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Abstract

When an economic boom ends, the downturn is generally sharp and short. When growth
resumes, the boom is more gradual. Our explanation for this pattern rests on learning about
productivity. When agents believe productivity is high, they work, invest, and produce more.
More production generates higher precision information. When the economy passes the peak
of a productivity boom, precise estimates of the slowdown prompt quick, decisive reactions:
Investment and labor fall sharply. At the end of a slump, low production yields noisy estimates
of the recovery. The noise impedes learning, slows the recovery, and makes booms more gradual
than crashes. A calibrated model generates asymmetry in growth rates similar to macroeconomic
aggregates. Fluctuations in agents’ forecast precision match observed countercyclical dispersion
in analysts’ macroeconomic forecasts.

“There is, however, another characteristic of what we call the trade cycle that our
explanation must cover; namely, the phenomenon of the crisis - the fact that the substi-
tution of a downward for an upward tendency often takes place suddenly and violently ,
whereas there is, as a rule, no such sharp turning point when an upward is substituted
for a downward tendency.” J.M. Keynes (1936)
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1 Introduction

When an economic boom ends, the downturn is generally sharp and short, meaning that the

growth rate falls far below trend for a short period of time. When a slump ends and growth

resumes, the boom is more gradual: longer lasting, with growth rates not as far from trend. This

type of asymmetry is referred to as ”growth-rate” or ”steepness” asymmetry. It is present in many

macroeconomic aggregates: output, industrial production, fixed investment and hours worked.

In the 1990-91 recession, investment fell by 7% and the unemployment rate rose by 1.8% points

over the course of three quarters. The recovery in the first half of the nineties was much more

gradual. Likewise, in the first three quarters of the 2001 recession, investment fell by 6.5% and the

unemployment rate rose by 1.5% points. In spite of a reduction in the volatility of business cycles

over the last two decades, their asymmetry has not diminished. In the decade from 1985 to 1995,

changes in monthly industrial production had a skewness of -0.6, compared to -0.2 in the decade

before and -0.8 in the period 1945-75.1

We explain this asymmetry with an endogenously varying rate of information flow about the

aggregate technology. When productivity is high, agents work harder and invest more. More pro-

duction generates higher-precision information about the level of technology, which is unobservable.

When the economy passes the peak of a productivity boom, agents have precise estimates of the

extent of the slowdown. Firms abruptly reduce investment projects and labor demand. At the

end of a productivity slump, low levels of production yield noisy estimates about the extent of the

recovery. This extra uncertainty at the start of an upturn restrains the expansion of investment

projects and new hiring. This restraint delays the recovery and makes booms more gradual than

crashes.

The model of asymmetric learning is embedded into a dynamic stochastic general equilibrium

model.2 Its distinguishing feature is the additive stochastic term in the output equation: yt =

ztft + ηt. Because the additive noise term η and the aggregate technology level z are unobserved,

agents use observed capital and labor inputs, ft = f(kt, nt), and output yt to form Bayesian beliefs

1Negative skewness in the distribution of changes captures the presence of slow increases, a large number of small,
positive changes, and sudden decreases, a small number of large negative changes.

2See Kydland and Prescott (1982), Cooley and Prescott (1995), and Backus, Kehoe and Kydland (1992).
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about technology. Since technology is multiplied by a function of inputs, larger inputs amplify

changes in technology. Higher variance in technology relative to noise makes technology more easily

observable. Following a change in technology, the speed of learning measures how quickly beliefs

converge to the truth. When the economy is in recession and inputs are low, filtered estimates

of technology are imprecise and learning is slow. In a boom, high capital and labor utilization

make learning faster. This variation in the speed of learning over the business cycle produces the

asymmetry in growth rates.

One interpretation of the additive noise term is as the contribution of intangibles to output. This

contribution is stochastic with a distribution that is invariant over the business cycle. Examples

at the level of the firm of such fixed factors are the (non-labor and non-capital components of)

senior management, branding & marketing, or research & development. Section 4 explores this

interpretation and its implications.

A key feature of our explanation for asymmetry is that recessions are times of high uncertainty.

Evidence from the Survey of Professional Forecasters supports this prediction. The median forecast

error and the dispersion of the GDP forecast across a panel of forecasters goes up in recessions.

This is evidence of more uncertainty about the state of the business cycle in recessions.

A calibration exercise shows that the model is able to replicate the negative skewness of output,

investment, employment and consumption. The model matches not only the magnitude of asym-

metry but also its frequency pattern. Skewness in output changes is a high frequency phenomenon.

It decreases as the length of the period over which changes are computed increases. It disappears

for 3-4 year changes. The model replicates this pattern because short term uncertainty about the

current state is resolved after a few periods.

Understanding the source of business cycle asymmetry improves forecasting of macroeconomic

aggregates. Acemoglu and Scott (1997) estimate that allowing for asymmetric booms and crashes

captures an additional 12% of US output growth fluctuations. Neftci (1984) shows that Federal

Reserve Board estimates of employment perform significantly worse at business cycle turning points

because they do not capture the asymmetric nature of booms and crashes. An individual in our

model, who behaves as though learning were symmetric, incurs a 4% higher cost of business cycles
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than agents who understand learning asymmetries. To the extent that there are gains from reducing

business cycle fluctuations, this result suggests non-trivial benefits from understanding the source

of asymmetry.

2 Literature on Asymmetry and Learning

The literature on business cycle asymmetries measures and models many different types of asym-

metry. Most asymmetries fall into three categories: level asymmetries (deepness), growth rate

asymmetries (steepness) and delays. All three are distinct features of the data. Level asymmetry

refers to the unconditional distribution of detrended output levels, whereas growth rate asymmetry

refers to the unconditional distribution of output changes. Growth rate asymmetry means that

increases and decreases in output have different distributions. Delay asymmetry results when the

output level stagnates at the trough of an otherwise symmetric cycle. Figure 1 illustrates the shape

of the cycle produced by level, growth rate and delay asymmetries.
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Previous papers have used a variety of mechanisms to produce business cycle asymmetries.

Hansen and Prescott (2000) use capacity constraints to prevent booms from being as large a devi-

ation from trend as recessions. In contrast, Kocherlakota (2000) and Acemoglu and Scott (1997)

use credit constraints and learning-by-doing to amplify shocks in the trough of a business cycle.

Williams (2002) uses large deviation theory to investigate asymmetries in the probability of large

recessions and booms. These are examples of level asymmetry.

Most explanations for growth rate asymmetry rely in some way on a learning process. In a
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partial equilibrium model of lending, Veldkamp (2001) uses the idea of faster learning when more

investment projects are undertaken to generate asymmetry in investment and interest rates. Using

a varying signal quality rather than a varying number of signals makes more precise calibration

in this paper possible. Chakley and Lee (1998) employ noise traders who become a relatively

larger fraction of the market in bad times. Boldrin and Levine (2001)’s asymmetric spread of new

technologies, Jovanovic (2003)’s asymmetric technology adoption costs, and Zeira (1999)’s learning

about market capacity, all have bad signals that are either more informative or more extreme than

good signals.

Chamley and Gale (1994) generate delay asymmetry using irreversible investment. Their model

shares the feature that investment generates information. At low levels of production, firms wait to

produce until they have learned from other firms’ investments. This produces the delayed recovery

that the authors aim to explain. Since delay is neither an upturn nor a downturn it will not affect

the relative speed of booms and crashes.

Our explanation for growth asymmetry relies on the fact that recessions are times when un-

certainty is high. This relationship is a recurrent idea in economics. In a model with a GARCH

shock to output, a sudden downturn increases expected future output volatility (Ebell (2001)). To

guard against consumption disasters, risk-averse agents scale back their inputs, accentuating the

downturn when uncertainty is high. This paper generates GARCH-like dynamics endogenously

through the learning mechanism. Potter (1999) claims that recessions are caused by uncertainty

about the economic environment which makes firms unable to coordinate on a high-output equi-

librium. Estimating a Bayesian model where agents are learning about the growth rate, Cogley

(2002) finds that consumers may have more difficulty determining the permanent component of

their income when output is low.

Work from many corners of economics suggests that learning and output fluctuations are in-

timately related: learning by doing (Jovanic and Nyarko (1982)), learning by lending (Lang and

Nakamura (1990)), learning about demand (Rob (1991)). Within the business cycle literature,

Cagetti, Hansen, Sargent and Williams (2001) have agents who are uncertain about the drift of

technology and solve a filtering problem, as in this model. Evans, Honkapohja and Romer (1998)
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and Kasa (1995) show that business cycles can be produced by learning, rather than by technologi-

cal fluctuations. In these models, learning is not only related to the business cycle, it is fundamental

to the cyclical behavior.

3 Evidence of Business Cycle Learning

Before we show that our model is capable of producing asymmetry, we first ask whether learning is

a plausible explanation for business cycle asymmetry. The theory relies on lower precision forecasts

in bad times than in good. To test this hypothesis empirically, we measure the precision of analysts’

forecasts of future real GDP.

To approximate the amount of uncertainty, we use the median forecast error in a panel of

forecasters. For a given quarter, the median forecast error is the log absolute deviation of the

median forecast from the final nominal GDP, where the latter is measured two quarters after the

end of the quarter. Analysts forecast nominal GDP one through four quarters into the future. The

hypothesis is that the median forecast error is negatively correlated with the detrended level of

output.

Table 1 contains the results of regressions with detrended GDP as the independent variable and

the median forecast error as the dependent variable. Detrending is done with a Hodrick and Prescott

(1997) filter. The correlation between uncertainty and output is negative for all forecast horizons

(1 to 4 quarters ahead) and increases in magnitude and significance with the forecast horizon. This

supports the model’s prediction that agents have larger GDP forecast errors (learning is slower)

when output is low.

Forecast Horizon +1 +2 +3 +4
Median Error −0.00 −0.11 −0.25∗∗ −0.33∗∗

( t-stat) (0.07) (1.58) (3.65) (4.98)

Table 1: Dependent variable is the absolute value of the median analyst forecast error. Independent variable is real GDP

as a percentage deviation from tend. T-statistics, based on HAC Newey-West corrected standard errors, are in parentheses.

A ∗ denotes significance at the 5% level, ∗∗ denotes significance at the 1% level. Analyst forecast data is from the survey

of professional forecasters, available at www.phil.frb.org/econ/liv/index.html. Data is quarterly from 1968:4 to 2003:1 (137

observations). The number of analysts varies between 9 and 76 with an average of 36 per quarter.
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Figure 1 plots the one-period ahead median forecast error and GDP percentage deviation from

trend, showing a strong negative correlation. The median forecast error corresponds to the forecast

error of the representative agent in the model. This measure supports our main hypothesis: forecast

accuracy and output are negatively correlated.3

4 Model

Preferences and Endowments

An infinite-lived representative consumer ranks consumption streams c = {ct}∞t=0 and labor streams

n = {nt}∞t=0 according to

U = E0

∞∑

t=0

βtu(ct, 1− nt), (1)

where u is in C2,2, nonseparable, strictly increasing and concave in both arguments, and satisfies

the Inada conditions:

u(ct, 1− ns
t ) =

(cσ
t (1− nt)1−σ)1−φ

1− φ
.

The parameters φ and σ control risk aversion and the intratemporal elasticity of substitution

between consumption and labor. The household is endowed with an initial capital stock and one

unit of time each period.

Firms and Technology

Competitive firms have access to a risky Cobb-Douglas production technology f that uses capital

and labor as inputs. There are two types of production risk. There is an aggregate technology

shock, zt, which is a multiplier on production, and a shock ηt which is additive. The shocks ηt are

3Although more loosely connected to the model, we also find a negative relationship between the dispersion of
analysts’ forecasts of real GDP and real GDP deviations from trend (not reported). Dispersion shoots up near
business cycle troughs. Median forecast errors and cross-sectional dispersion are related. Using inflation data from
the Survey of Professional Forecasters, Rich and Tracy (2003) documents a stable relationship between observed
heteroscedasticity in forecast errors and cross-sectional dispersion in forecasts. Veronesi (1999) shows that a similar
relationship holds in financial markets. Stock returns are lower when analysts’ GDP forecasts are more diffuse. This
is consistent with our finding because equity returns are a leading indicator of real GDP.
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i.i.d. normal variables with mean zero and constant variance ση:

yt = ztf(kt, n
d
t ) + ηt. (2)

The technology shock is specified as a two-state Markov switching process zt ε {zH , zL}. We

assume that the transition matrix Π is symmetric to ensure that all asymmetry in the resulting

dynamics is endogenous.

This specification implies that expected returns to scale are constant. In this economy, entry of

new production units is unprofitable ex-ante.

Two features of the production shock are crucial for learning asymmetry. First, the production

shock η must become relatively smaller in magnitude than ztft at the peak of a business cycle,

and relatively larger in the trough. In other words, the variance of the output shock ση can rise

when production increases, but must rise at a rate less than ft. This condition implies that the

signal-to-noise ratio is procyclical. For the computation, we will assume that the shock variance σ2
η

is constant, although this is a more restrictive assumption than necessary for the model to function.

Appendix A.1 shows that, for a setup in which individual production units are subject to an

individual shock ηi
t, the aggregate signal-to-noise ratio is procyclical. Aggregating over production

units generates an output equation consistent with (2).

Second, even though the model and data are analyzed in a stationary environment, learning

asymmetry should not disappear when growth is added. As the economy grows, learning will

become trivial unless the standard deviation of the production shock grows at the same long-run

rate as output. We will discuss one interpretation of a shock with these properties in section 5.

Information

Let xt denote the t-history of any series x. The model is defined on a probability space with

filtration Ft ≡ {yt−1, ct−1, dt−1, kt, it, nd,t, ns,t, θt, wt, pt} . All choice variables in period t are Ft-

measurable. Neither the household nor the firm observe the current or past values of technology

zt nor the noise ηt. Output yt, dividends dt and consumption ct are not observed until the end of
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period t. All other variables are known at the beginning of period t.

Agents use a Bayesian filter to forecast zt given Ft. This filter is composed of a Bayesian

updating formula (3) and an adjustment for the possibility of a state change (4).

P (zt−1 = zH |Ft) =
φ(yt−1|zH ,Ft−1)z̃t−1

φ(yt−1|zH ,Ft−1)z̃t−1 + φ(yt−1|zL,Ft−1)(1− z̃t−1)
, (3)

[
P (zt = zH |Ft), P (zt = zL|Ft)

]
=

[
P (zt−1 = zH |Ft), P (zt−1 = zL|Ft)

]
Π, (4)

z̃t =
[
P (zt = zH |Ft), P (zt = zL|Ft)

]



zH

zL


 , (5)

where φ is a normal probability density. Equation (3) applies Bayes’ law to compute the posterior

probability, at the beginning of time t, that the economy was in the high state in the preceding

period. Equation (4) converts this posterior belief about the time t − 1 state into a prior belief

about the time t state. The result of this updating is z̃t, the expected technology value in period t.

It is a convex combination of the high and low true technology states. Equations (3) and (5) form

the observation and state equations of a signal extraction problem with time-varying parameters.

Household Problem

Households enter each period with a belief about technology z̃t and an ownership share stock

portfolio θt. Given wages and share prices {wt, pt}, they choose how much labor to supply, ns
t and

what fraction θt+1 of the shares of the firms to purchase. Then the additive shock ηt is realized

(but unobserved) and the dividend dt is received. Finally, the forecast of z is updated.

The household problem is to maximize U in equation (1) subject to a sequence of end-of-period

budget constraints and interiority constraints:

ct + ptθt+1 ≤ wtn
s
t + pt)θt + dtθt+1, ∀t

ct ≥ 0, 0 ≤ ns
t ≤ 1, θ0 given.

(6)
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Households decide on stock purchases and labor supply before the shock is realized. As a result

of this timing assumption, consumption is a residual. It absorbs unexpected shocks to output

coming from z or η. Stock purchases finance investment projects.

Firm Problem

Competitive firms maximize lifetime expected shareholders’ value.

S = E0

∞∑

t=0

βt

(
uc(ct, 1− nt)
uc(c0, 1− n0)

)
dt. (7)

Firms choose how much labor to hire and how much to invest at the beginning of the period.

Wages and rental rates are set at the beginning of the period. Then the shock η is realized (but

not revealed) and output yt is realized. The profits of the firm (negative or positive) are paid out

as dividends dt to the households.

The firm’s problem is to maximize S in equation (7) subject to the dividend determination

equation:

dt = ztf(kt, n
d
t ) + ηt − wtn

d
t − it, ∀t (8)

and the capital accumulation equation:

kt+1 = (1− δ)kt + it, ∀t (9)

kt ≥ 0, k0 given. (10)

Dividends, positive or negative, ensure zero profits ex-post. Because η is normally distributed,

profits have unbounded support. Households, who own the firms, face unlimited liability.

New investment projects and staffing take time to plan. Hence, the timing assumption of

choosing investment and labor supply at the beginning of the period seems consistent with the

fact that the National Association of Purchasing Managers index is a leading indicator of economic

activity.
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Equilibrium

For a given k0, and an initial distribution of z0, an equilibrium is sequence of quantities

{ct, it, kt, n
d
t , n

s
t , yt, θt}∞t=0 and prices {wt, pt}∞t=0 such that

• Given prices, households solve the household problem,

• Given prices, firms solve the firm problem,

• The markets for goods, labor, and firms’ shares clear.

yt = it + ct, ns
t = nd

t , θt = 1.

Optimality Conditions

Firms hire workers until the expected marginal products of labor equals the wage:

wt = Et [ztfn(kt, nt)] . (11)

Workers supply labor until the marginal rate of substitution between consumption and labor equals

the wage

wt =
Et [un(ct, 1− nt)]
Et [uc(ct, 1− nt)]

. (12)

Equation (11) differs from the standard condition in that the technology level zt and hence the

marginal product of labor are unobserved. Equation (12) differs from the standard condition in

that the consumption level ct and hence the marginal utilities of consumption and leisure are

unobserved at the beginning of the period. We assume that wages are determined at the beginning

of the period. In equilibrium they equal the expected marginal product of labor, which equals the

ratio of the expected marginal disutility of labor to the expected marginal utility of consumption.

From the firm’s first order condition with respect to capital, we obtain the Euler equation:

Et [uc(ct, 1− nt)] = Et [βuc(ct+1, 1− nt+1)(zt+1fk(kt+1, nt+1) + 1− δ)] . (13)
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The Euler equation from the household’s problem is:

Et [uc(ct, 1− nt)] = Et

[
uc(ct, 1− nt)

(
dt

pt

)
+ βuc(ct+1, 1− nt+1)

(
pt+1

pt

)]
. (14)

Equations (13) and (14) relate the cum-dividend return on stocks to the physical return on capital

invested in the firm. Learning affects the right hand side of the Euler equations by changing the

joint distribution of time t + 1 consumption and labor.

Social Planner Problem

To solve the model numerically, we work with the planner problem. The planner’s problem is to

maximize U in equation (1) subject to the capital accumulation equation (9) and the sequence of

resource constraints:

ct + it = ztf(kt, nt).

The planner is subject to the same timing and informational constraints as the agents in the

decentralized model. The competitive equilibrium and the Pareto optimum problem are equivalent

because they share the same first order conditions, the goods market clearing condition is identical

to the planner’s resource constraint, technology is convex, and preferences insatiable.

The planner’s problem can be formulated in a recursive fashion. The state variables are the

expected value of technology and the capital stock: st = (z̃t, kt). The planner enters the period

with a capital stock kt and a forecast of the technology shock z̃t. Then, he chooses nt and it. Next,

zt and ηt and hence yt are realized, but only yt is observed. Finally, the forecast of z is updated and

consumption is determined as a residual. The value function V (st) solves the following Bellman

equation:

V (kt, z̃t) = max
it,nt

u(ct, 1− nt) + βE[V (kt+1, z̃t+1)|Ft]

subject to kt+1 = (1− δ)kt + it,

ct = ztf(kt, nt) + ηt − it,
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ct ≥ 0, 0 ≤ nt ≤ 1, kt ≥ 0, and k0 given,

taking updating rules (3) (4) and (5) as given.

In choosing optimal policies, we assume that the planner does not take into account the effect

of labor and investment choices on the evolution of beliefs. This assumption rules out active exper-

imentation, the costly provision of information. A planner economy with active experimentation

has no decentralized counterpart because information externalities invalidate the welfare theorems.

In a decentralized economy, information is a public good. Information provision is subject to a

free-rider problem. In a large economy, the provision of this public good would fall to zero. There-

fore, households and firms do not take into account the effect of their actions on the evolution of

aggregate beliefs. To implement passive learning, the planner iterates on the following algorithm.

First, given beliefs about Ft+1, he chooses policies. Second, given policies, he updates beliefs. The

iteration stops when beliefs and policies are consistent.4

5 Interpreting the Production Shock

One possible way to interpret the additive production shock η is as the contribution of intangible

capital to output. Intangible capital is a fixed production factor: its size does not fluctuate over the

business cycle. Examples of intangible fixed factors are the non-labor and non-capital components

of senior management, branding & marketing, or research & development. Because much of the

surplus generated by these factors is firm-specific, it is unlikely to be paid in full to the managers or

marketers. Instead, some of the surplus from these activities will remain with the firm, increasing

its market value.

The signal extraction problem should be relatively easy for firms or industries that are relatively

intensive in tangible capital. This is because the signal-to-noise ratio is much larger than one. Firms

in the manufacturing sector or firms with a large book-to-market value ratio fall into this category.

Firms or industries with a tangible to intangible capital ratio closer to one are predicted to show

more asymmetry in output. When the signal-to-noise ratio is near one, cyclical changes in the ratio
4Quantitatively, using active or passive learning makes a small difference for policy rules in the planner problem.
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have the largest effect. Technology firms or firms with a small book-to-market ratio (around 0.5)

fall into this category. Future work will test this cross-sectional prediction with asset price data.

Hall (2001) also relates the value of firms’ intangibles to stock returns.

Production Shocks in a Growth Economy

Our formulation of the additive noise term is consistent with asymmetry that does not vanish in a

growing economy. In an economy with growth, the contribution of the additive shock η to output

increases at the long-run growth rate of the economy, keeping the long-run signal-to-noise ratio

constant. There are constant returns to scale in the long-run.

In a stationary environment, the model assumes that the variance of η is constant over the

business cycle. Firms cut investment projects and lay off workers as soon as the economy rounds

the business cycle peak, but fixed factors such as patents, senior management and brand name stay

relatively constant. In an economy with growth rate γ, intangible factors’ contribution to output

γη must increase in magnitude at the long-run growth rate of output (and production). If this were

not the case, the signal-to-noise ratio would fall over time, the signal extraction problem would

become easier and asymmetry would eventually disappear. Table 3 shows the skewness in monthly

and quarterly changes in industrial production by decade. The industrial production data does not

support the hypothesis that asymmetry is disappearing over time.

6 Data, Calibration and Computation

If crashes are more sudden than booms, then the most extreme downward changes in output will be

larger in magnitude than the largest upward movements. These changes are measured as differences

in the log of output. If the negative changes are more extreme, then the unconditional distribution

of log differences will exhibit negative skewness.

Data

We begin the calibration exercise by computing second and third moments of macroeconomic ag-

gregates for the last 50 years. Table 4 lists moments of U.S. output (y), capital(k), employment (n),
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and consumption (c). All data are quarterly from 1952:1 until 2002:1. Output data is from U.S.

Department of Commerce, Bureau of Economic Analysis (BEA). Quarterly capital data is obtained

by combining an annual capital stock series from the fixed asset tables of the BEA and quarterly

fixed private investment from the Bureau of Economic Analysis used to interpolate between the

years. Similarly, quarterly hours worked is constructed using quarterly employment (BLS data:

non-farm, seasonally adjusted) to interpolate between yearly hours worked (from the BEA). Nom-

inal GDP, consumption and investment are deflated with their respective GDP deflators (all from

BEA). All variables are per-capita, where the total population data is from the Census Bureau.

Methods of Detrending

The choice of detrending procedure is not innocuous for the asymmetry measure. Equally critical

is the time horizon of changes in the data. To get a full picture of the frequencies at which growth

asymmetry in output appears, we examine various choices of filters and horizons.

The most common filters are the Hodrick and Prescott (1997) filter and the Baxter and King

(1995) bandpass filter. Both are two-sided, meaning that they use information both from the past

and the future to estimate the filtered value. The use of a two-sided filter raises two issues. First,

in a non-stationary version of the model, agents would not have access to the future information

necessary to detrend. Second, if the trend line starts to fall because a sudden crash is ahead, this

will reduce the magnitude of the crash in the detrended data. A one-sided version of the bandpass

filter does not have these drawbacks. Finally, we use geometric detrending with two break points

to account for the productivity slowdown in the 1970’s. We compare these detrending methods to

a simple log difference of the raw data in table 2.

HP Band Pass One-Sided Log Dif. Geometric
GDP 0.06 −0.44 −0.22 −0.40 −0.29

Table 2: Skewness in detrended Output. Results are for 5 different detrending procedures: Hodrick-Prescott,
Baxter-King, 1-sided bandpass constructed with the MATLAB command invfreqz, log differences and geometric detrending
with breakpoints in 1969:4 and 1980:3. Data are for real per capita GDP between 1952:1 and 2002:4.

Multi-period Changes To capture the idea that slow booms and big crashes do not necessarily

occur at one quarter horizons, we examine skewness of N -period changes in output, varying N
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between 1 and 16 quarters. Figure 2 plots these N-period skewness for the four detrending meth-

ods, during the overlapping sample period, 1956:1 to 1998:1. In spite of the level differences, all

methods show negative skewness in output. Negative skewness diminishes, and eventually vanishes

at horizons of around 3-4 years. Thus, negative skewness is a subtle but robust feature of the data

that mainly arises as a 1 to 12 quarter phenomenon.

Calibration

Following Kydland and Prescott (1982), and Cooley and Prescott (1995), we calibrate the model

at quarterly frequency. The depreciation rate of δ = 0.012 matches the investment to capital ratio

and the discount factor β = 0.98 is chosen to match the capital to output ratio. Since the data is

quarterly, δ and (1 − β) are one-fourth of their annual rates. Preference parameter σ = 0.386 is

chosen such that steady state labor supply is 1/3rd. Production is Cobb-Douglas with exponent

α = 0.34 chosen to match the labor share of income. Both labor hours and the fraction of labor

income are fairly constant in the post-war U.S. data. Finally, we choose the coefficient of relative

risk aversion to be φ = 4 and check the robustness of our results with low risk aversion φ = 2.

Three parameters are specific to our learning model. These are the probability of a change in

the technology state, the relative values of those states, and the variance of the production shock σ2
η

. The probability of a technology change is chosen so that the implied autocorrelation of technology

matches Cooley and Prescott (1995)’s estimate of 0.95. The absolute level of the technology state

is unimportant since results compare percentage deviations from trend. However, the distance

between zH and zL will determine the volatility of technology. On the basis of estimates of Solow

residuals, Cooley and Prescott (1995) set the standard deviation of the technology shock at 0.007

in an AR(1) specification for ln(z). In our formulation, this corresponds to a technology process

with standard deviation of 0.032. Setting zH and zL to (1 + 0.032, 1 − 0.032) produces the same

standard deviation.

The shock variance σ2
η is important because it determines how easy or difficult it is to learn z. If

the shocks are large, estimates will be bad and agents will have difficulty learning that transitions

have occurred. If the shocks are very small, learning becomes trivial. The standard deviation of
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the shock ση = 0.02 is chosen to match the observed correlation between the median forecast error

and observed real GDP.

Computational Details

To estimate the value function and policy rules for the social planner, we use value iteration on a

grid, with linear interpolation between nodes. There are two continuous state variables: the capital

stock, kt, and the believed technology level, z̃t. Because capital leaves the grid in some states of

the world, we need an extrapolation method. We use the function Vz(k) = −ψk−κ and determine

the two unknown coefficients by matching the level and slope of the interpolated function at the

grid boundaries. The value of infinite capital is zero, and zero capital has negative infinite value.

We simulate the model for 50,000 periods and compute statistics on 250 sub-samples of 200

periods each. This is the length of the data. Skewness of the first-differenced simulated data is our

measure of growth asymmetry.

Learning and Output Volatility

A significant challenge in comparing the model to data lies in a fundamental tension between

learning and output volatility. If the (i.i.d.) shock η is to disguise the true technology state z,

then it has to be big enough to make a boom look like a recession. Any process that would make

learning non-trivial would also imply an unrealistically high volatility and low autocorrelation in

output.

To resolve this conflict, the time series that we compare to observed GDP data is not y, but

rather the estimate of the persistent component of output at the end of the period, ŷ. The reason a

data collecting agency might want to report ŷ is because a measure of the persistent component of

output is useful for predicting future outcomes. To be precise, the data collecting agency would like

to report yt − ηt, but does not observe η. Instead, it constructs and reports a filtered GDP series,

given public information available at the end of the period: ŷt = E[zt|Ft+1]f(kt, nt). The filtered

time series ŷ can be interpreted as revised data.5 The interpretation of η as the contribution of
5An alternative view of GDP revisions is that they correct measurement error. However, Mankiw and Shapiro

(1986) and Grimm and Parker (1998) find empirical evidence that subsequent revisions to US GNP/GDP growth
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intangibles to output is consistent with this goal of revisions since intangibles are likely to be a

component of output that is poorly-measured and hard to predict. Lastly, for the national income

accounts to balance, consumption must be filtered in a manner identical to output. Consumption

is a residual determined by ĉt = ŷt − it.

Three pieces of empirical evidence support the interpretation of observed GDP as filtered es-

timates. First, revisions to GDP are often quite large. Mean absolute revision from preliminary

to final estimates of annual US real GDP growth data are 1.3 percentage points for the period

1983-2000. Data collecting agencies report revisions to previous estimates that make use of data

available only after the period to which the estimate pertains, i.e. they filter (see Fixler and Grimm

(2002)). Second, Faust, Rogers and Wright (2001) study GDP announcements for different coun-

tries and show that successive revisions move GDP estimates closer to trend. They conclude that

revisions reflect the removal of idiosyncratic ”noise” from the series. Third, the Bank of England,

one of the only banks that disclose their estimation procedure, explicitly states that a goal of GDP

revisions is to reduce ”variation around a relatively fixed level” (ESA95 Inventory, Chapter 2.1,

p.33, January 2001).

7 Results

No-Learning Model

To isolate the effect of learning on business cycles, we compute results for a calibrated version

of the model with no learning. The model is identical to the learning model except that the

technology level is revealed at the start of each period: zt ∈ F t. This no-learning model differs

from the standard real business cycle model in the literature in two respects. First, technology

follows a Markov switching, rather than an AR(1) process. Second, and more substantively, there

are additive i.i.d. shocks to output. Since labor and investment are chosen at the beginning of the

period, the shocks move consumption around. Agents insure against a bad shock to consumption

data display increasing variances. Increasing variances is consistent with updating filtered estimates, but inconsistent
with successive reduction of measurement error. Sargent (1989) combines both views in an economy where a data
collecting agency observes error-ridden data, but reports a filtered version. The filtering also generates a reported
time series that is smoother than the true output.
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by investing less and working more.

Moments of the simulated no-learning model are summarized in table 6. Following Cooley and

Prescott (1995), we HP-filter all simulation results before comparing second moments in model and

in the data. Because of the distortionary effect of the two-sided HP filter on skewness, we compute

skewness of changes in the unfiltered series.

In matching the second moments, this model suffers from the same problems as the original real

business cycle models. One example is the low volatility of labor. Changing from CES preferences

to Hansen (1985) preferences could remedy this.

Even without learning, the model generates some asymmetry. This asymmetry comes from the

assumption that consumption is a residual that absorbs output shocks. When productivity has

been high and falls, agents slash investment in order to prevent a large fall in consumption. When

productivity has been low and rises, a small capital stock keeps the output level low. An aggressive

investment policy with small planned consumption could result in an unexpected consumption

disaster. Instead, risk-averse agents increase investment slowly as output rises, and the ”boom” is

more gradual. This asymmetry can be seen in the negative skewness of output estimates, labor,

and investment. This is one source of asymmetry in the model. However, it can reproduce only half

the asymmetry in the output and it does not produce any skewness statistics that are significantly

different from zero.

Learning Model

To match the third moments of the data, the learning mechanism is needed. The learning model

(table 7) matches the asymmetry in output, labor and capital. All of the aggregates, except capital,

have skewnesses that are significantly different from zero. For investment, the model skewness is

too low, but the point estimate in the data is within the 95 percent confidence interval of the

model’s skewness.

Due to the smoothing effect of estimating trend GDP, the volatility of output is slightly too low.

This tells us that, if governments are releasing smoothed estimates as GDP numbers, the volatility of

productivity shocks may be higher than previously estimated. Lowering the risk aversion parameter
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remedies the problem somewhat, while leaving the third moments largely unchanged (table 8).

The model can also reproduce the pattern of negative but diminishing skewness, as the horizon

increases. The reason skewness diminishes is that 80 percent of the change in output from the

boom or crash occurs within 8 periods, on average. Changes over a period that includes the entire

boom or crash will not measure the speed of these movements. Skewness in multi-period output

changes is reported in figure 3, which plots the skewness of (yt − yt−N ) for the learning model,

using different detrending methods. The model starts off with short-horizon asymmetry below

zero. The asymmetry approaches zero as the horizon lengthens. Finally, we compare the N-period

skewnesses for the learning and the no-learning model (figure 4). Asymmetry in the no-learning

model disappears after 9 quarters. In the learning model, asymmetry diminishes, but stays negative

at all horizons, similar to the log-difference and geometrically detrended data in figure 2.

Another way to see the effect learning has on asymmetry is to vary the difficulty of learning.

The theory predicts that both high-noise (high ση) and low-noise (low ση) environments should

have little asymmetry. Asymmetry should be strongest where learning is neither impossible nor

trivial. Figure 5 shows that output skewness is most negative when the variance of η is close to half

the variance in output. As the ratio of noise to output variance approaches zero and one, skewness

approaches zero.

Finally, we ask what is the effect of our assumption that agents are all passive, rather than

active learners? We solve a model in which there is no separation between the filtering and the

control problem. Table 9 summarizes the results. The second and third moments are close to the

ones we obtain for the passive learning environment.

Welfare Analysis

Accounting for asymmetries can have important implications for predicting the future fluctuations

of macroeconomic aggregates. To isolate the cost of ignoring learning asymmetry, we consider two

agents. The first agent updates beliefs, using the model specified in this paper. The second agent

is unaware of the learning asymmetry in the economy. He believes that the standard deviation of

the additive shock is proportional to production ft, making learning equally difficult throughout
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the business cycle. Placing both of these agents in the environment of our model, we ask how the

one with the misspecified model fares, relative to the agent who understands learning asymmetry.

To compare the welfare of our two agents, we compute the total cost of business cycles for each

agent. Lucas (1987) defines the total cost of business cycles as the compensation in consumption,

χ, needed to equalize lifetime utility with a world without business cycles.

E0

∞∑

t=1

βtu((1 + χ)ct, nt) =
∞∑

t=1

βtu(E0(ct, nt)).

The sources of risk in the model are technology shocks z and the additive shocks η.

We find that the cost of business cycles for the agent with the misspecified model is 3.8%

higher. The consumption multipliers, χ, are 0.16% and 0.15% for the agents with the asymmetric

and symmetric models. Given the low volatility of consumption and hours worked in the standard

RBC model, the small costs are not surprising. However, to the extent we think there are gains

from reducing business cycle fluctuations, this result suggests some benefits from understanding

the source of asymmetry.

8 Conclusion

Learning about the technology level over a business cycle can generate asymmetry in booms and

crashes. The reason for the asymmetry is that when agents believe that the level of technology is

high, they invest more and work harder. Because technology movements are amplified by the pro-

duction function, more production makes the technology process is more transparent. It becomes

easier to forecast the future accurately. Because of the mean-reversion in technology, large down-

turns are most likely when technology is high and large upturns when technology is low. Therefore,

when large downturns happen, agents quickly develop accurate estimates of the decline. The high

speed of learning at the peak of a cycle causes the response to a bad technology shock to be sudden

and the high precision of the estimates causes that reaction to be large. Booms happen when

production is low and it is very difficult to observe changes in technology. more gradual changes in

beliefs and more uncertainty about increases in technology cause booms to be more gradual. We
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embed this mechanism into a dynamic stochastic general equilibrium model.

While suffering from the same second moment problems as a standard model, the learning model

is a substantial improvement in matching the asymmetry in output, investment and employment.

As in the data, the model predicts that the degree of asymmetry diminishes at lower frequencies.

The crucial assumption for asymmetric learning is the assumption that the standard deviation

of the idiosyncratic shocks does not rise proportionately with production over the business cycle. If

noise and signal grew at the same rate, then the filtering problem would be just as difficult in good

times and bad. Data on analyst forecasts support the main premise of the model, that uncertainty

varies counter-cyclically. This work suggests that there are significant asymmetries in the data that

can be explained by uncertainty and learning about productivity over the business cycle.

The results may shed some light on related asset-pricing puzzles. Asymmetric learning generates

counter-cyclical uncertainty that may account for counter-cyclical movements in asset price volatil-

ity (Bekaert and Wu (2000)), counter-cyclical equity premia (Campbell and Cochrane (1999)) and

return asymmetry (Chen, Hong and Stein (2001)). To generate quantitatively meaningful asym-

metry predictions for asset pricing, this model would need to be augmented with habit persistence

(Boldrin, Christiano and Fisher (2001)) or frictions such as endogenous borrowing constraints

(Lustig and VanNieuwerburgh (2002)).
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A Appendix

A.1 Aggregation over Productive Units

This appendix shows that the main feature of the model, that the signal-to-noise ratio is procyclical, is preserved
under aggregation. Model predictions are agnostic about the scale of operation and the number of production
units (industries, firms or plants). We show the following two properties. First, holding the number of production
units fixed, if the scale of production units varies over the business cycle, then the aggregate signal-to-noise ratio is
procyclical. Second, holding the scale of a productive unit fixed, if the number of production units varies over the
business cycle, then the aggregate signal-to-noise ratio is also procyclical.

The output of each production unit is given by yi
t = ztf(ki

t, n
i
t) + ηi

t. Let there be N productive units in the
economy each operating at a scale f i

t = f(ki
t, n

i
t). The technology shock is aggregate and continues to follow a 2-state

Markov chain with variance σ2
z . The function f is increasing, concave, and twice continuously differentiable in both

arguments and is homogenous of degree one. The additive productivity shock ηi
t is normally distributed with mean

zero and constant variance σ2
η.

We investigate two (natural) cases for the cross-correlation of additive shocks:

• (i) Corr(ηi
t, η

j
t ) = 0, ∀ (i, j) and

• (ii) Corr(ηi
t, η

j
t ) = 1, ∀ (i, j).

The aggregate output equation yt = ztf(kt, nt)+ηt is obtained by summing over the outputs of individual production
units. By definition ηt =

PN
i=1 ηi

t and f(kt, nt) =
PN

i=1 f(ki
t, n

i
t).

First, because the variance of the additive shock ηi
t is constant over the business cycle and production f i

t is
procyclical, the individual production unit’s signal-to-noise ratio is procyclical and equals (f i

t )
σz
ση

.

Proposition 1. For any Corr(ηi
t, η

j
t ), ∀ (i, j), if the individual signal-to-noise ratio is procyclical but the number of

firms is constant over the business cycle, then the signal-to-noise ratio is procyclical at the aggregate level.

With N production units, the aggregate signal-to-noise ratio is: (i)
p

(N)(f i
t )

σz
ση

(ii) (f i
t )

σz
ση

. In each case (and

any intermediate case) and for any given level of N , the aggregate signal-to-noise ratio is at least as procyclical at
the aggregate as at the production unit level.

Second, let each productive unit produce 1 unit of consumption good: f i
t = 1. Then, by construction, the

signal-to-noise ratio is constant over the business cycle at the level of the production unit and equal to
σ2

z
σ2

η
.

Proposition 2. If Corr(ηi
t, η

j
t ) < 1, ∀ (i, j), the number of firms is procyclical, and the individual signal-to-noise

ratio is constant over the business cycle, then the signal-to-noise ratio is procyclical at the aggregate level.

With N production units in the economy, the aggregate signal-to-noise ratio is
p

(N) σz
ση

in case (i) and σz
ση

in

case (ii). In case (ii), the aggregate signal-to-noise ratio is independent of the business cycle. Because the number of
production units N is procyclical, the aggregate signal-to-noise ratio is procyclical as long as the cross-correlation of
additive shocks is strictly less than one (for all intermediary cases).

The difference between the above setups is that in the first one, there are N signals observed but the quality of
the individual signals varies procyclicly. In the second formulation, there is a constant signal quality at the individual
level, but there is a procyclical number of signals. Either mechanism supports an aggregate production function with
a procyclical signal-to-noise ratio.
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A.2 Tables and Figures

40s 50s 60s 70s 80s 90s 1940-2001
Monthly −0.98 0.56 −0.02 −1.01 −0.22 −0.23 −0.74
Data (0.87) (0.08) (0.56) (0.97) (0.78) (0.83) (0.76)
Quarterly −2.48 0.10 0.88 −2.05 −0.70 −0.87 −2.02
Data (0.88) (0.26) (0.96) (0.96) (0.96) (1.00) (0.79)

Table 3: Skewness of industrial production by decade. In parentheses is the probability of skewness less than
zero, estimated by bootstrap.

standard relative std first-order correlation skewness
deviation deviation autocorrelation with y

y 1.69 1.00 0.85 1.00 -0.40
inv 7.41 4.39 0.79 0.89 -0.72
n 1.55 0.92 0.89 0.85 -0.16
k 0.27 0.16 0.96 0.31 -0.11
c 1.26 0.74 0.84 0.89 -0.33

Table 4: Descriptive Statistics. Macroeconomic aggregates from 1952:3-2002:2 (200 observations). All series are
real, per-capita. Second moments computed for percentage deviations from Hodrick-Prescott trend. Skewness is of the first-
differenced log series.

parameter standard RBC Learning
δ 0.0186 0.0186
β 0.985 0.98
α 0.34 0.34
σ 0.375 0.386
φ 2-5 4
Corr(zt, zt−1) AR(1) = 0.95 P (zt+1 = zt) = .975
std(z) 0.032 {zH , zL} = {0.968, 1.032}
ση na 0.02

Table 5: Benchmark Parameters. Model parameters and their counterparts in a standard business cycles model. The
output shock variance (ση) is calibrated to GDP forecast errors.
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standard relative std First-order correlation skewness
deviation deviation autocorrelation with GDP (ŷ)

ŷ 1.63 1.00 0.71 1.00 -0.23
(0.028) (0.000) (0.004) (0.000) (0.177)

inv 6.34 3.88 0.70 0.97 -0.24
(0.109) (0.012) (0.004) (0.013) (0.177)

n 0.57 0.35 0.70 0.97 -0.16
(0.010) (0.002) (0.004) (0.009) (0.176)

k 0.41 0.30 0.95 0.04 -0.01
(0.007) (0.026) (0.001) (0.009) (0.052)

ĉ 0.80 0.50 0.72 0.99 -0.18
(0.014) (0.008) (0.004) (0.000) (0.167)

Table 6: No-Learning Model. Second moments are computed for percentage deviations from HP trend. Skewness is
of first-differenced series. ŷ, ĉ are the true persistent components of output and consumption. 50,000 simulations. Standard
errors(in parentheses) are computed from 250 sample moments of series, each 200 observations long.

standard relative std First-order correlation skewness
deviation deviation autocorrelation with GDP (ŷ)

ŷ 1.52 1.00 0.79 1.00 -0.41
(0.022) (0.000) (0.004) (0.000) (0.084)

inv 6.15 3.98 0.70 0.82 -0.42
(0.088) (0.007) (0.006) (0.004) (0.096)

n 0.55 0.36 0.70 0.82 -0.33
(0.008) (0.001) (0.006) (0.004) (0.097)

k 0.40 0.26 0.96 -0.15 -0.04
(0.006) (0.001) (0.001) (0.004) (0.055)

ĉ 1.09 0.72 0.29 0.82 -0.22
(0.014) (0.003) (0.009) (0.001) (0.079)

Table 7: Learning Model. Second moments are computed for percentage deviations from HP trend. Skewness is of
first-differenced series. ŷ, ĉ are agents’ estimated persistent components of output and consumption. The coefficient of relative
risk aversion is φ = 4. We conduct 50,000 simulations. Standard errors (in parentheses) are computed from 250 sample moments
of series, each 200 observations long.
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standard relative std First-order correlation skewness
deviation deviation autocorrelation with GDP (ŷ)

ŷ 1.57 1.00 0.79 1.00 -0.37
(0.023) (0.00) (0.004) (0.000) (0.082)

inv 6.91 4.39 0.70 0.83 -0.34
(0.099) (0.007) (0.006) (0.004) (0.100)

n 0.64 0.40 0.70 0.83 -0.27
(0.009) (0.001) (0.006) (0.004) (0.101)

k 0.44 0.28 0.95 -0.11 -0.05
(0.007) (0.001) (0.001) (0.004) (0.055)

ĉ 1.07 0.68 0.24 0.77 -0.21
(0.014) (0.003) (0.009) (0.002) (0.077)

Table 8: Learning Model Low Risk Aversion. Descriptive statistics with coefficient of relative risk aversion is
φ = 2. Second moments are computed for percentage deviations from HP trend. Skewness is of first-differenced series. ŷ, ĉ
are agents’ estimated persistent components of output and consumption. We conduct 50,000 simulations. Standard errors (in
parentheses) are computed from 250 sample moments of series, each 200 observations long.

standard relative std First-order correlation skewness
deviation deviation autocorrelation with GDP (ŷ)

ŷ 1.51 1.00 0.78 1.00 -0.37
(0.022) (0.00) (0.004) (0.000) (0.083)

inv 5.98 3.96 0.70 0.81 -0.42
(0.085) (0.007) (0.006) (0.004) (0.097)

n 0.54 0.36 0.66 0.81 -0.22
(0.008) (0.001) (0.006) (0.004) (0.088)

k 0.39 0.26 0.95 -0.15 -0.03
(0.006) (0.001) (0.001) (0.004) (0.055)

ĉ 1.09 0.72 0.30 0.82 -0.20
(0.014) (0.003) (0.009) (0.001) (0.077)

Table 9: Active Learning Model. Learning model descriptive statistics in model where planner takes into account
effects of policy choices on learning. Second moments are computed for percentage deviations from HP trend. Skewness is of
first-differenced series. ŷ, ĉ are agents’ estimated persistent components of output and consumption. The coefficient of relative
risk aversion is φ = 4. We conduct 50,000 simulations. Standard errors (in parentheses) are computed from 250 sample moments
of series, each 200 observations long.
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Figure 1: Real GDP in percentage deviations from trend and one quarter ahead median absolute
forecast error.
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Figure 2: Skewness of N -Period Changes in GDP Data for Different Detrending Methods.
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Figure 3: Skewness of N -Period Changes in yt in Learning Model for Different Detrending Methods.
skewness of (yt − yt−N ), where yt is log of real GDP per capita.
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Figure 4: Skewness of N -Period Changes in Learning and No-Learning Model. skewness of (yt − yt−N ),
where yt is log of real GDP per capita.
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Figure 5: Skewness of output changes (∆ŷ) as the standard deviation of noise (ση) varies.
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