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1 Introduction

Most auction theory ignores the possibility that bidders may be willing to pay for an object more

than the amount of money they have available, i.e. that bidders may be budget constrained. Yet,

budget constraints can play an important role in practice. For example, David Salant (see Salant

[20], p. 567), reporting on his experience in the bidding team at GTE during one of the FCC

auctions for the sale of spectrum licenses, writes:

We were very concerned about how budget constraints could affect bidding. Most of

the theoretical literature ignores budget constraints. In the MTA [Major Trading Area]

auction, budget constraints appeared to limit bids.

Salant also explains how, in order to formulate its strategy, the GTE bidding team used a simulation

model in which possible budget levels of the different bidders entered as inputs.

In principle, if the bidders are interested in the objects for investment purposes (this was the

case in the spectrum license auctions), and have access to well functioning capital markets, budget

constraints should not matter. However, frictions in capital markets often make the amount of

available internal funds relevant. Moreover, even when external funding is available at profitable

rates, a bidder may be reluctant to borrow from a third party, because this might require disclosure

of private information about its valuation for the goods, which in turn may put the bidder at a

disadvantage in the auction. Also, a bidder may want to choose to be budget-constrained, in order

to commit to a less aggressive bidding strategy and thus induce better outcomes in terms of final

prices. A recent paper by Benôıt and Krishna [5] highlights this effect by showing that in fact, at

least in some cases, budget constraints may arise endogenously. Finally, financial constraints may

emerge endogenously when bidders act as agents of financing principals (see for example Bolton

and Scharfstein [3], or Holmström and Ricart i Costa [12]). These considerations provide good

theoretical and empirical reasons to think that budget constraints play important roles in auctions.

The introduction of budget constraints in theoretical models of auctions is fairly recent. Pio-

neering work in this area is due to Che and Gale, [6] and [7]. They have analyzed single-object

environments where each buyer has private information about both her willingness and her (pos-

sibly lower) ability to pay. One important insight that emerges from Che and Gale’s work is that

having a buyer with a budget w and a value v for an object is not the same, in general, as having a

buyer with value min {v, w}. Single-object second-price auctions with budget constrained bidders
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have been studied in Fang and Parreiras [10] and [11]. Zheng [23] studies a common value, (sin-

gle object) first-price auction model in which the bidders can borrow at a given rate and default.

Rhodes-Kropf and Viswanathan [18] analyze single object first-price auctions with privately know

values and budgets, in which the bidders can finance their bids with cash or securities. Multiple

objects auctions with budget constrained are analyzed in Benôıt and Krishna [5], but only under

the assumption of complete information.

We will study multi-unit simultaneous ascending-bid auctions under Che and Gale’s information

structure, i.e. under the assumption that each bidder has private information about both her

willingness to pay and her budget. Since 1994, multi-unit simultaneous ascending-bid auctions have

been used repeatedly by the US government to sell licenses for the use of parts of the electromagnetic

spectrum. In a previous paper (Brusco and Lopomo [4]) we have shown that, for a large class of

information and preference structures, these auctions provide the bidders with ample opportunities

for collusion. The basic idea is that, for many distributions of the bidders’ values, trying to win

two objects often yields less expected surplus than buying a single object at a relatively low price.1

In the present paper we will focus on the effect that the possibility (even if small) of binding

budget constraints has both on the opportunities for tacit collusion, and on the highest level of

competition sustainable in equilibrium. Intuitively, the presence of potentially binding budget con-

straints can affect the equilibrium set of the auction in at least three conceptually different ways.

First, it is clear that bidders with low budget levels cannot place high bids.2 Thus even “noncollu-

sive” equilibria, which would generate socially efficient outcomes without budget constraints, now

yield low levels of both social surplus and seller’s expected revenue.

Second, without binding side-contracts among the bidders, collusion in multi-unit simultaneous

ascending bid auctions can be sustained only if a credible threat of reverting to non-collusive

behavior is available to punish any deviating bidder with higher final prices. But, with sufficiently

tight budget constraints, the punishing bidders cannot push prices to sufficiently high levels. Thus

the presence of budget constraints may also hinder collusion.

1The experimental results in Kwashnica and Sherstyuk [15] corroborate our theoretical results in the case with

no complementarities. For a survey on recent experimantal work on collusion in mult-unit ascending bid auctions,

see Sherstyuk [21]. There is now general consensus that collusion in mult-unit ascending bid auctions is empirically

relevant. See, for example, Cramton and Schwartz [8], or Klemperer [13].

2We are assuming that each bid must be backed by “money on the table,” hence no bidder can make bids whose

total is above her budget. In this respect our model is different from Zheng [23]: we are implicitly assuming that

sufficiently severe penalties prevent our bidders from defaulting, so that they never bid above their budget.
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Finally, in situations where the bidders’ budgets are asymmetric, a third effect, similar to the

‘demand reduction’ seen in uniform price auctions, arises. Once prices reach levels at which a

budget-constrained bidder is unable to buy more than one object, a high-budget opponent can end

the auction immediately by simply letting the low-budget bidder win one object. This is more

profitable than trying to buy two objects for the high-budget bidder if the willingness to pay for a

second object is relatively low.

Demand reduction effects in multiunit sealed-bid auctions with uniform pricing have been noted

by Ausubel and Cramton [1] and Englebrecht-Wiggans and Kahn [9]; and the idea is also present

in Wilson [22]. We study open ascending bid auctions, in which the prices of the objects need

not be equal. In these auctions, without budget constraints, there is an equilibrium in which the

bidders simply raise the bid on each object up to their values, hence no demand reduction occurs.

Therefore, in our model, the demand reduction effect is entirely attributable to the presence of

potentially binding budget constraints.

Significant demand reduction can also occur if the bidders have private information about their

budget levels. Suppose that a bidder with a high budget assigns positive probability to the event

that her opponent is budget constrained. Then, if her value for the objects is not too high, she will

prefer to let the auction end and buy only one object, as soon as the prices reach a level at which

her opponent cannot buy more than one object. Thus, even in non-collusive equilibria, a nonempty

set of high-budget types, with relatively low values for the objects, will mimic the behavior of

budget-constrained types, and accept to split the objects.

We find that for a large class of distributions, even if the probability of having potentially

binding budget constraints is arbitrarily small, all high-budget types behave as if they were budget

constrained, hence the bidders’ behavior will be indistinguishable from the case in which it is

common knowledge that all bidders are budget constrained. In these cases, imposing a reservation

price for each object which is high enough to exclude any low-budget bidder from the auction

increases not only the seller’s revenue, but also the expected social surplus.3 Without budget

constraints, reservation prices unambiguously reduce social surplus because they prevent potential

gains from trade from being realized. With potentially binding budget constraints however, there

are distributions for which, even in noncollusive equilibria, the bidders split the objects, thus

3Cramton and Schwartz [8] suggest that reservation prices may be used to upset collusion in multi-unit auctions.

Their paper contains an example with complete information. We show that reservation prices can increase welfare in

noncollusive equilibria when the possibility of binding budget constraints is admitted.

4



lowering the social surplus. Sufficiently high reservation prices in this case would prevent budget

constrained bidders from participating in the bidding, thus making it common knowledge that all

active bidders are unconstrained. Therefore, in a noncollusive equilibrium, each object ends up in

the hands of a bidder with the highest value. For sufficiently small probabilities of having binding

budget constraints, the expected gain in social surplus due to the better allocation of the objects

is larger than the expected loss due to the exclusion of budget constrained types.

The insights of our model can also be applied to other situations in which two players compete

for multiple ‘prizes’, and each player’s type is characterized by two variables, one measuring the

value attached to the prizes, and the other referring to a resource constraint which may or may not

preclude the possibility of winning multiple prizes. Our analysis suggests that the mere possibility,

no matter how unlikely, that each player may face a tight resource constraint can induce a significant

reduction in competition, even in noncollusive equilibria. For example, the presence of capacity

constraints in the multi-market contact model developed by Bernheim andWhinston [2] may induce

firms to specialize in separate markets, i.e. to behave in a seemingly collusive fashion, even though

they are using noncollusive equilibrium strategies.

Going outside the realm of economics, consider a military game in which two armies are trying

to occupy two islands. Suppose that each army has private information about its military capacity,

e.g. each army may be ‘small’ or ‘large’, small meaning able to occupy at most one island. This

strategic situation is similar to the one we analyze in this paper, with the small army playing a

role similar to the budget constrained bidder. Our results suggest that, even if it is ex ante very

unlikely that each army is small, the final outcome can entail a low degree of competition, with

each army occupying one island.

The rest of the paper is organized as follows. Section 2 presents the model. For simplicity, we

consider only two objects and two bidders, with constant marginal willingness to pay. In Section

3 we analyze the case of commonly known budget levels, focusing first on the symmetric case, and

then on the case with different budget levels. In Section 4 we introduce private information about

the budget levels. Section 5 concludes. All proofs are relegated to an appendix.

2 The Model

The three models that we analyze in Sections 3 and 4 are special cases of the following environment.

There are two objects, and two bidders. Each bidder i = 1, 2 is characterized by a type θi := (vi, wi),
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where vi denotes the utility of each object and wi is the maximum amount of money that she can

spend in the auction. Therefore, the utility of a bidder who obtains n objects paying a total amount

of m is nvi −m, and m cannot exceed wi.

The four variables (v1, v2, w1, w2) are independently distributed, with support [0, 1]
2×W1×W2.

The c.d.f. F of each variable vi has a differentiable density f . The sets W1 and W2 are singletons

in Section 3, and two point sets in Section 4.

The objects are sold using a “simultaneous ascending bid auction”, which is a natural extension

of the standard one-object English auction to environments with multiple objects. In each round

t = 1, 2, ... , for each object j = 1, 2, each bidder i can either stay silent or raise the highest bid of

the previous round by at least a minimum amount ε > 0. Formally, i’s bid on object j in round

t, denoted by bij (t) , can either be −∞, which is to be interpreted as “stay silent”, or must be a
number in the interval [bj (t− 1) + ε, +∞), where bj (t− 1) denotes the “current outstanding bid”,
defined recursively by:

bj (0) = 0 and bj (t) := max
n
bj (t− 1) , bij (t) ; i ∈ N

o
.

If at least one bidder increases the outstanding bid on at least one object, i.e. if bj (t) > bj (t− 1)
for some j, then for each of these objects the new highest bid is identified, a potential winner is

selected among the bidders who have made the new highest bid, and the auction moves to the next

round, with the potential winner of all other objects unchanged. If instead all bidders stay silent

on all objects, the auction ends, and each object is sold to the winner selected at the end of the

previous round, for her last bid.

In our analysis we will consider the minimum bid increment ε negligibly small. This will simplify

the statements and proofs of our propositions, essentially by eliminating the need to consider sub-

cases in which a bidder’s value is larger than the current outstanding bid but smaller than the

current bid plus the minimum increment.

If 2 ≤ minWi, i = 1, 2, i.e. if each bidder’s budget is above the highest total amount that she

may be willing to spend in the auction, then the model is a special case of the model studied in

Brusco and Lopomo [4]. In that paper we have established the existence of collusive equilibria which

are sustained by the threat of reverting to non-collusive continuation strategies. Our focus here is

on the effect that the possible presence of budget constraints has on the auction’s equilibrium set.

Thus we assume, without loss of generality, that minWi < 2, for some i = 1, 2.

To keep the formal statements of our results as simple as possible, we will often write that a given
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strategy profile σ “forms an equilibrium” to mean that there exists a consistent belief system µ

such that the pair (σ, µ) constitutes a perfect Bayesian equilibrium. In most cases, given a strategy

profile σ it will be easy to find a consistent belief system which supports σ as an equilibrium. We

will be explicit about the belief system that goes together a given strategy profile only in some of

our proofs. Finally, we will restrict attention to equilibria in which, on the equilibrium path, no

bidder lets the auction end (i.e. remains silent if she expect her opponent to remain silent) if the

lowest outstanding bid is below both her value and her budget, and she is losing both objects.

3 Commonly Known Budgets

In this section we assume that the bidders’ budget levels are commonly known and equal, i.e.

W1 = W2 = {w}. In this case, the assumption minWi < 2 specializes to w < 2. The analysis is

organized as follows. In sub-section 3.1 we identify a “noncollusive” equilibrium that, subject to

the restriction stated at the end of the previous section, maximizes the social surplus and, if the

hazard rate f
1−F is nondecreasing, also minimizes the bidders’ expected surplus and maximizes the

seller’s expected revenue (when reservation prices are not allowed). In sub-section 3.2, we will use

the noncollusive equilibrium to construct a family of collusive equilibria in which the bidders buy

one object each, at relatively low prices.

3.1 Identical Budgets: The Noncollusive Equilibrium

In the auction format that we are considering, in any equilibrium in which no bidder lets the

auction end when she is losing both objects and has money to pay for at least one object, it must

be the case that, whenever w2 < min {v1, v2} , each bidder wins exactly one object. This is because
a bidder can win two objects only if both outstanding bids are higher than her opponent’s value.

Therefore, if w2 < min {v1, v2} , winning two objects would require paying more than 2 × w
2 = w.

Letting qi (vi, v−i) denote the number of objects sold to bidder i in a given equilibrium when his

value is vi and her opponent’s is v−i, we have

q1 (v1, v2) = q2 (v2, v1) = 1, if h < min {v1, v2} , (1)
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where h := w
2 . The (essentially unique) allocation (q

∗
1, q

∗
2) which maximizes the social surplus,

subject to the equality in (1), is:

q∗1 (v1, v2) ≡ 2− q∗2 (v2, v1) ≡


2, v2 < min {v1, h} ;
1, h ≤ min {v1, v2} ;
0, otherwise.

.

Defining Qi (v) ≡
R 1
0 qi (v, y) dF (y) , and Si (v) ≡ v Qi (v)−Mi (v) , where Mi denotes the equilib-

rium interim expected payment function of bidder i, standard mechanism design arguments yield

the following “envelope condition”:

Si (v) =

Z v

0
Qi (t) dt, all v ∈ [0, 1] ,

which we can use, together with the definition of Qi and the restriction in (1), to write the ex-ante

expected surplus for bidder i as:Z 1

0
Si (v) dF (v) =

Z 1

0
[1− F (v)]Qi (v) dv

=

Z
L
[1− F (v)] qi (v, y) dF (y) dv + [1− F (h)]

Z 1

h
[1− F (v)] dv,

where L := [0, 1]2 \ [h, 1]2 and we have exploited the property qi (v1, v2) = 1 for each (v1, v2) =
[h, 1]2. The total bidders’ expected surplus can then be written as:

2X
i=1

µZ 1

0
Si (v) dF (v)

¶
=
Z
L

"
2X
i=1

1− F (vi)
f (vi)

qi (vi, v−i)
#
dF (v1) dF (v2) +K1,

where K1 = 2(1− F (h))
R 1
h [1− F (v)] dv; and the seller’s expected revenue as:

2X
i=1

µZ 1

0
Mi (v) dF (v)

¶
=

2X
i=1

Z 1

0
vQi (v) dF (v)−

2X
i=1

Z 1

0
Si (v) dF (v)

=

Z
L

"
2X
i=1

µ
vi − 1− F (vi)

f (vi)

¶
qi (vi, v−i)

#
dF (v1) dF (v2) +K2,

where K2 =
R 1
h

R 1
h

hP2
i=1

³
vi − 1−F (vi)

f(vi)

´i
dF (v1)dF (v2). It is now immediate to see that the bid-

ders’ expected surplus is minimized (pointwise) with respect to q1 (v1, v2) and q2 (v1, v2), (v1, v2) ∈
L, subject to the constraint:

q1 (v1, v2) + q2 (v2, v1) = 2, for all (v1, v2) ∈ L, (2)
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by assigning both objects to the bidder with the higher hazard rate, i.e. by setting qi (vi, v−i) = 2

whenever 1−F (vi)f(vi)
< 1−F (v−i)

f(v−i) , i = 1, 2. Similarly, the seller’s expected revenue is maximized, subject

to the constraint in (2), by assigning both objects to the bidder with the higher “virtual utility”,

i.e. by setting qi (vi, v−i) = 2 whenever vi − 1−F (vi)
f(vi)

> v−i − 1−F (v−i)
f(v−i) , i = 1, 2. If the hazard rate

f
1−F is nondecreasing, the solutions of both programs coincide almost everywhere with the socially

efficient allocation q∗ defined at the beginning of the section.

The rest of this subsection is devoted to showing that the allocation q∗ is obtained in a (sym-

metric) “noncollusive” equilibrium. We first describe the bidders’ behavior on the equilibrium path

(ignoring the case in which the bidders have equal values). Then, Proposition 1 will provide the

formal definition of the strategies, and establish that they form an equilibrium.

In the proposed equilibrium the auction begins with the bidders increasing both outstanding

bids, at the same pace, up to the minimum among the threshold h and the two bidders’ values.

More precisely, for each i = 1, 2, bidder i raises by ε the outstanding bid on object i in any odd

round, and on object 3− i in any even round, up to min {vi, h} . Thus the auction progresses with
each bidder being the potential winner of one object in each round, until the outstanding bids reach

either min {v1, v2} or h. In the first case, i.e. if min {v1, v2} < h, the bidder with the lower value
remains silent, and the auction ends with her opponent buying both objects and paying twice the

lower value. Otherwise, as soon as the outstanding bids reach h, both bidders remain silent and the

auction ends with each bidder buying one object and paying h. The next proposition establishes

that this behavior can be supported as a perfect Bayesian equilibrium.

Proposition 1 (Noncollusive equilibrium with known and equal budgets) If W1 =W2 = {w} , then
the following strategy forms a symmetric equilibrium: at any stage t+ 1, type vi of bidder i raises

by ε the outstanding bid:

• of the object with the lowest outstanding bid (breaking ties in favor of object i), if she is not
the winner on any object, and

min {b1 (t) , b2 (t)} < min {vi, w} ; (3)

• of object j only, if she is the winner on object 3− j only, and

bj (t) < min {vi, w− b3−j (t) , h} ; (4)

• of no object, otherwise.
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Without budget constraints, i.e. if 2 < w, the equilibrium of Proposition 1 collapses to the “sepa-

rated English auctions” equilibrium characterized in Brusco and Lopomo [4] – i.e. each bidder bids

on each object up to its valuation. The known presence of potentially binding budget constraints

affects the noncollusive equilibrium strategies in two ways. First, the sum of the outstanding bids

on objects for which a bidder is the potential winner cannot exceed her budget. This constraint,

which is captured by the presence of w in inequality (3), and w−b3−j(t) in inequality (4), is binding
off the equilibrium path. The effect of budget constraints on the equilibrium path is captured by

the presence of h in inequality (4): as we have noted at the beginning of this section, it is never

optimal for any bidder to keep trying to buy both objects once the outstanding bids have reached

half of her budget. As we will see in the next two sections, this feature is robust to the introduction

of asymmetries and private information about budget levels.

3.2 Identical Budgets: Collusive Equilibria

The noncollusive equilibrium of Proposition 1 can be used to construct a family of collusive equi-

libria, which we label γ-equilibria. For each γ ∈ [0, h], a γ-strategy is defined as follows: each

bidder uses the noncollusive strategy of Proposition 1 until either the opponent stays silent, or the

outstanding bids reach the level γ; and stays silent in the next round. After any deviation each

bidder reverts to the noncollusive strategy.

Clearly, the set of all γ-strategies, γ ∈ [0, h] , can be ordered according to their implied degree
of collusion. The 0-strategy is the most collusive: it induces all types of each bidder to buy one

object at the lowest possible price. At the opposite end of the interval, the h-strategy coincides

with the noncollusive strategy defined in Proposition 1.

If both bidders use a given γ-strategy, the interim-expected number of objects sold to a bidder

is:

Q (v |γ) ≡


2F (v) , v ∈ [0, γ] ;

1+ F (γ) , v ∈ (γ, 1] .
This is because a bidder with value v ≤ γ buys both objects if her opponent has a lower value, and

no object otherwise. Since the probability of the first event is F (v), we have Q (v |γ) = 2F (v). If
instead v > γ, then the bidder wins at least one object if her opponent’s value is above γ, and two

objects otherwise. Thus, in this case, Q (v |γ) = 1+F (γ). If the γ-strategy is incentive compatible,
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the associated surplus function is:

S (v | γ) =


R v
0 2F (t) dt, v ∈ [0, γ] ;

R γ
0 2F (t) dt+ [1+ F (γ)] (v − γ) , v ∈ (γ, 1] .

Now let ∆ (v | γ, h) denote the expected surplus that the γ-strategy profile generates for type v in
excess of the surplus obtained in the equilibrium of Proposition 1, i.e.:

∆ (v | γ, h) ≡ S (v | γ)− S (v |h) .

Clearly, the γ-strategy forms an equilibrium if and only if:

∆ (v | γ, h) ≥ 0 for all v ∈ [0, 1] , (5)

i.e. each type v ≥ γ is willing to split the objects when the prices reach γ rather than reverting to

the noncollusive equilibrium of Proposition 1. Substituting the expressions for S (v | γ) and S (v |h)
we have:

∆ (v | γ, h) =



0, v ∈ [0, γ] ;

[1+ F (γ)] (v − γ)− R vγ 2F (t) dt, v ∈ (γ, h) ;

h− γ + F (γ) (v − γ)− F (h) (v − h)− R vγ 2F (t) dt, v ∈ [h, 1] .

The function ∆ (· | γ, h) is concave in the interval [γ, 1], and ∆ (γ | γ, h) = 0 ; hence the equilibrium
condition in (5) is equivalent to the single inequality:

∆ (1 | γ, h) ≥ 0.

It is thus sufficient to check that the highest type has no incentive to trigger the reversion to the

noncollusive strategies, once the prices reach the level γ. We record this conclusion in the next

proposition.

Proposition 2 (Collusive equilibria with known and equal budget levels) A γ-strategy is part of a

γ-equilibrium if and only if:

V (γ) ≥ V (h) , (6)
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where:

V (γ) ≡ S (1 | γ) =
Z γ

0
2F (t) dt+ [1+ F (γ)] (1− γ) . (7)

The inequality in (6) shows that the set of all γ-equilibria is determined by the budget level w via

the function V (·), which in turn depends on the distribution F of the bidders’ types. Depending on
the nature of F , decreasing the budget level w may facilitate or hinder collusion in the sense that a

given γ-strategy may form an equilibrium for a budget level w0 ≤ 2, but not for a smaller level w00;
or viceversa, it may form an equilibrium for w00 and not for w0. This is because a reduction of the

budget level may increase or decrease the expected surplus of the highest type in the noncollusive

equilibrium, i.e. the derivative:

V 0 (h) = (1− h) f (h) − [1− F (h)] (8)

may be positive or negative. Thus the set:

Γ (h) := {γ ∈ [0, h] |V (γ) ≥ V (h)} (9)

of all price levels at which the bidders can split the objects in equilibrium may get larger or smaller

as h decreases.

The two terms which make up the derivative V 0 (h) in (8) have the following familiar interpre-

tation. Consider an increment of the threshold h, say from h to h + δ. This has no effect on the

highest type’s expected surplus if her opponent’s value is below h. Otherwise:

i) if the opponent’s value is between h and h + δ, she can now buy two objects instead of one,

hence her expected surplus increases by:

2 [1− φ (δ)]− (1− h) = 1− 2φ (δ) + h,

where φ (δ) := E [v |h < v < h+ δ] ;

ii) if the opponent’s value is above h+ δ, she still buys only one object, but her payment increases

by δ.

Multiplying each term by its probability and summing yields the overall change in expected surplus:

∆V = [F (h+ δ)− F (h)] [1− 2φ (δ) + h] − [1− F (h+ δ)] δ,
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from which one obtains the derivative in (8) after dividing by δ and taking the limit for δ → 0,

since limδ→0 φ (δ) = h. Thus the first term in (8) is due to the additional surplus deriving from the

purchase of a second object; since the second object ends up in the hands of the bidder with the

highest value, the efficiency of the allocation is increased. The second term captures the negative

effect due to the higher degree of competition; when v2 > h + δ then an increase in the budget

available to the bidders does not change the allocation, but it increases the price that each bidder

pays to the seller. Depending on which of the two effects prevails, a reduction in the bidders’ budget

level may increase or decrease their expected surplus in the non-collusive equilibrium, and this in

turn restricts or enlarges the set of prices at which the bidders can split the objects in equilibrium.

We end this section with a complete characterization of the equilibrium price correspondence Γ,

defined in (9), for each of two broad classes of distributions. First, in Proposition 3, we consider

the class of all distributions with single-peaked densities, i.e. such that f is increasing on [0, x) and

decreasing on (x, 1] , for some x ∈ [0, 1] . Second, in Proposition 4, we focus on the case in which
−f is single-peaked, i.e. f is decreasing on [0, x) and increasing on (x, 1] , for some x ∈ [0, 1] .

Proposition 3 (f single-peaked.) Suppose that there exists a point x ∈ [0, 1] such that 0 < f 0 (v)
for all v ∈ [0, x) and f 0 (v) < 0 for all v ∈ (x, 1]. In this case,

(a) if f (0) ≥ 1, then Γ (h) = {h} , for each h ∈ [0, 1];

(b) if instead f (0) < 1, there are two sub-cases:

1. if 12 ≤ E (v) , then

Γ (h) =


[0, h] , h ∈ [0, h0] ,

[0, bγ (h)] ∪ {h} , h ∈ (h0, 1] ,
where h0 := argminγ∈[0,1] V (γ) , and the function bγ : (h0, 1] → [0, h0] is defined by the

equality V (γ) = V (h) ;

2. if E (v) < 1
2 , then

Γ (h) =



[0, h] , h ∈ [0, h0] ,

[0, eγ (h)] ∪ {h} , h ∈ (h0, h1] ,

{h} , h ∈ (h1, 1] ;
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where the function eγ : (h0, h1]→ [0, h0] is defined by the equality V (γ) = V (h) , and h1

is the unique solution of the equation 1 = V (h) in (0, 1] .

The proof of Proposition 3 hinges on the following properties of the function V , which hold for any

(differentiable) density f :

V 00 (γ) = (1− γ) f 0 (γ) , (10)

V 0 (1) = 0, (11)

V 0 (0) = f (0)− 1. (12)

When f is single-peaked, (10) implies that V is convex on [0, x), and (10) and (11) together imply

that V is both concave and increasing on [x, 1]. If in addition f (0) ≥ 1, (case a of the Proposition),
then by (12) V 0 (0) ≥ 0, hence by convexity V is also increasing on (0, x) . Thus V is increasing on
(0, 1) , i.e. the (noncollusive) h-strategy generates more expected surplus for the highest type than

any γ-strategy, γ < h. Thus Γ (h) = {h} for any h ∈ [0, 1] .
If instead f is single-peaked, but f (0) < 1, (case b) then, V is first decreasing and then increasing.

Thus the (unique) minimizer h0 := argminγ∈[0,1] V (γ) is strictly between 0 and 1. For each h ∈
[0, h0] , all γ-strategies with γ ≤ h generate more expected surplus that the h strategy, hence

Γ (h) = [0, h]. For h above h0, the nature of the equilibrium correspondence Γ depends on whether,

without budget constraints, it is an equilibrium for the bidders to split the objects immediately,

i.e. on how V (0) compares with V (1) , or equivalently on how E (v) compares with 1
2 .

If V (0) ≥ V (1) – case b1– then, for each h ∈ (h0, 1] , there is a unique bγ (h) ∈ [0, h0) such that
V (γ) = V (h) . Any γ-strategy with γ ≤ bγ (h) forms an equilibrium, hence Γ (h) = [0, bγ (h)] ∪ {h} .
In particular, splitting the objects immediately (the 0-strategy) is an equilibrium for any h ∈ [0, 1] .
If instead V (0) < V (1) – case b2 – there exists a unique point h1 ∈ (h0, 1] such that 1 =

V (h1) ; and for each h ∈ (h0, h1] there is a unique eγ (h) ∈ [0, h0) such that V (γ) = V (h) . Thus
any γ-strategy with γ ≤ eγ (h) forms an equilibrium, hence Γ (h) = [0, eγ (h)] ∪ {h} . Finally, for
h ∈ (h1, 1] , we have Γ (h) = {h} . In this case a reduction of the budget level can lower the seller’s
expected revenue in two ways: competition in the non-collusive equilibrium decreases, and splitting

the objects immediately becomes possible for h < h1.
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Figure 1: f single peaked,

Figure 1 shows an example for case b1 (on the left-hand side), and one for case b2 (on the

right-hand side). The two panels above show the graph of V , for f (v) = 12 v2 (1− v) and f (v) =
12 v (1− v)2 respectively. The panels below show the (boundary of) the associated equilibrium

correspondences Γ.

Suppose now that −f is single-peaked. The characterization of the correspondence Γ is obtained
with similar arguments. Now the equalities in (10), (11) and (12) imply that V is first concave,

and then both decreasing and convex. As in Proposition 3, we first distinguish two cases: f (0) ≤ 1
and f (0) > 1. In the first case, V is decreasing in (0, 1), hence any γ-strategy, γ ≤ h forms an
equilibrium, for any h ∈ [0, 1] . In the second case f (0) > 1, V is first increasing, up to a point

h∗, and then decreasing. If h ≤ h∗ then no collusive equilibria are possible. If h > h∗ (that is,

h belongs to the interval on which V is decreasing) then all γ-strategies in a nonempty interval

[bγ (h) , h] form an equilibrium for any level of h in (0, 1], where bγ (h) is the lowest value of γ such
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that V (γ) = V (h) (or bγ (h) = 0 if V (0) ≥ V (h)). The function bγ (h) is decreasing in h. Therefore,
in this case, tightening the bidders’ budget constraints can reduces the scope for collusion, in the

sense that the lowest price level at which the objects can be split in equilibrium increases as h

decreases.

Proposition 4 (-f single-peaked.) Suppose that there exists a point x ∈ [0, 1] such that f 0 (v) < 0
for all v ∈ [0, x) and 0 < f 0 (v) for all v ∈ (x, 1]. In this case,

a) if f (0) ≤ 1, then Γ (h) = [0, h] , for each h ∈ [0, 1];

b) if instead f (0) > 1, there are two sub-cases:

1. if E (v) < 1
2 , then

Γ (h) =


{h} h ∈ [0, h∗] ,

[bγ (h) , h] h ∈ (h∗, 1] ,
where h∗ := argmaxV (γ), and the function bγ : (h∗, 1]→ [0, h∗] is defined by the equality

V (γ) = V (h) ;

2. if 12 ≤ E (v) , then

Γ (h) =



{h} h ∈ [0, h∗] ,

[bγ (h) , h] h ∈ (h∗, h1] ,

[0, h] h ∈ (h1, 1] ;

where bγ : (h∗, h1]→ [0, h∗] is defined by the equality V (γ) = V (h) , and h1 is the unique

solution of the equation 1 = V (h) in (0, 1] .

Figure 2 illustrates cases b1 and b2 in Proposition 4. In the graphs on the left, f (v) = 2 −
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12v (1− v)2 ; and on the right f (v) = 2− 12v2 (1− v) .
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Figure 2 −f single peaked

3.3 The Noncollusive Equilibrium with Known and Asymmetric Budget Levels

Before turning to the model with privately known budgets, it is useful to study the case with

commonly known, but different, budget levels. Without loss of generality, we set w2 < w1, and

assume w2 < 2, so that bidder 2’s budget constraint is potentially binding. We make no assumptions

on w1: bidder 1 may or may not be budget constrained, i.e. w1 may be greater or smaller than 2.

We define hi :=
wi
2 , i = 1, 2.

We begin by observing that, in this case, the noncollusive strategy defined for the symmetric

case (Proposition 1) cannot form an equilibrium. In particular, this strategy is not a best reply

to itself, for some types of bidder 1 above h2. To see this, suppose that both bidders have values

above h2, so that, in obedience to the strategy of Proposition 1, the bidders start the auction by

raising both outstanding bids up to h2. Beyond this point, bidder 2 cannot bid on more than one
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object; but bidder 1 can, and according to the strategy of Proposition 1 she should keep trying to

win both objects, until the two bids reach h1. Under what conditions is it optimal for bidder 1 to do

so? Suppose that both outstanding bids are at b ≥ h2, each bidder is winning one object, and we
are on the equilibrium path, so that bidder 1’s beliefs about her opponent’s value are represented

by the c.d.f. G (v2| b) ≡ F (v2)−F (b)
1−F (b) , with support [b, 1].

At this point, in light of the argument made at the beginning of sub-section 3.1, it is common

knowledge that bidder 2 can only “bid defensively,” i.e. she will remain silent unless she is losing

both objects and both outstanding bids are above her value. Therefore, bidder 1’s problem boils

down to choosing an optimal “stopping time” s. By bidding on the second object until both bids

arrive at s, and then letting the auction end by accepting to split the objects, she wins both objects

at unit price v2, if v2 < s, and one object at price s, otherwise. Her expected surplus (conditional

on both outstanding bids having reached b) as a function of the chosen stopping time s ∈ [b, h1] is:

U ( v1, s| b) = 2
Z s

b
(v1 − v2) dG (v2| b) + (v1 − s) [1−G (s| b)] . (13)

The value of s prescribed by the strategy of Proposition 1 is min {v1, h1}; hence bidder 1 should
stop at v1 if h2 < v1 < min {h1, 1} . But the first derivative:

∂U (v1, s |b)
∂s

= (v1 − s) G0 (s| b) − [1−G (s| b)] , (14)

evaluated at s = v1 is − [1−G (v1| b)] < 0, for any v1 < 1. Thus, if h2 < v1 < min {h1, 1} , bidder
1 has an incentive to stop before the bids arrive at v1. We conclude that the noncollusive strategy

defined in Proposition 1 for the symmetric case does not form an equilibrium if the bidders’ budget

levels are different.

Once the outstanding bids have reached h2, bidder 1 faces a single-person decision problem,

similar to a standard monopsony profit maximization problem: the essential trade-off is between

buying a single object for a given price and buying two objects for a higher unit price. In light of

this analogy, one should not be surprised to find that the outcome is in general inefficient; i.e. the

stopping time s is in general below bidder 1’s value v1, so that, whenever bidder 2’s value is between

s and v1, the objects are split instead of going both to bidder 1, despite the fact that bidder 1 can

afford to buy both objects. Similar “demand reduction” effects have been noted before in other

auction formats4, in the absence of budget constraints. In our model, the demand reduction effect

4E. g. Ausubel and Cramton [1], or Englebrecht-Wiggans and C. Kahn [9].
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is due to the presence of budget constraints; absent such constraints, there is always an equilibrium

in which bidders bid up to their values and no demand reduction occurs.

We now define a strategy profile which forms the “noncollusive” equilibrium with asymmetric

budget levels. For the low-budget bidder (i.e. bidder 2) the strategy is the one described in

Proposition 1. The behavior of bidder 1 on the equilibrium path, once the bids reach h2, is

determined by an optimal stopping time s1 (v1 | b), defined for each bid level b ∈ [h2, 1] and each
type v1 ∈ [h2, 1]. Let U (v1, s |b) be the function defined in (13), that is, the utility obtained by a
high-budget bidder who has beliefs given by G (v2 | b) on the opponent’s value, and sets a stopping
time of s; and define the set R (v1; b) as:

R (v1; b) := arg max
s∈[b,min{1,h1}]

U (v1, s |b)

Since U (v1, s |b) is continuous in s, the set R (v1; b) is compact, although not necessarily a singleton.
Since we are looking for the “most competitive” equilibrium, we select the highest optimal stopping

time, i.e. we define:

s1 (v1; b) ≡ max R (v1; b) . (15)

The functions s1 (·; b), b ∈ [h2, 1] are time-consistent, in the sense that, if h2 < s1 (v1;h2), then

s1 (v1; b) = s1 (v1;h2) for any b ∈ [h2, s1 (v1;h2)].
The function s1 (·;h2) has the following properties. Its domain [h2, 1] can be partitioned in three

subintervals. First, all types in a lower interval [h2, v
0
1] let the auction end at h2. For these types it

is optimal to stop as soon as the opponent starts bidding defensively. The interval [h2, v
0
1] is always

nonempty: in fact, since f is bounded, we can find δ > 0 such that, for all v1 ∈ [h2, h2 + δ] , we

have v1 − s < 1−F (s)
f(s) whenever s ∈ [h2, v1] , hence:

∂U (v1, s |h2 )
∂s

=
(v1 − s) f (s)− [1− F (s)]

1− F (h2) < 0, all s ∈ [h2, v1] .

This implies that the optimal s is the lowest one, that is h2.

At the opposite side of the spectrum, all types in an upper interval [v001 , 1] push the bids on both

objects up to h1. These are types with a high value for the object, who try to win both objects

until they are able to pay for them. Clearly, this upper interval [v001 , 1] can be nonempty only if

h1 < 1, i.e. only if the budget constraint is potentially binding for the high-budget bidder as well.

For all types in the remaining middle interval (v01, v001) , the optimal stopping time must satisfy

the first order condition:

(v1 − s) f (s) − [1− F (s)] = 0.
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The middle interval can also be empty: in fact, it may be the case that v01 = 1, i.e. all types stop

at h2. For example, if F is uniform, we have

∂U (v1, s |h2 )
∂s

= −1− v1
1− h2 < 0, all s ∈ [h2, v1] , and all v1 ∈ [h2, v1) .

This completes the description of the bidders’ behavior on the equilibrium path. To summarize,

the low-budget bidder tries to win both objects until the bids reach min {h2, v2}. If h2 < v2, once
the bids reach h2 she adopts the “defensive” strategy of bidding on the lowest priced object as long

as the price remains below min {w2, v2}. The high-budget bidder follows a similar strategy, but she
tries to get both objects up to an optimally chosen ‘stopping time’ s1 (v1;h2) – which in general

differs from min {h1, v1}.
To complete the characterization of the equilibrium, we have to specify what happens off the

equilibrium path. We use a belief formation rule which is a natural extension of the updating rule

adopted on the equilibrium path: at any stage, bidder i looks at the highest bid ever made by

her opponent, and simply rules out the possibility that v−i is below it. Thus, beliefs are given

by bF (v−i | v−i ≥ bv) ≡ F (v−i)−F(bv)
1−F(bv) for v−i ∈ [bv, 1] , where bv denotes the highest bid ever made by

bidder i’s opponent.

Off the equilibrium path, the bidders’ behavior is as follows. First observe that staying silent

is always optimal for any bidder who is winning both objects. Therefore, if bidder i is losing

both objects, staying silent would terminate the auction. This is optimal if min {vi, wi} does not
exceed any of the outstanding bids. Otherwise, it is optimal to increase by ε (one of) the lowest

outstanding bids. We are thus left with the task of specifying the bidders’ strategies when each

bidder is winning one object. The details of this are relegated to the appendix. Here we define the

optimal stopping time for bidder 1, when she is winning one object, as the highest maximizer of

U1 (v1, s | b3−j , bv) , where U1 is the appropriate extension of the function U defined in (13), and is
defined in the appendix. Therefore we let

s1 (v1; b3−j, bv) ≡ max
(
arg max

s∈[min{b3−j ,bv},min{h1,1}]U1 (v1, s| b3−j, bv)
)
, (16)

and note that the stopping function defined along the equilibrium path is obtained as a special

case of s1 (v1; b3−j , bv) when b3−j = bv. Also, to save notation in the statement of the equilibrium
strategies, we let:

s2 (v2; b3−j , bv) ≡ v2. (17)
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We are now prepared to formally characterize the equilibrium strategy profile for the case of known

and asymmetric budget levels.

Proposition 5 Let w2 < w1, and let s1 and s2 be defined as in (16) and (17). The following

strategy pair forms an equilibrium. Let (b1, b2) be the pair of outstanding bids at round t. Then at

round t+ 1, each type vi of bidder i raises by ε the outstanding bid:

• on the object with the lowest outstanding bid, breaking ties in favor of object i, if she is not
the winner on any object, the current outstanding bids are different, and

min {b1, b2} < min {vi, wi} ;

• on object j only, if she is the winner on object 3− j only, and if

bj < min {si (vi; b3−j , bv) , hi, wi − b3−j} ,
where bv is the highest bid ever made on any object by bidder 3− i.

• on no object, otherwise.

The strategy profile described in Proposition 5 is the “most competitive” equilibrium with known

and different budget levels. Once it becomes common knowledge that both buyers’ values are above

h2, the allocation of the objects is determined solely by the high-budget bidder’s behavior. Since

we have chosen the highest among all stopping times, the equilibrium of Proposition 5 yields the

highest social surplus among all equilibria of the auction with known and different budget levels.

The characterization of the equilibrium in Proposition 5 shows that the presence of budget

constraints limits competition not only directly, but also via the fact that a high-budget bidder

facing a budget constrained opponent is able to exploit her monopsony power by stopping the

bidding on both objects before the bids reach her value. In the next section we show that this

effect plays an important role in the case of privately known budgets. In fact, even arbitrarily small

probabilities that the bidders may be budget constrained can generate a competition-restraining

effect similar to the one described in Proposition 5.

As a last remark, we observe that the equilibrium in Proposition 5 can be used as ‘punishment’

in constructing collusive equilibria based on γ−strategies of the type analyzed in subsection 3.2,
with the obvious adjustments. Since the analysis is very similar, we don’t repeat it here; we just
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observe that in general it is more difficult to convince a high-budget bidder to collude, since the

opponent is weaker. The same remark will apply to the analysis in the next section, where we

consider the case of privately known budgets. From this point on we focus exclusively on the ‘most

competitive’ equilibrium.

4 Noncollusive equilibria with Privately Known Budgets

In this section we allow each bidder to have private information about her budget level. Thus a type

for bidder i = 1, 2 is now identified by the pair (vi, wi) ∈ [0, 1]×W . We analyze the simplest model
in which each bidder may or may not be budget constrained: for each i = 1, 2, the distribution of wi

is independent of all other random variables, has support W = {wL, wH} , with 1 < wL < 2 < wH ,
and Pr [wi = wL] := λ ∈ (0, 1). The assumption that budget constrained bidders can always bid
up to their value for a single object (i.e. 1 < wL) is not essential, but simplifies the analysis.

We begin by observing that there can be no equilibrium where each high-budget type bids

on both objects until both prices reach her value. Therefore, even in the “most competitive”

equilibrium, and even if both bidders are not budget constrained, some demand reduction must

occur. To see this, assume that each type behaves as in the noncollusive equilibrium of Proposition

1. Suppose that the outstanding bids have arrived at hL :=
wL
2 , hence hL < min {v1, v2} , and

that each bidder is winning one object. At this point, all low-budget types are happy to split the

objects, and thus remain silent. All high-budget types instead are supposed to keep trying to win

both objects, until both bids reach their value.

But consider a high-budget bidder, say bidder 1, who has just increased the bid on the object

that she was not winning and has seen her opponent “offering to split” the objects by remaining

silent. Since this reveals that w2 = wL, bidder 1’s problem is now identical to the one discussed at

the beginning of the previous section, where we have seen that she will always refrain from pushing

the prices up to her value. In particular, a nonempty set of types with value close to hL will choose

to stop immediately.

Thus, in the noncollusive equilibrium, all high-budget types with value below a threshold v∗ > hL
remain silent once the bids arrive at hL. The position of the threshold v∗ in the interval (hL, 1]

depends on the distribution F, and on the probability λ of facing a low budget opponent. However,

even as λ goes to zero, the value of v∗ may remain bounded away from hL. Therefore, even if the

probability of facing a budget constrained opponent is vanishing, there may be first-order effects
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on expected welfare and the expected revenue for the seller. In some cases the effects are quite

dramatic, as we will see shortly by analyzing the case of nondecreasing densities.

The bidders’ behavior on the equilibrium path is as follows. The auction starts with both

outstanding bids increasing at the same pace, up to min {v1, v2, hL}. More precisely, for each

i = 1, 2, bidder i increases the outstanding bid by the minimum increment ε on object i in any

odd round, and on object 3− i in any even round, up to min {vi, hL}. Thus the auction progresses
with each bidder being the potential winner of one object in each round, until the outstanding

bids reach either the lowest of the bidders’ values, or hL. In the first case, the bidder with the

lowest value stays silent, and the auction ends with her opponent winning both objects. Otherwise,

i.e. if hL < min {v1, v2}, the behavior of each bidder depends on whether her type is “tough,” i.e.
high-budget and with value above a threshold v∗ (which is strictly above hL), or “soft,” i.e. either

low-budget, or high-budget and with value between hL and v∗. Once the bids reach hL, all soft

types remain silent. All tough types instead continue to raise the outstanding bid on any object

which is assigned to the opponent, up to a threshold which depends on the opponent’s behavior.

Thus, if both bidders are soft, they stay silent and the auction ends with each bidder buying one

object and paying hL. If both bidders are tough, the bidding continues as in the initial phase and

the bidder with the highest value wins both objects. Finally, if one bidder is tough and the other is

soft, the soft bidder starts to bid “defensively,” i.e. she bids on one of the objects with the lowest

current outstanding bid if she is losing both objects, and stays silent otherwise. The tough bidder

instead tries to win both objects until the bids reach an optimally chosen threshold. The auction

then ends with the tough bidder buying both objects if her threshold is above her opponent’s value,

and with the bidders splitting the objects otherwise.

We now provide a formal definition of the strategy just described. As in the previous section,

we have to define the “stopping” function s (vi, wi; b1, b2) which determines the highest price that

a bidder of type (vi, wi) who has observed a pair of bids (b1, b2) is willing to pay in order to get

both objects. Except for the definition of the function s, the strategies involved in our equilibrium

are identical to the strategies defined in Proposition 5. However, the way in which the function

s is determined in the case of privately known budgets is conceptually different from what we

have seen in the previous section. In fact, if the bidders’ budget levels are commonly known, the

high-budget bidder (if one exists, i.e. if w1 6= w2) faces a straightforward single person decision

problem, as discussed in the previous section. With incomplete information on the budget levels,

each bidder’s optimal stopping time is also a function of her opponent’s behavior. While it is clear
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that a low-budget opponent will bid defensively, the behavior of a high-budget opponent will depend

on her beliefs. Some, but not necessarily all, high-budget types will play “soft,” thus mimicking

the behavior of low-budget bidders. Therefore each bidder needs to formulate a conjecture about

the stopping function used by her opponent in order to compute her own stopping function. The

conclusion is that the (symmetric) equilibrium stopping function has to be computed as the solution

of a fixed point problem, rather than as the solution of a single-person decision problem.

For all low budget types things are simple. The function s (vi, wL; b1, b2) prescribes to stop

immediately if any of the bids is above min {vi, hL}, and keep trying to buy both objects otherwise.
Since the functions is defined for vi ≥ hL, we have

s (vi, wL; b1, b2) ≡ vi.

For the high budget types things are more complicated. We first characterize the optimal stopping

function on the equilibrium path. Suppose that the current bids are (b, b), with b > hL, and that,

when the bids reached the level (hL, hL), bidder 1 played ‘tough’, meaning she raised the bid on

the object she was not winning, and bidder 2 played ‘soft’, i.e. she remained silent. The beliefs of

the two bidders are as follows. Bidder 2 believes that w1 = wH with probability 1, and that v1 is

distributed according to the posterior c.d.f. determined by the optimal stopping function and by

F . Bidder 1’s beliefs about her opponent’s are as follows:

Pr (w2 = wL| soft) = λ [1− F (b)]
λ [1− F (b)] + (1− λ)max {F (v∗)− F (b) , 0} ,

Pr (w2 = wH | soft) = (1− λ)max {F (v∗)− F (b) , 0}
λ [1− F (b)] + (1− λ)max {F (v∗)− F (b) , 0} ;

and the conditional densities on v2 are:

g (v2| b,wL) ≡


f(v)
1−F (b) v2 ∈ [b, 1] ,
0 otherwise;

and

g (v2| b,wH) ≡


f(v)
F (v∗)−F (b) v2 ∈ [min {b, v∗} , v∗] ,
0 otherwise.

Letting G (·| ·, ·) denote the c.d.f. corresponding to the densities g, we can write bidder 1’s

24



expected surplus from stopping at s as:

U (v1, s; v∗, b) = Pr (wL| soft)
·
2

Z s

b
(v1 − y) dG (y| b, wL) + (v1 − s) [1−G (s| b,wL)]

¸

+Pr (wH | soft)
·
2
Z s

b
(v1 − y) dG (y| b, wH) + (v1 − s) [1−G (s| b,wH)]

¸
After substitutions and ignoring multiplicative constants we can write the objective function as:

• for b < v∗:

U (v1, s; v∗, b) = λ

·
2

Z s

b
(v1 − y) dF (y) + (v1 − s) [1− F (s)]

¸
(18)

+ (1− λ)

"
2
Z min{s,v∗}

b
(v1 − y) dF (y) + (v1 − s) [F (v∗)− F (min {s, v∗})]

#
;

• for b ≥ v∗:

U (v1, s; v∗, b) = 2
Z s

b
(v1 − y) dF (y) + (v1 − s) [1− F (s)] . (19)

We now define the set

R (v1, wH ; v∗, b) ≡ argmax
s

U (v1, s; v∗, b) , (20)

and, since we are interested in the ‘most competitive’ equilibrium, we consider the ‘stopping rule’

given by:

r (v1; v∗, b) ≡ max R (v1, wH ; v∗, b) . (21)

When v∗ is an equilibrium value, and the bids b1 = b2 = b are reached along the equilibrium path,

we set:

s (v1, wH ; b, b) ≡ r (v1; v∗, b) .
For any given threshold v∗ we can compute the expected surplus of each player from playing ‘tough’

and ‘soft’ (once the bids reach hL) when her opponent conjectures that all high-budget types above

v∗ play tough and all high-budget types below v∗ play soft. In equilibrium, v∗ must be such that

the conjecture is confirmed. We now discuss more in depth the existence of an equilibrium with

the characteristics just described.
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4.1 Existence of the Equilibrium

In order to complete the analysis we have to accomplish two tasks. First, we have to show that a

threshold value v∗ exists, i.e. we have to show that a fixed point exists. That is, it must be true

that when bidder 1 conjectures a threshold value v∗ for the opponent, then all types v1 < v∗ are

willing to play soft and all types v1 > v∗ are willing to play tough. As we will see, this requires an

additional assumption. Second, we have to describe the out of equilibrium behavior.

For the moment, let it be taken for granted that a threshold value v∗ exists, so that an optimal

stopping function s (vi, wH ; b, b) can be computed along the equilibrium path. We now proceed to

generalize the bidding behavior for any arbitrary pair (b1, b2).

As in the previous two sections, we specify that a bidder stays silent when winning both objects,

and raises the bid on (one of) the lowest priced object(s) when losing both objects (provided the

lowest bid is below her value). Thus, it remains to specify the behavior at pairs (b1, b2) at which

the two bidders are winning one object each.

Consider the following three cases:

1. max {b1, b2} < hL. In this case the strategies are as in the standard ‘competitive’ equilibrium,
i.e. s (vi, wi; b1, b2) = vi.

2. max {b1, b2} ≥ hL and (b1, b2) can be reached on the equilibrium path. In this case the beliefs
are updated using Bayes’ rule. The stopping rule for all types with vi ≥ v∗ remains the

same. Those with vi < v∗ play defensively and have no interest in triggering the ‘competitive’

equilibrium, since the opponent has a higher value.

3. max {b1, b2} ≥ hL and (b1, b2) is out of the equilibrium path. We specify the beliefs so that,

whenever a bidder observes the other deviating, she puts probability 1 on wi = wH , and this

belief is maintained in case further deviations are observed. Furthermore, low-budget bidders

cannot hope to win both objects, so that they stay silent whenever they win at least one.

Note that this implies that any attempt on the part of a bidder to buy both objects signals

that the bidder has a high budget. There are 3 sub-cases, depending on how many bidders

have deviated.

(a) Both bidders deviated from the prescribed strategy. In this case both bidders assign

probability 1 to the fact that the other bidder has a high budget, and this fact is common
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knowledge. In this case the ‘competitive’ equilibrium is triggered. Therefore we set

s (vi, wH ; b1, b2) = vi.

(b) If the other bidder deviated then bidder i assigns probability 1 to v3−i = bb, where bb
is the highest bid ever made by bidder 3 − i, and assumes that bidder 3 − i will never
make a bid on any object if she becomes convinced that the type of the other bidder

is higher. Since by making a bid on the other object bidder i signals that her type is

greater than bb (remember that max {b1, b2} ≥ bb and i bids on both objects) then it is

rational for i to bid myopically on both objects, i.e. assuming that the other bidder will

not make any further bid. This in turn justifies a myopic behavior on the part of bidder

3 − i. Notice that this cannot make a deviation profitable, since by deviating bidder
3− i only obtains a more aggressive behavior on the part of bidder i. We can therefore
set s (vi, wH ; b1, b2) = vi in this case as well.

(c) The last case we have to deal with is the one in which a deviation occurred only on part

of agent i. Since max {b1, b2} > hL any counterbid by 3 − i signals that she is of type
wH and v3−i ≥ bb (i), where bb (i) is the highest bid ever made by i up to that round.
Also, in that case bidder 3 − i starts bidding myopically. Then bidding myopically is
a best reply on part of agent i. The conclusion is that in this case as well we can set

s (vi, ; v∗, b1, b2) = vi.

Essentially, out of the equilibrium path the bidders raise the bids whenever the value of the object

is superior to their current bids. Along the equilibrium path, the bidders adopt optimal stopping

times.

We now come to the issue of the existence of a threshold value v∗. Let µ (vi) ≡ 1−F (vi)
f(vi)

be the

inverse hazard rate. We make the following assumption.

Assumption 1 For each vi > hL, we have:

2f (vi) ≥ f (vi + µ (vi))
£
1+ µ0 (vi)

¤
whenever vi + µ (vi) < 1 and 1+ µ0 (vi) > 0.

Assumption 1 is immediately satisfied when either vi+µ (vi) ≥ 1 or 1+µ0 (vi) ≤ 0 for each vi ≥ hL.
The latter holds, for example, in the uniform case. More generally, if µ0 (vi) ≤ 0 (nondecreasing
hazard rate), then a sufficient condition for Assumption 1 is that, for all vi > hL, we have

2f (vi) ≥ f (x) , for each x > vi.
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This is satisfied by any distribution without large peaks. In particular, if vmin and vmax are respec-

tively the points at which the density achieves the maximum and the minimum over the interval

[hL, 1] then a sufficient condition is:

2f (vmin) ≥ f (vmax) .

The next proposition characterizes the noncollusive equilibrium.

Proposition 6 If Assumption 1 is satisfied, then there exists a value v∗ and a corresponding stop-

ping function s (vi, wi; b1, b2) such that the following strategy profile forms an equilibrium. At any

stage in which the current outstanding bids are b1 and b2, each type (vi, wi) of bidder i increases

the bid by the minimum increment:

• on the object with the lowest outstanding bid, breaking ties in favor of object i, if she is not
the winner on any object, the current outstanding bids are different, and

min {b1, b2} < min {vi, wi} ;

• on object j, if she is winning object 3− j only, and

bj < min

½
s (vi, wi; b1, b2) ,

wi
2
, wi − b3−j

¾
;

• on no object, otherwise.

As in the case with known and asymmetric budgets, a “demand reduction” effect is present in the

noncollusive equilibrium of Proposition 6. On the equilibrium path, the stopping function is such

that s (vi, wH ; hL, hL) = hL, for all vi ∈ [hL, v∗). Thus a set of high-budget types with sufficiently
low values mimic the behavior of low budget types. Furthermore, s (vi, wH ; hL, hL) < vi for vi ≥ v∗,
hence even high budget types with high values reduce their demand.

We now show that, if the density function f is nondecreasing on [hL, 1] , the demand reduction

is actually quite dramatic.

4.2 Nondecreasing Densities

Suppose that the density f is nondecreasing on the interval [hL, 1]. We want to show that in this

case the strategy described in Proposition 6 is an equilibrium if, and only if, v∗ = 1. First, we show

that there is no equilibrium with v∗ < 1.
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For any v∗ ∈ (hL, 1], the problem of bidder 1’s type (v1, wH), conditional on the bids having

reached (hL, hL) , and the opponent having played soft, can be written as:

max
s

U (v1, s; v∗, hL) = λ

·
2

Z s

hL

(v1 − v2) dF (v2) + (v1 − s) [1− F (s)]
¸

+(1− λ)

"
2
Z min{s,v∗}

hL

(v1 − v2) dF (v2) + (v1 − s) [F (v∗)− F (min {s, v∗})]
#
.

Suppose that v∗ < 1, and consider type v1 = v∗. Since the derivative ∂U
∂s , evaluated at v1 = v∗, and

for s < v∗, is proportional to:

(v∗ − s) f (s)− [λ+ (1− λ)F (v∗)− F (s)] ,

we have that the (left) derivative at s = v∗ is strictly negative. Furthermore, the second derivative
∂2U
∂2s on the interval (hL, v∗) is proportional to:

(v∗ − s) f 0 (s) .

Given the assumption that f 0 (s) ≥ 0 for each s ≥ hL, we have that ∂U
∂s is nondecreasing on (hL, v∗) ,

and strictly negative at v∗; hence strictly negative over (hL, v∗). Therefore, the optimal stopping

time for v∗ must be hL. This remains true for types v∗ + δ0, with δ0 small enough. Therefore, a

set of types (v∗, v∗ + δ), with δ > 0, will choose a stopping time of hL. This is a contradiction,

since Lemma 5 in the Appendix establishes that the stopping time must be strictly greater than

hL. Thus, it can never be the case that v∗ < 1.

Thus the only possible candidate for an equilibrium is v∗ = 1. In fact, we can readily check

that we have an equilibrium for v∗ = 1. In this case, the expected utility of playing soft is v1−hL.
Playing tough is now an out of equilibrium action, and we specify that, faced with a tough opponent,

each bidder plays defensively. (This is optimal for any belief which assigns a high probability to

high values of the opponent). Then the highest utility which can be obtained by opening tough

and then choosing s is obtained solving:

max
s

·
2

Z s

hL

(v1 − v2) f (v2) dv2 + (v1 − s) (1− F (s))
¸
.

Again, it can checked that at s = v1 the derivative is negative, and that, since f (v2) is nondecreas-

ing, the derivative must be negative over (hL, v1). Thus, the optimal stopping time turns out to be

s = hL. The deviation is therefore not profitable.
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The equilibrium has the remarkable property that it does not depend on λ, the fraction of

budget-constrained players. That is, for any λ > 0 the most competitive equilibrium has all the

high-budget bidders mimicking the low-budget bidders when the bids reach (hL, hL). This implies

a discontinuity in the equilibrium set. When λ = 0 then a “competitive” equilibrium exists in

which each bidder pushes up the bid on each object up to their value. However, for any λ > 0 this

equilibrium disappears, and it becomes impossible to induce competition among bidders at prices

higher than hL.

4.3 Increasing Welfare by Excluding Low-budget Bidders

The outcome of the noncollusive equilibrium described above for nondecreasing densities is in-

efficient. As the probability (1− λ)2 that both bidders are not constrained increases toward 1,

efficiency requires that the probability with which both objects be assigned to the bidder with

the highest value also approach 1. In the limit, the welfare loss is equal to the expected value of

|v2 − v1| , conditional on min {v1, v2} ≥ hL.
For small values of λ, measures restricting the participation of low-budget bidders can increase

the expected social surplus, as well as the seller’s expected revenue. For example, the seller may

impose a reserve price for each object above wL, or require each bidder to deposit an amount of

wH at the beginning of the auction. Once the possibility that any participating bidder is budget

constrained is ruled out, the high-budget bidders cannot ‘hide’ behind budget constrained types;

hence the noncollusive equilibrium produces the socially efficient outcome. For sufficiently small

values of λ, the cost of excluding low-budget bidders is lower than the gain in social surplus obtained

by inducing the efficient allocation of the objects.

As an example, suppose that the distribution is F (v) = v4, and take hL = 0.35. First, we

check that there is no equilibrium with v∗ < 1, and that it is an equilibrium for the bidders to

split the objects when the two values are above 0.35. This does not follow immediately from the

previous analysis because we now have wL < 1. The additional complication in this case is that

the low-budget types with value greater than wL can offer at most wL for a single object. We now

show that, as in the case where wL ≥ 1, the equilibrium threshold v∗ cannot be strictly less than 1.
First note that, if v∗ < 0.7, or s < 0.7, the analysis of the previous subsection applies immedi-

ately. Thus consider v∗ ∈ (0.7, 1) and s > 0.7. Then the optimal stopping time for the type v∗ is
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obtained solving:

max
s

λ

·Z 0.7

0.35
2 (v∗ − y)

³
4y3

´
dy + 2 (v∗ − 0.7)

³
1− (0.7)4

´¸
+

(1− λ)

"Z min{s,v∗}

0.35
2 (v∗ − y)

³
4y3

´
dy + (v∗ − s)

³
v4∗ − s4

´#
The derivative is strictly negative for each s < v∗, so that the optimal stopping time is 0.7. The

expected utility of playing tough is therefore:

U (tough) = λ

"Z 0.7

0.35
2 (v∗ − y) 4y3

1− (0.35)4 dy + 2(v∗ − 0.7)
1− (0.7)4
1− (0.35)4

#
+

(1− λ)

"Z 0.7

0.35
2 (v∗ − y) 4y3

1− (0.35)4dy + (v∗ − 0.7)
v4∗ − (0.7)4
1− (0.35)4

#

=

"Z 0.7

0.35
2 (v∗ − y) 4y3

1− (0.35)4dy
#
+

+
h
2λ
³
1− (0.7)4

´
+ (1− λ)

³
v4∗ − (0.7)4

´i v∗ − 0.7
1− (0.35)4

The expected utility of opening soft is

U (soft) =

Ã
λ+ (1− λ)

v4∗ − (0.35)4
1− (0.35)4

!
(v∗ − 0.35)

As λ goes to zero we have:

U (tough) =

"Z 0.7

0.35
2 (v∗ − y) 4y32

1− (0.35)4 dy
#
+ (v∗ − 0.7) v

4∗ − (0.7)4
1− (0.35)4

U (soft) =
v4∗ − (0.35)4
1− (0.35)4 (v∗ − 0.35)

It can now be checked that:

U (soft) > U (tough)

for each v∗ ∈ [0.7, 1]. Thus, any equilibrium must have v∗ = 1. It is now straightforward to check

that v∗ = 1 can in fact be supported in equilibrium.

When λ is close to 1, the expected social welfare is approximately:

W a =

Z 0.35

0

Z v1

0
2v1

³
4v32

´
dy +

Z 1

v1
2v2

³
4v32

´
dv2

³
4v31

´
dv1
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+
Z 1

0.35

µZ 0.35

0
2v1

³
4v32

´
dv2 +

Z 1

0.35
(v1 + v2)

³
4v32

´
dv2

¶³
4v31

´
dv1 = 1.6156.

If a reservation price of 0.7 is imposed, then all low budget types, as well as the high budget

types with value lower than 0.7, do not participate. In this case, since it is common knowledge that

the participants are not budget constrained, there is a competitive equilibrium in which the bidder

with the highest value wins both objects, and the expected social welfare is approximately:

W b = (0.7)4 ×
µZ 1

0.7
2v2

³
4v32

´
dv2

¶
+

+
Z 1

0.7

µZ v1

0
2v1

³
4v32

´
dv2 +

Z 1

v1
2v2

³
4v32

´
dv2

¶³
4v31

´
dv1 = 1.706

To see how the expression is computed, notice that when v1 < 0.7, which happens with probability

(0.7)4, then the two objects go to bidder 2 iff v2 > 0.7; this is the first term. When v1 > 0.7 then

the two objects go to the highest bidder (second term). SinceW b > Wa, in this case the imposition

of a reservation price increases efficiency.

5 Conclusions

We have explored the effects that the possibility of binding budget constraints may have on bidding

behavior in simultaneous ascending bid auctions. While it is clear that budget constraints reduce

the level of competition because the bidders have a lower ability to pay, we have also seen that

competition is further reduced due to strategic reasons. In fact even the slightest possibility of

having binding budget constraints may lead to outcomes which appear (but are not) collusive:

i.e., the bidders split the objects at low prices. In these cases, measures which exclude budget-

constrained bidders from participating can be welfare enhancing, since they stimulate competition

and favor a more efficient allocation of the objects.
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Appendix

Proof of Proposition 1. We establish the proposition by showing that, if bidder 2 is following

the prescribed strategy, then bidder 1 has no profitable deviation. We start by observing that it is

never optimal for bidder 1 to raise the bid on any object by more than the minimum increment.

This is because bidder 2’s behavior at any stage depends only on the current outstanding bids

and the assignment of the objects; it does not depend on how the current outstanding bids and

assignment have been reached. Therefore jump-bidding can never be optimal for bidder 1. In

fact, we can restrict attention to strategies such that at any round bidder 1 raises the bid by the

minimum increment on at most one object.

We first show that, on the equilibrium path, the strategies are optimal even ex-post, i.e. for any

realization of the bidders’ values v1, v2. We partition the type space in three subsets.

Case 1: h ≤ min {v1, v2} . If both bidders follow the prescribed strategy, each buys one object and
pays h. Because of the budget constraint, bidder 1 can win both objects only if at least one price is

below h; but in this case bidder 2 would not let the auction end before pushing each price above h.

Also, if each bidder gets one object, say bidder i pays pi for object i, then we must have that h ≤ p1.
To see this, observe that since bidder 2 is following the prescribed strategy and the auction ends at

(p1, p2) assigning object 2 to bidder 2 and object 1 to bidder 1, we must have min {h,w − p2} < p1;
if not, bidder 2 would bid on object 1 as well and the auction would not be over. If p1 < h then this

implies w − p2 < h, i.e. h < p2. This is impossible because, by following the prescribed strategy,
bidder 2 cannot push the bid on object 2 above h, unless the bid on the first object goes above h

as well.

Case 2: v2 < min {h, v1} . By following the equilibrium strategy, bidder 1 obtains both objects at

the price v2. Given the strategy of bidder 2, it is impossible for bidder 1 to win any object for a

unit price lower than v2.

Case 3: v1 < min {h, v2} , or v1 = v2 < h. By following the prescribed strategy bidder 1 obtains

a utility of zero. Whatever the deviation, it is impossible to buy an object for less than v1, thus

implying that a utility of zero is the maximum which can be attained.

We have proved that no deviation is profitable along the equilibrium path. We next show that

the strategy is optimal also out of the equilibrium path.

Thus, suppose now that bidder 1 is facing an out-of-equilibrium pair of bids (b1, b2) and allocation
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of objects. If bidder 1 is not winning any object, then it is optimal to stop if min {b1, b2} ≥
min {v1, w}. If the reverse inequality is true, and given bidder 2’s strategy, then it is optimal to
make a bid on the object with the lowest value. This is true for any belief on v2. Similarly, if bidder

1 is winning both objects it is optimal to avoid increasing the bids.

We are left with the case in which bidder 1 is winning object 3−j but not object j. If bj ≥ w−b3−j
then bidder 1 cannot bid on object j, and given the strategy of agent 2 it doesn’t make sense to

increase the bid on object 3− j. Similarly, if bj ≥ v1 then bidding on object j is suboptimal. We
conclude that it is optimal to stop bidding whenever bj ≥ min {v1, w − b3−j}. Consider now the
case bj < min {v1, w − b3−j}. If bj ≥ h then bidder 1 believes that the type of agent 2 is in the
interval [bj, 1]. Any attempt to buy object j will cause bidder 2 to bid on object b3−j until the price

reaches at least h. Therefore bidder 1 cannot get both objects, and it is optimal to stop bidding.

Summing up, it is optimal to stop bidding whenever bj ≥ min {v1, w − b3−j, h}. The last case we
have to deal with is bj < h ≤ min {v1, w− b3−j}. Notice that this implies w−b3−j ≥ h, or h ≥ b3−j .
If v2 > h then bidder 2 will bid on object 3− j as well and the final outcome is that each bidder

wins one object at h. Increasing the bid on j is therefore weakly optimal. If v2 ∈ (bj, h) then we
distinguish two cases.

If b3−j ≥ v2 then bidder 2 will not bid on 3− j any longer, and it will bid up to v2 for object j.
Therefore it is optimal for bidder 1 to try to win object j increasing the bid.

If b3−j < v2 then bidder 2 will try to win both objects, always bidding on any object she is not

currently winning. Therefore, no object can be bought for less than v2. The prescribed strategy

allows bidder 1 to buy both objects at the lowest possible price, given the strategy of bidder 2.

Proof of Proposition 5. First, we characterize the function U1 (v1, s| b3−j , bv) which is used in
(16) to derive the optimal stopping function. Then, we will show that the strategy profile described

in the proposition forms a perfect Bayesian equilibrium.

Consider bidder 1 (the high-budget bidder) and suppose that beliefs on the opponent are given

by bF (v2| v2 ≥ bv). Suppose that bidder 1 is currently winning object 3− j, and she has to decide
whether to bid on object j. We first observe that if bj ≥ min {h1, w1 − b3−j} then the bidder should
stop bidding immediately, and try to get a single object. If bj ≥ w1 − b3−j this is the only feasible
action. If bj ≥ h1 then bv ≥ h1; and this in turn means that it is impossible to win both objects
paying less than h1, which makes it impossible for bidder 1 to win both objects. Therefore, bidder

1 should stop immediately and get one object.
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Assume therefore bj < min {h1, w1 − b3−j}, so that bidding on j is feasible and possibly optimal.
We want to see what is the optimal stopping price in this situation, for each possible pair of prices

(bj , b3−j). In the analysis we can assume that bj ≤ bv, since the opponent is winning object j at bj
and bv is the highest offer made by bidder j.
Case 1. b3−j ≤ bv. In this case it must be b3−j ≤ bj. If not then we would have bj ≤ b3−j ≤ bv;
since bidder 1 is winning object 3− j, the highest bid made by 2 on that object must be inferior
to b3−j . Since 2 is winning object j, the highest bid made on that object must be bj . Therefore,

b3−j ≤ bv implies b3−j ≤ bj .
As soon as bidder 1 tries to get j, bidder 2 will raise the bid on 3− j. Therefore, any attempt

to get both objects will first increase the price of object 3− j to bj , and then it will increase the
bids simultaneously. This creates a discontinuity. By bidding on j, bidder 1 becomes the winner

on the highest priced object. The alternative is between winning one object at s = b3−j or both,

and in this case it must be s > bv. The objective function can be written as follows:
2

Z max{s,bv}
b3−j

(v1 − v2) d bF (v2 |v2 ≥ bv ) + (v1 − s) h1− bF (s |v2 ≥ bv )i
Notice that dF (v2 |v2 ≥ bv ) = 0 for each v2 ∈ (b3−j , bv). It is therefore never optimal to choose a
stopping time s ∈ (b3−j, bv), since such choice is dominated by s = b3−j.
Case 2. bv < b3−j . Again, there is no hope of getting both objects for a price inferior to bv. When
s ∈ [bv, b3−j) then giving up means that 1 pays b3−j for the object she is currently winning, while the
other bidder pays s. If v2 ∈ (bv, s) then 1 wins both objects, paying them v2 and b3−j respectively,

while if v2 > s then bidder 1 wins a single object and pays it b3−j . If s ≥ b3−j then bidder 1 wins
both objects paying a total of v2 +max {v2, b3−j} if v2 ≤ s, while if v2 > s then bidder 1 wins a
single object which is paid s. We can summarize the objective function as:Z s

bv (2v1 − v2 −max {v2, b3−j}) d bF (v2 |v2 ≥ bv ) + (v1 −max {s, b3−j})
h
1− bF (s |v2 ≥ bv )i .

The analysis of the two cases can be unified by writing the bidder 1’s objective function as:

U1 (v1, s| b3−j , bv) = 2 Z max{s,bv}
min{b3−j ,bv} (2v1 − v2 −max {v2, b3−j}) d bF (v2 |v2 ≥ bv )+

+(v2 −max {s, b3−j})
h
1− bF (s |v2 ≥ bv )i .

At last, we observe that the same reasoning applies when any of the two prices is below h2. It is

clear that, if max {b1, b2} < h2, then setting an optimal stopping time of v1 is the only sensible
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thing to do, since the other bidder tries to go for both objects. If instead max {b1, b2} ≥ h2, it is
optimal the other bidder to stop immediately when winning one object; and the best reply to this

strategy is to adopt the optimal stopping time as in the case in which both bids are above h2.

We can now show that the strategy profile described in the proposition constitutes a perfect

Bayesian equilibrium. As in the proof of Proposition 1, in order to prove that a bidder’s strategy is

a best response, we can restrict attention to strategies in which at each round a bid is made only on

(one of) the lowest priced object(s). Optimality for agent 2 basically follows from the arguments

used in Proposition 1. It suffices to observe that the strategy is a best reply whenever bidder 1

adopts a ‘stopping time’ function s (v1) such that s (v1) = v1 when v1 ≤ h2.
Assume now that bidder 2 is following the prescribed strategy. The proof that bidder 1’s strategy

is optimal at any information set is broken in two steps. First, without loss of generality we restrict

attention to pure strategies5, and show that for any type v1, and for any pair of outstanding bids

(b1, b2), given that bidder 2 is following the noncollusive strategy, any strategy of bidder 1 induces

a partition of bidder 2’s type space [0, 1] in at most three subintervals: all types with value v2 below

a given threshold τL lose both objects, all types with value v2 above a second threshold τH win

both objects, and all types with value v2 between τL and τH win one object.

The second step consists in showing that the prescribed strategy maximizes bidder 1’s expected

surplus over all outcomes such that the objects are assigned according to a three-interval partition

as specified above and bidder 1’s total payments are the lowest among the ones which can be

obtained given bidder 2’s strategy.

The strategy prescribed for bidder 1 is clearly optimal when she is winning both objects or no

object. In the second step we therefore deal only with the case in which bidder 1 is winning only

one object.

Step 1. Consider any round t and any pair of outstanding bids b1 and b2. Suppose that, given

both bidder’s (pure) strategies, the outcome entails bidder 2 losing both objects. Since bidder 2 is

following the noncollusive strategy, this can happen only if both final outstanding bids are at least

as large as v2. But then any type of bidder 2 with a lower value v
0
2 < v2 also loses both objects.

We conclude that the set of types of bidder 2 which lose both objects is an interval with infimum

zero. Let τL denote its supremum. Notice also that bidder 1’s total payment in this case cannot be

5Recall that we are only looking for a best reply for bidder 1 to bidder 2’s strategy. Therefore if the best reply

correspondence includes a mixed strategy, any pure strategy in its support is also optimal.
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lower than max {v2, b1}+max {v2, b2}, since the final price of each object j cannot be lower than
max {v2, bj}.
Now suppose that, given both bidder’s (pure) strategies, bidder 1 loses both objects. This can

happen only if bidder 2’s value v2 is above both final bids. But then all types with value v
0
2 > v2

behave identically, and win both objects. The set of types of bidder 2 which win both objects

is thus also an interval, this time with supremum 1. Let τH denote its infimum. Bidder 1’s total

payment in this case is zero.

All types in the remaining middle interval, with value between τL and τH , must win only one

object. Bidder 1’s total payment in this case is at least min{b1, b2}.
Step 2. Suppose bidder 1 is winning object 3−j at b3−j , and the other object has price bj . We first
observe that the belief at round t+1 that bidder 2’s type is distributed according to F (v2 |v2 ≥ bv ),
where bv is the highest bid ever made on any object in the t preceding rounds, is consistent both
on and off the equilibrium path. Given this belief and the fact that the types of bidder 2 can be

divided in intervals as described in Step 1, the optimal strategy of bidder 1 must involve an optimal

stopping time. The function s1 (v1; b3−j , bv) is clearly optimal.
Proof of Proposition 6. In order to prove that an equilibrium exists, we have to show that a

type v∗ ≥ hL exists, such that all types vi ∈ [hL, v∗) prefer to play ‘soft’ when prices reach hL,
while all types [v∗, 1] prefer to play ‘tough’. We begin by establishing some preliminary results.

Let U (v1, s; v∗, b) be the function defined by (18) and (19), R (v1; b, v∗) the correspondence defined

by (20) and s (v1; b, v∗) the function defined by (21). In our first lemma we characterize some

properties of the optimal stopping rule.

Lemma 1 The optimal stopping rule satisfies the following properties:

• The correspondence R (v1; b, v∗) is upper-hemicontinuous in v1 and v∗ and compact valued.

• The function s (v1; b, v∗) is non-decreasing and s (v1; b, v∗) < v1 whenever v1 ∈ (b, 1).

• If s (v1; b, v∗) is constant over an interval [v1, v1 + δ) then either s (v1; b, v∗) = b or s (v1; b, v∗) =

v∗.

• Let K ⊂ [b, 1] be the set of points of discontinuity of s (v1; b, v∗) and let ψ be a measure defined
on [b, 1] which is absolutely continuous with respect to the Lebesgue measure. Then ψ (K) = 0.
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Proof. The properties of the correspondence R follow from the Maximum Theorem and the

continuity of U (v1, s; v∗, b).

Since the function U (v1, s; v∗, b) satisfies increasing differences in (s; v1), we have that s (v1; b, v∗)

is non-decreasing in v1 (see e.g. Milgrom and Shannon [16]). It is obvious that s (v1; b, v∗) ≤ v1. To
see that s (v1; b, v∗) < v1 whenever v1 ∈ (b, 1) observe that U (v1, s; v∗, b) is always left-differentiable
with respect to s at s = v1, and the left derivative

∂−U(v1,s;v∗,b)
∂s

¯̄̄
s=v1

is strictly negative whenever

v1 < 1. Thus s = v1 cannot be optimal.

Suppose now that s (v1; b, v∗) is constant over an interval [v1, v1 + δ). When b ≥ v∗ then the
function U (v1, s; v∗, b) is everywhere differentiable in s. Therefore, for s to be optimal it must be

the case that:
∂U

∂s
= (v1 − s) f (s)− [1− F (s)] ≤ 0.

Let s = s (v1; b, v∗). If ∂U
∂s (v1, s; b, v∗) = 0 then, for each v01 > 0 we have ∂U

∂s (v
0
1, s; b, v∗) > 0, so

that s cannot be the optimal stopping time on an interval (v1, v1 + δ). If ∂U
∂s (v1, s; b, v∗) < 0 then

it must be the case that s = b.

Consider now the case b < v∗. The function is differentiable in s except at s = v∗. The derivative

at s 6= v∗ is:

∂U

∂s
=


(v1 − s) f (s)− [λ+ (1− λ)F (v∗)− F (s)] if s < v∗

λ [(v1 − s) f (s)− (1− F (s))] if s > v∗

Thus, suppose that at v1 we have s = s (v1; b, v∗). If s < v∗ then we can apply the same reasoning

as above to conclude that the function can only be constant if s = b. Suppose now s = v∗. Notice

that at v∗ the function U is both left and right differentiable, and we have:

∂−U
∂s

¯̄̄̄
¯
s=v∗

= (v1 − v∗) f (v∗)− λ [1− F (v∗)]

∂+U

∂s

¯̄̄̄
¯
s=v∗

= λ [(v1 − v∗) f (v∗)− [1− F (v∗)]]

Since λ ∈ (0, 1), it is possible to have ∂−U
∂s

¯̄̄
s=v∗

> 0 > ∂+U
∂s

¯̄̄
s=v∗

over a set [v1, v1 + δ). In this

case v∗ can be the optimal stopping time for each v1 in the set, and the optimal stopping time can

therefore be constant. Next, suppose s > v∗. Then s can be optimal only if the derivative is zero,

and this in turn implies that s cannot be the optimal stopping time if v01 > v1.
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To prove the last point observe that a non-decreasing function defined on a compact set has at

most countably many points of discontinuity (Kolmogorov-Fomin, page 316, Theorem 3), and a

countable set has Lebesgue measure zero.

Suppose now that we are on the equilibrium path, and the bids have just reached the level hL.

Each bidder is winning one object. At this point, each bidder has to signal whether she is “soft,”

by remaining silent, or “tough,” by bidding on the object she is not winning. Fix an arbitrary

threshold v∗ ∈ (hL, 1] , and assume that bidder 1 conjectures that her opponent plays soft if and
only if w2 = wL, or w2 = wH and v2 < v∗. Let G (v2) ≡ F (v2)−F (hL)

1−F (hL) .

Suppose that bidder 1 plays tough. If bidder 2 is not budget constrained, then with probability

1−G (v∗) she also plays tough: each bidder then bids up to her value for both objects, and bidder
1 earns 2max {v1 − v2, 0}. With probability G (v∗) , the high-budget opponent plays soft. In this
case, by trying to win both objects until the bids arrive at level s bidder 1 earns 2 (v1 − v2) if
v2 < s, and v1 − s otherwise. Thus the expected payoff for bidder 1 when facing a high-budget
opponent is:

TH (v1; s, v∗) = 2
Z min{v∗,s}

hL

(v1 − v2)dG (v2) +
Z v∗

min{v∗,s}
(v1 − s) dG (v2)

+2
Z 1

v∗
max {v1 − v2, 0}dG (v2) .

If instead bidder 2 is budget constrained, she will also play soft, and bidder 1 can push both bids

up to s, thus earning on average:

TL (v1; s, v∗) ≡ 2
Z s

hL

(v1 − v2) dG (v2) + (v1 − s) [1−G (s)] .

The overall expected payoff of playing tough, and selecting a stopping time s against a soft opponent

is:

λTL (v1; s, v∗) + (1− λ)TH (v1; s, v∗) .

Now let

T (v1; v∗) ≡ max
s∈[hL,1]

λTL (v1; s, v∗) + (1− λ)TH (v1; s, v∗) .

This function is bidder 1’s expected surplus of opening tough when she conjectures that her oppo-

nent plays tough if and only if w2 = wH and v2 > v∗.

Lemma 2 The function T (v1; v∗) is continuous in (v1, v∗).
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Proof. This follows from the Maximum Theorem and the fact that the function λTL (v1; s, v∗) +

(1− λ)TH (v1; s, v∗) is continuous in v1, s and v∗.

Suppose now that bidder 1 plays soft. If w2 = wL, or if w2 = wH and v2 < v∗, bidder 2 also

plays soft, and the auction ends immediately with one object going to each bidder. Bidder 1’s

surplus in this case is v1 − hL. The probability of this happening is λ+ (1− λ) G (v∗).

If instead w2 = wH and v∗ ≤ v2, bidder 2 plays tough, i.e. bids on her second object, and

continues to do so until the bids reach s (v2;hL, v∗), if bidder 1 responds by bidding “defensively”,

i.e. if by bidding on one object only when she is losing both. At any given round however, bidder

1 may decide to bid on a second object. This constitutes an out of equilibrium action, and our

equilibrium specifies that in this case the two bidders will simply bid up to their values.

It is clear that, if v1 ≤ v∗, no such deviation is profitable for bidder 1, since her opponent has a
higher value: v1 ≤ v∗ < v2. If instead v∗ < v1, suppose that bidder 1 bid defensively until the bids
reach level ba and then try to win both objects. In this case her expected payoff is:

S (v1, ba; v∗) = [λ+ (1− λ)G (v∗)] (v1 − hL) + (1− λ) SH (v1, ba; v∗) ,

where:

SH (v1, ba; v∗) ≡
Z v(ba)

v∗
[v1 − s (v2;hL, v∗)] dG (v2) + 2

Z v1

min{v(ba),v1}
(v1 − v2) dG (v2) .

and:

v (ba) := sup {v2| s (v2;hL, v∗) ≤ ba}
is the highest type of bidder 2 with a stopping time inferior to ba.

To be part of a sequentially rational strategy the point ba has to be chosen optimally. In order

to analyze this problem, it is useful to reformulate it in terms of the choice of an optimal “stopping

type” va = v (ba). In this case we write

SH (v1, va; v∗) ≡
Z va

v∗
[v1 − s (v2;hL, v∗)] dG (v2) + 2

Z v1

min{va,v1}
(v1 − v2) dG (v2) .

For a given v∗ and corresponding function s (v2;hL, v∗), define:

v+ = inf {v2 ∈ [v∗, 1]| s (v2;hL, v∗) > hL}

v = sup {v2 ∈ [v∗, 1]| s (v2;hL, v∗) < v∗}
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v = inf {v2 ∈ [v∗, 1]| s (v2;hL, v∗) > v∗}
By Lemma 1 the function s (v2;hL, v∗) can be flat only over an initial interval [v∗, v+] and another

interval [v, v] at which s = v∗, and it is strictly increasing elsewhere. Therefore choosing a “trigger

point” ba is equivalent to choosing a “trigger type” va in the set:

A (v∗) = {v∗} ∪
£
v+, v

¤ ∪ [v, 1] .
Recall that we are analyzing what happens in the round after the bids have reached (hL, hL), bidder

2 has played tough, and bidder 1 has remained silent.

At this point, a choice of v∗ can be interpreted as “trigger the fight immediately”, by bidding

on both objects (this is equivalent to choosing ba = hL + ε as triggering bid). A choice of v+ can

be interpreted as bidding defensively after the opponent has made a bid to hL+ ε, so that the bids

reach (hL + ε, hL + ε), then wait to see if the opponent counterbids and in that case trigger the

war (equivalent to choosing ba = hL + 2ε as triggering bid). A choice of va ∈ (v+, v] simply means
“trigger the fight as soon as the bids reach s (va;hL, v∗)”, where s (va;hL, v∗) ∈ (hL, v∗]. A choice
of v means “trigger the fight as soon as the bids reach v∗+ ε, and so on. Observe that the function

SH (v1, va; v∗) is continuous in va and that A (v∗) is compact. Now define:

SH (v1; v∗) = max
va∈A(v∗)

SH (v1, va; v∗) .

We are now ready to prove the following result.

Lemma 3 The function S (v1; v∗) is continuous in (v1, v∗).

Proof. It suffices to show that the function SH (v1, va; v∗) is continuous with respect to (v1, va; v∗),

and that the correspondence A (v∗) is continuous. Then the result follows from the Maximum

Theorem.

Continuity in v1 and va is immediate. In order to show that SH (v1, va; v∗) is continuous in v∗ it

is enough to show that:

H (v1, va; v∗) ≡
Z va

v∗
s (v2;hL, v∗) dG (v2)

is continuous in v∗, which in turn is implied by the fact that s is continuous almost everywhere,

since G is atomless. To establish continuity of s almost everywhere, suppose that at a point v2 we

have

lim
n→∞ s (v2;hL, vn) = s

∗ 6= s (v2;hL, v∗) ,
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where {vn} is a sequence converging to v∗. It must be s∗ ∈ R (v2;hL, v∗), since the correspondence
R (v2;hL, vn) is upper-hemicontinuous in vn (Lemma 1). This in turn implies s

∗ < s (v2;hL, v∗),

since s (v2;hL, v∗) is the maximum of R (v2;hL, v∗). Thus v2 must be a point of discontinuity of

s (v2;hL, v∗). But we have already established in Lemma 1 that, since s is nondecreasing in v2, the

set of discontinuity points has measure zero.

We come now to the continuity of A (v∗). The only complications here are created by the ‘flat’

parts of the stopping function s, which generate ‘gaps’ in the interval. We will analyze the case in

which the only flat part is at v∗, as it is always the case in equilibrium. Extending the analysis to

incorporate the possibility of a flat part at hL is immediate.

With no flat part at hL, we have A (v∗) = [hL, v]∪ [v, 1]. Consider a sequence {vn} converging to
v∗, and let A (vn) = [hL, vn]∪ [vn, 1]. To prove the continuity of the correspondence A (·) it suffices
to show that vn → v and vn → v.

As a preliminary result, we first prove that if v < v, so that there is an open set (v, v) of types

having v∗ as optimal stopping time, then v∗ is the unique optimal stopping time for all types in the

set. Suppose not, so that s∗ 6= v∗ is also an optimal stopping time for a type v0 ∈ (v, v). This means
U (v0, s∗;hL, v∗) = U (v0, v∗; v∗, hL), since both s∗ and v∗ are optimal stopping times. Furthermore,

since v∗ is the highest stopping time, it must be s∗ < v∗, so that:

U
¡
v0, s∗; v∗, hL

¢
= 2

Z s∗

hL

¡
v0 − y¢ dF (y) + ¡v0 − s¢ [λ+ (1− λ)F (v∗)− F (s∗)] .

Now observe that:

∂U (v0, s∗; v∗, hL)
∂v0

= 2F (s∗)− 2F (hL) + [λ+ (1− λ)F (v∗)− F (s∗)] .

On the other hand, when the optimal stopping time is v∗ we have:

U
¡
v0, v∗; v∗, hL

¢
= 2

Z v∗

hL

¡
v0 − y¢ dF (y) + λ

¡
v0 − s¢ [1− F (v∗)] ,

so that:
∂U (v0, v∗; v∗, hL)

∂v0
= 2F (v∗)− 2F (hL) + λ [1− F (v∗)] .

Thus
∂U (v0, s∗; v∗, hL)

∂v0
<

∂U (v0, v∗; v∗, hL)
∂v0

.

Since U (v0, s∗;hL, v∗) = U (v0, v∗; v∗, hL), this implies that there is a type v00 sufficiently close to v0

such that v00 ∈ (v, v) and U (v00, s∗;hL, v∗) > U (v00, v∗; v∗, hL), a contradiction.
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We now come back to proving the continuity of the correspondence A (·). Suppose first that
v = v. This happens when there is a single value bv such that s (bv;hL, v∗) = v∗ (that is, no flat

part), so that we have A (v∗) = [hL, 1]. Suppose now that limn→∞ vn = bv < limn→∞ vn = bv.
For each type v0 ∈

³bv, bv´ it must be the case that limn→∞ s (v0; vn, hL) = k, a constant, and

k ∈ R (v0; v∗, hL). Since no open interval of types can have a common optimal stopping time other
than v∗, we conclude that v∗ is an optimal stopping time for types in

³bv, bv´. Then bv < bv, since
s (bv;hL, v∗) = v∗ and s is non-decreasing. Moreover, all types in v0 ∈ ³bv, bv´ must have both v∗ and
another (higher) point as optimal stopping times. But this cannot be true since, as proved above,

if v∗ is an optimal stopping time for an open interval of types then it has to be unique.

We now come to the case in which there is an open set (v, v) of types having v∗ as optimal

stopping time when the threshold is v∗. We will prove that for each v0 ∈ (v, v), there is N large

enough such that v0 has vn as optimal stopping time for each n > N . Furthermore, if v0 and v00

have vn as optimal stopping time then all types in the set (v0, v00) have vn as optimal stopping time.

This is turn implies that vn → v and vn → v.

Since v∗ is the unique optimum for v0, it must be the case that:

∂−U (v0, s;hL, v∗)
∂s

¯̄̄̄
¯
s=v∗

=
¡
v0 − v∗

¢
f (v∗)− λ (1− F (v∗)) > 0,

∂+U (v0, s;hL, v∗)
∂s

¯̄̄̄
¯
s=v∗

= λ
£¡
v0 − v∗

¢
f (v∗)− (1− F (v∗))

¤
< 0.

This in turn implies that

∂−U (v0, s;hL, vn)
∂s

¯̄̄̄
¯
s=vn

=
¡
v0 − vn¢ f (vn)− λ (1− F (vn)) > 0,

∂+U (v0, s;hL, vn)
∂s

¯̄̄̄
¯
s=vn

= λ
£¡
v0 − vn¢ f (vn)− (1− F (vn))¤ < 0,

for n large enough, and it also implies that if the inequalities hold for two types v0 and v00 then they

must hold for all types in the interval (v0, v00). This in turn implies that vn is a local maximum for an

open interval of types (v0, v00). Now suppose that there is a different global maximum s (v0;hL, vn).

Since vn is the only point of non-differentiability with respect to s, it must be the case that the

derivative with respect to s computed at the optimal point s (v0;hL, vn) 6= vn must be zero.
Fix now a neighborhood of I (v∗) such that ∂U(v0,s;hL,v∗)

∂s 6= 0 for each s ∈ I (v∗) at which U
is differentiable. For n large enough, we also have ∂U(v0,s;hL,vn)

∂s 6= 0 for each s ∈ I (v∗) such
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that U is differentiable. Now observe that, given the upper-hemicontinuity of the best response

correspondence, it must be the case that s (v0;hL, vn)→ v∗, since v∗ is the unique optimal stopping

time s (v0;hL, v∗). This in turn implies that for n large enough, we have s (v0;hL, vn) ∈ I (v∗). This
is a contradiction, since at s (v0;hL, vn) the derivative is supposed to be zero.

Lemma 4 For any v∗ > hL there exists a δ > 0 such that all types v1 ∈ (hL, hL + δ) prefer playing

soft to playing tough.

Proof. For any v∗ we have T (hL; v∗) = S (hL; v∗) = 0. Assume v∗ > hL and consider δ such that

hL + δ < v∗. Then the utility of playing soft is:

S (v1; v∗) = (λ+ (1− λ)G (v∗)) (v1 − hL) + (1− λ)SH (v1; v∗) .

The utility of playing tough for a type v1 is:

T (v1; s, v∗) = λ

·
2
Z s

hL

(v1 − v2)dG (v2) + (v1 − s) (1−G (s))
¸

+(1− λ)

·
2
Z s

hL

(v1 − v2)dG (v2) + (v1 − s) (G (v∗)−G (s))
¸
.

Now observe that, for a small enough δ and for all types v1 < hL + δ,

∂T

∂s
= λ [(v1 − s) g (s)− (1−G (s))]

+ (1− λ) [(v1 − s) g (s)− (G (v∗)−G (s))] < 0,
for each s ∈ [hL, hL + δ]. Then the utility of playing tough is exactly:

HL (v1; s, v∗) = [λ+ (1− λ)G (v∗)] [(v1 − hL)] .

This is less than or equal to S (v1; v∗).

Lemma 5 Suppose that v∗ is an equilibrium threshold, and let s (v1;hL, v∗) be the corresponding

stopping function defined for v1 ∈ [v∗, 1]. Then limv1↓v∗ s (v1;hLv∗) > hL.

Proof. Since s (v1;hLv∗) is monotone a limit exists. Suppose that the claim of the lemma is not

true, so that limv1↓v∗ s (v1;hL, v∗) = hL. It must be the case that all types v1 > v∗ prefer playing

tough to playing soft. When we consider the utility of playing soft we have:

lim
v1↓v∗

S (v1; v∗) = [λ+ (1− λ)G (v∗)] (v∗ − hL)

+ (1− λ)
Z 1

v∗
max {v∗ − s (v2;hL, v∗) , 0} dG (v2) ,
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while when we look at the utility of playing tough we have:

lim
v1↓v∗

T (v1; v∗) = [λ+ (1− λ)G (v∗)] (v∗ − hL) .

Since there is a set with positive measure such that s (v2;hL, v∗) < v∗, we conclude that:

lim
v1↓v∗

S (v1; v∗) > lim
v1↓v∗

T (v1; v∗) ,

a contradiction.

The last lemma implies that, when v∗ is actually an equilibrium value, then the corresponding

stopping function s (v1;hL; v∗) cannot take the value hL over an interval. Combined with Lemma

1, it implies that the only value at which the stopping function can be constant is v∗.

Lemma 6 For any equilibrium threshold value v∗, there is a set [hL, hL + δ] such that for each

v1 ∈ [hL, hL + δ] we have

S (v1; v∗) = T (v1; v∗)

Proof. By Lemma 5, for every possible equilibrium threshold v∗ there is δ0 > 0 such that

limv1↓v∗ s (v1; v∗) = hL + δ0. This implies that all types v1 ∈ [hL, hL + δ0], when playing soft or

tough can possibly win something only if they meet a soft type. Therefore

S (v1; v∗) = (λ+ (1− λ)G (v∗)) (v1 − hL) .

When we look at the utility of playing tough, we know by Lemma 4 that for a set of types [hL, hL + δ]

the optimal stopping time is hL. Therefore, for this set T (v1; v∗) = S (v1; v∗), thus yielding the

result.

Define now:

D = {δ ∈ [hL, 1] | S (v1; δ) ≥ T (v1; δ) for all v1 ∈ [hL, δ]} .
We know by Lemma 6 that the set D is non-empty. Since by Lemma 3 the functions S (v1; δ) and

T (v1; δ) are continuous in δ, the set D is a closed interval. Then we define:

v∗ = max D. (22)

If v∗ = 1 then we are done.

Suppose now v∗ < 1. By definition of v∗, all types v1 < v∗ prefer to play soft. The final step is

to show that, for all types v1 ≥ v∗ we have T (v1; v∗) ≥ S (v1; v∗). This is done in the next lemma,
which makes use of Assumption 1.
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Lemma 7 Let v∗ be defined by (22), and suppose v∗ < 1. Then, if assumption 1 is satisfied, we

have T (v1; v∗) ≥ S (v1; v∗) for each v1 > v∗.

Proof. Consider the function

Ψ (v1) = T (v1; v∗)− S (v1; v∗) .

Since both T and S are continuous, so is Ψ. Also, we know that there exists ε > 0 such that

T (v1; v∗) > S (v1; v∗) for each v1 ∈ (v∗, v∗ + ε). Thus it is enough to show that

∂Ψ (v1)

∂v1
=

∂T (v1; v∗)
∂v1

− ∂S (v1; v∗)
∂v1

≥ 0

at each point of differentiability of Ψ. We start observing that, since T (v∗; v∗) = S (v∗; v∗), then

for any ε > 0 there must be some v1 ∈ (v∗, v∗ + ε) such that ∂Ψ(v1)
∂v1

> 0.

By the previous analysis we have

∂T

∂v1
= λ (1+G (s)) + (1− λ) [2G (v1)−G (v∗) +G (min {s, v∗})] ,

and
∂S

∂v1
= λ+ (1− λ) [G (va) + 2max {G (v1)−G (va) , 0}] .

Suppose first va ≤ v1. Then
∂Ψ (v1)

∂v1
= λG (s) + (1− λ) [G (va)−G (v∗) +G (min {s, v∗})] ,

which is positive since va ≥ v∗.
Consider next va > v1 (in which case va = sup {v2 |s (v2;hL, v∗) ≤ v1 }). Now

∂Ψ (v1)

∂v1
= λG (s) + (1− λ) [2G (v1)−G (v∗)−G (va) +G (min {s, v∗})]

Since va > v1 > v∗ then v1 must be on a strictly increasing part of the stopping function, hence

the following first order condition must hold :

(va − v1) g (v1) = 1−G (v1) .

This is the condition ensuring that v1 is the optimal stopping time for type va. (Since v1 > v∗, the

FOC that we apply is the one relative to the case s > v∗). The FOC can be rewritten as

va = v1 + µ (v1) .
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Substituting into the expression above for ∂Ψ(v1)
∂v1

, we have

∂Ψ (v1)

∂v1
= λG (s) + (1− λ) [G (min {s, v∗})−G (v∗)]

+ (1− λ) [2G (v1)−G (v1 + µ (v1))] .

Now observe that, since s is increasing, the function

λG (s) + (1− λ) [G (min {s, v∗})−G (v∗)]

is increasing. Furthermore, assumption 1 implies that

2G (v1)−G (v1 + µ (v1))

is increasing. We can then conclude that the expression of the derivative in this case is increasing.

Thus, in order to prove that ∂Ψ(v1)
∂v1

is positive, it is enough to show that at any v01 < v1 the

expression is positive. Now remember that in a right neighborhood of v∗ the function Ψ is strictly

increasing. Furthermore, for v01 sufficiently close to v∗ it must be the case that va > v01 (it would

not make sense to trigger a war). Then, there must be some point v01 at which
∂Ψ(v01)
∂v1

> 0. This

completes the proof.
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