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Abstract

In criminal organizations, diffusing information widely throughout the organiza-

tion might lead to greater internal efficiency (in particular, since these organizations

are self-sustaining, through facilitating cooperation). However, this may come at a cost

of leaving the organization more vulnerable to external threats such as law enforce-

ment. We consider the implications of this trade-off and we characterize the optimal

information structure, rationalizing both hierarchical and cell-based forms. Then, we

focus on the role of the external authority, characterize optimal detection strategies

and discuss the implications of different forms of enforcement on the internal structure

of the organization. Finally, we discuss a number of applications and extensions.

1 Introduction

In the wake of the new war on terror, analysts seems to agree that this is a new type

of confrontation. Rather than with weapons and tanks, it seems to be fought mainly

through intelligence networks, information capabilities and world-wide searches for a few

individuals who are considered important for the enemy’s survival.1 Since 9/11, a $400

∗Previous drafts have circulated under the titles “Power and organizational structure under an external
threat” and “Crime, Punishment and Organizational Structure”. We thank Pierpaolo Battigalli, Jean-Pierre
Benoît, Sandro Brusco, Patrick Bolton, Vicente Cuñat, Alessandro Lizzeri, Wolfgang Pesendorfer, Ronny
Razin, Ariel Rubinstein, Joel Shapiro, Marciano Siniscalchi, Alexander Stille, Larry White and audiences
at INSEAD, Pennsylvania State, NYU, Tel Aviv University and the 2005 IIOC for useful conversations and
comments. All errors are ours.

†Department of Economics, Stern School of Business, New York University, 44 W Fourth Street, New
York, NY 10012. Email addresses: mbaccara@stern.nyu.edu and heski@nyu.edu.

1“How else”, Garreau (2001) wondered a few days after the 9/11 attacks, “do you attack, degrade or
destroy a small, shadowy, globally distributed, stateless network of intensely loyal partisans with few fixed
assets and addresses?”
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billion annual budget was passed for the war on terror, new domestic institutions have been

created or enhanced (among many others, the Counterterrorism section in the Criminal

division at the US Department of Justice), international intelligence cooperation has been

strengthened and new protocols and controversial legal tools such as the Patriot Act have

been developed.

However, these new agencies and institutions are facing the same basic questions that

have challenged the prosecutors fighting organized crime in Italy, South America and in

Eastern Asia, as well as authorities fighting terrorism all over the world in the last fifty

years. How can we learn about the internal structure of criminal organizations? How

should we go about investigating a criminal organization in order to break its internal

cohesion? How does a criminal organization react to investigation policies?

In this paper, we address these questions by studying the interplay between cooperation

and vulnerability to the authorities. Such organizations function more effectively when

the people who constitute them trust each other. Since actions cannot be contractually

enforced, self-enforcing agreements play an important role in ensuring actions and outcomes

that are better from the perspective of the organization.2 Information sharing, familiarity

and relationships are important factors to build internal trust and cohesion.3

However, since criminal organizations are subject to authority detection, the protocols

with which they share information with each other (in particular, information about their

identities and whereabouts) are typically very strict and precise. Understanding these

protocols has been a central concern of all the authorities engaged in organized crime

detection. Being able to forecast how much information an organization member knows

is crucial in deciding how to design policies, who to prosecute, how to allocate detection

resources, what kind of deals to agree on with whistle-blowers, and how much of the

organization is expected to survive after the authority apprehends some of its members.

The anecdotal evidence suggests that there is a wide heterogeneity across the informa-

tion structures of different criminal organizations. The most credited theory about Mafia,

developed in the early ’90s, has identified the so-called “Cupola” as the highest level of the

organization. This part of the organization is supposed to be formed by agents who hold

large amounts of information about the organization itself and carry out the enforcement

2See for instance Arquilla (2002), who, referring to terror networks, wonders “how do you attack a trust
structure, which is what a network is?”.

3Glaeser, Laibson, Scheinkman and Soutter (2000) show how the amount of trust among individuals is
related to their social network. See also Locke (2001) and Grief (1998).
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needed for the organization to function.4 These crucial agents are shielded from the au-

thorities since they are typically not directly involved in criminal activities. This theory

suggests a centralized information and enforcement structure.

On the other hand, recent studies about modern terrorism suggest a decentralized

organization characterized by the presence of independent “cells”. This cells are formed by

agents who know each other, enforce each other’s actions, but have a very vague idea on

how the organization looks like outside the cell boundaries. Then, even if a cell is detected

by the authorities, it is difficult to expand the detection further. This structure seems to

resemble other organizations that have been observed in history, such as the anarchist and

revolutionary organizations in the late 19th in Europe and the communist organization in

the early 20th century.5

We aim to rationalize formally these different organization structures and thereby to

take a step towards implications for policy-makers and other interested observers. We

study the optimal organization structure of self-enforcing organizations and, in particu-

lar, we consider the trade-off between the enhancement in internal cohesion derived by

exchanging internal information and the increase in vulnerability to detection that this

exchange implies.

More generally, we consider an organization of N agents, each with a piece of private

and verifiable information about himself (e.g., his identity, whereabouts or incriminating

evidence). We also assume that there exists an external authority whose goal is to minimize

the cooperation of the organization. It does so by detecting the agents and accessing the

information they hold. First, the agents in the organization may exchange information

about each other (if they don’t, we say that they remain in “anarchy”), and then they

play an infinitely repeated public good provision game (that is, if an agent cooperates, the

payoff of all the agents increases, but his payoff strictly decreases as cooperation is costly).

The exchange of information helps as when Ann reveals her information to Bob, Bob can

inflict additional costs on Ann in the subsequent public provision game. However, if the

external authority detects Bob, since he holds Ann’s information, Ann will be detected as

well.
4Another famous but less substantiated theory is the so-called “Third Level Theory”, to refer to a level

of enforcement higher than the Cupola itself. The expression was first used by Falcone and Turone (1982).
5Among the first revolutionaries to organize conspiracies into secret cells was Louis Auguste Blanqui, a

socialist of the Napoleonic and post-Napoleonic era. The cell organization structure was also largely used by
the European partisan organization in WWII. See Anselmi (2003), who describes how the partisans in the
Italian resistance “...knew each other by ‘cells, which were typically small, only two or three individuals...”.
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We consider two alternative models of detection available to the external authority.

In the first model (“agent-based detection”), the authority allocates a budget to detect

each agent independently of his cooperation in the organization (e.g., monitoring e-mail

exchanges, phone conversations, bank records, etc.). In the second model (“cooperation-

based detection”), each agent probability of detection is a function of the level of cooperation

within the organization. For instance, if the organization members are drug dealers, a

possible policy for the authority is to look for drug exchanges. Then, if a member is more

active, he will be detected more often.

We characterize the optimal information structure within the organization in the two

models and compare them. We find the following results.

In the agent-based detection model, we first take the allocation of the detection bud-

get of the external agent as given, and we characterize the optimal best response of the

organization to any possible allocation. We find that if the probabilities of detection are

sufficiently similar, the optimal structure consists of either an anarchy or an organization

constituted by “binary cells” (pairs of agents with information about each other but with

no information links with other members of the organization). If the probabilities of de-

tection are sufficiently heterogeneous, the optimal organization structure is a hierarchy in

which the information “hub” consists of one or two agents with the lowest probability of

detection, and the agents linked to the hub are the ones with the highest probabilities of

detection. Depending on how low the probability of detection of the hub is with respect

to the other agents, the optimal organization structure, which we fully characterize, can

include some independent binary cells, formed by agents with intermediate probability of

detection. Then, if the hub is apprehended, the authority will be able to detect several

other agents with high independent probability of detection, but the intermediate part of

the organization will remain undetected.

Given this characterization, we go on to consider the optimal budget allocation for an

external authority who is trying to minimize cooperation within the organization. The

normative question we have in mind is whether the external authority can do something

better than allocating the budget symmetrically among all agents. There are circumstances

in which allocating the budget symmetrically induces the organization to exchange no

information. In these cases, a symmetric allocation is optimal. However, sometimes a

symmetric allocation induces the agents to form a binary cell structure. We show that in

this case the authority can do better by not investigating one of the agents at all while

investigating the others equally. In fact, by doing so the agents will be induced to form a
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hierarchy strictly less efficient than a binary cell structure.

In the “cooperation-based detection” model, since each agent probability of detection

is a function of the level of cooperation within the organization, an optimal organization

structure may require lower levels of cooperation from some of the agents to keep them

relatively shielded from detection. Despite the fact that in this model all agents are ex-

ante symmetric, we show that the optimal organization structure can be a hierarchy in

which the information hub does not cooperate at all, and thus remain undetected. If the

individual contribution of each agent to the organization is sufficiently high, the optimal

organization can also be a binary cell structure.

We compare the two detection strategies and, in particular, we highlight two consid-

erations. First, there are situations in which an agent-based detection model is the only

feasible strategy for the law enforcement. For instance, the authority can only use an

agent-based detection model when the day-to-day activity of the organization consists in

tasks that are not illegal or outside the norm, such as meetings, phone conversation or

flying lessons to prepare, for instance, a large scale terror attack.6 In these circumstances,

the detection strategy of the authority must be individually targeted to specific agents,

and a crucial decision for the authority is to decide how spread out the detection should

be. Then, we can verify the positive quality of our results of the agent-based detection

model as opposed to the alternative detection model and compare them with the available

evidence. Our results predict that in these circumstances a symmetric detection strategy

leads to a binary cell structure, which is similar to how terrorists seem to be organized.

Moreover, our results on the optimal budget allocation take a step towards the normative

side of this application.

On the other hand, there are situations in which an authority can choose between the

two detection models.7 In fact, many criminal organization carry-out daily illegal activ-

ity. Such has been historically the case with Mafias, organizations involved traditionally in

gambling and liquor trading and, more recently in drug and gun dealing. In these cases, our

results provide a direct comparison between the two alternative detection models. Indeed,

6Cartels fit in this case as well. Indeed, cartels are criminal organizations that face the same trade-off
we study here and are typically subject to the agent-based detection model (since in cartels cooperation
consists in a legitimate activity such as production of goods).

7When choosing between the two models, a cooperation-based detection model is often easier to justify
politically. In fact, the agent-based detection model, in which agents are monitored independently on their
illegal activity is subject to reasonable (and controversial) legal and social constraints. An interesting debate
related to this issue is the one surrounding the Patriot Act (see for instance Schulhofer (2005)).
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our results suggest than when the authority chooses a symmetric agent-based detection,

the equilibrium organization structure is either an anarchy or a binary cell structure, but

never a hierarchy. If the authority chooses a cooperation-based detection strategy, the

equilibrium organization structure is either a hierarchy or a binary cell structure. Tradi-

tionally, Mafia have been investigated mainly through cooperation-based detection models,

and these results seem to match with the evidence we have on these organizations.

Although the principal motivation in writing this paper has been consideration of illegal

organizations and criminal activity, the trade-off and considerations outlined above may

play a role in legitimate organizations as well. In particular, many firms might gain some

kind of “internal efficiency” by widely diffusing information within the organization but

might be concerned that this leaves the firm vulnerable to rival firms poaching staff who

are better informed and thereby decreases “external efficiency”.8 Thus, our results can

shed some light on the information sharing protocols of these organizations as well.

The remainder of the paper is organized as follows. After a summary of the related

literature, in Section 2 we present a illustrative example illustrating the trade-offs and

previewing some of the results of the following sections. We formally introduce the model

in Section 3. In Sections 4 and 5 we study the agent-based detection model. In particular,

in Section 4, we take the behavior of the external agent as given and we characterize the

optimal organization structure, and in Section 5 we endogenize the choice of the external

agent. In Section 6 we study the cooperation-based detection model. In Section 7 we

compare the two models and we discuss the robustness of the results and in Section 8

we present a number of extensions of the model and we conclude. All proofs are in the

Appendix.

1.1 Related Literature

Although this is to our knowledge the first paper addressing the optimal information struc-

ture in organizations subject to an external threat, there are several strands of the literature

that have elements in common with our work.

The only paper of which we are aware that considers how organizational structure affects

behavior in a repeated game is Ben Porath and Kahneman (1996), which is focused on the

structure of how agents observe the actions of other agents. In our model, in contrast,

actions are observed and we characterize the information structure as discussed above.
8For instance, consider secrecy issues in patent races and R&D departments.
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Another strand of the literature related to this paper is on social networks. Notably,

Glaeser, Sacerdote and Scheinkman (1996) focus on the link between crime and social net-

works. In their paper, a social network is considered given (for instance by the urban struc-

ture of a city) and the analysis focuses on understanding how the agents’ decisions about

crime are a function of their neighbors’ decisions. Also, Ballester et al. (2005), under the

assumptions that the network structure is exogenously given and observed, characterizes

the “key player”–the player who, once removed, leads to the optimal change in aggregate

activity. Reinterpreting networks as trust-building structures, in this paper we ask how a

network can be (endogenously) built to make criminal activity as efficient as possible.

There is a wide literature on organization structure, though it has focused on somewhat

different concerns to those raised in this paper. For example work by Radner (1992,1993)

and Van Zandt (1998,1999) has highlighted the role of hierarchy in organizations, in partic-

ular, where agents have limitations on their abilities to process information, and Maskin,

Qian and Xu (2000) have studied the impact of the organizational form on the incentives

given to managers. Whereas these papers in a sense can be seen as concerned with the

internal efficiency of the organization, the work of Waldman (1984) and Ricart-I-Costa

(1988), which abstracts from considering what affects internal efficiency, highlights that

external considerations (in their paper the information transmitted to other potential em-

ployers and so affecting employee wages) might lead to distortions from the organizational

structure that is most internally efficient. At the heart of this paper, by contrast, is the

trade-off between particular internal and external efficiencies, specifically the allocation of

information that gives the power to punish and thereby facilitates cooperative behavior

within the organization but renders agents more vulnerable to an external threat.

Note that while we focus on the structure of information in an organization, commu-

nication structure, formal decision-making hierarchies, networks of influence, and many

other characterizations of organizational structures might coexist and indeed interact, si-

multaneously. We abstract from all these latter considerations, which have been the focus

of the work discussed above and a wide literature in sociology (see for instance Wasserman

and Faust (1994)). Recent papers that tackle different notions of power include Rajan and

Zingales (2002) and Piccione and Rubinstein (2004).9

Recent contributions to the literature on cartels deal with the impact of an external

9Also, Zabojnik (2002) focuses on a situation in which a firm decides how to optimally distribute some
(common) private information given an external threat that is, the risk of employees leaving and joining
competitors.
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authority on the cartel’s behavior. In particular, Harrington (2003(a),(b) and (c)) looks at

the impact of an external authority on optimal pricing behavior of the cartel, and Spagnolo

(2003) and Aubert et al. (2003) study the effect of the leniency programs on the stability

of the cartels. Still in the cartel literature, the papers by Athey and Bagwell (2001) and

Green and Porter (1984) have in common with this paper the notion that communication

(in their case, on costs and demand respectively) enable a more efficient form of collusion.

This paper is also related to the literature on organized crime, though this has concen-

trated on the role of organized crime in providing a mechanism for governance or private

contract enforcement. For such analyses of the organized crime phenomenon, see Gambetta

(1993), Smith and Varese (2001), Anderson and Bandiera (2002), Bandiera (2003), Bueno

de Mesquita and Hafer (2005) and Dixit (2004).10

2 Illustrative examples

As a preview of our results, we provide some examples that the reader may find convenient

to refer to later on in the paper.

Consider 4 agents, A, B, C and D who can form an organization structure by creating

directional links among each other. A link is created when an agent reveals some infor-

mation about himself to another agent. We assume that learning information about agent

i allows agent j to foster greater cooperation from i. In the rest of the paper the benefit

of a link endogenously arises from sustaining cooperation in a self-enforcing organization

but in this example, for simplicity, we take a reduced-form approach and we assume that

if an agent reveals his information to another agent, the benefit to the organization is fixed

and equal to one. Moreover we assume that once i is linked to some agent, there is no

incremental benefit from linking i to some other agent.

Linking agents has a cost for the organization as well. In particular, these costs arise

from the possibility of external detection. Having an agent detected costs the organization

2. We consider two different models of detection which we term agent-based detection and

cooperation-based detection and we find the most efficient organization structure for each

model
10For insightful and less formal accounts of the organized crime phenomenon, we refer the interested

reader to Stille (1995) and Falcone (1991).
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B

C

D

Figure 1: Binary Cells

Agent-based detection. Suppose that each agent has a fixed probability of being

independently detected. If an agent is detected then all other agents linked to this agent

are also detected.

Suppose that agents A and B’s probability of detection is 1
4 , while C and D have a

probability of detection β ∈ £14 , 1¤. If agent A becomes linked to agent B (or viceversa),

the cost of this link to the organization is 214(1− 1
4) =

3
8 . It is easy to see that this is the

least cost way to link agents A and B to someone else, and since the cost of these links

is less than their benefit of one, these links must arise in an optimal organization. Once

agents A and B are linked together, if one links agent C to either A or B, the cost of that

link is 2 (1− β)
¡
1
4 +

1
4 − 1

16

¢
= 7

8 (1− β) , which is still less than its benefit. On the other

hand, if instead C is linked to D, the cost of that link is 2β (1− β) . Then, if β ≤ 7
16 (that

is, if the probabilities of detection of agents C and D are relatively close to 1
4), the optimal

organization requires having the agents linked in binary cells, as in Figure 1.

However, if β > 7
16 the optimal organization is a more centralized one and requires C

and D to be linked to either agent A or agent B who, together, are the “information hub”

of the organization as in Figure 2. In Section 4, in addition to endogenizing the benefits of

the links, we show that the intuition of this example translates to more general detection

probability distribution and in Section 5 we address the problem of an external authority

that has to set a budget to determine these probabilities of detection.

Cooperation-based detection. Suppose now that each agent’s probability of get-

ting independently detected depends on whether an agent cooperates.11 Specifically, we
11For instance, cooperation involves an illegal activity and the authority’s detection policy is based on

monitoring this activity.
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B DC

Figure 2: Centralised hierarchy with A and B as the information hub

assume that the probability of an agent’s independent detection is 1
4p where p ∈ [0, 1] is

the probability with which he cooperates. An agent cooperates only if he is linked to at

least another agent and, again, suppose that the cost to the organization of having an

agent detected is 2, while the benefit of having one more agent cooperating is one. In this

circumstance, the optimal structure is a centralized hierarchy, as in Figure 3. In such a

structure, the links are costless since A, the hub of the hierarchy, is not cooperating, and

thus never detected. Thus, the additional value of this organization structure as compared

to having no links is 3 (as the hierarchy ensures three agents cooperate but has no cost in

terms of incremental vulnerability to detection).

To show that this is the optimal structure, let us compare it to the binary cell structure

in Figure 1. Consider a binary cell structure in which each agent cooperates with probability

p. It is easy to see that in this example the efficiency of this structure is maximized for

p∗ = 1. Then, this organization would yield a net benefit of only 1
2 : a benefit 4 from

ensuring all 4 agents cooperate but incurring incremental vulnerability costs of 72 (for each

of the four agents there is an incremental probability of detection 1
4

¡
2− 1

4

¢
= 7

16 , yielding

an expected cost of 72).

Finally, consider linking agents A and B to each other while keeping agents C and D

linked to A as in Figure 2. In this organization, cooperation of agents A and B is costly

from the point of view of the organization because, besides increasing the exposure of

agents A and B to detection, it increases the exposure of agents C and D as well. Indeed,

it is easy to show that the optimal cooperation level of agents A and B in this example

is p∗ = 0. This implies that the structure in Figure 2 is dominated by the hierarchy in

Figure 3 (indeed, in the hierarchy we have 3 agents cooperating at zero cost, while in this
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B C D

Figure 3: Centralized Hierarchy

structure only agents C and D cooperate).

These simple examples demonstrate some prominent organizational forms that emerge

as optimal more generally–binary cells and centralized hierarchies and illustrate the trade-

off between fostering cooperation and vulnerability to detection. Below, we endogenize the

links’ benefits, consider more general environments and allow for a more active role for the

external threat.

3 Model

Suppose that there are N > 2 risk-neutral players, with N an even number and one

additional player who we will refer to as the “external agent”, or the “external authority”.12

In the first of the two models of detection we study, the authority moves first and

sets a given detection strategy as specified in Section 3.1.13 Then, the N players have

the possibility of forming an organizational structure by exchanging information among

themselves as specified below in Section 3.2. After forming an organization, the N agents

start playing an infinitely repeated stage game as specified in Section 3.3.

In Section 4, we assume that the N agents take the choice of the external agent as

given and we focus on the choice of the organizational structure. Then, we turn to the

12Allowing N to be an odd number presents no conceptual difficulties, but adds to the number of cases
that need be considered with regard to how to treat the last odd agent, with no real gain in insight. Details
of characterization of optimal organizational structures with an odd number of agents are available from
the authors upon request.
13The authority moves first in the “agent-based” detection model. In the second model we will consider

(the “cooperation-based” detection model) the authority’s behavior is fixed and, as it will become clear
later, the authority has no strategic role.
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strategies available to the external agent and its optimal decision in Section 5. In Section

6 we study an alternative model of detection in which the game starts directly with the N

players forming an organization.

3.1 External Authority

At each period of the repeated stage game, each agent could be detected by the external

authority. We assume that each time an agent is detected he has to pay an amount

b > 0. This payment may represent a punishment such as a period in prison, reductions in

consumptions or productivity, etc.

There are two ways for an agent to be detected, a direct way and an indirect one. First,

an agent i can be detected directly by the authority according some probability αi. We

consider two alternative models through which αi is determined, the agent-based detection

model and the cooperation-based detection model. While in the first model, analyzed in

Sections 4 and 5, αi is determined by the external authority at the beginning of the game, in

the second model, studied in Section 6, αi is determined by the cooperation level of agent

i at each period of the game.

Second, the external authority might also detect agents indirectly. Indeed, we assume

that when the external authority detects an agent who has information about other mem-

bers of the organization (see below for the details on information exchange), the external

authority immediately detects these agents as well with probability one. Thus the external

authority’s ability to detect agents indirectly depends on the organizational structure.

3.1.1 Agent-Based Detection

The external agent allocates a budget B ∈ ¡0, N2 ¢ to detect the other N agents. In par-

ticular, it devotes αi ∈ [0, 1] to detecting member i where
NX
i=1

αi ≤ B, and without loss

of generality α1 ≤ α2 ≤ ... ≤ αN . Once the budget is allocated, each agent i is directly

detected independently with probability αi at every period of the subsequent repeated

game.

3.1.2 Cooperation-Based Detection

In the cooperation-based detection model we analyze in Section 6 we assume that, rather

then being determined by the external agent, the probability of independent detection of
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an agent at a given period increases with his level of cooperation in the organization in the

same period.

Let pi be the probability of agent i cooperating at a certain period. Then, she is inde-

pendently detected with probability α (pi) with α : [0, 1] → [α, α] an increasing function.

For simplicity, we assume that α(pi) = αpi with α ∈ (0, 1).14

3.2 Organization Structure

We assume that each of the agents has a piece of private and verifiable information about

himself, and can decide to disclose this information to any of the other agents.15 We

formalize the fact that player j discloses his information to player i by an indicator variable

µij , such that µij = 1 if and only if player i knows the information regarding player j

(µij = 0 otherwise). We also use the notation j → i to represent µij = 1 (and, similarly,

for instance i, j, k → l to represent µli = µlj = µlk = 1).16 The set I of all the possible
organization (or “information”) structures among N people is a subset of the set {0, 1}N2

of values of the indicator variables, and we denote by µ its generic element.

An agent i is indirectly linked to an agent j if there is a path of direct links that connect

i to j, that is if there is a set of agents {h1, .., hn} such that i→ h1, h1 → h2, .., hn → j.

Thus, given an organization structure µ, for each agent i we can identify the set of agents

including i himself and all those who, directly or indirectly, are linked to i.We refer to this

set as Vi, i’s vulnerability set, and to V ≡ {V1, ..., VN} as a vulnerability structure. Note
that the vulnerability structure is induced by the choice of the information structure.

Definition 1 An “anarchy” is an organizational structure with no links, that is such that
µij = 0 for all i 6= j, or equivalently Vi = {i} for all i.

The organizational structure affects the agents’ probabilities of detection by the external

authority. Specifically, if i has information about another player j and if i is detected (either

14Notice that this assumption implies that there is no additional information leakage cost in sharing
information with someone who is not going to cooperate. All our qualitative results still hold for a more
general function α (pi) with α : [0, 1]→ [α,α] as long as α is small enough.
15 In this model, as will become apparent in Section 3.3, relinquishing this information is a means for

allowing another agent to have power over herself and reflects that in many organizations “good” behavior
can be encouraged through such information exchange. Thompson (2005), for example, describes that in
his role as a journalist reporting on organized crime, he had to divulge his address and that of his close
family members.
16Note that it is always the case that µii = 1.
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Figure 4: Examples of equivalent organizations

directly or indirectly), player j is detected as well.17 Given an organizational structure µ

and a given independent detection probabilities {α1, ..., αN}, agent i is detected in one
period if and only if at least one agent in Vi is detected.18

Observe that, under the assumptions we made so far, given an organizational structure

µ, each agent is detected by the external agent with probability 1−
Y
j∈Vi

(1− αj).

Note that different organizational structures µ might lead to an identical vulnerability

structure V . For example, if N = 4, an organization structure in which µij = 1 for

all i, j = 1, 2, 3, 4, represented by Panel A in Figure 1, is equivalent to a structure in

which µ12 = µ23 = µ34 = µ41 = 1 and µij = 0 otherwise, a structure represented by

Panel B in Figure 1. In fact, Vi = {1, 2, 3, 4} for all i, and the probability of detection is⎛⎝1− 4Y
j=1

(1− αj)

⎞⎠ for each player in both cases.

3.3 The Stage Game

After exchanging information about each other, the agents play an infinitely repeated stage

game. In every period, each agent can either cooperate (C) or not cooperate (NC) and

each agent i who has direct information over another agent j can also decide to make

agent j incur a punishment. The cooperation choice and the punishment choice are made

17Allowing for “detection decay”, that is supposing that if agent i has information information about
agent j and agent i is detected, then agent j is detected with probability less than 1, would not change the
qualitative results of this paper. We discuss this extension in Section 7.
18Recall that {α1, ..., αN} may or may not depend on the cooperation level of the agents, depending on

whether the detection is cooperation-based or agent-based.
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simultaneously.

3.3.1 Cooperation

We focus on the cooperation choice first. The action sets of the stage-game associated

with the cooperation choice for player i is Ai = {C,NC} for i = 1, ..,N . Cooperation is a
productive action that increases the sum of the total amount of resources available to the

agents, but it is costly for the agent who cooperates. In particular, if n − 1 other agents
cooperate, the payoff of an agent is λn − c if he cooperates and λ (n− 1) if he does not,
with λ, c > 0.

We assume that c > λ,which implies that not cooperating is a dominant strategy in the

stage game (this is because if c > λ,then λn − c < λ (n− 1) for all n), and that λN > c

(which implies that full cooperation is the most efficient outcome of the stage game).

3.3.2 Punishment technology

Suppose that player i has revealed his information to player j (or µji = 1). This revelation

makes player i vulnerable to player j. In fact, we assume that if i reveals his information

to j, then in every period of the stage game player j can decide whether to “punish” (P )

player i by making him pay a cost k > 0 or not to punish him (NP ). Then, the action set

of player i associated with the punishment choices is A0i = {P,NP}|{j|µij=1}| (if µij = 0
for all j 6= i, then player i cannot punish anybody, and A0i = ∅).

We assume that every agent i can pay the cost k at most once at every period. This

means that if two or more players know his information and they all decide to punish him,

only one of the punishments has an effect.

3.4 The Game

3.4.1 Timing

The timing of the game is the following:

(1) In the agent-detection model only, the external agent chooses the allocation {α1, ..αN}.
The N agents perfectly observe this allocation.

(2) Each agent may or may not reveal his/her information to one or more of the others.

An organization structure µ ∈ I arises.
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(3) For a given organizational structure µ and implied vulnerability structure V , the

stage game described above is played an infinite number of times at periods t = 1, 2... At

every period agents simultaneously choose whether to cooperate or not cooperate and, if

they have information on some other agents, whether to punish them or not. Moreover, at

every period, every agent is directly detected in accordance with the probabilities of inde-

pendent detection (i.e., the allocation {α1, ..αN} chosen above in the agent-based detection
model and according to the cooperation level in the cooperation-based detection model)

and, if detected (either directly or indirectly), he has to pay a cost b.

In Sections 4 and 5 we analyze the agent-based detection model. In particular, in

Section 4 we analyze the subgame that starts after the external agent’s decision has been

made, while in Section 5 we analyze the whole game endogenizing the external agent’s

choice. In Section 6 we analyze the cooperation-based detection model.

3.4.2 Payoffs

The Agents and the Organization Let ht denote a period t ≥ 1 history in the repeated
game.19 Let H denote the set of histories. Then, player i’s (pure) strategy is denoted as

si : H→Ai× A0i.
Given the description of the agents’ behavior s(ht) at period t given history ht, player

i’s payoff in that period is

πti(s(h
t)) = λn(s(ht))− c1As(ht)(i)− k1Bs(ht)(i)− b

⎡⎣1−Y
j∈Vi

(1− αj)

⎤⎦ (1)

where n(s(ht)) denotes the number of players cooperating at time t under s(ht), 1As(ht)(i)

is an indicator variable which takes the value 1 if agent i cooperates at history ht under

s(ht) and 1Bs(ht)(i) takes the value 1 if anyone with information about i chooses to punish

him at history ht and 0 otherwise.20

The per-period payoff of agent i, πti(s(h
t)), can be decomposed into λn(s(ht))−c1As(ht)(i)−

k1Bs(ht)(i),which is the payoff coming from the interaction among the N agents in the stage

19ht contains information on the allocation {α1, ..αN} (in the agent-based detection model only), on the
organization structure µ, and on the previous decisions to cooperate or not and to punish or not by all
players.
20Note that (1) contains a slight abuse of notation since in a cooperation-based detection mode the

probability αj is a function of the level of cooperation of agent j at history ht. Instead, in an agent-based
detection model αj is determined by the external agent at the beginning of the game and it is therefore
constant with respect to s(ht).
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game, and −b
⎡⎣1−Y

j∈Vi
(1− αj)

⎤⎦,which we refer to as the per-period “information leakage
cost” for agent i associated with the information structure µ (recall that µ determines the

set Vi).

We suppose that agents discount the future in accordance with a discount factor δ ∈
(0, 1), and we write πi(s) =

P∞
t=0 δ

tπti(s(h
t)), where ht is the history in period t induced

by the strategy profile s. Finally we can write down the overall payoff for the organization

as Π(s) =
PN

i=1 πi(s).

Note that the first best for the N agents in the repeated game is full cooperation and

no information to be exchanged (because exchanging information causes higher informa-

tion leakage cost); however, full cooperation may not be sustainable as a Subgame Perfect

Nash Equilibrium in the repeated game. Finally, notice that no cooperation and always

punishing can always be sustained as an equilibrium of the repeated game for any organi-

zation structure µ; it represents the minmax for each player i and, given any organization

structure µ, this is clearly the equilibrium that minimizes Π(s).

The External Agent The external agent appears only in the agent-detection model.

We assume that the goal of the external agent is to minimize the cooperation among the N

other agents. In other words, given that at each period t the production of the cooperation

is λn(s(ht)) (where ht is the history in period t induced by the strategy profile s), the

external agent aims to minimize
P∞

t=0 δ
tλn(s(ht)). For simplicity, we assume that the

authority gets no utility from saving part of the budget B. Also, the external authority

does not benefit from the the payments b incurred by the detected agents. This is because

often these payments are costly for the external authority, as they may consists in detention

in prison facilities, etc.

3.4.3 Efficient Organization Structure

For each organization structure µ and for any δ, it is possible to identify a set of Subgame

Perfect Nash Equilibrium (SPNE hereafter) in the repeated game. In the analysis of the

game, to compare alternative organization structures, for every organization structure µ

and for any δ, we identify the most efficient SPNE achievable under µ (the SPNE that

maximizes Π(s)) when the discount factor is equal to δ. Let us refer to such an equilibrium

as s∗ (µ, δ) .
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For a given δ, we say that one organization structure µ is strictly more efficient than

another organization structure µ0 if we have Π(s∗ (µ, δ)) > Π(s∗ (µ0, δ)). Then, we assume
that, once the external agent chooses the allocation {α1, ..., αN}, the organization µ that

will be formed is the most efficient one–that is, one that achieves the highest Π(s∗ (µ, δ)).
In other words, we assume that the N agents select µ∗ ∈ argmaxµΠ(s∗ (µ, δ)).21

4 Agent-Based Detection: Organization Structure

In this section we start analyzing the agent-based detection model. We take the allocation

of detection probabilities chosen by the external agent {α1, ..., αN} as given, and we identify
the most efficient organization structure that the other N agents can form. Given this

characterization, in Section 5 we step back, and we study the external agent’s optimal

behavior.22

As is usual in repeated games, the threat of punishment helps to sustain cooperation.

In our model, exchanging information modifies the threat of punishment for some of the

agents. This could lead to higher cooperation within the organization. However, such

information exchanges come at the cost of increasing the information leakage cost of the

organization, because they may expand the agents’ vulnerability sets. In this section we

study how this trade-off affects the organization’s optimal structure, and we fully charac-

terize the optimal organizational structure for any allocation {α1, ..., αN}.
First, in Section 4.1, we will focus on one side of the trade-off: the information leakage

costs. Then, in Section 4.2, we will compare such costs with the efficiency gains that

information exchange generates, and we finish by characterizing the optimal organizational

21We do not explicitly model the process of the formation of the organization. However, note that the
information exchange is a one-time act that can be performed in a controlled environment in which it
is easier to enforce efficient behavior from the agents (in particular, it can involve the exchange of side-
payments or hostages to be completed (see Williamson (1983)). After that, the agents move on to play the
infinitely repeated game in which day-to-day cooperation is harder to sustain without punishments.
Notice also that it is always possible to sustain this behavior in equilibrium. To see this, assume that

the agents decide simultaneously and non-cooperatively whether to reveal their information to other agents.
In a game like this, it is always possible to obtain the most efficient organization structure as an equilib-
rium outcome by imposing that if agents do not exchange information as prescribed by the most efficient
organization structure, no agents will ever cooperate in the repeated game.
22Note that even though we assume that the external authority determines these probabilities of detection,

as we assume in the agent-based detection model, the probability of detection could also be exogenously
given and due to some intrinsic characteristics of the agents. For example, some agents may be more
talented in evading detection (some may have a cleaner criminal record, or simply might be able to run
faster). If this is the case, the analysis of this section can be seen as self-contained.
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structure.

4.1 Information Leakage Costs

We begin by focusing on optimal structures given a fixed number of agents “linked” to other

agents–that is, a fixed number of agents that disclose their information to at least one other

agent. Note that the benefits of having agents linked depend only on their number rather

than on the structure of the organization. In particular, since an agent cannot be punished

more harshly by revealing his information to more than one agent (see the assumptions in

Section 3.3.2), the potential benefit that the links can yield to the organization is constant

with respect to all the organization structures with the same number of agents linked to

someone else. As a consequence, we obtain the following Lemma.

Lemma 1 If the number of linked agents is fixed, an efficient organization minimizes the
information leakage costs.

By Lemma 1, from the organization point of view there is no gain in an agent disclosing

his information to more than one other agent. Indeed, by doing so, the information leakage

costs of the organization may increase (since the vulnerability set of the agent expands),

while the maximum cooperation level obtainable from that agent remains the same.23 This

observation yields the next Lemma.

Lemma 2 Any efficient organization structure is equivalent to another organization in
which each agent reveals his information to at most one other agent.

Lemma 2 suggests that, for any given number of linked agents, we have to understand,

first, which agents should reveal their information and, second, to whom they should reveal

it to.

We begin by characterizing the optimal organization structure when the number of

linked agents n is strictly less than N in the next Proposition.

Proposition 1 The optimal structure to link n < N agents is a hierarchy with the agent

with the lowest probability of detection at the top of the hierarchy and the n agents with the

highest probabilities of detection linked to him (i.e., N,N − 1, ..., N − n+ 1 −→ 1).

23Sometimes additional links may come at no additional information leakage cost as illustrated in Figure
4.
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If the number of linked agents is less thanN , the optimal structure is simply a hierarchy,

in which the top of the hierarchy (the agent who receives the information from the others) is

the member with lowest probability of detection and the n < N “linked” agents are those

with the n highest probability of detection. The proof of Proposition 1 is very simple.

Suppose you have N agents, and you want to generate a structure with n < N agents

linked to someone else. Recall that, without loss of generality we have α1 ≤ α2 ≤ ... ≤ αN .

Suppose first that n = 1, so we need to find the way to generate the “cheapest” possible

link in terms of information leakage costs. The only event in which this link become costly

is the case in which agent i is independently detected and agent j is not. This event has

probability αi(1 − αj). Then, the cost of the link is minimized when αi is as small as

possible and αj is as large as possible. If follows that the “cheapest” possible link is the

one that requires agent N to disclose his information to agent 1 (the link N → 1). If n = 2,

the second cheapest link one can generate after N → 1, is N − 1 → 1, and so on. Notice

that Proposition 1 implies that the information leakage cost under an optimal structure in

which there are n < N links is simply bα1
Pn

i=1 (1− αN−i+1).
The next step is to characterize the optimal structure and the information costs under

that structure when there are N linked agents in the organization. Before proceeding with

the characterization, we introduce the following definitions.

Definition 2 Two agents {i, j} constitute a “binary cell” if they are linked to each other
(i←→ j) and neither of them is linked to anybody else (Vi = Vj = {i, j}).

Definition 3 Consider a cell {i, j}. Let its “independence value ratio” ρ(i, j) be defined

as ρ(i, j) ≡ 2(1−αi)(1−αj)
2−αi−αj .

To understand the intuition of the “independence value ratio”, observe that if two

agents {i, j} are in a cell, each of them will not pay b with probability (1− αi) (1− αj) .

On the other hand, if each of them is independently linked to a third agent (the same

for both, and who may be linked to others) with overall probability of avoiding detection

β, agent i will not pay b with probability β (1− αi) , and agent j will not pay b with

probability β (1− αj) . Then, having the agents {i, j} forming an independent cell rather
than linking each of them to the third agent minimizes the cost of information leakage if

and only if

2 (1− αi) (1− αj) > β (1− αi) + β (1− αj) , (2)
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or

ρ(i, j) =
2 (1− αi) (1− αj)

2− αi − αj
> β. (3)

Thus, for any couple of agents the higher is the independence value ratio the greater is

the advantage of forming a cell rather than being linked to a third agent. Notice that the

independence value ratio is decreasing in both αi and αj , that is, the higher the probability

of detection of an agent, the lower the independence value ratio of each cell he is part of.

We are now ready to characterize of the optimal organizational structure with N linked

agents in the following Proposition (whose proof appears in the Appendix).

Proposition 2 Let i∗ ∈ {2, ..,N} be the largest even integer such that ρ(i − 1, i) > (1 −
α1)(1−α2). If no such integer exists, set i∗ = N . The optimal organization structure with

N linked agents is described as follows: all the agents i = 1, .., i∗ are arranged in binary
cells as 1 ↔ 2, 3 ←→ 4, .., i∗ − 1 ←→ i∗ and the agents i = i∗ + 1, .., N all reveal their

information to agent 1, that is, i∗ + 1, ..,N → 1.

Proposition 2 suggests that the optimal way to link N agents in an organization is

to divide the agents in two groups according to their probabilities of detection: a group

comprising the i∗ agents with the lowest probabilities of detection, and another group
with the N − i∗ agents with the highest probability of detection. The agents belonging to
the first group are arranged in binary cells formed by agents with adjacent probability of

detection (i.e. 1 ↔ 2, 3 ←→ 4, .., i∗ − 1 ←→ i∗). All the agents belonging to the second
group reveal their information to agent 1 (i∗ + 1, .., N → 1).24 An example of the optimal

structure described in Proposition 2 is illustrated in Figure 5, Panel A.

Let us discuss the intuition behind Proposition 2. Suppose that, after following the

procedure described in Proposition 1, and having N − 1 agents linked to agent 1, one
wants to link agent 1 to someone else. It is clear that the best way to do it is to create

the link 1 → 2. However, because agent 1 already holds the information of all the other

agents, this last link is expensive for the organization. Indeed, the rest of the organization

will be now detected if either 1 or 2 are detected. In particular, agents with relatively low

probability of detection could now have an overall lower probability of detection by being

24Notice that, because agents 1 and 2 form a cell, agents i∗ + 1, ..,N could equivalently reveal their
information to agent 2 or to both agents 1 and 2.
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linked to each other, rather than to both 1 and 2. This suggests that, if one wants to link all

the N agents to someone else in the organization, the best way to do it may be to create a

mixed structure, in which agents with high probabilities of detections are linked to the cell

{1, 2} in a hierarchical fashion, while agents with relatively low probabilities of detection
(agents 3,4,etc.) remain organized in independent cells. In particular, an easy result to

show is the fact that, if we have to organize a set of agents in binary cells, the arrangement

that minimizes the information leakage cost is the one in which the agents are linked to

each other sequentially as 1↔ 2, 3↔ 4, .., i∗ − 1↔ i∗.25

The number of agents i∗ belonging to the independent cell component depends on
how steeply the independence value ratio of each couple with subsequent probabilities of

detection grows. If α1 and α2 are very low relatively to the other agents’ probabilities of

detection, it could be the case that ρ(i−1, i) < (1− α1) (1− α2) for all i = 4, .., N . In this

case, Proposition 2 requires that an optimizing organization links all the agents 3, ..,N to

agent 1 (who remains linked in a cell with agent 2).26 On the other hand, if α3 and α4 are

close enough to α2, then ρ(3, 4) > (1− α1) (1− α2) and Proposition 2 prescribes agents 3

and 4 to form a cell rather than being linked to both agents 2 and 1, and so on.

The optimal structure described in Proposition 2 is illustrated in Figure 5, Panel A,

which illustrates the optimal structure when there areN = 6 links and when (1− α1) (1− α2) ∈
[ρ(7, 8), ρ(5, 6)]. Note that in terms of information leakage costs and in their ability to sus-

tain cooperation the three structures in Panels A, B, and C of Figure 5 are equivalent.

Finally, Proposition 2 implies that if either agent 1 or agent 2 (or both) are detected,

the lowest ranks of the organization (i.e., the agents with the highest probabilities of detec-

tion) are detected as well but it is possible that relatively high ranks of the organization,

organized in “cells”, remain undetected.

The following Corollary to Proposition 2 characterizes the optimal organization struc-

ture if the probabilities of detection are symmetric.

Corollary 1 When αi = αj for all i, j then i∗ = N, that is, the optimal organization

structure with N links is a binary cell structure.

The optimal organization structure described in Corollary 1 is illustrated in Figure 1 for

N = 4. Corollary 1 follows from the fact that in the symmetric case, the characterization

25We show this claim in the first step of the proof of Proposition 2 in the Appendix.
26 In particular, if α1 and α2 approach zero, all these link have a arbitrarily small information leakage

cost, so the organization information leakage cost is the same as in anarchy.
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Figure 5: Figure 2: Equivalent optimal structures with N = n = 8 and i∗ = 6.

in Proposition 2 implies i∗ = N . Indeed, if all the agents have the same probability of

detection it is never optimal to link one agent to an agent who is already linked to someone

else rather than having him forming a cell with another agent.

The characterization of the optimal organization given a number of linked agents n

that we carried out in Propositions 1 and 2 allows us to define the information leakage cost

function L : {0, .., N}→ R as follows

L(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 n = 0

bα1
PN

j=N−n+1(1− αj) n ∈ {1, ..,N − 1}
b(α1 + α2 − α1α2)

PN
i=i∗+1(1− αi)

−bP i∗
2
i=1 [(1− α2i−1)α2i + (1− α2i)α2i−1]

n = N

The function L represents the total information leakage cost of adding linked agents in

the organization. Notice that Corollary 1 implies that when αi = α for all i, then i∗ = N

and L(n) = nbα(1− α) for all n.

4.2 Optimal Number of Links

In the previous section we characterized the optimal organization structure given a number

of linked agents and we derived the cost function L that the organization has to incur

to link any number of agents. In this section we compare this cost with the benefit that
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information diffusion throughout the organization provides, and thereby we characterize

the optimal organization structure.

First of all, it is useful to characterize the circumstances in which information links

induce more cooperation. In order to do so, for m ≥ 1 and k ≥ 0, let ∆(m, k) be defined

as ∆(m, k) ≡ c−λ
λm+k . Observe that ∆(m, k) is decreasing in both m and k.

Proposition 3 When δ ≥ ∆(N −1, 0) or δ < ∆(N −1, k), the most efficient organization
is anarchy.

Recall by Definition 1 that an anarchy is a structure with no links. Proposition 3 (whose

proof is in the Appendix) states that if δ is either high enough or low enough, the most

efficient organization structure is anarchy. This is because if δ is high enough (i.e. higher

than∆(N−1, 0)), full cooperation can be reached in anarchy. Then, since we are comparing
organizations by looking at the most cooperative equilibrium that can be reached under

them, adding links in the organization would induce positive information leakage costs but

no benefits. On the other hand, if δ is low enough (i.e. lower than ∆(N − 1, k)), even the
threat of the additional punishment that the information exchange yields (i.e., the payment

k) is insufficient to induce cooperation. Then, in this case also, linking agents to each other

induces positive information leakage cost but no benefits. As we show in the following

results (whose proof is in the Appendix), in the range δ ∈ [∆(N − 1, k),∆(N − 1, 0)), an
organization in which information is exchanged can achieve a strictly better outcome than

an anarchy.

Lemma 3 If m other agents cooperate, then (1) in equilibrium it is possible to sustain

cooperation from an agent who is not linked to other agents if and only if δ ≥ ∆(m, 0).

(2) If in addition the agent is linked to another agent, then cooperation can be sustained in

equilibrium if and only if δ ≥ ∆(m,k).

Since ∆(·, ·) is decreasing the second argument, Lemma 3(2) guarantees information
exchange is beneficial because it increases the range of δ under which any agent can be

induced to cooperate.

Given Lemma 3, we are ready to characterize the optimal organization structure. On

the side of the links’ benefits, suppose we have m linked agents and one wants to add

another linked agent. Then, for all δ in the interval [∆(m,k),∆(N − 1, 0)) we get one
more agent cooperating and an increase in production of Nλ − c. Notice that as the
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number of links increases, the critical δ for which an agent can be induced to cooperate

decreases, so an increase in production is easier to achieve.

To start studying the trade-off between links’ benefits and costs for any δ, we can define

the set of effective organizations.

Definition 4 An organization is effective if it has a number of links sufficient to induce
cooperation from the agents who reveal their information to someone else. In particular,

let m (δ) be the smallest integer m for which δ ≥ ∆(m − 1, k). Then, an organization is
effective if it has at least m(δ) linked agents.

The definition of an effective organization captures the fact that in our model, for each

δ there is a critical minimal level of cooperation that induces a linked agent to cooperate. If

the number of agents who cooperate (because they are linked to someone else) is below that

critical level, the threat of the punishment k is not sufficient to induce cooperation. Thus,

any link created in an organization that is not effective (i.e., in which the linked agents

are less than m(δ)) has a positive information leakage cost and no benefits. This implies

that an organization which is not effective is never optimal since it is always dominated by

anarchy. Thus, if δ < ∆(N − 1, 0), the production level of an organization as the number
of linked agent n increases, can be represented by the function W : {0, .., N}→ R defined

as follows:27

W (n) =

(
0 n ∈ {0, ..,m (δ)− 1}

n (Nλ− c) n ∈ {m (δ) , ..,N} .

Now, among the number of links that make the organization effective, let us identify

as n∗(δ) the one that maximizes the value of the organization.

Definition 5 Let n∗(δ) be the integer in {0, ..,N} that maximizes W (n)− L(n).

At this point we are ready to characterize the optimal organization structure. Re-

call that by Proposition 3, if δ ≥ ∆(N − 1, 0), the optimal organization is anarchy. In
Proposition 4 we focus on the case δ < ∆(N − 1, 0).
27Notice that if δ ≥ ∆(N − 1, 0), by Proposition 3 we achieve full cooperation in anarchy, so, as we are

restricting our attention to the most efficient equilibria of the repeated game, the benefit of the links is
zero.
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Proposition 4 If δ < ∆(N − 1, 0), the optimal organization structure is described as
follows: (1) It is a hierarchy with n∗(δ) subordinates as described in Proposition 1 if n∗(δ) ∈
{1, ..,N − 1} (2) It is an organization with N links as described in Proposition 2 if n∗(δ) =
N (3) It is anarchy if n∗(δ) = 0.

Proposition 4 fully describes the optimal organization structure given a detection proba-

bilities distribution {α1, .., αN} . To identify the optimal organization structure, one should
start by looking at all the possible hierarchies as described in Proposition 1. As more and

more agents are linked to agent 1, the additional cost of information leakage increases as

well. If among these hierarchies there are effective ones, the most efficient one among them

is the one before the additional benefit of one more link (Nλ− c) crosses its additional

cost.

Finally, if there are no effective organizations among the organizations considered in

Propositions 1 and 2, of course the optimal organization is an anarchy.

Corollary 1 implies that when αi = α for all i, the additional cost of each link is constant

and equal to bα(1−α). Thus, the optimal structure is either an anarchy or a set of binary

cells.

Corollary 2 Suppose αi = α for all i. If λN−c > bα(1−α) and [∆(N−1, k),∆(N−1, 0))
then the optimal structure is a binary cell structure. Otherwise, the optimal structure is an

anarchy.

This concludes the characterization of the optimal organization structure for a given

detection probability distribution {α1, .., αN} . In the next section we endogenize such prob-
abilities and we discuss the strategic issues regarding the external agent.

5 Agent-Based Detection: The External Authority

In the previous section we took the external authority’s behavior as exogenously given,

and we characterized the optimal organization structure given an agent-based detection

probability distribution {α1, .., αN}. In this section, we focus on the external agent strategic
choices and we derive some normative results on optimal detection strategies of secret

organizations.

As we discussed in section 3.4.2, in what follows we assume that the external authority’s

objective is to minimize the number of agents who cooperate, that is, the organization’s

production level.
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Recall that the external agent has a budget B ∈ ¡0, N2 ¢ available for direct detection.28
The problem of the external agent is to allocate B to determine the probability αi of

detection of each agent i such that
PN

i=1 αi ≤ B. The external authority acts first and

chooses these probabilities of detection before the organization forms. Though we discuss

(and relax) the timing assumption of the game in Section 8, we think that it is appropriate

in situations in which the external agent represents the public law enforcement, which

may be fairly inflexible in setting their policies and strategies with respect to a criminal

organization.

In the next result (whose proof is presented in the Appendix), we proceed to characterize

the optimal strategy for the external authority in determining how to allocate its resources.

Proposition 5 The strategic agent’s optimal strategy is to set α1 = α2 = ... = αN =
B
N if

bBN (1− B
N ) > Nλ− c and, otherwise, it is to set α1 = 0 and α2 = ... = αN =

B
N−1 .

29

If the budget allocation is symmetric, the additional cost of each link is constant and

equal to bBN (1− B
N ). A symmetric allocation can prevent the formation of any link if such a

cost is greater than the potential benefit of individual cooperation. This is the case when

bBN (1 − B
N ) > Nλ− c, and in these circumstances a symmetric allocation is optimal as it

deters any cooperation.

However, if bBN (1− B
N ) < Nλ−c, by Corollary 2, a symmetric allocation would yield for

all δ ∈ [∆(N − 1, k),∆(N − 1, 0)) the formation of a binary cell structure that reaches full
efficiency. The question is whether in these situations the external agent can do something

else to prevent full efficiency. Proposition 5 addresses this question and suggests that in

this case an allocation in which one agent remain undetected and the budget is equally

divided into the other N − 1 agents is optimal. Under this allocation, sometimes the

organization still reaches full efficiency (in this case we can conclude that the external

agent cannot prevent full efficiency to occur), but in some cases a hierarchy with N − 1
links arises. Since the hierarchy is strictly less efficient than a binary cell structure, this

allocation strictly dominates the symmetric one.

We show that there is no other allocation that strictly dominates α1 = 0 and α2 =

... = αN = B
N−1 if b

B
N (1 − B

N ) > Nλ − c. The intuition for this part of Proposition 5 is

28By assuming that B < N/2 we ensure the authority prefers to spend all its budget. Otherwise, we may
have situations in which the authority prefers to set α1 = ... = αN = 1/2 < B/N and dispose of part of the
budget. This add cases to consider, and brings little additional economic insight.
29Note that this allocation is feasible as B

N−1 < 1 because B < N/2 and N > 2.
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the following. First of all, notice that if two agents remain undetected (α1 = α2 = 0),

following the characterization of Proposition 4, the organization can form N links without

incurring any additional information leakage costs with respect to the cost they would incur

in anarchy (this is because one of the two agents will act as a hub for the other N−1 and he
can reveal his information to the second agent without any information leakage cost). So,

to deter full efficiency the external agent can leave at most one agent undetected. Suppose

now that some cooperation is deterred by an allocation in which all agents are detected

with some probability (α1 > 0). Then, the agent with the lowest allocation will act as a

hub in a hierarchy as described in Proposition 1. In the Appendix we prove that if this

is the case, the links in such hierarchy have to be exactly N − 1. Then, moving all the
resources from the hub to the other agents as suggested in Proposition 5 is equivalent to

the original allocation.

Proposition 5 implies that in the case in which a symmetric allocation is ineffective

to prevent full efficiency (i.e., if bBN (1 − B
N ) < Nλ − c), the best strategy available to the

external agent is to allow N − 1 links to form at no cost, and try to make the last link as

costly as possible by leaving one agent undetected. If that is the case, the undetected agent

will become the hub of the organization. Since he is not subject to punishment from the

other members of the organization, he will cooperate less often and the organization will be

less efficient than a binary cell structure. Notice that there are instances (if m(δ) = N) in

which full cooperation is necessary for the organization to sustain any cooperation. Then, if

one agent does not cooperate the entire organization becomes non effective and cooperation

falls apart. Otherwise, Proposition 5 implies that the external agent cannot prevent N − 1
agents in the organization to cooperate.

In Section 6 we abandon the agent-based detection model we studied so far, and we

discuss the cooperation-based detection model that is, a model in which the probability of

detection of the agents increases in their level of cooperation.

6 Cooperation-Based Detection

In this section, we assume that, rather then being determined by the external agent, the

probability of detection of an agent is an increasing function of his cooperation level in the

organization. This alternative detection model is available in situations in which the daily

activity carried out by the organization consists in an illegal activity, such as drug trading,

gambling, etc.
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This modification to the model has two effects. First, as cooperation increases the

probability of detection, it changes the incentives to cooperate. Second, we will see that it

makes centralization more desirable. This is because concentrating all the information in

the hands of one agent who cooperate less makes any increase in cooperation of the other

agents less costly from an information leakage point of view. Moreover, notice that with

respect to the agent-based detection model, cooperation from the N − th agent (the hub

of the hierarchy) is less likely to occur as it would involve an increase in his probability of

detection.

Recall that, as specified in Section 3.1.2, in this detection model, if pi is the probability

of agent i cooperating at a certain period, then agent i is detected with probability α (pi) =

αpi with α ∈ (0, 1) in that period. We also assume that cooperation is the most efficient
action in anarchy, which requires bα < λN − c. In the spirit of Lemma 3, let e∆(N −1, k) ≡
c−λ+αb

λ(N−1)+k

Lemma 4 (1) If m−1 other agents cooperate, an agent who did not reveal his information
has an incentive to cooperate if δ ≥ e∆(m − 1, 0). If the agent revealed his information to
someone else, he can be induced to cooperate if δ ≥ e∆(m − 1, k) (2) If δ ≥ e∆(N − 1, 0)
anarchy is the most efficient organization structure.

Note that in anarchy cooperation is harder to sustain than in the previous model

because the incentive to deviate increased, since the agent not only saves the direct cost of

cooperating but also reduces the probability of detection. Also, note that, in contrast to

the previous model, if no agents can be induced to cooperate (as it is the case when δ <e∆(N − 1, k)), all organizations are equivalent as information exchange has no information
leakage cost. Because of this consideration and point (2) of Lemma 4, in the rest of this

section and the next we focus on δ ∈
he∆(N − 1, 0), e∆(N − 1, k)´

In this model, information exchange is costly only if the agent who receives the infor-

mation is going to cooperate with positive probability. This is because as long as an agent

does not cooperate, he cannot be detected independently by the external agent.

6.1 Optimal Organization Structure

Following the analysis of Section 4, let us now characterize the optimal organization struc-

ture given a number of linked agents. Note that the analysis is made more complicated

29



than the one in Section 4 by the fact that in this specification of the model the level of co-

operation affects the information leakage cost of any organization, so the costs and benefits

of creating links in the organizations cannot be studied separately. This implies that for

any organization structure we have to check whether the organization can reach a higher

efficiency by imposing a lower level of cooperation by any of its members.

Let us now move on to the characterization of the optimal structure given a number of

linked agents n ≤ N links. Note that besides specifying the link structure, this characteri-

zation also has to specify the cooperation level of each agent in the organization.30

Lemma 5 (1) The optimal organization structure with n < N linked agents is a hierarchy

N − n + 1, .., N → 1. The agents 2, .., N fully cooperate and agent 1 does not. (2) The

optimal organization structure with N links is a binary cell structure in which all agents

cooperate if Nλ− c ≥ max £bα (2− α) , bα
¡
N+2
2 − N

2 α
¢¤
, or a hierarchy with N − 2 agents

cooperating and linked to the cell {1, 2} in which neither agent 1 nor 2 cooperate otherwise.

For any number of linked agents n < N, if agent 1 is the agent with the lowest prob-

ability of cooperating p1, and N − n, ..,N are the agents with the highest probability of

cooperation, a hierarchy with N − n, ..,N → 1 is optimal. In particular, if p1 = 0 and

pN−n+1, .., pN = 1, such hierarchy does not impose any information leakage cost for the

organization (besides nbα, which are the ones imposed by the cooperation of the n agents,

which we know it is optimal given the assumption bα < λN − c). The total payoff of such

hierarchy is n(Nλ− c− bα).

Suppose now that we want to link N agents. Suppose that Nλ− c ≥ bα (2− α) . If this

is the case, it is efficient to fully cooperate in a binary cell structure. In Lemma 5 we show

that in this case the optimal structure with N links is either a binary cell structure or a

hierarchy in which agents 1 and 2 hold the information of all others and do not cooperate,

while the other N − 2 agents cooperate with probability 1. Note that this structure is as
efficient a hierarchy with N − 2 links, and strictly dominated by a hierarchy with N − 1
links, which implies that will never arise as optimal organization in the next result, when we

endogenize the number of links. On the other hand, the binary cell structure is the optimal

organization with N links if the benefit of inducing 2 more agents to cooperate outweighs

the additional information leakage costs of having agents linked to each other rather than

30Since if agents do not cooperate the links are costless, and the specified information structures would
be optimal anyway, we can specify these links and efficient cooperation levels without worrying about δ
being high enough to induce cooperation from the agents.
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to 2 agents who never cooperate, that is, if 2(Nλ − c) ≥ Nbα (2− α) − (N − 2) bα, or
Nλ− c ≥ bα

¡
N+2
2 − N

2 α
¢
.31

Given the characterization in Proposition 5, we can proceed to discuss the optimal

number of links. Following how we proceeded in Section 4, we can denote by eL(·) the total
information leakage cost function for a given number of linked agents. Note that, given the

characterization in Proposition 5, we have

eL(n) =
⎧⎪⎨⎪⎩

nαb n < N

Nbα(2− α) n = N , Nλ− c ≥ max £bα (2− α) , bα
¡
N+2
2 − N

2 α
¢¤

(N − 2)αb n = N , otherwise

.

Similarly, we can denote by em(δ) the minimal number of links to make the organization
effective, and by fW (·) the total benefit function given a number of links. We have

fW (n) =

(
0 n ∈ {0, .., em(δ)− 1}

n (Nλ− c) n ∈ {em(δ), .., N} .

The optimal number of links en maximizes fW (n) − eL(n). The following proposition
easily follows from the previous considerations and characterizes the optimal organization.

Proposition 6 If Nλ − c ≥ max [bα(2− α), Nbα (1− α)] the optimal organization is a

binary cell structure in which everybody cooperates. Otherwise, the optimal organization is

a hierarchy with N − 1 links (2, .., N → 1), agent 1 does not cooperate and the other N − 1
agents fully cooperate if em(δ) ≤ N (while they do not cooperate if em(δ) = N).

The intuition of Proposition 6 comes from the fact that, as we discussed before, in a

hierarchy in which the top does not cooperate, the first N − 1 links do not have additional
information leakage costs besides bα, induced by cooperation. Then, it is never optimal to

link less than N − 1 agents. A possible alternative with respect to this hierarchy is to link
the agents in a binary cell structure. Since now each agent is linked to a cooperating agent,

this organization implies additional information leakage cost of Nbα (1− α). If this cost

is lower than the additional benefit of Nλ − c (generated by one additional cooperating

agent), this organization is optimal.
31 If Nλ − c < bα (2− α), the optimal cooperation in a binary cell structure is zero, and the optimal

organization structure with N links is again the hierarchy with agents 1 and 2 linked to each other and not
cooperating and all the other N − 2 agents linked to them and cooperating.
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7 Applications and Discussion

In this section, we first compare the two models of detection we studied so far, and then

we discuss several assumptions we made in the model.

7.1 Model Comparison and Applications

Proposition 6 allows us to compare the two models we analyzed so far. Recall that in

Sections 4 and 5 we studied a model in which an external agent determines ex-ante each

agent’s probability of detection (agent-based detection model). In Section 6, we analyzed

a model in which the probability of detection is an increasing function of the cooperation

level of the agents (cooperation-based detection model).

Comparing the results of the different models is interesting for two reasons. First, they

correspond to alternative detection policies that may be available to external authorities.

One possibility for an external authority is to invest resources to detect the illegal activ-

ity that is carried out in a society. In this way, the agents that cooperate the most with

the organization are the most likely to be apprehended. On the other hand, an external

authority can decide ex-ante to invest resources to monitor agents independently of how

much illegal activity they carry out (for instance, taping phone calls, monitoring move-

ments and relationships, etc.). Since our results yield predictions on how the organizations

react optimally to the different policies, this comparison highlights the consequences of the

authority choice when selecting the detection strategy.

Second, there are criminal environments that fit one of the models better than the other,

or situations where the law takes a stand in defining what is constitutionally acceptable

detection and enforcement. In these cases, we observe an authority typically using one

strategy rather than the other.

For instance, some criminal organization such as Mafias carry out illegal day-to-day

activities such as drug dealing, gambling, etc. In these environments, cooperation-based

detection is available to the law enforcement, and since it is typically less costly and

controversial, it has been the most common one.

On the other hand, there are organization whose day-to-day activities are perfectly

legal, for instance in preparation of a illegal plan (e.g. flying lessons, phone conversations

and meetings in preparation for terror attacks). In this situations, because of the ordinary

nature of these activities, it is difficult for an external authority to apprehend these agents

on the base of their cooperation to the organization. However, it is still possible for an
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authority to invest resources in targeting and investigating agents independently on their

activities, as suggested in the agent-based detection model. Then, associating the two

models with the different applications brings out the positive aspects of our results and

allows us to tie the normative implications of the results to some more applied setting.

In particular, we are able to state the following remark.

Remark 7 When all agents are treated symmetrically by the authorities, in the range of
δ that allows for information links to sustain cooperation, either anarchy or a binary-cell

structure arise in equilibrium in the agent-detection model, whereas in the cooperation-

detection model either a hierarchy or a binary-cell structure arise.

There are two messages to be learned from this remark. First of all, Remark 7 highlights

the robustness of the binary cell structure as an optimal organization, as it can arise in

equilibrium in both models of detection. Second, in an organization that is subject to

symmetric agent-detection (such as a terrorist organization) this is the only alternative to

anarchy. However, in an organization that is subject to cooperation-based detection (such

as Mafia and traditional organized crime), a hierarchy can be optimal as well. Indeed, since

a hierarchical organization offers the possibility to store all the information in the hands of

one agent who, as he does not cooperate, is never apprehended and so incurs no additional

information leakage costs, a cooperation-based detection strategy always generates some

degree of cooperation in the range where a link can make a difference to cooperation.

As we discussed in the Introduction, this prediction is consistent with the new evidence

about Mafia organization that suggests the presence of the so-called “third level”, formed

by agents who collect a lot of information about the structure and the members of the

organization but are never detected as they never carry out any illegal activity.32

Our results suggest two more applied considerations that are worth highlighting.

First, Proposition 5 suggests that in an agent-based detection environment, such as ter-

rorist detection, when a symmetric detection allocation fails to prevent the (fully efficient)

binary cell structure, sometimes an asymmetric allocation of the detection resources in

which one agent is left undetected and the other are equally detected can lead to a strictly

less efficient criminal organization.

32Note that in a modification of the model in which the contribution of each agent of the organization
(Nλ− c), is constant rather then increasing in N , Proposition 6 implies that a hierarchy becomes always
optimal in a cooperation-detection model for a large enough organization.
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Second, the development of new technologies has made agent-based detection strategy

more and more available to the authorities. This implies that long-lived organizations

such as Mafias, which have been investigated mainly through the cooperation-detection

model in the past, have been increasingly investigated through the agent-based model.

By Remark 7, this change should imply a transition of the internal structure of Mafia

organization from the centralized structure prevalent before the ’90s to more decentralized

structures. Although it is hard to verify this prediction for the lack of evidence, the ability,

with the apprehension or whistle-blowing of a key agent, to detect a substantial part of

the organization is evidence consistent with a hierarchical organization structure. Instead,

if the organization is structured in cells, the apprehensions may be more frequent but less

substantial from an information point of view.33

7.2 Discussion of the Assumptions

7.2.1 Timing

Throughout the agent-based detection model, we have assumed that the external author-

ity moves and chooses the agents to target before the formation of any links. Such an

assumption can be justified on the grounds that law enforcement policies and investigating

budgets are broadly laid out and are hard to fine-tune once a certain policy is in place.

On the other hand, a criminal organization has less constraints to satisfy and it is more

flexible when an adjustment of strategy is needed.

In other circumstances, however, it may be more plausible to suppose that the external

authority has the possibility to modify its policy after the information structure is formed

(assuming that the authority can fully observe the organization structure µ). In particular,

it can adjust the detection probabilities allocation with the goal of detecting as many agents

as possible (notice that, ex-post, the external agent cannot influence the level of cooperation

in the organization any longer). If this is the case, when looking for an equilibrium of the

game, we have to worry whether the policy set ex-ante is credible that is, it is also ex-post

optimal. Recall that the optimal allocation policies we characterized in Proposition 3.1

are either a symmetric allocation (i.e., α1 = .. = αN = B/N) or an allocation in which

one agent remain undetected and the others are monitored symmetrically (i.e., α1 = 0

33 It is worth noting that in the mid-’80s it was possible for the Sicilian judges to organize the so-called
“Maxi-processo” in which 324 inter-connected individuals were sentenced guilty at the same time. This
kind of inter-connected large trials are less frequent now, and it would be interesting to understand whether
this is due to a deliberate choice of the judges or a less interconnected structure of the organization.
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and α2 = ... = αN = B
N−1). While the first allocation, when optimal, induces anarchy,

the second allocation, when optimal, can induce a hierarchy in which agent 1 holds all

the information. It is immediate to see that the only allocation optimal ex-post is the

symmetrical one. This is because if the allocation is asymmetric and a hierarchy emerges,

the authority has the incentive to reshuffle all its resources to the information hub of the

organization (that is, the agent who was left initially undetected).

7.2.2 Harsher Punishments

Our analysis has assumed that if many agents have information about one agent and decide

to punish him, then the agent suffers as if only one agent decides to punish him (that is,

he only pays k). There are circumstances, in which if an agent becomes vulnerable to

more than one other agent, it can be punished in a harsher way. We conjecture that

such punishment technologies might lead to organizational structures similar to the ones

described in this paper with the exception that the cells, instead of being binary as the ones

we found in our results, would include a small set of agents that exchange information about

each other to sustain cooperation within the cell. Then, a possible interesting direction for

further research would be to characterize the optimal cell size.

7.2.3 Decaying Detection

In our model, we have assumed that if an agent is detected, then any other agent who had

disclosed his information to this agent is also detected with probability 1. One possible

way to relax this assumption is to assume that the information decays that is, that if an

agent, say i, discloses his information to agent j, if agent j is detected agent i is detected

with probability γ < 1. This implies that if indirect links are formed, the probability of

apprehension decreases with the distance between agents in the network. However, notice

that there is only one instance, among all the optimal structures characterized in Section

4, in which an indirect link emerge. Specifically, if N links are formed in the organization,

Proposition 4 prescribes that 1 ↔ 2 and i∗ + 1, .., N → 1, that is agents i∗ + 1, .., N are

indirectly liked to agent 2. It is easy to realize that a decay in the probability of detection

will just cause i∗ to decrease, leading to the hierarchical part of the organization to become
larger. It follows, therefore, that if we allow for the possibility of decay in detection, the

structures of the optimal organizations will be qualitatively identical to those characterized,

while the threshold values of the discount factor and some other quantitative properties of
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the results will change.

8 Extensions and Conclusion

We will now discuss some results related to several extensions of our model that we consider

interesting direction for further research and we conclude

8.1 Prison or police?

Proposition 5 describes how the strategic detection authority should allocate a fixed budget

in order to minimize the efficiency of the organization. However, there are further normative

implications to be learned from the result that could lead to interesting further research.

In particular, we saw that the external agent is able to prevent cooperation that would

otherwise occur if bBN (1 − B
N ) ≥ Nλ − c. Suppose now that detection and punishment

are costly activities for the external agent. For example, assume that the cost function

C(b,B) captures the cost of imposing a punishment b to all detected agents (for instance,

the cost of building and maintaining prison facilities) and to allocate a budget B to detect

them. Then, Proposition 5 suggests the conjecture that, in order to minimize collusion, the

external agent should minimize this cost under the constraint that bBN (1− B
N ) = Nλ− c.

Second, a possible interpretation for the punishment an agent can inflict on another

agent once he knows his information is the ability to (anonymously) disclose incriminating

evidence to the authorities. If this is the case, k will be correlated with b. Suppose for

simplicity that k = b. Then, the external authority will face a trade-off in setting b. In

particular, increasing b prevents collusion since it makes more likely that bBN (1− B
N ) ≥ Nλ−

c. However, if the external authority is not able to raise b to this threshold level, then raising

b actually helps rather than harms the effectiveness of the organization, because it increases

the cooperation of the organization. This is because, as ∆(N − 1, k) = c−λ
λ(N−1)+k , raising

b (and thereby raising k) increases the range of discount factors for which information

exchange increases cooperation in the organization. Further investigation on the interplay

among alternative tools available to the authorities seems an interesting direction for future

work.
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8.2 Growing Organizations

Another interesting direction for further research is studying the dynamic implications of

our model. Let us consider the evolving growth of an organizational structure. Suppose

that once an agent has information about another agent, this information cannot later be

taken away as the organization grows. It follows that, though the organization may be

optimizing throughout, the structure that emerges might be inefficient from the ex-post

perspective.

For intuition here, consider an organization that expects to grow only slowly; specif-

ically consider an organization with only two members. When a third agent joins the

organization if it is expected that there would be a considerable delay before a fourth

arrives, then optimizing the organizational value might involve giving one of the existing

agents information on the new arrival. Then if a fourth agent arrives, the organizational

structure that results will not be the one that would have been designed if all agents had

arrived simultaneously.

In short, since information cannot be taken away and the organization optimizes period

by period as agents arrive (rather than for some hypothetical final period), inefficient

structures might emerge.

8.3 Conclusions

This paper presents a simple model highlighting the trade-off between concerns to increase

internal efficiency (sustaining cooperation) against the threat of greater vulnerability to

an external threat (increasing the probability of indirect detection). We consider two

alternative detection models, and we highlight how in anticipating the reaction of the

organization, the external authority should allocate its resources for detection.

In presenting a fairly simple model we are able to fully characterize strategies for the

organization and the external authority. The results we obtain match the information we

have on the structure of criminal organizations such as Mafia and terror networks. We

think that this model could be employed further to derive more normative implications

for the role of the authorities to detect these organization, and to study their dynamics as

they grow.
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Appendix

Proof of Proposition 2 First step. Recall that ρ(j, i) is decreasing in both αj and

αi. This follows trivially from the fact that if x ≥ y ≥ 0 then xz
x+z ≤ yz

y+z for all z ≥ 0.
Second step Let us prove that among all possible binary cell organization structures

that pair N agents to each other {µ ∈ I s.t. if µij = 1 for all i 6= j then µji = 1 and

µik = 0 ∀k 6= j} the one which minimizes information leakage costs is 1←→ 2, 3←→ 4,...,

N − 1 ←→ N . To see this, let us first show that this result holds for N = 4. The claim

is true if 1 ←→ 2, 3 ←→ 4 is better than either of the alternatives 1 ←→ 4, 2 ←→ 3 and

1←→ 3, 2←→ 4. This requires that:

2b [1− (1− α1) (1− α2)] + 2b [1− (1− α3) (1− α4)] ≤
2b [1− (1− α1) (1− α4)] + 2b [1− (1− α3) (1− α2)]

(4)

and,
2b [1− (1− α1) (1− α2)] + 2b [1− (1− α3) (1− α4)] ≤
2b [1− (1− α1) (1− α3)] + 2b [1− (1− α2) (1− α4)]

. (5)

Inequality (4) holds if α1α2+α3α4 ≥ α1α4+α2α3 or if (α4 − α2) (α3 − α1) ≥ 0, which
is always the case. Inequality (5) also always holds.

Now, suppose that for a general even N the claim is not true. Then, there is an optimal

structure in which it is possible to find 2 pairs {i1, i2} , {i3, i4} such that αi1 ≤ αi2 ≤ αi3 ≤
αi4 is violated. Then since that is the optimal structure, rearranging the agents in these

pairs leaving all other pairs unchanged cannot reduce information leakage costs. However,

this contradicts the result for N = 4.

Third step. It is clear that if agent 1 and 2 do not reveal their information to anybody

else, the best way to link them is to link them to each other, since they are the two lowest

probability agents. Now, for any couple {N − 1, N} , ..., {3, 4} let us compare whether it is
better from an information leakage point of view to link the pair to each other and inde-

pendently from the others, or to have them linked to agent 1 (and 2) instead. If the agents

N and N −1 are linked to each other, the cost of information leakage corresponding to the
couple is 2b [1− (1− αN ) (1− αN−1)] . If they are linked to agents 1 and 2, the cost of infor-
mation leakage is b [1− (1− α1) (1− α2) (1− αN)] + b [1− (1− α1) (1− α2) (1− αN−1)] .
Then, the couple {N − 1, N} should be linked to agent 1 (and then, since we have 1↔ 2,

to the couple {1, 2}) if and only if
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ρ(N − 1, N) < (1− α1) (1− α2) (6)

.

If condition 6 fails, by the first step of this proof we know that the condition will fail

for any subsequent couple. Then, the optimal way to link the N agents to each other is to

create a pairwise structure, and by the second step of this proof we know that the optimal

way to do this is to set 1 ↔ 2, 3 ←→ 4, .. and N ←→ N − 1. If condition (6) is satisfied,
we can link agents N and N − 1 to the couple {1, 2}, and we can repeat this check for the
couple {N − 2, N − 3} . We repeat this process until we find a couple {i− 1, i} for which
the condition

ρ(i− 1, i) < (1− α1) (1− α2)

fails. If we find such a couple, by the first step of this proof we know that the condition

will fail for any subsequent couple, and, by the second step of the proof, we can arrange

any subsequent couple in a pairwise fashion.¥
Proof of Proposition 3 In this environment, following Abreu (1988) the most effi-

cient equilibria can be replicated by equilibria sustained by the most severe equilibrium

punishment, which in anarchy entails no cooperation by any of the agents (as additional

punishments are not possible).

Consider an anarchy and the candidate equilibrium where everyone always cooperates

except following any deviation (by anybody) from full cooperation. Then a deviation from

the equilibrium strategy will yield an agent λ(N − 1) + δ0 as she gains λ(N − 1) in the
current period but earns nothing in all future periods, whereas cooperation yields λN−c

1−δ .
Therefore, this equilibrium is sustainable if and only if λN−c

1−δ > λN − λ, or equivalently if

and only if δ > c−λ
λ(N−1) = ∆(N − 1, 0).

Consider now a situation in which an agent revealed his information to someone else.

Thus, this agent can be punished by the additional payment of k. However, if δ <
c−λ

λ(N−1)+k = ∆(N − 1, k), cooperation cannot by achieved even by the threat of the ad-
ditional punishment. This implies that exchanging information does not have any ben-

efits and, if α > 0, it has the cost of increasing the probability of detection. Thus, if

δ < ∆(N − 1, k), an anarchy achieves the highest efficiency.¥
Proof of Lemma 3 To prove (2), notice that, consider a candidate equilibrium in

which m +1 agents are supposed to cooperate at every period. Focus on an agent i who
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is supposed to cooperate and has revealed his information to someone else. Suppose that

if that agent does not cooperate at some period, all the agents revert to the equilibrium

in which nobody cooperates and all the agents who hold information about someone else

(including the agent who holds agent i0s information) punish the agents who revealed
their information to them. Then, agent i will not deviate from cooperation as long as
λm−c
1−δ ≥ λ(m− 1)− δk

1−δ , or δ ≥ c−λ
λ(m−1)+k ≡ ∆(m− 1, k). If the additional punishment k is

not available, he does not deviate from cooperation if λm−c
1−δ ≥ λ(m− 1), or δ ≥ c−λ

λ(m−1) =
∆(m− 1, 0). This proves (1)¥

Proof of Proposition 5 In order to prove this result, we prove the following Lemma
first. Let eα ≡ n0, B

N−1 , ..,
B

N−1
o
.

Lemma The allocation eα increases the information leakage cost of the Nth link (linking
agent 1 to agent 2) compared to any other allocation α which generates exactly N-1 links.

Proof: Consider any allocation α that generates exactly N − 1 links. Since α1 ≤ α2 ≤
... ≤ αN and α1 ≥ 0, it follows that α2 ≤ B

N−1 . We can compare the additional information
leakage costs from theN−th link, l(N) = L(N)−L(N−1) and eL(N) = eL(N−1) associated
with each agent i under allocations α and eα. In order to do that, let us consider the
allocation bα ≡ {0, α2, .., αN} and first compare α with bα. Under the optimal information
structures with N links described in Proposition 2, given allocation α, either (a) agent i

remains linked to agent 1 or (b) agent i is in a binary cell with some other agent j in the

organization (which will be i+ 1 or i− 1 depending on whether i is even or odd). In case
(a) the incremental leakage cost for agent i is b(1− αi) (1− α1)α2, while under allocationbα is going to be b(1−αi)α2. Trivially, b(1−αi) (1− α1)α2 < b(1−αi)α2. In case (b), since,
the incremental information leakage cost for agents i and i + 1 of the N − th link under

allocation α is b(1− αi)αi+1 + b(1− αi+1)αi − b(1− α1)αi − b(1− α1)αi+1 where the first

positive terms denotes the new information leakage costs associated with these agents and

the negative terms the old information leakage costs when they were subordinates in the

N − 1 hierarchy. Since, the cell is preferred to making i and i+ 1 subordinates to agents

1 and 2 it follows that

b(1− αi)αi+1 + b(1− αi+1)αi − b(1− α1)αi − b(1− α1)αi+1

< b(α1 + α2 + α1α2)αi+1 + b(α1 + α2 + α1α2)αi − b(1− α1)αi − b(1− α1)αi+1

= b(1− αi) (1− α1)α2 + b(1− αi+1) (1− α1)α2

< b(1− αi)α2 + b(1− αi+1)α2

43



The last expression is the information leakage cost associated with the allocation bα.
Next we show that the allocation eα has a higher information leakage cost for the N− th

link el(N) than the allocation bα, that is el(N) ≥ bl(N). These two costs can be written down
trivially:

el(N) = b
NX
i=3

B

N − 1(1−
B

N − 1) = b(N − 2) B

N − 1(1−
B

N − 1)

and

bl(N) = b
NX
i=3

α2(1− αi) = b(N − 2)α2 − bα2

NX
i=3

αi

Since
PN

i=3 αi < B < N − 2, it follows that information leakage costs under bα are

increasing in α2, whose highest value is B
N−1 and when it takes this value the information

leakage costs are equal to those under eα. Thus el(N) ≥ bl(N) ≥ l(N).¥
Let us now proceed to the proof of Proposition 5.
First step. First of all, note that under some circumstances the external authority’s

strategy will be irrelevant. In particular for δ < ∆(N − 1, k) and δ ≥ ∆(N − 1, 0) the or-
ganization will be anarchic and all agents will either not cooperate (if δ < ∆(N − 1, k)) or
cooperate (if δ ≥ ∆(N −1, 0)), regardless of the external authority’s allocation of its inves-
tigative budget B. In the rest of the proof we will focus on δ ∈ [∆(N − 1, k),∆(N − 1, 0)).

Second step. Suppose now that Nλ− c < bBN (1− B
N ). By Corollary 1, in this case the

symmetric allocation deters the organization from establishing any link, so in this case this

will be the optimal strategy for the external agent. In the rest of the proof we will then

assume that Nλ− c > bBN (1− B
N ).

Third step. Assume Nλ− c > bBN (1− B
N ). In points (1)-(3), we go over all the possible

budget allocation and show that the allocation eα = n0, B
N−1 , ..,

B
N−1

o
is optimal.

(1) Consider any allocation such that α1 = α2 = 0. Then, the organization can reach

full efficiency with zero additional information leakage cost with respect to anarchy. To

see this, suppose that α1 = α2 = 0 then, an organization with the links µ1i = 1 for all

i ∈ {2, ..,N}, µ21 = 1 and µij = 0 otherwise delivers full efficiency for any δ > ∆(N −1, k).
Thus, it must be the case that, in order to prevents links between agent and deter efficiency,

at most one agent can be left with zero probability of detection.

(2) Consider any allocation such that α1 > 0 that is, all the probabilities of detections
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are set to be positive. Since we are under the assumption that Nλ − c > bBN (1 − B
N ), if

these probabilities are symmetric, full cooperation will ensue, and the allocation eα cannot
do worse than that. Suppose then that the allocation is asymmetric that is, α1 < B

N .

Following the characterization in Proposition 4, the agents will then form an optimal

organization.

First, suppose the parameters are such that the organization has N links. Then, the

allocation we are considering reaches full efficiency, and the allocation eα cannot do worse
than that.

Suppose instead that the optimal organization given the allocation α we are considering

generates N − 1 links. Then by the Lemma 8.3, allocation eα performs at least as well.
Finally, suppose that under the allocation α the linked agents are n < N−1. We argue

that such a structure is impossible. In such organizations, according to Proposition 1,

there are three types of agents to consider: the top of the hierarchy agent 1, the N −n− 1
independent agents 2, ..N − n, and the n agents who reveal their information to agent

1, that is N − n + 1, ..N . Without loss of generality, we will restrict our attention to

the allocations which give the same probability of detection to each agent in the same

category (if the probability is not the same, it is easy to see that it is possible to substitute

such probabilities with the average in each category and still obtain the same structure of

organization). Let’s name such probabilities α1, α2 and αN respectively. The probability

allocations we are restricting our attention on have to satisfy the following constraints:

(i) 0 < α1 ≤ α2 ≤ αN ≤ 1 (by feasibility and by Proposition 1);
(ii) bα1(1− α2) ≥ Nλ− c (it is not optimal for the organization to link the N − n− 1

independent to agent 1);

(iii) Nλ − c ≥ bα1(1 − αN) (it is optimal for the organization to link the n agents to

agent 1);

(iv) α1 + (N − n− 1)α2 + nαN ≤ B (the resource constraint).

Note that bα1(1− α2) ≤ bα2(1− α2) ≤ bBN (1− B
N ) since α2 ≤ B

N < 1
2 (otherwise either

the (iv) or is violated or it cannot be that α1 ≤ α2 ≤ αN ) but then (ii) cannot hold since

Nλ− c > bBN (1− B
N ). If follows that such a structure is impossible.

(3) In points (1)-(2) we showed that if Nλ − c > bBN (1 − B
N ), all the allocations such

that α1 = α2 = 0 or α1 > 0 are (weakly) dominated by allocation eα. Finally, let us
consider an allocation such that α1 = 0 and α2 > 0. Under this allocation, it is clear that

an organization with N − 1 linked agents can arise costlessly. Thus, the best the external
agent can do is to try to prevent the N − th link to arise. Observe that, if α1 = 0, the
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characterization in Proposition 2 yields, for each i ∈ {4, .., N} , to 2(1−αi−1)(1−αi)
2−αi−1−αi ≤ 1− α2

(easy to check since α2 ≤ αj for all j ∈ {3, .., N}). Then, in the optimal organization all
the agents are linked to agent 1, without binary cells (besides the cell {1, 2}). Then, the
cost of the N−th link for the organization is bα2

PN
i=3 (1− αi) , and it is maximized (under

the constraints α2 ≤ αi for all i and
PN

i=2 α1 = B) by αi = B
N−1 for all i ∈ {2, .., N}, which

is allocation eα.¥
Proof of Lemma 5 (1) Note that if N − n + 1, .., N → 1, agents 2, .., N cooperate

and agent 1 does not, we have n links at no additional information leakage cost (besides

to ones imposed by the cooperation of the n agents, which we know it is optimal given the

assumption λN − c > bα), as the probability of detection of agent 1 is zero. (2) Suppose

one wants to generate a structure with n < N linked agents. First, let us analyze the

optimal binary cell allocation. If the agents are all linked in binary cells, we have to find

the optimal cooperation levels p∗, q∗ for each agent in a cell. The most efficient pairwise
structure solves

max
p,q∈[0,1]

p (Nλ− c) + q (Nλ− c)− 2b (p+ q − pq) (7)

Note that we have a corner solution, in particular p∗ = q∗ = 1 if Nλ− c > bα (2− α),

p∗ and q∗ ∈ [0, 1] if Nλ− c = bα (2− α) and p∗ = q∗ = 0 if Nλ− c < bα (2− α) .

(a) Suppose first that Nλ−c > bα (2− α) , so in the most efficient binary cell structure

there is full cooperation. Let us consider the following different link structure instead. In

particular, let us consider a hierarchy in which N − 2 agents, rather than being arranged
in binary cells, are all linked to the cell {1, 2} (notice that this structure is the optimal one
in Proposition 2, in the case in which the probabilities of detection of agents 3, .., N are all

the same and ρ(3, 4) < (1− α1) (1− α2)). In such organization, it is again optimal to set

p3, .., pN = 1.

The question is, since now N−2 agents are linked to the cell {1, 2} whether it is optimal
to lower the cooperation level of such cell to lower its probability of detection. In finding

the optimal level of cooperation for 1 and 2, we can restrict out attention to positive level of

cooperations for agents 1 and 2 since if they do not cooperate at all, a hierarchy with N−2
links would dominate this organization. Moreover, the level of cooperation of agents 1 and

2 must be such that it is more efficient to link the other agents to them, rather than keeping

them in binary cells. This is satisfied if and only if, setting p and q be the cooperation

levels of agents 1 and 2,we have α (1− α) ≥ (1− α)
¡
αp+ αq − α2pq

¢
,or p+ q − αpq ≤ 1.

Note that as α < 1, it cannot be the case that both p and q are equal to 1.
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Overall, the optimal p∗ and q∗ solve the following problem

maxp,q∈(0,1] (Nλ− c) (p+ q)− 2b ¡αp+ αq − α2pq
¢
+

p+ q − αpq ≤ 1 −(N − 2)b (1− α)
¡
αp+ αq − α2pq

¢ (8)

It is easy to see that optimality requires that p∗ = q∗,so problem (8) is equivalent to

maxp∈(0,1] 2p(Nλ− c)− ¡2αp− α2p2
¢
[2b+ b(N − 2)(1− α)]

2p− αp2 − 1 ≤ 0 (9)

Since the objective function of problem (9) is convex in p, the solution is a corner one.

Since a higher p tightens the constraint, we have two possible cases: (i) p∗ is such that the
constraint is binding, that is, 2p∗−α (p∗)2−1 = 0, which yields α−α√1− α,or (ii) p∗ = 0.

If case (i) is true, let us compare such an outcome with the binary cell structure we

considered before. Notice that (as the constraint in problem (9) is binding at the optimum),

the agents 3, .., N incur the same information leakage cost in the hierarchical structure we

just considered and in the binary structure. Also, they cooperate with probability one

in both cases. Then, let us focus on agents 1 and 2. Since these agents constitute a cell

in both structures, they behave more efficiently in a binary cell structure, as problem (8)

guarantees. Then, a binary cell structure dominates the structure we just considered. If

case (ii) is true, we have a structure in which agents 1 and 2 are linked together, they

do not cooperate and the other N − 2 agents do cooperate and are linked to agent 1 (or,
equivalently, to agent 2 or both).

(b) Consider now the case in which Nλ− c < bα (2− α). In this case, it is not efficient

to cooperate in a binary cell structure. Let us consider the possibility to linking agents 1

and 2 to each other and all the other agents to agent 1. if this is the case, we know that

agents 1 and 2 cannot benefit from cooperating (as the information leakage cost generated

by their cooperation is going to be greater than the one they would incur in a binary cell

structure, and we are in the case in which they cooperation is zero). Then, agents 1 and 2

should not cooperate. This structure would lead to N − 2 agents cooperating at no cost.¥
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