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1 Introduction

Recursive methods have become a standard tool for studying economic behavior in dynamic
stochastic environments. In this chapter, we characterize the class of preferences that is the
natural complement to this framework, namely recursive preferences.

Why model preferences rather than behavior? Preferences plays two critical roles in eco-
nomic models. First, preferences provide, in principle, an unchanging feature of a model in
which agents can be confronted with a wide range of different environments, institutions,
or policies. For each environment, we derive behavior (decision rules) from the same pref-
erences. If we modeled behavior directly, we would also have to model how it adjusted to
changing circumstances. The second role played by preferences is to allow us to evaluate the
welfare effects of changing policies or circumstances. Without the ranking of opportunities
that a model of preferences provides, it’s not clear how we should distinguish good policies
from bad.

Why recursive preferences? Recursive preferences focus on the tradeoff between current-
period utility and the utility to be derived from all future periods. Since an agent’s actions
today can affect the evolution of opportunities in the future, summarizing the future conse-
quences of these actions with a single index, i.e., future utility, allows multi-period decision
problems to be reduced to a series of two-period problems, and in the case of a stationary
infinite-horizon problem, a single, time-invariant two-period decision problem. As we will
see, this logic applies equally well to environments in which current actions affect the values
of random events for all future periods. In this case, the two-period tradeoff is between
current utility and a certainty equivalent of random future utility. This recursive approach
not only allows complicated dynamic optimization problems to be characterized as much
simpler and more intuitive two-period problems, it also lends itself to straightforward com-
putational methods. Since many computational algorithms for solving stochastic dynamic
models themselves rely on recursive methods, numerical versions of recursive utility models
can be solved and simulated using standard algorithms.

2 The Stationary Recursive Utility Function

Assume time is discrete, with dates t = 0, 1, 2, . . .. At each t > 0, an event zt is drawn
from a finite set Z, following an initial event z0. The t-period history of events is denoted
by zt = (z0, z1, . . . , zt) and the set of possible t-histories by Zt. Environments like this,
involving time and uncertainty, are the starting point for much of modern economics. A
typical agent in such a setting has preferences over payoffs c(zt) for each possible history.
A general set of preferences might be represented by a utility function U({c(zt)}). In what
follows, we will think of consumption as a scalar. This is purely for exposition since the
extension to a vector of consumption at each point in time is straightforward.

Consider the structure of preferences in this dynamic stochastic environment. We define
the class of stationary recursive preferences by

Ut = V [ct, µt(Ut+1)], (1)



where Ut is short-hand for utility starting at some date-t history zt, Ut+1 refers to util-
ities for histories zt+1 = (zt, zt+1) stemming from zt, V is a time aggregator, and µt is
a certainty-equivalent function based on the conditional probabilities p(zt+1|zt). As with
other utility functions, increasing functions of U , with suitable adjustment of µ, imply the
same preferences. This structure of preferences leads naturally to recursive solutions of
economic problems, with (1) providing the core of a Bellman equation.

In general, the properties of Ut depend on both the properties of the time aggregator and
the certainty equivalent. Since the certainty equivalent will be scaled such that µ(x) = x
when x is a perfect certainty, the time aggregator V is all that matters in deterministic
settings. Similarly, for a purely static problem with uncertainty, the certainty-equivalent
function µ is all that matters. We consider the specification of each of these components in
turn.

It is important to note that the utility functions presented in this chapter are not ad
hoc, but rather have clear axiomatic foundations, and can be derived from more primitive
assumptions on preference orderings. Since utility functions are the typical starting point
for applied research, we skip this step and refer the interested reader to the axiomatic
characterizations of recursive preferences in the papers cited at the end of this chapter.

3 The Time Aggregator

Time preference is a natural starting point. Suppose there is no risk and ct is one-
dimensional. Preferences might then be characterized by a general utility function U({ct}).
A common measure of time preference in this setting is the marginal rate of substitution be-
tween consumption at two consecutive dates (ct and ct+1, say) along a constant consumption
path (ct = c for all t). If the marginal rate of substitution is

MRSt,t+1 =
∂U/∂ct+1

∂U/∂ct
,

then time preference is captured by the discount factor

β(c) ≡ MRSt,t+1(c).

(Picture the slope, −1/β, of an indifference curve along along the “45-degree line”). If β(c)
is less than one, the agent is said to be impatient: along a constant consumption path (i.e.,
in the absence of diminishing marginal utility considerations), the agent requires more than
one unit of consumption at t + 1 to induce a sacrifice of one unit at t.

For the traditional time-additive utility function,

U({ct}) =
∞∑

t=0

βtu(ct), (2)

β(c) = β < 1 regardless of the value of c, so impatience is built in and constant. A popular
and useful special case of this utility function implies a constant elasticity of intertemporal
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substitution by assuming u(c) = cρ/ρ for ρ < 1. Note that we can define the utility function
in (2) recursively:

Ut = u(ct) + βUt+1, (3)

for t = 1, 2, . . .. The constant elasticity version can be expressed

Ut = [(1− β)cρ
t + βUρ

t+1]
1/ρ, (4)

where ρ < 1 and σ = 1/(1− ρ) is the intertemporal elasticity of substitution. (To put this
in additive form, use the transformation Û = Uρ/ρ.) Note that Ut is homothetic and that
the scaling we have chosen measures utility on the same scale as consumption:

U(c, c, c, . . .) = c.

More generally, impatience summarized by the discount factor, β(c), could vary with the
level of consumption. Koopmans (1960) derives a class of stationary recursive preferences
by imposing conditions on a general utility function U for a multi-dimensional consumption
vector c. In the Koopmans class of preferences, time preference is a property of the time
aggregator V . Consider our measure of time preference:

Ut = V (ct, Ut+1) = V [ct, V (ct+1, Ut+2)].

The marginal rate of substitution between ct and ct+1 is therefore

MRSt,t+1 =
V2(ct, Ut+1)V1(ct+1, Ut+2)

V1(ct, Ut+1)
.

A constant consumption path at c is defined by U = V (c, U), implying U = g(c) = V [c, g(c)]
for some function g.

In modern applications, we typically work in reverse order: we specify a time aggregator V
and use it to characterize the overall utility function U . Any U constructed this way defines
preferences that are stationary and dynamically consistent. In contrast to time-additive
preferences, discounting depends on the level of consumption c.

There most common example of Koopmans’ structure in applications is a generalization of
equation (3):

V (c, U) = u(c) + β(c)U,

where there is no particular relationship between the functions u and β. For this example,
the intertemporal tradeoff is given by

MRSt,t+1 = β(ct)
[
u′(ct+1) + β′(ct+1)Ut+2)

u′(ct) + β′(ct)Ut+1)

]
.

When β′(c) 6= 0, optimal consumption plans will depend on the level of future utility. And
along a constant consumption path, discounting is decreasing (increasing) in consumption
when β′(c) < 0 (β′(c) > 0). Also note that Ut in this example is not homothetic.
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4 The Risk Aggregator

Turn now to the specification of risk preferences, which we consider initially in a static
setting. Choices have risky consequences or payoffs, and agents have preferences defined
over those consequences and their probabilities. To be specific, let us say that the state z
is drawn with probability p(z) from the finite set Z = {1, 2, . . . , Z}. Consequences (c, say)
depend on the state and the agent’s preferences are be represented by a utility function of
state-contingent consequences (“consumption”):

U({c(z)}) = U [c(1), c(2), . . . , c(Z)].

At this level of generality there is no mention of probabilities, although we can well imagine
that the probabilities of the various states will show up somehow in U . We regard the
probabilities as known, which you might think of as an assumption “rational expectations.”

We prefer to work with a different (but equivalent) representation of preferences. Suppose,
for the time being, that c is a scalar; very little of the theory depends on this, but it
streamlines the presentation. We define the certainty equivalent of a set of consequences as
a certain consequence µ that gives the same level of utility:

U(µ, µ, . . . , µ) = U [c(1), c(2), . . . , c(Z)].

If U is increasing in all its arguments, we can solve this for the certainty-equivalent function
µ({c(z)}). Clearly µ represents the same preferences as U , but we find its form particularly
useful. For one thing, it expresses utility in payoff (“consumption”) units. For another,
it summarizes behavior toward risk directly: since the certainty equivalent of a sure thing
is itself, the impact of risk is simply the difference between the certainty equivalent and
expected consumption.

The traditional approach to preferences in this setting is expected utility, which takes the
form

U({c(z)}) =
∑
z

p(s)u[c(z)] = Eu(c),

or

µ({c(z)}) = u−1

(∑
z

p(z)u[c(z)]

)
= u−1 [Eu(c)] .

Preferences of this form have been used in virtually all economic theory. The utility function
of Kreps and Porteus employs a general time aggregator and an expected utility certainty
equivalent. Following Epstein and Zin, many recent applications, particularly in dynamic
asset pricing models, use the homothetic version of this utility function which combines the
constant elasticity time aggregator in (4) with a linear homogeneous (constant relative risk
aversion) expected utility certainty equivalent.

Empirical research both in the laboratory and in the field has documented a variety of
difficulties with the predictions of expected utility models. In particular, people seem more
averse to bad outcomes than implied by expected utility. In response to this evidence,
there is a growing body of work that looks at decision making under uncertainty outside
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of the traditional expected utility framework. For example, a popular recent innovation
is Gilboa and Schmeidler’s “max-min” preferences, which have been extended to recursive
dynamic problems in a number of different ways. Without surveying all of these exten-
sions, we demonstrate the basic mechanics of recursive utility with non-expected utility
certainty equivalents by studying one particular analytically convenient class of preferences,
the Chew-Dekel class, in detail.

The Chew-Dekel certainty equivalent function µ for a set of payoffs and probabilities
{c(z), p(z)} is defined implicitly by a risk aggregator M satisfying

µ =
∑
z

p(z)M [c(z), µ]. (5)

Such preferences satisfy a weaker condition than the notorious independence axiom that
underlies expected utility, yet like expected utility, they lead to first-order conditions in
decision problems that are linear in probabilities, hence easily solved and amenable to
econometric analysis. We assume M has the following properties: (i) M(m,m) = m (sure
things are their own certainty equivalents), (ii) M is increasing in its first argument (first-
order stochastic dominance), (iii) M is concave in its first argument (risk aversion), and
(iv) M(kc, km) = kM(c,m) for k > 0 (linear homogeneity). Most of the analytical conve-
nience of the Chew-Dekel class follows from the linearity of equation (5) in probabilities.
(Note that this implies that indifference curves on the probability simplex are linear, but
not necessarily parallel.)

Examples of tractable members of the Chew-Dekel class are:

• Expected utility. A version with constant relative risk aversion (i.e., linear homogene-
ity) is implied by

M(c,m) = cαm1−α/α + m(1− 1/α).

If α ≤ 1, M satisfies the conditions outlined above. Applying (5), we find

µ =

(∑
z

p(z)c(z)α

)1/α

,

the usual expected utility with a power utility function.

• Weighted utility. A relatively easy way to generalize expected utility given (5): weight
the probabilities by a function of outcomes. A constant-elasticity version follows from

M(c,m) = (c/m)γcαm1−α/α + m[1− (c/m)γ/α].

For M to be increasing and concave in c in a neighborhood of m, the parameters must
satisfy either (a) 0 < γ < 1 and α + γ < 0 or (b) γ < 0 and 0 < α + γ < 1. Note
that (a) implies α < 0, (b) implies α > 0, and both imply α + 2γ < 1. The associated
certainty equivalent function is

µα =
∑

z p(z)c(z)γ+α

∑
x p(x)c(x)γ

=
∑
z

p̂(z)c(z)α,
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where
p̂(z) =

p(z)c(z)γ

∑
x p(x)c(x)γ

.

This version highlights the impact of bad outcomes: they get greater weight than with
expected utility if γ < 0, less weight otherwise.

• Disappointment aversion. Another model that increases sensitivity to bad events
(“disappointments”) is defined by the risk aggregator

M(c, m) =

{
cαm1−α/α + m(1− 1/α) c ≥ m
cαm1−α/α + m(1− 1/α) + δ(cαm1−α −m)/α c < m

with δ ≥ 0. When δ = 0 this reduces to expected utility. Otherwise, disappointment
aversion places additional weight on outcomes worse than the certainty equivalent.
The certainty equivalent function satisfies

µα =
∑
z

p(z)c(z)α + δ
∑
z

p(z)I[c(z) < µ][c(z)α − µα] =
∑
z

p̂(z)c(z)α,

where I(x) is an indicator function that equals one if x is true and zero otherwise and

p̂(z) =
(

1 + δI[c(z) < µ]
1 + δ

∑
x p(x)I[c(x) < µ]

)
p(z).

It differs from weighted utility in scaling up the probabilities of all bad events by the
same factor, and scaling down the probabilities of good events by a complementary
factor, with good and bad defined as better and worse than the certainty equivalent.
(This implies a “kink” in state-space indifference curves at certainty, which is referred
to as “first-order” risk aversion.) All three expressions highlight the recursive nature
of the risk aggregator M : we need to know the certainty equivalent to know which
states are bad so that we can compute the certainty equivalent (and so on).

5 Optimization and the Bellman Equation

For an illustrative application of recursive utility, we turn to the classic Merton-Samuelson
consumption/portfolio-choice problem. Consider a stationary Markov environment with
states z and conditional probabilities p(z′|z). Preferences are represented by a constant-
discounting/constant-elasticity aggregator and a general linear homogeneous certainty equiv-
alent. A dynamic consumption/portfolio problem for this environment is characterized by
the Bellman equation which implicitly defines the value function:

J(a, z) = max
c,w

{(1− β)cρ + βµ[J(a′, z′)]ρ}1/ρ,

subject to the wealth constraint, a′ = (a − c)
∑

i wiri(z, z′) = (a − c)
∑

i wir
′
i = (a − c)r′p,

where a denotes wealth, rp is the return on the portfolio (w1, w2, . . . , wN−1, 1−
∑N−1

i=1 wi),
of assets with risky returns (r1, r2, . . . , rN ). The budget constraint and linear homogeneity
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of the time and risk aggregators imply linear homogeneity of the value function: J(a, z) =
aL(z) for some scaled value function L. The scaled Bellman equation is

L(z) = max
b,w

{(1− β)bρ + β(1− b)ρµ[L(z′)rp(z, z′)]ρ}1/ρ,

where b ≡ c/a. Note that L(z) is the marginal utility of wealth in state z.

This problem divides into separate portfolio and consumption decisions. The portfolio de-
cision solves: choose {wi} to maximize µ[L(z′)rp(z, z′)]. The portfolio first-order conditions
are

∑

z′
p(z′|z)M1[L(z′)rp(z, z′), µ]L(z′)[ri(z, z′)− rj(z, z′)] = 0 (6)

for any two assets i and j.

Given a maximized µ, the consumption decision solves: choose b to maximize L. The
intertemporal first-order condition is

(1− β)bρ−1 = β(1− b)ρ−1µρ. (7)

If we solve for µ and substitute into the (scaled) Bellman equation, we find

µ = [(1− β)/β]1/ρ[b/(1− b)](ρ−1)/ρ

L = (1− β)1/ρb(ρ−1)/ρ. (8)

The first-order condition (7) and value function (8) allow us to express the relation between
consumption and returns in a familiar form. Since µ is linear homogeneous, the first-order
condition implies µ(x′r′p) = 1 for

x′ = L′/µ =
[
β(c′/c)ρ−1(r′p)

1−ρ
]1/ρ

.

The last equality follows from (c′/c) = (b′/b)(1−b)r′p, a consequence of the budget constraint
and the definition of b. The intertemporal first-order condition can therefore be expressed

µ(x′r′p) = µ

([
β(c′/c)ρ−1r′p

]1/ρ
)

= 1, (9)

a generalization of the tangency condition for an optimum (set the marginal rate of sub-
stitution equal to the price ratio). Similar logic leads us to express the portfolio first-order
conditions (6) as

E
[
M1(x′r′p, 1)x′(r′i − r′j)

]
= 0.

If we multiply by the portfolio weight wj and sum over j we find

E
[
M1(x′r′p, 1)x′r′i

]
= E

[
M1(x′r′p, 1)x′r′p

]
. (10)

Euler’s theorem for homogeneous functions allows us to express the right side as

E
[
M1(x′r′p, 1)x′r′p

]
= 1− EM2(x′r′p, 1).
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Whether this expression is helpful depends on the precise form of M . For example, with
disappointment aversion, (10) is

E

[
zα−1(1 + δI[z < 1])

r′i
r′p

]
= 1 + δEI[z < 1],

where z =
[
β(c′/c)ρ−1r′p

]1/ρ
. This reduces to the Kreps-Porteus model when δ = 0, and to

the time-additive expected utility model when, in addition, ρ = α.

6 Conclusion

A recursive utility function can be constructed from two components: (1) a time aggrega-
tor that completely characterizes preferences in the absence of uncertainty and (2) a risk
aggregator that defines the certainty equivalent function that characterizes preferences over
static gambles and is used to aggregate the risk associated with future utility. We looked
at natural candidates for each of these components and gave an example of how Bellman’s
equation can be used to characterize optimal plans in a dynamic stochastic environment
when agents have recursive preferences.

Literature Guide: If you’d like to see more on this subject, see Backus, Routledge, and
Zin (2005) and the references cited there. Much of the material in this chapter builds from
Epstein and Zin (1989), who extend the preferences in Kreps and Porteus (1978) to allow
for a stationary infinite-horizon model and for non-expected utility certainty equivalents.
They also derive the consumption/portfolio-choice results of Section (5). For more on time
aggregators, see Koopmans (1960), Uzawa (1968), Epstein and Hynes (1983), Lucas and
Stokey (1984), and Shi (1994). Common departures from expected utility are documented
in Kreps (1988, ch 14) and Starmer (2000). Epstein and Schneider (2003) and Hansen
and Sargent (2004) propose different dynamic and recursive extensions of the max-min risk
preference of Gilboa and Schmeidler (1993). The Chew-Dekel risk aggregator was proposed
by Chew (1983, 1989) and Dekel (1986). Examples within this class: weighted utility (Chew,
1983), disappointment aversion (Gul, 1991), semi-weighted utility (Epstein and Zin, 2001),
and generalized disappointment aversion (Routledge and Zin, 2003).
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