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Abstract

This note characterizes revenue maximizing auctions in a single unit independent
private value environment when buyers’ distributions of valuations can be discrete, con-
tinuous, or any mixture of the two possibilities. The procedure described is applicable to
many other single- or multi-agent mechanism design problems with transferable utility
and single-dimensional types. Keywords: mechanism design, optimal auctions, ironing,
Dirac’s delta functions. JEL Classification Codes: C72, D44, D82.

1. Introduction

The literature on optimal auctions1 is one of the most important parts of auction theory, and
of the theory of mechanism design, more generally. A maintained assumption in those works
is that buyers’ valuations spaces are either finite or they are continuous. From these earlier
works it follows that there are important qualitative differences between the continuous and
finite cases. For instance, in the continuous case the revenue equivalence theorem, allows us
to conclude that the allocation rule determines the payment rule up to a constant. However,
with discrete distributions there can be different payment rules implemented with the same
allocation rule. For an illustration of this point see Fudenberg and Tirole (1991). For a more
recent and thorough exposition of the differences between the finite and the continuous type
model see Lovejoy (2006).

This paper derives revenue maximizing auctions without imposing any structure on the
distributions of buyers’ valuations. They can be continuous, discrete or a mixture of these
possibilities. The initial difficulty is to find a way to deal with distributions that have convex
supports, and those that do not, in an unified way. This difficulty is addressed in Skreta
(2006). That paper established that the mechanism designer can obtain an optimum by

∗Leonard Stern School of Business, Kaufman Management Center, 44 West 4th Street, KMC 7-64, New
York, NY 10012, USA, vskreta@stern.nyu.edu.

†Many thanks to Ennio Stacchetti for a very useful discussion and to Heski Bar-Isaac for helpful comments.
1The seminal contributions are Myerson (1981) and Riley and Samuelson (1981).
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solving an artificial problem obtained by extending each agent’s type space to its convex hull.
With the help of that result we obtain an expression of the seller’s revenue as a function of
the allocation rule and the sum of the payoffs that accrue to buyers at their lowest possible
valuations. In other words we obtain a “revenue equivalence” result. Unfortunately, that
expression of the revenue is not very operational because distributions in general do not
have densities. The existence of densities is important because it allows one to combine
in a common term the cost and benefits of assigning the good to buyer i with valuation
vi. This regrouping is important because it facilitates comparisons across buyers in order
to decide the most profitable assignment of the object. In Myerson (1981) where densities
are strictly positive, the term that combines the cost and benefits of assigning the good to
buyer i with valuation vi is the virtual valuation.

The present paper shows how to sidestep this difficulty and obtains a characterization
of optimal auctions both in the regular and the general case. We use Dirac’s delta function
to obtain expressions of densities which allows us to treat discrete, mixed and continuous
distributions in a unified way. Still the resulting problem is non-standard because virtual
valuations are not well defined for all vectors of valuations. We show that one can obtain
a solution of such a problem, by solving an artificial problem where virtual valuations are
appropriately extended on all vectors of valuations. In the regular case, that is the case
where pointwise optimization of the seller’s revenue leads to a feasible mechanism, this
problem can be solved exactly as in Myerson (1981). However, with distributions that
can be discrete, and/or mixed, an optimal auction problem fails to be regular much more
often than in the standard continuous case. If regularity fails, new complications arise since
Myerson’s (1981) ironing technique is not applicable because it requires distributions to
be strictly increasing. This condition is violated when distributions are discrete or mixed
and it can be also violated when distributions are continuous, but do not have strictly
positive densities. In this paper we construct an “ironing procedure” that is applicable in
environments where distributions are not invertible. This procedure is intuitive and it does
rely on variational methods that impose unnecessary differentiability assumptions on the
mechanisms.

Our analysis is completed with an illustration of the procedure in a two-buyer example
where we allow for atoms and gaps in the supports.

2. Analysis of The Problem

We characterize revenue maximizing auctions in the standard independent private value
environment, where buyers’ valuations are drawn from distributions that can be continuous,
discrete or even mixed.

A risk neutral seller owns a unit of an indivisible object, and faces I risk neutral buyers.
The seller’s valuation for the object is common knowledge and is normalized to zero, whereas
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that of buyer i is denoted by vi, and it is distributed on Vi according to Fi. The convex hull of
Vi is denoted by V̄i and it is an interval [ai, bi], where -∞ < ai ≤ bi <∞. A buyer’s valuation
vi is private and is independently distributed across buyers. All elements of the game
except the realization of the buyers’ valuations are common knowledge. The seller’s goal
is to design a mechanism that maximizes expected revenue. The buyers aim to maximize
expected surplus. We use V = ×i∈IVi, to denote the set of all possible vectors of valuations
of all the buyers; V−i = ×j∈I,j 6=iVi, stands for the set of all possible vectors of valuations
of I\{i}; v = (v1, v2, ..., vI) denotes a vector of valuations of all the buyers, and v−i =
(v1, v2, ..., vi−1, vi+1, .., vI) denotes a vector of valuations of I\{i}. The joint distribution of
v on V is denoted by F = F1×F2×...×FI and F−i = F1×..×Fi−1×Fi+1...×FI , denotes the
joint distribution of v−i on V−i. This completes the description of the environment under
consideration. We move on to introduce mechanisms.

From the revelation principle one can restrict attention to direct revelation mecha-
nisms, “DRM”, where truth-telling is an equilibrium. A DRM consists of an allocation
rule p : V → [0, 1]I p(v) = (p1(v), p2(v), ..., pI(v)), and a payment rule x : V → RI ,
x(v) = (x1(v), x2(v), ..., xI(v)).

Given a DRM (p, x), buyer i0s expected payoff at a truth telling equilibrium when his
valuation is vi, is given by

Ui(p, x, vi) = Pi(vi)vi −Xi(vi), (1)

where Pi(vi) =
R
V−i pi(vi, v−i)dF−i(v−i) and Xi(vi) =

R
V−i xi(vi, v−i)dF−i(v−i).

An optimal mechanism solves

max
p,x∈DRM

Z
V
Σi∈Ixi(v)dF (v),

subject to:

IC, incentive compatibility, Pi(vi)vi −Xi(vi) ≥ Pi(v
0
i)vi −Xi(v

0
i), for all

vi, v
0
i ∈ Vi and i ∈ I

PC, participation constraints, Pi(vi)vi −Xi(vi) ≥ 0, for all vi ∈ Vi and
i ∈ I,

RES, resource constraints, Σi∈Ipi(vi, v−i) ≤ 1 and 0 ≤ pi(vi, v−i) ≤ 1,
for all v ∈ V and i ∈ I.

We will refer to this program as Program A. Even though this problem is isomorphic
to the problem in the classical work of Myerson (1981), the solution approach does not
go through because it requires that the type spaces be intervals. The key step there is to
rewrite revenue as a function solely of the allocation rule, which is the gist of the famous
revenue equivalence theorem. That step relies on the type space being an interval. When
supports are not necessarily convex, one can proceed as follows. Extend2 the definitions of

2The Appendix describes how the extension can be performed.
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p and x on the convex hull of V, which we call V̄ , and solve the resulting artificial problem,
which we call Program B. The following result is established in Skreta (2006).

Proposition 1 A solution of Program B restricted on V solves Program A.

For the artificial Program B we can obtain properties of feasible mechanisms using
standard techniques, from which we obtain the famous revenue equivalence results. More
importantly, this extension shows how one can bridge the gap between the continuous and
the discrete case. Then, the set of feasible mechanisms satisfies all standard properties and
from Lemma 2 in Myerson (1981) we have:

Lemma 1 A mechanism p, x satisfies IC, PC and RES constraints on ×i∈I [ai, bi], if and
only if for all vi ∈ [ai, bi] (a) Pi(vi) is increasing in vi (b) Ui(p, x, vi) =

R vi
ai

R
V̄−i pi(si, v−i)dF−i(v−i)dsi+

Ui(p, x, ai) (c) Ui(p, x, ai) ≥ 0 and (d) 0 ≤ pi(vi, v−i) ≤ 1, Σi∈Ipi(vi, v−i) ≤ 1 for all i ∈ I

and v ∈ ×i∈I [ai, bi].

Given this Lemma, and using fairly standard procedures, the seller’s problem becomes:

max
p

Z
V̄
Σi∈Ipi(vi, v−i)vidFi(vi)dF−i(v−i) (2)

−
Z
V̄
Σi∈Ipi(vi, v−i)[1− Fi(vi)]dvidF−i(v−i)−Σi∈IUi(p, x, ai),

subject to (a) and (d) of Lemma 1.

Review: Optimal Auctions with Strictly Positive & Continuous Densities

When densities are strictly positive that is fi(vi) > 0, for all vi, as is the case in Myerson
(1981), we usually factor fi(.) out, by dividing by it and (2) can be rewritten as:Z

V̄
Σi∈Ipi(vi, v−i)

µ
vi − (1− Fi(vi))

fi(vi)

¶
f(v)dv −Σi∈IUi(p, x, ai). (3)

Then, as we can see from (3) each buyer’s virtual valuation Ji(vi) = vi− (1−Fi(vi))fi(vi)
is weighted

with the same number, namely f(v).
As it is well known, when all buyers’ virtual valuations are increasing, an optimal auc-

tion assigns the object to the buyer with the highest virtual valuation, provided that it is
above the seller’s valuation. When this condition fails, Myerson (1981) shows that virtual
valuations can be replaced by their “ironed” versions without essentially changing the ob-
jective function. The ironed virtual valuation is constructed as follows. Integrate the virtual
valuation

Hi(vi) =

Z vi

ai

∙
F−1i (k)− 1− k

fi(F−i(k))

¸
dk, where k = Fi(vi), (4)
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and convexify the resulting integral

Gi(vi) = convHi(vi) (5)

= min{ωHi(r1) + (1− ω)Hi(r2) |ω ∈ [0, 1], r1, r2 ∈ [ai, bi] and ωr1 + (1− ω)r2 = vi }.

Then, the ironed virtual valuation is J̄i is obtained by differentiating Gi,

J̄i(vi) ≡ dGi(vi)

dvi
,

which is increasing because it is the derivative of a convex function.

Optimal Auctions with General Distributions

When the distributions do not have densities, it is not clear how one can obtain the
revenue maximizing auction from (2). This is because we cannot combine the cost and
benefits of assigning the good to buyer i with valuation vi in a common term, as is done
in the expression of virtual valuation3 in the standard case. This regrouping is important
because it allows easy comparisons across buyers. We bypass this difficulty using Dirac’s
delta functions, usually denoted by δ.4 These generalized functions allow us to obtain ex-
pressions for densities even for discrete and/or mixed distributions as follows. Let π1i denote
the probability that buyer i0s valuation is equal to vki , where k ∈ {1, ...,K}. For such a
distribution the density can be written as

fi(vi) = Σ
K
k=1π

k
i δ(vi − vki ). (6)

Then, irrespective of whether the distributions of buyers’ valuations are discrete, mixed or
continuous, (2) can be rewritten as:5Z

V̄
Σi∈Ipi(vi, v−i) · (vifi(vi)− (1− Fi(vi))) f−i(v−i)dv−idvi −Σi∈IUi(p, x, ai). (7)

When f 0is can be zero we cannot divide by them and obtain expressions of the virtual
valuations for all v0is. One way to proceed is to try to mimic the standard procedure,

3
Ji(vi) = vi − 1− Fi(vi)

fi(vi)

benefit cost
4Delta functions can be defined as: δ(x) = limε→0 dε(x), where

dε(x) =
1
ε
for − ε

2
≤ x ≤ ε

2

0 otherwise
.

It follows that δ(x) = 0 for all x ∈ R\{0}, and that at x = 0, δ(0) → ∞ . Moreover it is always true that
δ(x)x = 0.

5Strictly, speaking when the densities are expressed with the help of delta functions, we have to integrate
over RI instead of V̄ .
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but instead of “prioritizing” the buyers with their virtual valuations, to do so using the
quasi-virtual valuations [vifi(vi)− (1− Fi(vi))] , for i ∈ I. However, this is problematic
because each buyer is assigned a different weight in the objective function. For buyer i this
weight is given by f−i(v−i). A more promising way, is to prioritize buyers according to their
“weighted” virtual valuations, defined by

Ji(vi, v−i) ≡ [vifi(vi)− (1− Fi(vi))] f−i(v−i). (8)

Then each buyer is assigned the same weight in the objective function, namely one. Then
buyer i should be assigned the object if

Ji(vi, v−i) ≥ Jj(vj , v−j) and (9)

Ji(vi, v−i) ≥ v0f(v) for all i, j ∈ I with j 6= i.

Recalling (8), (9) reduces to

[vifi(vi)− (1− Fi(vi))] fj(vj) ≥ [vjfj(vj)− (1− Fj(vj))] fi(vi) and (10)

[vifi(vi)− (1− Fi(vi))] ≥ v0fi(vi) for all i, j ∈ I with j 6= i.

Notice, however, that (10) is trivially satisfied for all vi and vj when fi(vi) = fj(vj) = 0.

This essentially says that “anything goes” when fi(vi) = fj(vj) = 0. Now when fi(vi) = 0,

and fj(vj) 6= 0, (10) says that i can be getting the good only when vi = bi, whereas in the
case where fj(vj) = 0, but fi(vi) > 0, i must be getting the good for all vi ∈ [ai, bi]. This
suggests that the allocation rule obtained using the weighted virtual valuations in order to
prioritize buyers,6 will fail to be incentive compatible, because when fi(vi) = 0, pointwise
optimization dictates pi(vi, v−i) = 0 for all v0−is, which implies that Pi(vi) = 0. Another
reason why (10) is not that useful, is because it is not clear how one could proceed in the
cases where “ironing” may be required. If we were to “iron,” that is replace the expression
[vifi(vi)− (1− Fi(vi))] by some increasing version, this would not work, because the RHS
of (10) also depends on vi, and hence the allocation obtained could still violate incentive
compatibility even though [vifi(vi)− (1− Fi(vi))] and [vjfj(vj)− (1− Fj(vj))] are replaced
by increasing versions.

From all these considerations it follows that the inequalities in (10) are not that useful
for the vectors of valuations where f(v) = 0. However, when they are useful when f(v) > 0,
and they in fact reduce to the standard set of inequalities, namely buyer i obtains the good
if

vi − (1− Fi(vi))

fi(vi)
≥ vj − (1− Fj(vj))

fj(vj)
for all j ∈ I with j 6= i and (11)

vi − (1− Fi(vi))

fi(vi)
≥ v0.

6This essentially amounts to pointwise optimization of (7).
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We proceed as follows. We rely on the standard expressions of virtual valuations in order to
determine a pointwise optimal assignment when f(v) > 0. Then we extend this allocation
rule for the vectors of valuations that occur with probability zero in a way that the resulting
extended allocation is (i) incentive compatible and (ii) it leaves unaffected the rents enjoyed
by valuations occurring with strictly positive probability.7

Regular Case

Following Myerson (1981) we call regular the case where for all i, the virtual valuation
Ji(vi) = vi − (1−Fi(vi))

fi(vi)
, is increasing in vi, for all vi with fi(vi) > 0. Then, pointwise

optimization on the regions where f(v) > 0 gives us

p∗i (vi, v−i) =

(
1

#I(v) if i ∈ I(v)
0 otherwise

, (12)

where I(v) ≡ {i ∈ I, s.t. i ∈ argmaxi∈I Ji(vi), and Ji(vi) ≥ 0}, and it denotes the set of
buyers that have maximal virtual valuations when the vector of valuations is equal to v.8

Because we are in the regular case, p∗ it is incentive compatible on V, which consists
of the vectors v, with f(v) > 0. An extension of p∗ on all V̄ that maintains incentive
compatibility and does not affect the the rents enjoyed by valuations occurring with strictly
positive probability, is as follows:

pEi (vi, v−i) =

(
p∗i (vi, v̂−i(v−i)) for each vi ∈ [ai, bi] s.t. fi(vi) > 0
p∗i (v̂i(vi), v̂−i(v−i)) where v̂i(vi) = sup{ti ∈ [ai, bi] s.t. ti ≤ vi and fi(ti) > 0

,

(13)
and where v̂−i(v−i) = (v̂1(v1), ..., v̂i−1(vi−1), v̂i+1(vi+1), ..., v̂i(vi)).

The allocation rule pE is incentive compatible because it is a flat extension of p∗ over v0is
that occur with probability zero. It is also easy to see that this flat extension does not alter
the information rents of types that occur with strictly positive probability. For each v−i all
that matters for the rents of buyer i is vi(v−i), which stands for the smallest valuation of i
where i wins the object, when the valuations of all other bidders are equal to v−i.9 Indeed
the extension (13) leaves vi(v−i) unaffected.

Finally, using standard arguments it is easy to see that theDRM pE, xE, where xEi (vi, v−i) =
pEi (vi, v−i)vi −

R bi
vi
pEi (ti, v−i)dti, satisfies the resource and participation constraints. This

7From condition (b) of Lemma 1 it follows that at an incentive compatible mechanism, both the expected
payment, and the expected utility of buyer i with valuation vi depend on the allocation rule pi for all
valuations in [ai, vi), even those occurring with probability zero.

8Observe that for this more general problem, ties can occur for regions of valuations that have strictly
positive measure, and for this reason ties have to be broken in a consistent way to avoid obtaining an
allocation rule that violates incentive compatibility. Here we use the tie-breaking rule employed by Myerson
(1981) for the general case.

9For a valuation vi > vi(v−i), the rent is vi − vi(v−i), and it is zero otherwise.
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completes the derivation of a solution in our regular case. Before we move to the general
case, we will offer a practical reinterpretation of the solution we have obtained.

A Practical Reinterpretation:

It is immediate to see that the solution we have obtained solves the following problem10

max
p

Z
V̄
Σi∈Ipi(vi, v−i)JEi (vi)f(v)dv −Σi∈IUi(p, x, ai). (14)

subject (a) and (d) of Lemma 1.

This problem is constructed by extending the virtual valuations of the problem of interest,
(which are only defined for vi, with fi(vi) > 0), on all v0is, as follows:

JEi (vi) =

(
vi − (1−Fi(vi))

fi(vi)
for each vi ∈ [ai, bi] s.t. fi(vi) > 0

v̂i(vi)− (1−Fi(v̂i(vi))
fi(v̂i(vi))

where v̂i(vi) = sup{ti ∈ [ai, bi] s.t. ti ≤ vi and fi(ti) > 0}
.

(15)
The extended virtual valuation of buyer i with valuation vi is equal to his actual virtual
valuation, if fi(vi) > 0, otherwise is it equal to the actual virtual valuation of the highest
valuation below vi that occurs with strictly positive probability. From the definition of the
extended virtual valuations it follows that if the problem is regular, so will the problem
with the extended virtual valuations.

After this reinterpretation of our findings for the regular case, we move on to examine
the general case.

General Case (Ironing)

When the J 0is fail to be increasing, we cannot “iron” using Myerson’s (1981) ironing
technique because, as it can be seen from (4), is requires F 0is to be strictly increasing in
order to be invertible. This condition is violated when distributions are discrete or mixed
and it can be also violated when distributions are continuous, but do not have strictly
positive densities. We move on to show how one can go about “ironing” a virtual valuation
in cases where Fi need not be invertible.
10Observe that the objective function of (14) is different from the objective function we are interested in.

To see this, notice that it is possible that

[vifi(vi)− (1− Fi(vi))] f−i(v−i) 6= JEi (vi)f(v) for a v with f(v) = 0,

in particular think about the case where fi(vi) = 0 and fj(vj) 6= 0 for all j ∈ I, then JE(vi)f(v) = 0,

whereas [vifi(vi)− (1− Fi(vi))] f−i(v−i) = − (1− Fi(vi)) f−i(v−i) which imply that it is possible that

Σi∈I
V

pi(vi, v−i) [vifi(vi)− (1− Fi(vi))] f−i(v−i)dv−idvi 6= Σi∈I
V

pi(vi, v−i)J
E
i (vi)f(v)dv.

Still, as it turns out, a solution of our problem can be obtained by pointwise optimization of this “extended
problem.”
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Instead of using the somewhat indirect, but elegant way, of integrating the actual virtual
valuation and then convexifying the integral, we will be working directly with the virtual
valuation. Our goal is to replace it with an increasing function that is as close as possible
to the true virtual valuation. The best we can hope for, is for an “ironed” virtual valuation
that (i) lies on the true virtual valuation as much as possible and (ii) whenever the two are
not equal pointwise, they are equal in expectation. These two properties are guaranteed by
Myerson’s construction. To see this, note that when Ji is increasing its integral is convex
and it obviously coincides with its convex hull which implies that Ji = gi.When the integral
is not convex, it is replaced by its convex hull. By the construction of the convex hull in (5)
we have that Gi(vi) = Hi(vi) at vi = r1 and at vi = r2. These equalities are equivalent toZ r1

ai

∙
ti − 1− Fi(ti)

fi(ti)

¸
dFi(ti) = Gi(r1) =

Z r1

ai

gi(ti)dFi(ti) (16)

and Z r2

ai

∙
ti − 1− Fi(ti)

fi(ti)

¸
dFi(ti) = Gi(r2) =

Z r2

ai

gi(ti)dFi(ti). (17)

Because the integral for a vi ∈ [r1, r2] is a straight line, the “ironed” virtual valuation will
be constant in this region. Then, from (16) and (17) it follows thatZ r2

r1

gidFi(ti) =

Z r2

r1

∙
ti − 1− Fi(ti)

fi(ti)

¸
dFi(ti). (18)

Equality (18) guarantees that when the virtual valuation differs from the “ironed” virtual
valuation, they are equal in expectation.

We now proceed to show how one can obtain an “ironed” virtual valuation with exactly
these properties, when F 0is are not invertible and/or the virtual valuations are not defined
on all the region [ai, bi]. The “ironing” can proceed as follows. Suppose that the virtual
valuation of some buyer i is increasing up to some valuation v∗i and it drops at v

∗
i . For

simplicity we assume for the moment that there is only one such v∗i where Ji turns from
increasing to decreasing. Then the region where J̄i and Ji differ, namely [r1, r2], must
contain v∗i , otherwise obviously J̄i fails to be increasing as well. Hence r1 and r2 must
satisfy:

ai ≤ r1 ≤ v∗i ≤ r2 ≤ bi. (19)

Along the region [r1, r2] the virtual valuation of imust be flat. With some abuse of notation,
we let J̄i denote the value of the virtual valuation along this region. From the requirement
that Ji and J̄i have the same expected value over the range where they differ, the following
equality must hold: Z r2

r1

J̄idFi(vi) =

Z r2

r1

Ji(vi)dFi(vi). (20)

Then the ironed virtual valuation is derived as follows:

J̄i(vi) = Ji(vi) for vi ∈ [ai, r1] ∪ [r2, bi]
J̄i(vi) = J̄i for vi ∈ (r1, r2)

9



Remark 1 Observe that is it without any loss to view the J 0is as their extended versions
obtained in (15). The reason is that the extension does not add any new values of Ji,
meaning that the range of Ji and that of JEi is the same. This says that no new possible
"levels" of J̄i are added. The level of J̄i is, roughly, the relevant variable for the ironing.
Also, since the extension is over valuations that occur with probability zero, we immediately
have that

R r2
r1

Ji(vi)dFi(vi) =
R r2
r1

JEi (vi)dFi(vi), for any r1, r2 ∈ [ai, bi].

In order to find the “ironed” virtual valuation we simply need to find three numbers J̄i,
r1 and r2.

First note that if r2 < bi and Ji is continuous and strictly increasing at r2, then it will
hold that

J̄i = J(r2) and r2 = min{J−1i (J̄i), bi}, (21)

whereas if Ji is continuous, but it fails to be strictly increasing at r2, then

r2 = inf{vi ≥ r1 : Ji(vi) = J̄i}. (22)

If r2 < bi falls at a point of a discontinuity of Ji the following must be true

J̄i ∈ [Ji(r2 − ε), Ji(r2 + ε)], for some ε > 0 very small.

Now if r1 > ai, and Ji is continuous and strictly increasing at r1, then it will hold that

Ji(r1) = J̄i and r1 = max{ai, J−1i (J̄i)}, (23)

whereas if Ji is continuous but it fails to be strictly increasing at r1, then

r1 = sup{vi ≤ r2 : Ji(vi) = J̄i}. (24)

It follows that once we have J̄i, we can pin down r2: it will either satisfy (21) or (22), or it
will be a corner solution and it will be equal to bi. From J̄i we can also pin down r1: it will
either satisfy (23) or (24), or it will be a corner solution and it will be equal to ai.

From all these considerations it follows that the problem reduces to essentially finding
J̄i. One can start assuming that r1 and r2 do not fall at a point of discontinuity and where
Ji is strictly increasing. Then substituting (21) and (23) in (20) we get an equation in terms
of J̄i : Z min{J−1i (J̄i),bi}

max{ai,J−1i (J̄i)}
J̄idFi(vi)−

Z min{J−1i (J̄i),bi}

max{ai,J−1i (J̄i)}
Ji(vi)dFi(vi) = 0.

Notice that the LHS of this equality is continuous in J̄i. Also there exists a J̄i that is always
above Ji and the LHS is strictly positive. It is also easy to find a J̄i that is always below
Ji and then the difference is negative. For an illustration of these possibilities see Figure 1.
Then by the continuity wrt to J̄i, we get that this equality has a solution.
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In the case that a solution J̄i is likely to be such that r1 and r2 fall on points where Ji
is discontinuous, and/or where it is not invertible, the analysis can get a bit tedious, but it
is straightforward. Typically inspection of the virtual valuation, will give one a good idea
where the r1 and r2 could lie, as one can see from the example we solve below.

In the event where there are many points where Ji(vi) drops, the ironing procedure can
be straightforwardly modified. One should start the ironing from the largest type v∗(max)

where Ji drops and follow the procedure we just described. If r
(max)
1 is at a valuation below

the smallest valuation where Ji drops, let us call it v∗(min), then we are done. If not, we
continue with the ironing procedure around the largest valuation below r

(max)
1 where Ji

drops, and so forth.

Example 1 Finding the Optimal Auction when Distributions have Atoms, and
“Gaps”: Suppose that there are two buyers and that the seller’s valuation is 0. Buyer 1’s
valuation is uniformly distributed on [0, 1], that is

F1(v1) =

(
v1 for v1 ∈ [0, 1]
0 otherwise

, with f1(v1) =

(
1 for v1 ∈ [0, 1]
0 otherwise

, (25)

whereas buyer’s 2 valuation is 1
6 with probability

1
3 , and with probability two thirds his

11



valuation is uniformly distributed on [13 , 1], that is

F2(v2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for v2 < 1

6
1
3 for v2 ∈ [16 , 13)
v2 for v2 ∈ [13 , 1]
0 otherwise

, with f2(v2) =

⎧⎪⎪⎨⎪⎪⎩
δ(v2− 1

6
)

3 for v2 ∈ [16 , 13)
δ(v2−1

6
)

3 + 1 for v2 ∈ [13 , 1]
0 otherwise

. (26)

Now with the help of (25) and (26) we can write the virtual valuations of buyer 1 and buyer
2 as follows:

J1(v1) = 2v1 − 1 for all v1 ∈ [0, 1) and (27)

J2(v2) =

⎧⎪⎨⎪⎩
v2 −

2
3

δ(v2− 16 )
3

for v2 = 1
6

v1 − 1−v1
δ(v2− 16 )

3
+1
for v2 ∈ [13 , 1]

note that J2 is not defined in the region (16 ,
1
3). From properties of delta functions,11 we

know that δ(v2 − 1
6) = 0 for all v2 6= 1

6 , and that δ(v2 − 1
6) = δ(0) =∞ and with the help of

this, buyer’s 2 extended virtual valuation becomes:

JE2 (v2) =

(
1
6 for v2 ∈ [16 , 13)

2v2 − 1 for v2 ∈ [13 , 1]
. (28)

Notice that J1 is strictly increasing so we do not need to iron it. However, JE2 (v2) is
not increasing, (it drops at 13), and must be ironed. Our “generalized” ironing proceeds as
follows. We are looking for an interval of valuations of the form [r1, r2] where we replace
JE2 with a constant J̄2 over this range and the resulting virtual valuation is increasing and
it satisfies (20). Since JE2 violates monotonicity at v2 = 1

3 , and JE2 is flat and equal to 1
6 ,

for all v2 ≤ 1
3 , it immediately follows that r1 =

1
6 , because otherwise the resulting ironed

virtual will be above JE2 for all v2 and (20) cannot hold. We also know that r2 must satisfy

1

3
≤ r2 ≤ 1, (29)

and because J2 is continuous and strictly increasing for all v2 > 1
3 , (21) reduces to:

r2 = min{1, J̄2
2
+
1

2
}. (30)

With the help of (30), and recalling the definition of J2, and the requirement that r2 ≥ 1
3 ,

(20) for this example reduces to:Z ∞

−∞
J̄2

δ(v2 − 1
6)

3
dv2 +

Z J̄2
2
+ 1
2

1
3

J̄2dv2 =

Z ∞

−∞
1

6

δ(v2 − 1
6)

3
dv2 +

Z J̄2
2
+1
2

1
3

(2v2 − 1)dv2,

11See for instance Hoskins (1979), or Saichev and Woyczynski (1997).
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which from the properties of delta functions becomes:

J̄2
3
+

Z J̄2
2
+ 1
2

1
3

J̄2dv2 =
1

6
· 1
3
+

Z J̄2
2
+ 1
2

1
3

(2v2 − 1)dv2.

Solving for J̄2, we get J̄2 = 0.054, which implies from (30) that r2 = 0.527. Then the ironed
virtual valuation for buyer 2 becomes

J̄E2 (v2) =

(
0.054 for v2 ∈ [16 , 0.527)
2v2 − 1 for v2 ∈ [0.527, 1] , (31)

and it is depicted together with buyer’s 2 actual virtual valuation in Figure 2.

Ironing Buyer 2's Virtual Valuation

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 0.15 0.3 0.45 0.6 0.75 0.9
v_2

Extended Virtual
Valuation
Ironed Virtual
Valuation

3

Figure 2

Using (27) and (31) we obtain that a revenue maximizing allocation rule must satisfy:

p1(v1, v2) = 1 if v1 > 0.527 and v1 > v2

p2(v1, v2) = 1 otherwise.

The seller never gets to keep the object, because buyer 2’s (ironed) virtual valuation is always
greater than zero.

13



3. Appendix

A sketch of the proof of Proposition 1. First note that since for v ∈ V̄ \V F is
constant, which implies that dF is zero, we have that essentially the objective functions of
Program A and B are identical. The programs differ only in the constraints sets.

Let R(pA, xA), (respectively R(pB, xB)), denote the principal’s expected maximized
payoff at a solution of Program A, (respectively Program B). We first establish that
R(pA, xA) = R(pB, xB).

Since a solution of Program A has to satisfy IC, PC and RES on V, whereas a solution
of Program B has to satisfy all these constraints on the extended type space, that is on V̄ ,
Program B has more constraints which gives us that

R(pA, xA) ≥ R(pB, xB).

We will be done if we establish that

R(pA, xA) ≤ R(pB, xB). (32)

We argue by contradiction. Suppose not, then

R(pA, xA) > R(pB, xB). (33)

Now we extend pA, xA on the convex hull of Vi in an appropriate way, and establish that
this extension is feasible for Program B. In what follows we will take Vi to be a closed set.12

Consider a vi ∈ V̄i\Vi and define vLi (vi) = max{v0i ∈ Vi : v
0
i ≤ vi} and vHi (vi) =

min{v0i ∈ Vi : v
0
i ≥ vi}, (these maxima and minima exist because Vi is closed). Now let

vIndi (vi) ∈ [vLi (vi), vHi (vi)] denote the type for which the following is true:

PA
i (v

H
i (vi))v

Ind
i (vi)−XA

i (v
H
i (vi)) = PA

i (v
L
i (vi))v

Ind
i (vi)−XA

i (v
L
i (vi)). (34)

Such a vi exists by continuity, given that by the incentive compatibility of pA, xA we have
that

PA
i (v

H
i (vi))v

H
i (vi)−XA

i (v
H
i (vi)) ≥ PA

i (v
L
i (vi))v

H
i (vi)−XA

i (v
L
i (vi)) and

PA
i (v

H
i (vi))v

L
i (vi)−XA

i (v
H
i (vi)) ≤ PA

i (v
L
i (vi))v

L
i (vi)−XA

i (v
L
i (vi)).

12 If V 0
i s is not closed, it is very easy to show that p

A, xA can be extended on the closure of V 0
i s, for all

i ∈ I.
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Now consider the following extension of pA, xA, call it p̄A, x̄A on V̄ 13

p̄Ai (vi, v−i) = pAi (ṽi(vi), ṽ−i(v−i))

x̄Ai (vi, v−i) = xAi (ṽi(vi), ṽ−i(v−i)),

where

ṽi(vi) =

⎧⎪⎨⎪⎩
vi if vi ∈ Vi(si)

vLi (vi) if vi ∈ V̄i(si)\Vi(si) and vi ≤ vIndi (vi)

vHi (vi) if vi ∈ V̄i(si)\Vi(si) and vi > vIndi (vi)

and
ṽ−i(v−i) = (ṽ1(v1), ..., ṽi−1(vi−1), ṽi+1(vi+1), ..., ṽi(vi)). (35)

Note that for vi ∈ Vi and v−i ∈ V−i we have that

p̄Ai (vi, v−i) = pAi (vi, v−i) and x̄Ai (vi, v−i) = xAi (vi, v−i).

Fix a v−i ∈ V−i, (so that this vector of types arises with strictly positive probability). It is
easy to see that the “real options” that i is choosing from are the same in both mechanisms,
because for fixed v−i, by the definition of p̄A, x̄A, the menus {pAi (vi, .), xAi (vi, .)}vi∈Vi and
{p̄Ai (vi, .), x̄Ai (vi, .)}vi∈V̄i coincide. For a v−i ∈ V̄−i\V−i, the menu {p̄Ai (vi, .), x̄Ai (vi, .)}vi∈V̄i is
actually equal to a menu for a v−i ∈ V−i(s−i), namely ṽ−i(v−i) defined in (35), so in this case
too {p̄Ai (vi, .), x̄Ai (vi, .)}vi∈V̄i is a menu that is identical to a menu {pAi (vi, .), xAi (vi, .)}vi∈Vi .
Hence in extending pA, xA on V̄ no new “real options” options have been added for buyer
i. Given the fact that there are no new options, the feasibility of p̄A, x̄A on V follows
immediately from the feasibility of pA, xA on V, since they coincide on those types. Now,
the feasibility of p̄A, x̄A on all of V̄ can be easily verified by its definition with the help of
(34).

Since pB, xB is a solution for Program B and p̄A, x̄A is feasible for that problem, it must
hold that

R(pB, xB) ≥ R(p̄A, x̄A) = R(pA, xA),

which contradicts (33). Hence it must hold that

R(pA, xA) = R(pB, xB). (36)

13Note, that this extension is slightly different than the one in Skreta (2006). The reason we choose to
extend p, x this way here, is that this extension works without further arguments when we extend allocation
and payment rules that are subject to additional constraints, such that sequential rationality constraints,
as is done in Skreta (2006b) in a single buyer environment. When we are looking at the classical auction
problem, (that is the problem subject to incentive, participation and resource constraints), than one can
show that

vIndi = vLi for all i ∈ I.

For more details see Skreta (2006).
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Given that the values of Programs A and B are the same, it is now relatively straightforward
to establish that a solution of A can be obtained by solving B and restricting its solution
on V. Take a solution of B, pB, xB, and restrict it on V , then by (36) it immediately follows
that

R(pB, xB) = R(pA, xA),

and hence we have a solution of Program A.
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