.6 FScan 0 0 - - - -
175 500 3 E1 0.4 FScan 0 2 - - 1.09 1.15
175 150 1 E2 0.6 FScan 0 0 - - - -
345 3795 3 E2 0.6 Scan 0 2 - - 1.00 1.13
345 2070 3 E2 0.6 Scan 0 2 - - 1.00 1.13
345 2520 3 E2 0.6 Scan 0 2 - - 1.00 1.13
375 3000 3 E2 0.6 Scan 0 2 - - 1.00 1.14
410 660 1 E2 0.6 Scan 0 0 - - - -
490 6660 2 E2 0.2 Scan 0 1 - - 1.14 1.14

desire high quality results.

8.4 Comparing with Baselines
Table 7 compares the performance of our optimization approach, Qawr, with the baseline Qign for different choices of
values for the quality thresholds τg and τb. For each value for τg and τb, we show the choice of execution plan along
with the actual quality and the execution time for both Qawr and Qign. As shown in Table 7, Qign fails to produce
executions that meet the τg and τb requirements for all cases; on the other hand, Qawr produces execution plans that
meet all but one of τg and τb requirements. The execution plans picked by Qign are generally faster than those picked
by Qawr, as Qign largely overestimates the output quality and suggests retrieving fewer documents than necessary, but
the Qign executions do not meet the output given quality requirements.

We compared Qawr with two variations of Heur. Specifically, for our first variation we used Headquarters as
the “training” task and Executives as the target task; for our second variation we switched the training and target task
relations. Table 8 shows the performance of Heur and Qawr for the task of extracting the Executives relation, for
different choices of values for the quality thresholds. (To allow for a fair comparison, we used only one extraction
system per relation.) As shown in Table 8, Heur sometimes fails to pick a suitable execution plan, even when such a
plan exists. In other cases, when both techniques pick an execution plan, the chosen execution plans meet the quality
requirements. However, the execution time of the plans chosen by Heur can be orders of magnitude higher than that for
the Qawr plan. The analogous experiments for the task of generating Headquarters generated similar results. In this
case, we observed that the Heur execution plans were faster than those picked by Qawr; but unfortunately, the Heur
plans did not meet the quality requirements, unlike the Qawr plans.

To summarize, Qawr outperforms the two baselines, namely, Qign and Heur, and selects superior execution plans
that efficiently meet the output quality requirements by taking into account the quality of the extraction systems and the
associated retrieval strategies.

Evaluation conclusion: We demonstrated the efficiency and effectiveness of our quality-based optimizer for selecting
efficient execution plans that meet the user-specified quality requirements. Furthermore, we compared with existing
baselines (one based on [24] and one based on heuristics) and we demonstrated the superiority of our approach.

30

Table 5: Choice of execution strategies using query execution strategies that involve manual (Ma) and automated (Au)
for different output quality requirements specififed using τg and τb, and for Headquarters. (IE stands for information
extraction system.)

Output # Candidate Chosen Plan # Faster # Slower Relative time range
Quality Requirement Plans Plans Plans Faster Plans Slower Plans

τg τb IE θ min max min max

10 10 1 Ma 5 0 0 - - - -
40 80 4 Ma 2 0 3 - - 4.00 12.75
40 500 6 Au 0.6 0 5 - - 80.30 665.01
60 2000 6 Au 0.2 0 5 - - 43.50 93.50
200 200 2 Ma 4 0 1 - - 6.07 6.07
300 320 3 Ma 3 0 2 - - 4.85 7.27
400 300 1 Ma 4 0 0 - - - -
400 1400 4 Ma 1 0 3 - - 2.40 6.08

Table 6: Statistics on the choice of execution strategies using Qign and Qawr for different output quality requirements
specified using τg and τb, and for Headquarters. (IE stands for information extraction system and X for document
retrieval strategy.)

Execution based on Qign Execution based on Qawr

Output Execution Output Relative Execution Output
Quality Requirement Plan Quality Time Plan Quality

τg τb IE θ X |T good
retr | |T bad

retr | IE θ X |T good
retr | |T bad

retr |

8 4 H1 0.4 Scan 0 0 0.05 H1 0.6 AQG 39 6
8 16 H1 0.4 Scan 0 0 0.1 H1 0.4 AQG 45 23
16 8 H1 0.4 Scan 0 0 0.1 H1 0.6 AQG 39 6
16 16 H1 0.2 Scan 0 6 0.16 H1 0.4 AQG 45 23
64 12 H2 0.2 Scan 0 9 0.08 H1 0.6 AQG 77 22
64 32 H2 0.2 Scan 0 14 0.1 H1 0.6 AQG 77 22

128 25 H2 0.2 Scan 0 18 0.09 H1 0.6 AQG 293 99
128 64 H2 0.2 Scan 0 23 0.12 H1 0.6 AQG 293 99
256 51 H2 0.2 Scan 0 34 0.03 H2 0.6 FScan 137 63
256 128 H2 0.2 Scan 2 46 0.03 H2 0.4 FScan 258 247
512 102 H2 0.2 Scan 4 76 0.03 H2 0.6 FScan 254 106
512 256 H1 0.4 AQG 79 48 0.05 H2 0.4 FScan 391 391
1024 512 H1 0.4 AQG 309 256 0.02 H2 0.6 Scan 1169 519

9 Related Work
Information extraction has received significant attention in the recent years (see [33, 16, 3, 29, 31] and references
therein). A large family of existing solutions [33, 16, 3, 29, 31] focus on improving the extraction accuracy by directly
manipulating the information extraction system for a given task. Another direction of work related to information
extraction is that of representation: Gupta et al. [22], Caferalla et al. [9] presented approaches to use probabilistic
databases to materialize extracted relations after appropriately deriving the probability of each tuple being correct,
following the Scanstrategy that we discussed in the paper.

Retrieval strategies for information extraction traditionally use the Scan strategy, where every document is processed
by the information extraction system (e.g., [20, 34]). Some systems use the Filtered Scan strategy, where only the
documents that match specific URL patterns (e.g., [7]) or regular expressions (e.g., [21]) are processed further. Agichtein
and Gravano [4] presented query-based execution strategies. More recently, Etzioni et al. [16] used what could be viewed
as an instance of Automatic Query Generation to query generic search engines for extracting information from the web.
Cafarella and Etzioni [8] presented a complementary approach of constructing a special-purpose index for efficiently
retrieving promising text passages for information extraction. Such document (and passage) retrieval improvements
can be naturally integrated into our framework. These retrieval strategies, though, have resulted in relatively “static”
pipelines for an extraction task. In this paper, we initiate the need to study—in a principled manner—and appropriately
exploit the effects of available configuration parameters for extraction systems (as black-boxes) and various crawl- or
query-based document retrieval strategies.

ROC curves have been long used to study the performance of radio receivers; in machine learning, ROC curves are
preferred when evaluating the ability of binary decision-making process, such as classifiers, at discriminating signal
from noise. ROC curves were so far mainly used to graphically summarize the performance of a decision-making

31

Table 7: Statistics on the choice of execution strategies using Qign and Qawr for differetn output quality requirements
specified using τg and τb, and for Executives. (IE stands for information extraction system and X for document retrieval
strategy .)

Execution based on Qign Execution based on Qawr

Output Execution Output Relative Execution Output
Quality Requirement Plan Quality Time Plan Quality

τg τb IE θ X |T good
retr | |T bad

retr | IE θ X |T good
retr | |T bad

retr |

10 40 E1 0.2 Scan 0 9 1.722 E1 0.8 AQG 24 17
10 80 E1 0.2 Scan 0 19 0.32 E1 0.8 AQG 24 17
45 195 E1 0.8 AQG 16 24 0.265 E1 0.4 AQG 78 161
70 270 E1 0.8 AQG 16 24 0.02 E1 0.2 AQG 94 416
70 1120 E1 0.8 AQG 35 65 0.01 E1 0.2 AQG 94 416
115 150 E1 0.8 AQG 16 24 0.04 E2 0.4 FScan 110 356

Table 8: Statistics on the choice of execution strategies using Heur and Qawr for different output quality requirements
specified by τg and τb, and for Headquarters. (X stands for document retrieval strategy.)

Execution based on Qign Execution based on Qawr

Output Execution Plan Output Quality Relative Execution Plan Output Quality
Quality Requirement Time

τg τb θ X |T good
retr | |T bad

retr | θ X |T good
retr | |T bad

retr |

2 10 0.6 AQG 5 4 1.65 0.8 AQG 15 9
10 380 0.6 Scan 43 118 34.94 0.8 AQG 24 17
45 1495 0.6 Scan 225 764 104.2 0.6 AQG 73 76
60 2120 0.6 Scan 294 963 133.55 0.2 AQG 85 336
75 770 - - - - - 0.2 AQG 99 458
115 2050 - - - - - 0.4 AQG 143 328

process. In the context of information extraction systems, Hiyakumoto et al. [23] explored ROC curves but mainly to
generate “rules” based on the visual representation of ROC curves. In our paper, we introduced the ROC generating
process for an information extraction system and showed how it can be effectively utilized to build robust optimization
techniques.

Our parameter estimation and optimization approach is conceptually related to adaptive query execution techniques
developed for relational data (e.g., [26, 6]) and to database sampling techniques (e.g., [10]). The basic difference is that
we assume a parametric retrieval model, which in turn allows us to use a maximum likelihood-based estimation model
for parameter estimation.

The closest research effort related to this paper is the work by Ipeirotis et al. [25] that presents analytic models for
predicting the execution time of various document retrieval strategies, with the goal of picking the strategy that reaches
a target recall in the minimum amount of time. Our work builds on [25], and expands it to include the concept of quality
estimation. In particular, we remove the (unrealistic) assumption that the extraction system is perfect, and we estimate
the execution time and the quality of the output; we also pick the appropriate settings for the extraction system. Finally,
we present an estimation framework that allow us to deal with unknown parameter values of the estimation framework.
Our experimental comparison, in Section 8.4, shows that our techniques outperform the approach in [25].

There is also work on estimating the output quality for an extraction system, although existing research focuses
on estimating the quality of extraction per se, and not the effect of document retrieval strategies on output quality.
Agichtein [2] presented a heuristic-based approach on automatically tuning an extraction system’s parameter. To identify
a good configuration, Agichtein uses precision-recall curves, and thus suffers from being sensitive to the distribution of
test set documents. In contrast, we decouple the effect of test set on performance measurement by using ROC curves to
characterize an extraction system. Downey et al. [13] present a probabilistic model for deciding the confidence in a
tuple, using evidence gathered from the text database and appropriately accounting for the strength of this evidence.
The work in [13] estimates the probability that a tuple is good, based on its frequency on the set of extracted tuples. The
technique, though, assumes a Scan retrieval strategy and will not work for other retrieval models.

Finally, Jain et al. [27] recently presented a query optimization approach for simple SQL queries over (structured
data extracted from) text databases. Jain et al. consider multiple document retrieval strategies to process a SQL query,
including Scan, Automatic Query Generation, and other query-based strategies. Unlike our setting, however, [27]

32

focuses on extraction scenarios that involve multiple extraction systems, whose output might then need to be integrated
and joined to answer a given SQL query. The SQL query optimization approach in [27] accounts for errors originating
in the information extraction process, but relies mainly on heuristics and does not use the rigorous statistical models
that we presented here, and hence cannot benefit from the MLE-based estimation to estimate the values of unknown
database parameters.

10 Conclusion
We introduced a rigorous model for estimating the quality of the output of an information extraction system when
paired with a document retrieval strategy. We showed how to generate an ROC curve can generate a statistically robust
performance characterization of an extraction system, and then built statistical models that use the ROC curves concept
to build the quality curves that predict the performance of coupling an extraction system with a retrieval strategy. Our
analysis helps predict the execution time and output quality of an execution plan. Based on our analysis, we then
show how to use these predictions to pick the fastest execution plan that generates output that satisfies the quality
characteristics.

References
[1] ADAMIC, L. A., AND HUBERMAN, B. A. Zipf’s law and the internet. vol. 3, pp. 143–150.

[2] AGICHTEIN, E. Extracting Relations From Large Text Collections. PhD thesis, Columbia University, 2005.

[3] AGICHTEIN, E., AND GRAVANO, L. Snowball: Extracting relations from large plain-text collections. In
Proceedings of the Fifth ACM Conference on Digital Libraries (DL 2000) (2000).

[4] AGICHTEIN, E., AND GRAVANO, L. Querying text databases for efficient information extraction. In Proceedings
of the 19th IEEE International Conference on Data Engineering (ICDE 2003) (2003).

[5] AGICHTEIN, E., IPEIROTIS, P. G., AND GRAVANO, L. Modeling query-based access to text databases. In
Proceedings of the Sixth International Workshop on the Web and Databases, WebDB 2003 (2003), pp. 87–92.

[6] AVNUR, R., AND HELLERSTEIN, J. M. Eddies: Continuously adaptive query processing. In Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data (SIGMOD 2000) (2000), pp. 261–272.

[7] BRIN, S. Extracting patterns and relations from the world wide web. In Proceedings of the First International
Workshop on the Web and Databases, WebDB 1998 (1998), pp. 172–183.

[8] CAFARELLA, M. J., AND ETZIONI, O. A search engine for natural language applications. In Proceedings of the
14th International World Wide Web Conference (WWW 2005) (2005), pp. 442–452.

[9] CAFARELLA, M. J., RE, C., SUCIU, D., ETZIONI, O., AND BANKO, M. Structured querying of web text: A
technical challenge. In 3rd Biennial Conference on Innovative Data Systems Research (CIDR’07) (2007).

[10] CHAUDHURI, S., MOTWANI, R., AND NARASAYYA, V. R. Random sampling for histogram construction: How
much is enough? In Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data
(SIGMOD’98) (1998), pp. 436–447.

[11] COHEN, W. W. Fast effective rule induction. In Proceedings of the 12th International Conference on Machine
Learning (ICML’95) (1995), pp. 115–123.

[12] COHEN, W. W. Minorthird: Methods for identifying names and ontological relations in text using heuristics for
inducing regularities from data, 2004. Available at http://minorthird.sourceforge.net.

[13] DOWNEY, D., ETZIONI, O., AND SODERLAND, S. A probabilistic model of redundancy in information extraction.
In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05) (2005),
pp. 1034–1041.

33

[14] EGAN, J. P. Signal Detection Theory and ROC Analysis. Academic Press, 1975.

[15] ERDREICH, L. S., AND LEE, E. T. Use of relative operating characteristic analysis in epidemiology. American
Journal of Epidemiology 114, 5 (1981), 649–662.

[16] ETZIONI, O., CAFARELLA, M. J., DOWNEY, D., KOK, S., POPESCU, A.-M., SHAKED, T., SODERLAND,
S., WELD, D. S., AND YATES, A. Web-scale information extraction in KnowItAll (preliminary results). In
Proceedings of the 13th International World Wide Web Conference (WWW 2004) (2004), pp. 100–110.

[17] FAWCETT, T. ROC graphs: Notes and practical considerations for data mining researchers. Tech. rep., Technical
Report HPL-2003-4, HP Labs., 2003.

[18] GELMAN, A., CARLIN, J. B., STERN, H. S., AND RUBIN, D. B. Bayesian Data Analysis, 2nd ed. Chapman
and Hall/CRC, 2003.

[19] GOLDSTEIN, M., MORRIS, S., AND YEN, G. G. Problems with fitting to the power-law distribution. The
European Physical Journal B - Condensed Matter and Complex Systems 41, 2 (Sept. 2004), 255–258.

[20] GRISHMAN, R. Information extraction: Techniques and challenges. In Information Extraction: A Multidis-
ciplinary Approach to an Emerging Information Technology, International Summer School, (SCIE-97) (1997),
pp. 10–27.

[21] GRISHMAN, R., HUTTUNEN, S., AND YANGARBER, R. Information extraction for enhanced access to disease
outbreak reports. Journal of Biomedical Informatics 35, 4 (Aug. 2002), 236–246.

[22] GUPTA, R., AND SARAWAGI, S. Curating probabilistic databases from information extraction models. In
Proceedings of the 32nd International Conference on Very Large Databases (VLDB 2006) (2006).

[23] HIYAKUMOTO, L., LITA, L. V., AND NYBERG, E. Multi-strategy information extraction for question answering.
In FLAIRS (2005), pp. 678–683.

[24] IPEIROTIS, P. G., AGICHTEIN, E., JAIN, P., AND GRAVANO, L. To search or to crawl? Towards a query optimizer
for text-centric tasks. In Proceedings of the 2006 ACM SIGMOD International Conference on Management of
Data (SIGMOD 2006) (2006), pp. 265–276.

[25] IPEIROTIS, P. G., AGICHTEIN, E., JAIN, P., AND GRAVANO, L. Towards a query optimizer for text-centric tasks.
ACM Transactions on Database Systems 32, 4 (Dec. 2007).

[26] IVES, Z. G., FLORESCU, D., FRIEDMAN, M., LEVY, A. Y., AND WELD, D. S. An adaptive query execution
system for data integration. In Proceedings of the 1999 ACM SIGMOD International Conference on Management
of Data (SIGMOD’99) (1999), pp. 299–310.

[27] JAIN, A., DOAN, A., AND GRAVANO, L. Optimizing SQL queries over text databases. In Proceedings of the
24th IEEE International Conference on Data Engineering (ICDE 2008) (2007), pp. 636–645.

[28] MACSKASSY, S. A., PROVOST, F., AND ROSSET, S. Roc confidence bands: An empirical evaluation. In
Proceedings of the 22nd International Conference on Machine Learning (ICML 2005) (2005), pp. 537–544.

[29] MANSURI, I., AND SARAWAGI, S. A system for integrating unstructured data into relational databases. In ICDE
(2006).

[30] NEWMAN, M. E. J. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46, 5 (Sept. 2005),
323–351.

[31] PASCA, M., LIN, D., BIGHAM, J., LIFCHITS, A., AND JAIN, A. Names and similarities on the web: Fact
extraction in the fast lane. In ACL (2006).

[32] PROVOST, F. J., AND FAWCETT, T. Robust classification for imprecise environments. Machine Learning 42, 3
(Mar. 2001), 203–231.

34

[33] RILOFF, E., AND JONES, R. Learning dictionaries for information extraction by multi-level bootstrapping. In
AAAI (1999).

[34] YANGARBER, R., AND GRISHMAN, R. NYU: Description of the Proteus/PET system as used for MUC-7. In
Proceedings of the Seventh Message Understanding Conference (MUC-7) (1998).

35

