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Abstract 
 
      Bertschek and Lechner (1998) propose several variants of a GMM estimator based on the 
period specific regression functions for the panel probit model.  The analysis is motivated by the 
complexity of maximum likelihood estimation and the possibly excessive amount of time 
involved in maximum simulated likelihood estimation.  But, for applications of the size 
considered in their study, full likelihood estimation is actually straightforward, and resort to 
GMM estimation for convenience is unnecessary.  In this note, we reconsider maximum 
likelihood based estimation of their panel probit model then examine some extensions which can 
exploit the heterogeneity contained in their panel data set.  Empirical results are obtained using 
the data set employed in the earlier study. 
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1.  Introduction 
 
 Bertschek and Lechner (1998) (henceforth BL) propose a set of “convenient” 

GMM estimators for the binomial probit model based on panel data.  Their GMM 

approach is motivated by the difficulty of computation of the log likelihood function for a 

fully unrestricted model with freely correlated disturbances when there are T > 2 time 

periods.   Because of the need to use a simulation based estimator, the primary obstacle is 

the actual  amount of computation.  They also argue that estimation of the disturbance 

covariance matrix, which involves T(T-1)/2 free parameters, is unattractive because of the 

large size of the estimation problem.  This note will compare the full likelihood based 

estimator to their GMM estimator.  Speeds of computation have improved to the point 

that for a problem of the size of their application, the issue of computation time that was a 

focus of the earlier article is a minor consideration.  More importantly, estimation of the 

full covariance matrix is revealing about the structure of the model in a way that would 

not be evident from their GMM approach.  We will also examine two extensions of the 

panel probit model that were not considered by BL.  The panel data set provides 

information about individual heterogeneity that is not exploited by the GMM estimator. 

We will reexamine their data set in the context of a random parameters model and a latent 

class model, both of which provide a means of examining the individual heterogeneity.  

The random parameters model has been widely used in the discrete choice (multinomial 

logit) framework, but has seen very limited application in the probit model, and none in 

the form considered here.  The latent class model has been used almost exclusively to 

study count data.  It appears not to have been employed in the analysis of binary choice 

data. 

Section 2 of this paper describes the maximum likelihood and GMM panel data 

parameter estimators,.  Section 3 discusses the common effects models and two 

extensions of the probit model, random parameters and latent classes.  The application is 

described in Section 4.1  Some conclusions are drawn in Section 5.  The random 

parameters model is estimated using a quasi Monte Carlo simulation method that has not 

                                                 
1 The authors of the earlier study have generously allowed us to reuse their data for this analysis.  Their 
assistance is gratefully acknowledged. 
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yet seen wide use in econometrics.  Some notes on this technique are provided in the 

appendix. 

 
2.  Estimation of the panel probit model 
 
 The panel probit model is 
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The data consist of N observations on Zi = (yi,Xi) where yi = (yi1, yi2, …., yiT)′ and the T 

rows of the T×K matrix Xi are ,  1,..., .it t′ =x   The disturbances are freely correlated 

across periods, with T×T  positive definite covariance matrix Σ.  The typical element of Σ 

is denoted σts.  The standard deviations, ttσ  are denoted σt.  The data on xit are 

assumed throughout to be strictly exogenous, which implies that Cov[xit,εjs] = 0 across all 

individuals i and j and all periods t and s.  This rules out state persistence, or the presence 

of lagged dependent variables in (1).2   

The model in (1) is a special case of the M equation multivariate probit model 
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in which the parameter vectors are identical across equations.3  The observed data contain 

no information on the scaling of y*, so the diagonal elements of Σ, σtt, are usually 

normalized to one.  In the model in (1), however, normalization of all the diagonal 

elements is unnecessary because the slope vector is time invariant; T-1 ratios, σ1/σt are 

identified.  As noted by BL, then, only one main diagonal element of Σ, σ11, is 

normalized to one for identification purposes - β0 is identified only “up to scale.”  Since 

the scaling may be different across periods, an equivalent formulation of (1) which 

embodies the convenient normalization σtt = 1 while not restricting the variance 

parameters is obtained by scaling the coefficient vectors, instead; 
 

2 See Heckman (1981) and Woolridge (1995) for discussion. 
3 This is an M-variate extension of the bivariate probit model used, e.g., in Rubinfeld (1983), Boyes, 
Hoffman and Low (1989), Greene (1992), Burnett (1997) or Greene (1998).]   
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      (3) 
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where  = σ0
tθ 1/σt.   The normalization imposed by BL, σ11 = σtt = σTT - see their footnote 

2 on page 332 - is therefore restrictive.4  It is equivalent to an assumption that  = 1, t = 

2,…,T, or that the disturbances are homoscedastic through time.  While the assumption is 

substantive, for the data in their application, it does appear to be reasonable.  The scale 

parameters  are identified (estimable), so in principle, the restriction could be tested in 

a given application.

0
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0
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 Maximum likelihood estimates of the parameters in (3) with the homoscedasticity 

assumption are obtained by maximizing the log likelihood function, 
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with respect to the unknown elements in β and Σ where, σtt  = 1, ait  = (2yit – 1)xit′β, σts*  

= (2yit – 1)(2yis – 1)σts, t ≠ s, and Φ(T) denotes the CDF of the T-variate normal 

distribution.  (The restriction, θ  =1 has already been imposed.) When T exceeds two, 

computation of this function requires a multidimensional integration which can only be 

approximated.  This can be done by simulation methods. The GHK simulator was used 

here.

0
t

6 BL note three obstacles to estimation of this model: first, the amount of 

computation seems to be excessive (“prohibitively high”), which for their application is 

actually not the case - see the application below; second, global concavity may be a 

problem; and third, there are a large number of nuisance parameters in the model. BL’s 

analysis produced several strategies for estimation designed to circumvent estimation of 

the off diagonal elements of Σ.  But, in the application below, the estimated elements of Σ 

are actually revealing in terms of suggesting a useful simplification of the model. 

                                                 
4 BL do consider an equivalent but less convenient normalization in their footnote 2 (p. 332).  We will 
retain this normalization in what follows.   
5 This would require a full information maximum likelihood estimator, such as the one suggested here. 
BL’s development was focused primarily on GMM estimators which obviate the calculation of Σ. 
6 See Hajivassiliou and Ruud (1994), Hajivassiliou et al., (1996), Geweke et al. (1994, 1997) and Geweke 
(1997).  
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 BL suggest a set of GMM estimators based on the orthogonality conditions 

implied by the single equation conditional mean functions; 

 
        (5) {[ ( )] | ( )} 0it it iE y ′− Φ =x A Xβ
 
where Φ denotes the CDF of the univariate normal distribution and A(Xi) is a P×T matrix 

of instrumental variables constructed from the exogenous data for individual i.  The 

orthogonality conditions are 
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Using only the raw data as A(Xi), strict exogeneity of the regressors in every period [see 

Woolridge (1995)] would provide TK moment equations of the form E[xituis] = 0 for each 

period, or a total of T2K moment equations altogether for estimation of K parameters in β.  

The full set of such orthogonality conditions would be E[(IT ⊗ xi)ui] = 0 where xi = 

[ ,..., ]′. For our application, (6) produces 200 orthogonality conditions for the 

estimation of the 8 parameters.

1i′x iT′x
7 The empirical counterpart to the left hand side of (6) is 
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     (7) 

 
The various GMM estimators are the solutions to 
 

 .     (8) ( ) ( ), , arg minGMM N N
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7 See Ahn and Schmidt (1995) and Arellano and Bover (1995) for discussion.  BL constructed a different 
set of instruments, but did not use the strong exogeneity assumption.  Their set of instruments used the 
current period orthogonality conditions in (7), so the total number of restrictions employed was TK.  An 
expanded set of instruments based on the strict exogeneity assumption was examined in Breitung and 
Lechner (1997). 
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The specific estimator is defined by the choice of instrument matrix A(Xi) and weighting 

matrix, W; the authors suggest several.  Further details on computations appear in their 

paper.  All of the preceding is done without (i.e., so as to avoid) direct full estimation of 

the matrix Σ.8  Thus, the various estimators suggested attain their relative efficiencies 

within the class of GMM estimators, but all are inefficient relative to the full MLE 

implied by (4) 

 The authors suggest that the computation time needed to fit this model by full 

maximum likelihood is “prohibitively high for T > 4 or 5…”  For present purposes, a 

simple benchmark is useful.  As of their writing, the mid-1990s, their computation of the 

“pooled” probit model using their fairly large sample of 6,350 observations and eight 

regressors took 30 seconds.  (See their page 363.)  The same computation using the same 

data on a less than leading edge personal computer in 2002 took less than 0.3 seconds, a 

more than 100 fold improvement.9  A similar comparison relates to a first step estimation 

of the elements of Σ, which can be done in principle by fitting a set of bivariate probit 

models.  The authors deem this calculation “cumbersome for large T,” but, for their 

sample of N = 1,270 observations, computation of each bivariate probit model takes less 

than six seconds.  The upshot is that computation time and “burden” for maximum 

likelihood and the simulation estimators, which is a recurrent theme in the BL study and 

one of the primary motivations for the “convenient estimators” should now be well 

within the acceptable range for many problems.  We have fit the multivariate probit 

model in (3) using the full information maximum simulated likelihood estimator.  The 

amount of computation is large, but not excessive.  Estimation was fairly routine, and 

took altogether under an hour on a 1.66 Ghz personal computer. Full results and details 

are given below.   

 
 
 
                                                 
8 A considerable amount of the derivation in the paper concerns approximations to Var[ NN g ].  One 
additional simple estimator which was not examined would be the sample second moment matrix of the 
terms in gN based on any consistent first round estimator of β, of which several were suggested.  This 
estimator was considered in Breitung and Lechner (1997) and found to be inferior to the analytic estimator 
because of the very large number of overidentifying restrictions. 
9 The authors used Gauss© for their computations.  Results in this paper were obtained with Version 8.0 of 
LIMDEP©.  
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3.  Alternative forms and estimators for the panel probit model 
 
 The panel data set used by BL contains a considerable amount of between group 

variation.  For example, based on a simple analysis of variance, 97.6% of the variation in 

the FDI variable and 92.9% of that of the imports share variable are accounted for by 

differences in the group means.  With the exception of the Butler and Moffitt random 

effects formulation, the approaches suggested do not model the heterogeneity that is 

likely to be present in a data set of this sort.  Several approaches might be considered.   

 
3.1.  Fixed and random effects estimation 
 
 The “random effects” model analyzed by Butler and Moffitt (1982) specifies εit = 

uit + vi where uit is both homoscedastic and uncorrelated across periods.  A yet more 

restrictive approach is to assume away all the cross period correlation and treat the panel 

essentially as a cross section.  This produces the “pooled” estimator.  Under the 

specification in (3), both these estimators are consistent but inefficient.  (Both are special 

cases of the GMM estimator proposed by BL.)  However, the conventionally estimated 

standard errors that accompany each are inappropriate as they ignore the unrestricted 

cross period correlation. 

The Butler and Moffitt random effects probit model, εit = uit + vi assumes that the 

individual heterogeneity vi is uncorrelated with the included variables xit in all periods 

and is time invariant.  This produces the modified covariance matrix σts = σv
2/(σu

2+σv
2) = 

ρ and σv
2 + σu

2 = 1 on the main diagonal of Σ.  In this case, the model contains only β 

plus one additional correlation parameter, ρ.  The log likelihood may be maximized by 

Hermite quadrature or by simulation methods.  (Some details are given by BL.)     

If the strict exogeneity assumption is violated, then the random effects estimator 

is inconsistent.  In the linear regression case, an attractive alternative is the fixed effects 

(dummy variable) model.  In the probit setting, because of the nonlinearity of the model, 

fixed effects estimation is more complicated than in the linear model.10  However, in 

applications the size of the one considered here, with T = 5 (and T = 10 in their Monte 

Carlo experiment), complexity of the computations is a moot point.  Regardless of the 
                                                 
10 Fixed effects estimation of the probit model is feasible, however, even for very large N.  This is treated in 
detail in Greene (2002). 
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true underlying formulation – even if the fixed effects model is appropriate – the 

maximum likelihood fixed effects estimator is inconsistent because of the incidental 

parameters problem.11  An additional problem with the fixed effects model is that it 

precludes time invariant regressors.  Two of the variables in our application are time 

invariant.  [The Hausman and Taylor (1981) approach is not useful here because the data 

cannot be transformed to remove the effect as in their linear regression model.]  Results 

for a restricted fixed effects model are presented below for comparison, but it is noted 

that for T = 5, the persistent bias of this estimator is substantial, and this is not suggested 

as a useful alternative to the random effects model.  Both are problematic. 

 
3.2.  A random parameters model 
 
  Two alternative formulations that have been widely used to analyze panel 

data in other contexts, but not in the probit model, are the random parameters model and 

the latent class model.12 

The random parameters model is an extension of (1), 

 
 ,  1,..., ,  1,..., ,it it i ity t T i∗ ′= + ε = =x β N ~ [0,1]it N ε  

           (9) 
 ( 0it ity y∗= >1 )

i

 
where 

      i i= + +z wβ β ∆ Γ  
 

 β   =   K×1 vector of unconditional means 
 
 ∆   =   K×L  matrix unknown location parameters, 
 
 Γ   =   K×K lower triangular matrix of unknown variance parameters, 
 
 zi    =  L×1 vector of individual characteristics 
 
 wi  =   K×1 vector of random latent individual effects  
                                                 
11 The encouraging results in Heckman (1981) for the fixed effects probit estimator appear to be incorrect.  
See Greene (2002).  See Lancaster (2000) for theoretical development and Greene (2002) for empirical 
evidence on the incidental parameters problem in estimation of the fixed effects probit model.   
12 A restricted form of the random parameters probit model analyzed here was analyzed by Akin, Guilkey 
and Sickles (1979), Guilkey and Murphy (1993) and Sepanski (2000).  The random effects model is also a 
special case which has been applied in a number of applications.  An extensive analysis of the random 
parameters logit model is Train (2002).  Comments also appear in McFadden and Train (2000). 
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with 
 E[wi|Xi,zi]  =  0 
 
 Var[wi|Xi,zi]  =  V  =  K×K diagonal matrix of known constants. 
 
It follows that 
 
 E[βi|Xi,zi] =  β  +  ∆zi 
and           (10) 
 Var[βi|Xi,zi]  =  ΓVΓ′ = Ω. 
 
The distribution of βi is induced by that of wi and remains to be specified.  Since Γ need 

not be diagonal, in principle, the distribution could be a complicated mixture of diverse 

components. If wi is assumed to have a standard, spherical normal distribution, then βi 

will be normally distributed with the moments given above.  We use the Cholesky 

factorization to form the covariance matrix of the random parameters.  The covariance 

matrix of wi is assumed known and diagonal, since any unknown parameters will be 

absorbed in Γ.  In most cases, when it is assumed that the random parameters are 

normally distributed across individuals, V will be an identity matrix.  It is not necessary 

to assume normality – infinite range of variation may be implausible for certain 

parameters. As such, the diagonals of V might take other values.  For example, if the 

variation of a parameter is assumed to follow a uniform distribution, then the 

corresponding value of V would equal 1/12 and the unknown scaling would be accounted 

for by the corresponding elements in Γ.  

The mean vector in the random parameters model is formulated with a vector of 

time invariant, individual specific variables zi.  When present, the unknown coefficients 

are contained in the corresponding row of ∆.  Nonrandom parameters in a model are 

specified by imposing the constraint that the corresponding rows of Γ contain zeros.  

Allowing nonzero rows in ∆ while constraining the counterpart row in Γ to be zero 

provides a convenient means of formulating a ‘hierarchical’ model.  The original random 

effects panel data model examined in the preceding section is produced by including in 

the model a simple random constant term.  (The firm specific mean terms, ∆zi will not be 

present.)  The dynamic effects are more difficult to accommodate.  One possibility is to 

generate wit by a stochastic process, such as an AR(1).  Thus, as opposed to the time 
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invariant effects model, the preceding can be made dynamic by allowing wit to equal      

Rwi,t-1 + hit where R is a diagonal matrix of autocorrelation coefficients to be estimated 

with the other model parameters and hit is the white noise process.  [See Greene (2002).]  

Other stochastic processes could be accommodated as well.  

 The random parameters model may be estimated by maximum simulated 

likelihood or by Markov Chain Monte Carlo (MCMC) methods.13   Conditioned on wi, 

observations on yit are independent across time – timewise correlation per the focus of 

this paper would arise through correlation of elements of βi.  The joint conditional density 

of the T observations on yit is 
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The contribution of this observation to the log likelihood function for the observed data is 

obtained by integrating the latent heterogeneity out of the distribution.  Thus, 
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Full information maximum likelihood estimates of the parameters β, ∆, Γ are obtained by 

maximizing this function.  Since the function involves multidimensional integration, 

direct optimization is generally not feasible.  Maximum simulated likelihood is used 

instead.  The simulated log likelihood is 
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where βir is the rth of R simulated draws on       i i i= + +z w β β ∆ Γ  from the underlying 

distribution of wi.  Estimates of β, ∆, and Γ are obtained by maximizing the simulated log 

likelihood function.14  Observations on βir are constructed from primitive draws on wi.  

Note that it is not necessary to assume normally distributed parameters.  The integration 

by simulation simplifies the computations in such a way that other distributions are easily 

                                                 
13 See, Train (2002), Greene (2003, Chapter 16), or Albert and Chib (1993). 
14 See Gourieroux and Monfort (1996) and Train (2002) for discussion. 
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accommodated.  For example, the range of variation can be restricted by using a “tent” or 

uniform distribution, either of which is easily simulated. The estimated elements of Γ will 

carry the sample information on the range of variation.   A more complete exposition in 

the context of logit models for discrete choice appears in Train (2002) and in general 

terms in Greene (2001).    Maximum simulated likelihood estimation is extremely 

computation intensive.  The process is speeded up by using a quasi-Monte Carlo method 

based on Halton sequences of draws instead of random draws using a random number 

generator.  The method is described in the appendix. 

With estimates of the structural parameters (β, ∆,Γ) in hand, estimates of the 

individual specific parameter vectors may be obtained by the posterior mean  
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[See Train (2002), Chapter 11.] The parts can be estimated by simulation.  The 

application below demonstrates. 

 
3.3. A latent class model 
 
        Assuming independence across time, the conditional density for the observed data is 
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The conditional density of the random parameters, induced by the random vector wi, is              

g(βi| β, ∆, Γ, zi).  The unconditional density is the contribution to the likelihood given 

earlier, 

    f(yi|Xi, zi, β,∆,Γ) = ( )| ,
i i i iE f  y Xβ β  = [ ]
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The density of βi is the weighting distribution in this average.  The preceding has 

assumed this is a continuous distribution.  If the distribution of βi has finite, discrete 

support over J points (classes), p(βj), j = 1,...,J, then the resulting formulation is, 
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where it remains to parameterize the regime probabilities, pij.15  (We will arrive at a 

discrete distribution that is parameterized in terms of only the matrix ∆, so β and Σ will 

be unnecessary.) Estimation is over the J regime probabilities and the regime level 

parameters βj.  The class probabilities must be constrained to sum to 1.  A simple 

approach is to reparameterize them as a set of logit probabilities, 
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The resulting log likelihood is a continuous function of the parameters, and maximization 

is straightforward.   

 Estimation produces values for the structural parameters, βj, and the parameters of 

the prior class probabilities, δj.  One might also be interested in the posterior class 

probabilities, 

     Prob(class j | observation i)  =  
1

(observation | class ) Pr ob(class )
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                   =   wij. 
 
This set of probabilities, wi = (wi1,wi2,...,wiJ) gives the posterior density over the 

distribution of values of β, that is, [β1, β2, ..., βJ].  An estimator of the individual specific 

parameter vector would then be the posterior mean 
                                                 
15 Applications to models for count data may be found in Nagin and Land (1993), Wang Cockburn and 
Puterman (1998) and Wedel, DeSarbo, Bult, and Ramaswamy. (1993). 
16 As noted, this model has appeared in a number of applications to count data.  Wedel et al. imposed the 
adding up constraint on the prior probabilities by a Lagrangean approach.  As can be seen above, a simple 
reparameterization of the probabilities achieves the same end with much less effort.  Nagin and Land 
(1993) and Wang et al. (1998) used the logit parameterization.  Brannas and Rosenqvist (1994) forced the 
probabilities in their model to lie in the unit interval by using the parameterization pj = 1/[1+exp(-θj)] with 
θj unrestricted.  This does solve the problem, but they did not impose the adding up constraint, Σjpj = 1 in 
their model; they simply estimated the first θ1,...,θM-1 without restriction and computed pM residually, a 
procedure that is not guaranteed to succeed.   
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The EM algorithm is a convenient approach for estimation of this model.17  Let dij 

= 1 if individual i is a member of class j and zero otherwise.  We treat dij as missing data 

to be estimated.  The joint density of J dijs is multinomial with probabilities pij; 
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The complete data log likelihood is built from the joint density, 
 

f(yi,di|Xi,zi,β,∆)  =  f(yi|di,Xi,β) f(di|zi,∆). 
 
Thus, 
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The expectation (E) step of the process involves obtaining the expectation of this log 

likelihood conditioned over the unobserved data.  This involves replacing the dijs in log 

Lc with the posterior probabilities, wij, derived above (computed at the current estimates 

of the other parameters).  The maximization (M) step then involves maximizing the 

resulting conditional log likelihood with these estimated posterior probabilities treated as 

known.  Conditioned on the posteriors, E[logLc] factors into two parts that may be 

maximized separately.  By construction, Σjwij = 1.  The first part of the log likelihood 

becomes a weighted log likelihood with known weights for which the likelihood 

equations are 

 

1

log ( | , ) [log ] N i i jc
iji

j j

fE L w
=

∂∂
= =

∂ ∂∑
y X

0
β

β β
. 

 
This involves simply maximizing a weighted, pooled log likelihood for each class 

parameter vector.  If there are no individual specific variables in the probabilities, then 

the maximum likelihood estimators of the class probabilities are just the sample averages 

of the estimated weights; 

 
                                                 
17 See Dempster, Laird, and Rubin (1977) and Wedel et al. (1993). 
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If the logistic parameterization has been used, then the conditional log likelihood function 

at the M step for these parameters is a weighted multinomial logit log likelihood, which 

will require an iterative solution.  The iterative solution for the structural parameters, δj is 

the solutions to the likelihood equations 

 

1

[log ] ˆ( )Nc
ij ij ii

j

E L w p
=

∂
= −

∂ ∑ z
δ

= 0 .  

 
This is the first order conditions for the multinomial logit model with proportion rather 

than individual data for the dependent variable (the weights).   The EM method thus 

amounts to cycling between these two steps - computing the parameters for the class 

probabilities via the multinomial logit procedure at the second step above, then 

recomputing the class specific weighted probit estimators at the first step by a simple 

weighted, pooled maximum likelihood probit estimator. 

 
4.  Application 
 
 Bertschek and Lechner applied the GMM estimator to an analysis of the product 

innovation activity of 1,270 German firms observed in five years, 1984 - 1988, in 

response to imports and foreign direct investment.  [See Bertschek (1995).]  The basic 

model to be estimated is a probit model based on the latent regression 

 

 , 
8

1 ,
2

*
it k it k it

k
y x

=

= β + β + ε∑ ( )* 0it ity y= >1 , i = 1,...,1270, t = 1984,...,1988. 

where 
 yit   =   1  if a product innovation was realized by firm i in year t, 0 otherwise, 
 x2,it =   Log of industry sales in DM, 
 x3,it  =  Import share = ratio of industry imports to (industry sales plus imports), 
 x4,it  =  Relative firm size = ratio of employment in business unit to employment 
  in the industry (times 30), 
 x5,it  =  FDI share = Ratio of industry foreign direct investment to (industry sales, 
  plus imports), 
 x6,it  =  Productivity  =  Ratio of industry value added to industry employment, 
 x7,it  =  Raw materials sector = 1 if the firm is in this sector, 
 x8,it  =  Investment goods sector = 1 if the firm is in this sector, 
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Descriptive statistics and further discussion appear in the earlier papers. Their primary 

interest was in the effect of imports and inward foreign direct investment on innovation.  

Both are hypothesized to have a positive effect.  We have extended the analysis with their 

data.   

 Table 1 presents the base case, “pooled” estimator.  This is the simple probit 

estimator that treats the entire sample as if it were a large cross section.  This estimator is 

consistent, but inefficient.  Four sets of asymptotic standard errors are presented with the 

estimates.  The first are BL’s reported standard errors.  These are computed using a 

robust estimator based on White (1982).  [See their pp. 345 and 359.)  The second set are 

the square roots of the diagonals of the negative of the inverse of the Hessian computed at 

the maximum likelihood estimates (which we have reproduced).  The third set are those 

computed by BL based on Avery, Hansen and Hotz’s (1983) GMM estimator.  A natural, 

simpler alternative which should be appropriate in this setting is the so-called “cluster” 

estimator [See Stata (1998)]: 

 

( ) ( ) ( )1 1

1

1

ˆˆ
1

n

i i
i

T

i it
t

N
N

− −

=

=

   ′= − −   −   

=

∑

∑

V H g g

g g

β H
     (21) 

 
The matrix H is the conventional Hessian of the maximized log likelihood and git is the 

derivative of the individual term in the pooled log likelihood.  As can be seen in Table 1, 

the cluster estimator produces essentially the same results as the GMM based estimator.  

The last two columns of Table 1 present the estimated partial effects of the variables on 

the probability of a realized innovation.  Standard errors are based on the cluster 

estimator and are computed using the delta method.  [See Greene (2003, chapter 19).]  

The estimates for the sector dummy variables are computed by evaluating the probability 

at the means of the other variables and with the dummy variables equal to one then zero - 

the marginal effect in each case is the difference.  The results thus far are consistent with 

the hypothesis that imports and FDI positively and significantly affect product 

innovation. 
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Table 1.  Estimated Pooled Probit Model 
  Estimated Standard Errors Marginal Effects 
Variable Estimatea se(1)b se(2) c se(3)d se(4)e Partialf Std. Err. t  ratio 
Constant -1.960 0.21 0.230  0.377 0.373    
log Sales 0.177 0.025 0.0222 0.0375 0.0358 0.0683 0.0138 4.96 
Rel Size 1.072 0.21 0.142 0.306 0.269 0.413 0.103 4.01 
Imports 1.134 0.15 0.151 0.246 0.243 0.437 0.0938 4.66 
FDI 2.853 0.47 0.402 0.679 0.642 1.099 0.247 4.44 
Prod. -2.341 1.10 0.715 1.300 1.115 -0.902 0.429 -2.10 
Raw Mtl -0.279 0.097 0.0807 0.133 0.126 -0.110g 0.0503 -2.18 
Inv Good 0.188 0.040 0.0392 0.0630 0.0628 0.0723g 0.0241 3.00 
a Recomputed. Only two digits were reported in the earlier paper. 
b Obtained from results in Bertschek and Lechner, Table 10. 
c Square roots of the diagonals of the negative inverse of the Hessian 
d Based on the Avery et al. GMM estimator 
e Based on the cluster estimator. 
f Coefficient scaled by the density evaluated at the sample means 
g Computed as the difference in the fitted probability with the dummy variable equal to one then zero. 
 
 Table 2 reports the estimates of the random and fixed effects models.  The 

random effects model was fit by two methods, first using Butler and Moffitt’s method 

with a 32 point Hermite quadrature, then by specifying the random parameters model 

with only a random constant term.  In terms of the estimates of the parameters, it is clear 

that, as expected, the two integration methods produce essentially the same results.  The 

random parameter estimator produced an estimate of the standard deviation for the 

random constant of 1.1707.  Based on the normalization σv
2 + σu

2 = 1, this produces an 

estimator of the correlation coefficient of 1.17072 / (1 + 1.17072) = 0.578, which is 

identical to the estimate produced by the quadrature method.  The value itself is also 

striking, as will be evident in the next set of results for the multivariate probit model.  

The fixed effects estimates in the last column display the expected large biases.  Given 

that T is only 5 in this application, the apparent distortion in the fixed effects estimator is 

to be expected. 
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Table 2.  Estimated Common Effects Models 
 Random Effects Fixed Effects 
 Quadrature Estimator Simulation Estimator   
Variable Estimate Std.Error Estimate Std.Error Estimate Std. Error 
Constant -2.839 0.533 -2.884 0.543   
log Sales 0.244 0.0522 0.249 0.0510 -0.6497 0.356 
Rel Size 1.522 0.257 1.452 0.281 0.278 0.734 
Imports 1.779 0.360 1.796 0.360 3.503 2.924 
FDI 3.652 0.870 3.724 0.831 -8.131 3.381 
Prod. -2.307 1.911 -2.321 0.151 5.300 4.034 
Raw Mtl -0.477 0.202 -0.469 0.186   
Inv Good 0.331 0.0952 0.331 0.0915   
ρ 0.578 0.0189 0.578a 0.0231   
aBased on estimated standard deviation of the random constant of 1.1707 with estimated standard error of 
0.01865.  
 
 

                                                

Table 3 reports the full maximum likelihood estimates of the 5-variate probit 

model with homoscedasticity and the same coefficient vector in every year.  This model 

was estimated using the GHK simulator and 50 replications.18  Derivatives of the log 

likelihood were computed numerically, and the BHHH (outer product of gradients) 

estimator was used to compute the standard errors.  The estimates are very similar to the 

GMM estimator.  The estimated standard errors are slightly smaller in most cases, as 

might be expected.  In theory, this is the fully efficient estimator, so the discrepancies 

from this relationship are finite sample variation.  A striking aspect of these results is the 

uniformity of the correlation coefficients.  It appears that the random effects model is a 

reasonable specification for these data.  The log likelihood functions are -3535.55 for the 

random effects model and -3522.85 for the unrestricted model.  Based on these values, 

the chi-squared statistic for testing the nine restrictions of the equicorrelated case would 

be 25.4.  The critical value from the chi-squared table is 16.9 for 95% significance and 

21.7 for 99%, so the equicorrelated case would be rejected.  However, the statistic is not 

overwhelming.  Moreover, the log likelihood for the FIML case is simulated, so it must 

be viewed as only approximate.  The upshot is that while the simple random effects 

 
18 Estimation took roughly an hour, and convergence to this set of results was smooth and routine in 27 
Broyden/Fletcher/Goldfarb/Shanno iterations. Starting values for the values reported were the pooled probit 
estimators for the slopes and zeros for all correlation coefficients.  The estimator was restarted at the 
random effects estimators - all correlation coefficients equal to 0.578 and the quadrature estimated random 
effects slopes.  The estimates thus obtained differed only marginally from those reported.  Random 
numbers for the GHK simulator were produced using L’Ecuyer’s (1998) MRG32K3A multiple recursive 
generator.  This generator has been shown to have excellent properties and has a period of about 2191 draws 
before recycling. 
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model is rejected, the statistical difference from the restrictive random effects model is  

less than compelling. 
Table 3.  Estimated Multivariate Probit Model 
Coefficients β Std.  Error t ratio BL GMMa Std. Error t ratio 
Constant -1.797 0.341 -5.264 -1.74 0.37 4.8 
log Sales 0.154 0.0334 4.633 0.15 0.034 4.5 
Relative size 0.953 0.160 5.966 0.95 0.20 4.7 
Imports 1.155 0.228 5.062 1.14 0.24 4.8 
FDI 2.426 0.573 4.231 2.59 0.59 4.4 
Productivity -1.578 1.216 -1.298 -1.91 0.82 -2.3 
Raw Material -0.292 0.130 -2.241 -0.28 0.12 -2.4 
Investment Goods 0.224 0.0605 3.701 0.21 0.063 3.4 

Estimated Correlations 
1984,1985 0.460 0.0301 21.27 
1984,1986 0.599 0.0323 18.55 
1985,1986 0.643 0.0308 20.91 
1984,1987 0.540 0.0308 15.43 
1985,1987 0.546 0.0348 15.69 
1986,1987 0.610 0.0322 18.96 
1984,1988 0.483 0.0364 13.28 
1985,1988 0.446 0.0380 11.76 
1986,1988 0.524 0.0355 14.76 
1987,1988 0.605 0.0325 18.58 

 
          Estimated Correlation Matrix 
 
           1984   1985   1986   1987    1988
1984   1.000 
1985   0.460  1.000 
1986   0.599  0.643  1.000 
1987   0.540  0.546  0.610  1.000 
1988   0.483  0.446  0.524  0.605  1.000

aEstimates are BL’s WNP-joint uniform estimates with k = 880.  Estimates and t ratios from their Table 9, 
standard errors from their Table 10. 
 
 To explore a variant of the model based on the hypothesis of interest in the earlier 

paper, we fit a random parameters model of the following form: 
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Table 4 reports estimates of the parameters of this model.  The simulated log likelihood 

was constructed using 100 Halton draws for the replication (see the appendix).  The 

structural parameter estimates are given in the table.  The implied estimates of the 

variances of the parameter distributions are the square roots of the sums of squares of the 

elements in the corresponding rows of Γ.  The implied standard deviations of the two 

parameter distributions might appear large in comparison to the estimated standard errors 

from the preceding models, but these are not the variances of the sampling distributions 

of the estimators.  They are estimates of the variances of the distributions of these 

parameters across the firms in the sample.  To examine this further, Figures 1 and 2 are 

kernel density plots of the posterior estimates of the firm specific estimates of β5i and β6i.  

The graphical and statistical evidence continues to support the hypothesis that imports 

and FDI exert a generally positive and large influence on the probability of product 

innovation for these firms.  Descriptive statistics for the individual specific estimates of 

the two parameters are given in Table 5. 
      Table 4.  Estimated Random Parameters Model 

Variable Estimate Standard Error 
log Sales 0.183 0.0176 
Relative Size 1.669 0.0992 
Productivity -3.564 0.520 

Random Parameter: Constant 
β1 -2.006 0.192 
δ1R -1.259 0.211 
δ1I -0.0302 0.0807 
γ11 1.439 0.0436 
Implied standard deviation 1.439 0.0346 

Random Parameter: Imports 
β5 1.486 0.143 
δ5R -0.248 0.394 
δ5I 1.703 0.504 
γ51 1.402 0.137 
γ55 2.140 0.0735 
Implied standard deviation 2.558 0.0881 

Random Parameter: FDI 
β6 2.511 0.309 
δ6R 19.20 2.02 
δ6I 0.648 1.881 
γ61 1.013 0.317 
γ65 -3.496 0.286 
γ66 2.592 0.218 
Implied Standard deviation 4.468 0.268 
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Table 5.  Sample Descriptive Statistics for Individual Specific Parameters 
Variable Mean Std. Deviation Minimum Maximum 
Imports 2.345 1.172 -1.254 5.326 
FDI 4.467 5.557 -2.724 26.916 
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Figure 1.  Kernel density plot for β5i based on
the   random parameters model.  The 
bandwidth is   0.2526 using a logistic kernel.  

Table 6 presents the latent class estimates
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, however, suggest a large range of variation of 
able 6.  Estimated Latent Class Model 

Class Specific Parameter Estimates 
Class 1 Class 2 Cla

Est. S.E. Est. S.E. Est. 
onstant -2.21 0.516 -13.6 4.16 -2.02 

ogSales 0.308 0.0490 0.897 0.302 0.186 
elSize 4.21 0.840 0.904 0.699 0.529 

mports 1.05 0.354 6.480 2.44 2.16 
DI 2.56 1.172 11.5 3.10 2.17 
rod -5.80 1.933 0.960 1.84 -9.00 

Estimated Class Probabilities Modela 

1 0.319 0.192 -0.514 0.211 0.000b 
R 0.0392 0.517 0.768 0.635 0.000 
I 0.458 0.221 -0.283 0.303 0.000 
vg P 0.528 0.168 0.

 Estimates are parameters of the multinomial logit model 
 Constrained to this value 
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Figure 2.  Kernel Density Plot for β6i based  
on the random parameters model.  The 
bandwidth is 1.1976 using a logistic kernel. 
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ss 3 Sample Posterior Estimates 

S.E. Mean S.D. Min Max 
0.759 -4.16 3.50 -13.51 -2.03 

0.0714 0.374 0.187 0.186 0.889 
0.416 2.53 1.45 0.529 4.21 
0.483 2.33 1.67 1.05 6.43 
1.07 4.01 2.76 2.17 11.43 
2.90 -5.57 2.34 -8.99 0.850 
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Figure 3.  Kernel density plot for β5i based on
the latent class model.  The bandwidth is   
0.3616 using a logistic kernel.                    

.  Conclusions 

The preceding has examined a number o

he GMM estimator appears to perform fairly w

stimator.  On the other hand, the difficulty of ob

an the discussion in BL would suggest.  Part of

ttainable with the current vintage of compute

uthors were unduly pessimistic about the feas

omputation of the multivariate normal int

bviously, it is unclear what sample sizes sho

iscussion.  However, their application, with N 

rge enough that one should be able to obtain so

We also presented two alternative mod

nalysis.  These are not simple alternatives to th

he random parameters model and latent cl

pecifications that allow the analyst to glean

formation about individual heterogeneity th

ormulation suggested by BL.  The computation

imple.  Computation of the model reported here

arameters model is much more computationally
BLCFDI 

.06

.12

.18

.25

.00
2 4 6 8 10 12 140

D
en

si
ty

 

Figure 4.  Kernel density plot for β6i based on 
the latent class model.  The bandwidth is   
0.5952 using a logistic kernel.                    
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a simulated log likelihood function.  We find that use of a quasi Monte Carlo method, 

specifically Halton sequences as an alternative to simulated random sampling, greatly 

speeds up the process. 

 
Appendix.  Quasi Monte Carlo Integration 
 
 Gourieroux and Monfort (1996) provide the essential statistical background for 

the simulated maximum likelihood estimator.  We assume that the original maximum 

likelihood estimator as posed with the intractable integral is otherwise regular - if 

computable, the MLE would have the familiar properties, consistency, asymptotic 

normality, asymptotic efficiency, and invariance to smooth transformation.   Let θ denote 

the full vector of unknown parameters being estimated and let qML denote the maximum 

likelihood estimator of the full parameter vector shown above, and let qSML denote the 

simulated maximum likelihood (SML) estimator.  Gourieroux and Monfort establish that 

if N /R → 0 and R and N → ∞, then N (qSML - θ) has the same limiting normal 

distribution with zero mean as N (qML - θ).  That is, under the assumptions, the 

maximum simulated likelihood estimator and the true maximum likelihood estimator are 

asymptotically equivalent.  The requirement that the number of draws, R, increase faster 

than the square root of the number of observations, N, is important to their result. The 

requirement is easily met by tying R to the sample size, as in, for example, R = N.5+δ
  for 

some positive δ.  There does remain a finite R bias in the estimator, which the authors 

obtain as approximately equal to (1/R) times a vector which is a finite vector of constants 

(see p. 44).  Generalities are difficult, but the authors suggest that when the MLE is 

relatively "precise," the bias is likely to be small.  In Munkin and Trivedi's (2000) Monte 

Carlo study of the effect, in samples of 1000 and numbers of replications around 200 or 

300, the bias of the simulation based estimator appears to be trivial. 

 The results thus far are based on random sampling from the underlying 

distribution of w.  But, the simulation method, itself, contributes to the variation of SML 

estimator.  [See, e.g., Geweke (1995).]  Judicious choice of the random draws for the 

simulation can be helpful in speeding up the convergence. [See Bhat (1999).]   One 

technique commonly used is antithetic sampling.  [See Geweke (1995, 1998) and Ripley 

(1987).]  The technique involves sampling R/2 independent pairs of draws where the 
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members of the pair are negatively correlated.  One technique often used, for example is 

to pair each draw wir with -wir.  (A loose end in the discussion at this point concerns what 

becomes of the finite simulation bias in the estimator.  The results in Gourieroux and 

Monfort hinge on random sampling.) 

 Quasi Monte Carlo (QMC) methods are based on replacing the pseudo random 

draws of the Monte Carlo integration with a grid of "cleverly" selected points which are 

nonrandom but provide more uniform coverage of the domain of the integral.  The logic 

of the technique is that randomness of the draws used in the integral is not the objective 

in the calculation.  Convergence of the average to the expectation (integral) is, and this 

can be achieved by other types of sequences.  A number of such strategies is surveyed in 

Bhat (1999), Sloan and Wozniakowski (1998) and Morokoff and Caflisch (1995).  The 

advantage of QMC as opposed to MC integration is that for some types of sequences, the 

accuracy is far greater, convergence is much faster and the simulation variance is smaller.  

For the one we will advocate here, Halton sequences, Bhat (1995) found relative 

efficiencies of the QMC method to the MC method in moderately sized estimation 

problems to be on the order of ten or twenty to one. 

 Monte Carlo simulation based estimation uses a random number generator to 

produce the draws from a specified distribution.  The central component of the approach 

is draws from the standard continuous uniform distribution, U[0,1].  Draws from other 

distributions are obtained from these by using the inverse probability transformation.  In 

particular, if ui is one draw from U[0,1], then vi  =  Φ-1(ui) produces a draw from the 

standard normal distribution; vi can then be unstandardized by the further transformation 

zi = σvi + µ.  Draws from other distributions used, e.g., in Train (1999) are the uniform    

[-1,1] distribution for which vi  = 2ui-1 and the tent distribution, for which  vi  =  12 −iu  

if ui ≤ 0.5, vi = 1 - 12 −iu  otherwise.  Geweke (1995), and Geweke, Hajivassiliou, and 

Keane (1994) discuss simulation from the multivariate truncated normal distribution with 

this method. 

 The Halton sequence is generated as follows:  Let r be a prime number larger than 

2.  Expand the sequence of integers g = 1,... in terms of the base r as 
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  where by construction, 0 ≤ bi
i

I
i

rbg ∑ =
=

0 i ≤ r - 1 and rI ≤ g < rI+1. 
 
The Halton sequence of values that corresponds to this series is 
 
  1

0)( −−
=∑= i

i
I
ir rbgH

 
For example, using base 5, the integer 37 has b0 = 2, b1 = 2, and b3 = 1.  Then  
 

H5(37) = 2×5-1 + 2×5-2 + 1×5-3  =  0.448. 
 
The sequence of Halton values is efficiently spread over the unit interval.  The sequence 

is not random as the sequence of pseudo-random numbers is.  Figures 5 and 6 below 

show two sequences of 1,000 Halton draws based on r = 7 and r = 9 and two sequences 

of 1,000 psuedorandom draws.  The clumping evident in the figure on the left is the 

feature that necessitates large pseudo-samples for simulations. 

 
 
     Figure 5.  Random draws from U(0,1)         Figure 6.  Two Halton sequences  
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