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Abstract 
 
Recent studies in econometrics and statistics include many applications of random 
parameter models.  There is some ambiguity in how estimation results in these models 
are interpreted.  The underlying structural parameters are often not informative about the 
statistical relationship of interest.  As a result, standard significance tests of structural 
parameters in random parameter models do not necessarily indicate the presence or 
absence of a ‘significant’ relationship among the model variables.  This note offers some 
suggestions on how to interpret and use the results of estimation of a general form of 
random parameter model and how simulation based estimates of parameters in 
conditional distributions can be used to examine the influence of model covariates. 
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1.  Introduction 
 
 The increasing availability of large, high quality panel data sets has made models 
that can accommodate individual heterogeneity, such as the random parameters (RP) 
model, increasingly attractive.  The hierarchical nature of this model’s parameterization 
makes ambiguous the computation of certain results, such as marginal effects, that are 
usually of interest.  Moreover, since the models are typically nonlinear and the 
‘parameters’ are random variables, not fixed estimated quantities, assessments of 
statistical significance, also of common interest, cannot be assessed by the usual 
approach.  (The model shares this aspect with Bayesian formulations of econometric 
models that are also becoming increasingly common.)  This note will lay out a generic 
form of the random parameters model, then suggest computations that can be used to 
display empirical evidence on these two model characteristics.   

Section 2 defines a broad class of random parameter models that encompasses 
many of the received applications.  Section 3 discusses simulation based estimation of the 
model and interesting “post estimation” results.  An application is provided to illustrate 
the computations.  A comparison to a similar set of procedures based on Allenby and 
Rossi’s (1999) Bayesian formulation is discussed in Section 4.  Some conclusions are 
drawn in Section 5. 
 
2.  Random Parameters Models 
 
 We consider a formulation of the RP model which encompasses many of the 
applications in the literature [e.g. Revelt and Train (1998), Train (2002), Layton and 
Brown (2000), Allenby and Rossi (1999), and Greene (2003b)] and implementations such 
as Stata (2002), SAS (2003), LIMDEP (Econometric Software, 2003) and MLWin 
(2002)]. We formulate the RP models in terms of the likelihood function for a set of 
observations collected in a panel data setting (though the model can be applied in cross 
section data, so the notation is only used to achieve a greater level of generality).  The 
following will sketch the procedures. More detailed treatments may be found in Train 
(2002) and in Greene (2003a).   

The density for an observation is 
 
(1) f(yit | xit, zi, vi, βi, θ)  =  g(yit, βi′xit, θ), i = 1,…,n, t = 1,…,Ti > 1, 
 
(2) βi  =  β  +  ∆zi  +  Γvi 
  
where the components of the model are as follows:  xit contains all the main covariates, 
including both time varying and time invariant variables, zi is a set of time invariant 
variables that enter the mean of the random parameters, yit is the response variable, vi is 
the random variation in the reduced form parameters of the model.1  The structural 
parameters include a fixed set of ancillary parameters, θ, which would include, e.g., the 
standard deviation of the disturbance, σ, in a tobit or linear regression model, the shape 
                                                 
1 We will assume continuous variation of the parameters. The finite mixtures (latent classes) approach to 
modeling heterogeneity provides an attractive alternative, but this is considered elsewhere.  See,. e.g., 
Allenby and Rossi (1999), Hagenaars and McCutcheon (2001), Greene (2003a). 
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parameters in a gamma regression model, or the dispersion parameter in a negative 
binomial model.  (Note that θ might be null, e.g., in a binary choice model, such as probit 
or logit.)  The remaining structural parameters of the model are β, ∆, and Γ which define 
the random parameters; β is the vector of constant terms in the means of the random 
parameters, ∆ is a matrix of parameters that multiply the covariates in the distribution of 
the random parameters, and Γ is an unrestricted lower triangular matrix, also to be 
estimated.  Since the nonzero elements of Γ are free parameters, no generality is lost 
(indeed identification requires it) by assuming that vi has mean vector zero and diagonal 
covariance matrix with no unknown parameters.  For example, if random parameters are 
assumed to be normally distributed, then Var[vi] = I.  The conditional variance of βi is 
ΓΓ′ , which is unrestricted.  ‘Fixed’ (nonrandom) parameters in the model are specified 
simply by constraining corresponding rows in ∆ and Γ to equal zero. (See the application 
below.)  A ‘hierarchical’ model with interactions is obtained when rows of Γ are 
constrained to equal zero while ∆ remains unrestricted.  The more familiar, simple 
random coefficients model is obtained when ∆ is a zero matrix. The ‘random effects’ 
model results if ∆ is zero and only the overall constant term in the model is random.  
Many other permutations of the model can be cast in this framework through suitable 
modifications of the parameters and/or stochastic specifications. The density can be 
specified to accommodate many cases of interest to practitioners, such as static probit and 
logit models, models for counts, linear regression models, duration models, and many 
others.  [See ESI (2003)].  Note, finally, that the simulation estimation method described 
here allows the distribution of vi to be nonnormal (indeed, it may be any type of random 
variable for which random draws can be simulated). 

Observations are conditionally (on the random effects) independent. Dependence 
of the Ti observations for a particular individual results from the common, invariant vi. 
Conditioned on vi, the contribution of the observations from individual (or ‘group’) i is 
the joint density,  
 
(3) 
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where Λ is the full set of structural parameters, [β, ∆, Γ, θ].  In order to estimate the 
parameters, it is necessary to operate on the unconditional likelihood – the unobserved 
random term vi must be integrated out.  The contribution of observation i to the 
unconditional likelihood is 
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The integrals will not exist in closed form, but since they are of the form of expectations, 
they can be estimated by simulation, instead.  The simulated log likelihood is 
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Note that the simulation is over R draws on vi,r through βi,r as defined in (2).  The 
maximum simulated likelihood estimator is obtained by maximizing (5) over the full set 
of structural parameters, Λ.  (The relevant theory for this class of estimators can be found 
elsewhere, including Train (2002), Greene (2003a) and Gourieroux and Monfort (1996). 
Estimates of the structural parameters and estimates of their asymptotic standard errors 
are based on maximization of (5). 
 
3.  Simulation Based Estimation of Parameters with an  
     Application to American Movies 
 
 There is a possible ambiguity in how one should interpret the estimated 
parameters in a random parameters model.  To illustrate the point, we consider a recent 
application in marketing, Craig, Douglas and Greene (2003) which modeled the foreign 
box office receipts of 299 movies released in 8 countries over a 6 year period.  The 
structural equations of the model are 
 
 LogSalesi,c = αi  +  βi LogSalesi,US  +  τ1CDc + τ2McDc + τ3Ec 
      +  Σg λgGenrei,g  +  Σt φt Dt  +  εi,c 
(6) 
  αi   =  α  +  δα logIncomec  +  γαvi,α 
 
  βi   =  β  +  δβ logIncomec  +  γβvi,β 
 
where ‘c’ indicates the country (UK, Australia, Germany, Austria, Argentina, Chile, and 
Mexico), ‘i’ indicates the film, i = 1,...,299, the box office sales and income figures are in 
per capita terms, Genrei,g are twelve (after one is dropped) dummy variables indicating 
which of 13 genres characterizes the film, Dt, t = 1997,...,2002, are year dummy variables 
(the first is dropped), Ec is a dummy variable for the English speaking countries, and two 
variables, cultural distance, CDc, and McDonald’s restaurants per capita, McDc are used 
to measure cultural similarity to the U.S.  (Details on the data may be found in the cited 
paper.)  

In the hierarchical model, we have 
 

(7) βi | Incomec  =  β  +  δlogIncomec  +  σβvi,β, where vi,β ~ N[0,1]. 
 
We seek to ascertain whether U.S. box office sales are a ‘significant’ determinant of 
foreign box office sales for a film and, ultimately, to obtain film specific estimates of the 
parameters, βi.  A finding that estimates of β and δ are ‘significant’ does not imply that 
the random coefficient on the left is, in total, correspondingly so.  Large variation due to 
the normally distributed component, σβvi,β, might dominate the random parameter.  (Nor, 
it turns out, does lack of significance of these coefficients necessarily imply the absence 
of a ‘significant’ relationship.) Computing ˆ ˆ

i clogIncomeββ = β + δ� will likewise be 
uninformative since there is no film specific information in the estimate – this is merely 
an estimate of the common prior mean. More generally, in the model in (1)-(2), this 
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computation would correspond to some kind of average individual with these specific 
characteristics, rather than this specific individual.  [See Train (2002, Chapter 10, for 
discussion of this distinction.] 

For each film, we can estimate the posterior mean, E[βi | logSalesi,c,xi,c,zc, c = 
1,…,8], using Bayes theorem, where zc is log per capita income and xf,c is all other 
variables in the model including the log per capita U.S. box office.  The empirical 
distribution of the estimated film specific estimates will then suggest whether the results 
document a systematic relationship between U.S. and local box office receipts. 

For convenience, let yi denote the observations on the local box office for this 
film for all countries for which it is observed, and let Xi denote the observations on all 
other variables for this film, including US box office, genre, McD, log of per capita 
income, and so on, again for all countries.  Then, the posterior mean for the specific film 
is 

 
(8) E[βi | yi, Xi]  =  
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where f(βi|yi,Xi) is the conditional (posterior) density of βi given all the information 
available in the sample on this film.  This conditional distribution is constructed using 
Bayes theorem as follows: 

f(βi|yi,Xi) =  ( , | )
( | )

i i i

i i

f
f
β y X

y X
       

(9)   =  
 

( | , ) ( | ) .
( | , ) ( | )

i

i i i i i

i i i i i i

f f
f f d

β

β β
β β β

y X X
y X X

 

The joint density in the numerator is the product of the marginal distribution of βi, which 
is the normal distribution defined by (6), and the conditional distribution of the dependent 
variable given the parameter βi, which is the term in the likelihood function before the 
integration in (4).  The denominator is the marginal distribution of yi obtained by 
integrating βi out of the joint distribution. The conditional mean of this distribution is 
then obtained by the definition, 
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In order to estimate the conditional mean in (10), we would insert the estimated 
parameters for the remainder of the model in the likelihood function and the marginal 
density of βi, then compute the integrals.  However, the integrals will not exist in closed 
form.  They can be computed by simulation, by the same method used to compute the 
simulated likelihood earlier.  The simulation estimator of the posterior mean is, then 
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where , ,
ˆ( , , )i i i rL v βy X is the contribution to the likelihood function (not its log) of film i 

evaluated at all the estimated parameters and the rth simulated value, 

, , ,
ˆ ˆ ˆ ˆlogi r c i rIncome vβ ββ = β + δ + σ .  Note that the simulation is over the draws of vi,β,r.  
(Also, we note that the random constant term in the model is also simulated.)  In the 
results below, we will also make use of the estimated posterior variance of βi,           
Var[βi | yi, Xi]   = E[βi

2|yi,Xi] – (E[βi|yi,Xi])2.   This is estimated in the same fashion by 
first estimating the posterior expected square, with 
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The standard deviation of the posterior distribution is estimated with 
 

(13) ( )22ˆ ˆ. .[ | , ] [ | , ] [ | , ]i i i i i i i i iS D E Eβ = β − βy X y X y X . 

 
 Table 1 (reproduced from Craig, Douglas and Greene (2003) presents the 
maximum simulated likelihood estimates for the model.  The estimates in the first column 
are the nonrandom parameters counterparts to the RPM in (6).  This model is a linear 
regression model, where (2) implies that logIncome and an interaction with logUSBox 
will also appear in the model.  The second column gives the least squares estimates of (6) 
ignoring the random parameters specification, including logIncome.  (Note the zero 
‘income effect.’) The third column presents the maximum simulated likelihood estimates 
of the full RP model.  Based on the likelihood ratio test, the hypothesis of homogeneity of 
the model coefficients is soundly rejected; χ2 = 2(3154.532 - 3007.729) = 293.606 with 2 
degrees of freedom.  As to whether US Box office results significantly effect foreign 
sales, the least squares results strongly suggest so – the raw coefficient (1.131 in the 
presence of the income effect, 1.204 without it) appears to be strongly ‘significant’ with t 
ratios well in excess of 4.0.  But, in the random parameters model, the simple t ratio on 
the estimate of β is 1.82, suggesting a much weaker conclusion.   
 Figure 1 below shows for each of the 299 films the range given by the estimated 
posterior mean plus and minus 2.5 posterior standard deviations.  With conditional 
normality, this range would encompass over 99% of the mass of each posterior 
distribution.  Since the posterior distributions are not necessarily normal or symmetric, 
the actual mass may be slightly less than this, but will be more than 95%.  The horizontal 
lines in the figure are drawn at the sample mean of the 299 estimated conditional means 
(1.21) and at zero.  The dots in the centers of the bars show the film specific point 
estimates, the posterior means in (11).  The vertical bars divide the data into the six years 
of observations.  Only two of these 299 intervals include zero, and those only slightly.  
We conclude that the relationship between US and foreign box office is indeed, positive 
and significant.   
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Table 1.  Estimated Regressions for Log Per Capita Box Office, All Countries 
(Estimated Standard Errors in Parentheses)a 

Fixed Parameters Models (OLS) Random Parameters
Model (MSL)

Variable Fixed Parameters
Cultural Dist. -0.192 (0.168)** -0.155 (0.017)** -0.156 (0.010)**
Macs Per Capita 0.057 (0.004)** 0.040 (0.004)** 0.040 (0.003)**
English Lang. -0.260 (0.083)** 0.120 (0.079) 0.138 (0.052)**
Drama -0.138 (0.137) -0.130 (0.142) -0.138 (0.086)
Romance 0.008 (0.201) 0.022 (0.207) 0.042 (0.127)
Comedy -0.165 (0.134) -0.151 (0.138) -0.140 (0.085)
Action 0.110 (0.133) 0.118 (0.137) 0.092 (0.084)
Fantasy 0.509 (0.185)** 0.526 (0.191)** 0.559 (0.123)**
Adventure 0.108 (0.156) 0.110 (0.161) 0.141 (0.099)
Family -0.476 (0.160)** -0.498 (0.165)** -0.591 (0.092)**
Animated 0.148 (0.160) 0.152 (0.165) 0.149 (0.103)
Thriller -0.049 (0.170) -0.033 (0.176) -0.074 (0.106)
Mystery 0.403 (0.295) 0.383 (0.304) 0.227 (0.198)
Science Fiction 0.042 (0.173) 0.039 (0.179) 0.009 (0.112)
Horror 0.172 (0.160) 0.157 (0.165) 0.058 (0.112)
Year 1998 -0.237 (0.081)** -0.314 (0.084)** -0.566 (0.050)**
Year 1999 -0.160 (0.084)* -0.245 (0.087)** -0.445 (0.050)**
Year 2000 -0.332 (0.083)** -0.410 (0.085)** -0.587 (0.051)**
Year 2001 -0.339 (0.083)** -0.419 (0.085)** -0.640 (0.052)**
Year 2002 -0.619 (0.084)** -0.701 (0.087)** -0.929 (0.050)**

Random Parameters
Constant

Intercept 0.556 (0.358) -0.975 (0.183)** -3.649 (1.313)**
Income Effect -0.250 (0.048)** 0.000 (0.000) 0.359 (0.164)**
Std. Deviation 0.000 0.000 0.177

PerCapita US Box
Intercept 1.131 (0.245)** 1.204 (0.047)** 1.669 (0.917)*
Income Effect 0.011 (0.037) 0.000b (0.000) -0.057 (0.114)
Std. Deviation 0.000b 0.000b 0.369

Γ21 = 0.000b

Disturbance
S.D.

1.022 1.053 0.934

Log Likelihood -3154.532 -3220.691 -3007.729
R2 0.505 0.475
a*(**) Indicates significant at 95% (99%) significance level.
bFixed at this value.

 In principle, one could estimate the posterior, conditional means and variances for 
other functions of the model parameters.  Discrete choice analysis of consumer 
preferences provides an important example.  It is common in the discrete choice literature 
to use the model parameters to estimate ‘willingness to pay’ values.  This is computed as 
the ratio of a quantity coefficient to a price coefficient. For example, Layton and Brown 
(2000) examine a stated preference survey over programs for mitigating forest loss due to 
global climate change in the context of a random parameters (mixed) multinomial logit 
model.  Estimates of the RP model include a price coefficient and coefficients on three 
levels of forest loss under the programs.  Discussion of results considers significance 
levels of structural parameters – their model corresponds to (1)-(2) with ∆ = 0 and some 
zeros placed in Γ.  The basic reported results corresponding to our Table 1 include for 
one of the models, a price coefficient of -.1185 and coefficients on three programs 
corresponding to 2,500 ft. loss, 1,200 ft. and 600 ft. of –11.1871, -5.1586 and –1.9483, 
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respectively.  Discussion of willingness to pay estimates report only the three ratios of      
–0.1185 to these values as the point estimates, and overall confidence intervals.  In 
precisely this application, one could, instead, compute 
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The conditional standard deviation could be computed in the same fashion  See Hensher,  
Greene and Rose (2003) for another application. 
 This computations described here could also be applied to other more involved 
functions in a model. For example, the marginal effects in binary choice models or in 
models for counts such as the Poisson regression model are complicated nonlinear 
functions of all the model parameters.  One could estimate these for each individual in a 
sample.  For individual i in a panel probit model, the marginal effect of an xik, evaluated 
at the individual’s mean values would be δi = βk,i ( )i ix′φ β , a quantity which can be 
computed by simulation in the same fashion as βi in the WTP above.  
 
4.  Bayesian Analysis of Individual Heterogeneity 
 
 Allenby and Rossi (1999) have studied the issue discussed here at length in the 
context of a discrete choice, brand choice model.  Their model framework is different 
from our application, but is encompassed in the generic form given earlier.  They focused 
on a Bayesian approach while suggesting that the classical form of these computations 
was likely to be extremely cumbersome.  The preceding suggests that in fact, that is not 
actually the case.  (We note that the platform for their analysis was a multinomial probit 
(MNP) model, which they fit with Markov Chain Monte Carlo Methods.  They are 
certainly correct that simulation based estimation of the MNP model is cumbersome in 
the extreme, and has not advanced beyond quite moderate sized applications. As Train 
(2003) has analyzed extensively, this limitation is relaxed in several attractive directions 
by the mixed logit model, which is in fact, more flexible. Thus, we will eschew 
conclusions about the model in particular, and consider the generic issues that they 
raised.) 
 The main focus of Allenby and Rossi (1999) is the estimation of household 
(individual) level parameters.  In the Bayesian context, this is achieved by estimation of 
the posterior means of βi, as suggested earlier.  The posterior distributions follow from 
the assumed priors (normal in their cases) and are easily drawn or analyzed (as in their 
figure 1.)  Regarding a classical approach, they suggest (in their equation (20)) precisely 
the calculation suggested in our (11), but observe that the calculation is “substantially 
more computationally demanding than the full Bayesian approach and offers only 
approximate answers.”  The preceding suggests that the first of these is overstated.  The 
computations described here are straightforward to apply (we used the built in routines in 
LIMDEP 8.0).  It is true that the Bayesian ‘estimates’ are exact, but only as implied by 
the assumed priors. While they, themselves may appear to be diffuse, the influence of the 
assumed distributions remains a consideration. Also, it should be remembered that the 
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Gibbs sampler is a simulation based estimator, not a window into the true population. 
Whether the Bayesian posterior means are ‘exact’ measures of quantities that are only 
measured approximately by the classical methods is an issue that is at least open to 
question. The counterparts in the classical framework are the underlying stochastic 
assumptions, which are parametric and also occasionally controversial, and the use of 
simulation based estimation to obtain the posterior moments. We do note, though, 
whether this point/counterpoint is actually substantive may itself be moot. Train (2001) 
has compiled evidence that the numerical answers that one obtains with hierarchical 
Bayes and classical ‘mixed models’ are likely to be essentially the same. 
 One comparison does remain.  In Allenby and Rossi’s analysis, the posterior 
analysis provides a full statement of the posterior distribution, not just its first few 
moments.  (Again, this is derived from the assumed prior).  It is not likely that the same 
information could be obtained from the classical estimates.  The prior normal distribution 
implied by (2) does not imply normality of the posterior – as they note, the shape of the 
posterior will be influenced by the data.  How one could sample directly from the 
posterior for example, to construct a kernel density estimate, remains to be established.  
However, again, this may be of limited practical import – the quantities of interest are 
likely to be the HPD intervals in the Bayesian or the ‘confidence’ intervals in the 
classical case, and in either framework, there is no great difficulty in obtaining these. 
 
5.  Conclusion 
 

Random parameters (RP) models, also known as hierarchical models, mixed 
models, and random coefficients models, are enjoying a flowering in the applied as well 
as theoretical literature.  [For a sample in just one area, discrete choice modeling, see 
Train (2003).]  This note has proposed an extension of the existing classical, simulation 
based techniques that suggests a useful approach to the question of ‘significance’ as well 
as to the more general issue of how one can make effective use of the results after 
estimating an RP model for estimating individual level quantities of interest.  The 
proposed device combines use of the numerical statistical results with a useful graphical 
summary of the estimates to provide data on individual level heterogeneity as well as 
more general conclusions about the model’s implications for relationships among the 
component variables. 
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         Figure 1.  99% Confidence Intervals for Film Specific Coefficients on logUSBox                
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