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1 Introduction

It is well known that the English auction has many desirable properties when a single object is to
be sold. With private values, this auction implements the efficient allocation uniquely in weakly
dominant strategies, and maximizes the seller’s expected revenue within a large class of ‘simple’
selling procedures (Lopomo [10]). However, the properties of generalized versions of the English
auction in situations in which many objects are to be sold, and the buyers have use for more than
one object, are yet to be fully understood.

By and large, most of the existing work on simultaneous multiple objects auctions has focused
on the case with nonincreasing marginal willingness to pay in the bidders’ utility function. Most
closely related to the present paper in terms of the auction rules, Milgrom [13] has analyzed the

)

“simultaneous ascending auctions,” which have been used by the US government to sell licenses for
the use of radio frequency bands. Mostly under the hypothesis that the bidders’ utility functions
are common knowledge, Milgrom discusses issues surrounding the auction’s performance in terms
of its ability of generating efficient outcomes and its potential for maximizing the seller’s expected
revenue. In particular, he describes an equilibrium for the case of two bidders, two objects and no
private information, that is similar to the one described in Proposition 1 of this paper: each bidder
can buy one object for the minimum price allowed by the rules of the auction.

Proposition 1 allows for private information but restricts the bidders’ utility functions to be
additive: i.e. each bidder’s willingness to pay for each object is independent of whether she is
also buying the other object. This result has also been established independently by Engelbrecht-
Wiggans and Kahn [6]. They also establish the existence of other ‘low revenue’ equilibria, always
for the case with two bidders, two objects and additive utility functions.

Under a condition which rules out complementarities in the buyers’ utility functions, Gl and
Stacchetti [8] have studied a generalized version of the English auction akin to a tatonnement
process, with emphasis on the relation between its equilibria and the Walrasian equilibria of the
underlying economy. Ausubel and Cramton [1] have also studied environments with nonincreas-
ing marginal values, but have focused mostly on sealed-bid auctions. Recently, Kwasnica [9] has
done experimental work on collusion in multiple object sealed-bid auctions, with additive utility
functions.!

Environments in which the bidders have increasing marginal valuations have been considered
in Chakraborty [3], who has studied properties of various sealed-bid auctions formats. His paper

also contains a good survey of existing work on multiple object auctions.

'The possibility of collusion in auctions has also been studied extensively in the single object case. (See Campbell
[2], Graham and Marshall [7], Mailath and Zemsky [11], McAfee and McMillan [14] and Pesendorfer [16].)



In this paper we examine the claim that generalized English auctions can be more vulnerable
to collusion in the multiple objects case than in the single object case. Concerns about collusive
behavior of bidders have emerged, for example, in an article published in The Economist (1997).
Most recently, Cramton and Schwartz [4] have indicated evidence of collusive behavior in the FCC
spectrum auctions, and discussed the effectiveness of various modifications of the auction rules in
hindering bidders’ collusion.

In particular, the following conjectures are usually held about auctions with multiple objects:

e The presence of multiple objects facilitates collusion by allowing the bidders to signal their
willingness to abstain from competing over certain objects, provided they are not challenged
on others. In this way, the agents can allocate the objects among themselves without paying

much.

e As the ratio of bidders to objects increases, the possibility of collusive schemes as the ones

indicated in the previous conjecture tends to disappear.

e High complementarities among objects hinder collusion. This is because each bidder is less
satisfied with owning only a subset of the objects on sale; she has therefore an incentive to

break the collusion and compete for all the objects in order to fully realize the synergies.

We study how the signalling opportunities provided by the sequential nature of open ascending
auctions can be exploited by the bidders in the presence of multiple objects to coordinate on
equilibria which generate low revenue for the seller and implement socially inefficient allocations of
the objects. For simplicity, we focus on the case of two objects, although the results carry over to
the case with any number of objects.

The model is described in section 2. In section 3 we begin the analysis with the benchmark
case of purely additive values, i.e. we assume that each bidder obtains no synergies from owning
multiple objects, hence her willingness to pay for one object is independent of whether she is also
buying other objects. We present conditions under which collusion-via-signaling can be sustained
in equilibrium. Equilibria in this class can be described for the simple case with only two bidders
as follows. Each bidder starts by placing the smallest possible bid on her most valued object,
and no bid on the other object. If only one bid is placed on each object, it becomes common
knowledge that the bidders rank the objects differently, and the bidders simply confirm their bids
in the next round thus forcing the auction to end with each buying one object for the minimum
price. If, instead, the initial bids reveal that the two bidders have a higher value for the same
object, then the bidding continues according to some equilibrium strategy, which can entail, for

example, a reversion to “bidding straightforwardly,” i.e. raising the bid on each object if the value



is higher that the current highest bid and the bidder is not assigned the object.? Alternatively, the
bidders may continue bidding according to some other continuation strategy in which they proceed
to signal more detailed information about their values in order to coordinate with each other and
buy only one object each for a relatively low price. In all equilibria of this kind, the outcome is
socially inefficient — i.e. the objects are not always assigned in a way that maximizes the total
bidders’ willingness to pay — but the bidders end up paying less than they would by bidding
straightforwardly throughout the entire auction. And it turns out that the reduced payments make
up for the loss of efficiency in assigning the objects, so that the each bidder’s interim expected
surplus is increased.

We also show however that, for these equilibria, the probability that the bidders can collude
via signaling decreases as their number increases relative to the number of objects. This result
corroborates the conjecture that collusion is a ‘low numbers’ phenomenon.

In section 4 we consider the case in which the bidders’ utility functions exhibit large complemen-
tarities, i.e. their willingness to pay for the two objects together is much greater than the sum of the
two objects’s “stand alone” values. We show that the sole presence of complementarities does not
hinder collusion: the bidders can still manage to buy one object each, at low prices. In fact, in the
extreme case in which the synergies are commonly known, and not too different across the bidders,
the incentive structure for the bidders is essentially identical to the case with no complementarities.
The efficiency loss however is much larger because it includes the unrealized complementarities.

When complementarities are not only large but also variable however, the possibility of collusion
is seriously reduced. This suggests that what is crucial in determining the likelihood of collusion
is not whether the complementarities are (on average) ‘large’, but more how variable they are.

Section 5 contains concluding remarks, and an appendix collects all the proofs.

2 The Model

There are a set N = {1,...,n} of bidders and a set M = {1,...,m} of objects, with m, n finite. The
bidders have quasi-linear utility functions, and the willingness to pay of bidder ¢ € N for bundle
J C M is given by u; (J) . Bidder ¢ knows her values {u; (J)} ;coum, while the rest of the world only
knows that such values are drawn according to a probability function with support on a compact
subset of §Rim.

The m objects are sold with an open ascending auction, named here the Generalized English

Auction, or GEA, which is a natural extension of the standard one-object English auction to

2The use of the expression “bidding straightforwardly” to denote a strategy that is similar to the standard strategy
in the one-object English auction is due to Milgrom [13].



environments with multiple objects. The auction proceeds in rounds. At the initial round each
bidder i submits a vector of bids (b} (1),...b (1)), where bg (1) denotes the amount that bidder
7 declares she is prepared to pay for object j at round 1. The case in which bidder ¢ places
no bid on object j is treated setting b{ (1) = 0, and the minimum effective bid is normalized to
zero. The auction ends with the seller keeping all objects if and only if each bidder places no
bid on any object, i.e. if b} (1) = () for each j € M, i € N. Otherwise, both the highest bid
b (1) := max; bg (1) (0 = —o0 by convention) and a potential winner among the bidders who have
offered v’ (1) are identified for each object j € M, and the auction moves to round 2. At round
2, each bidder i submits a new vector of bids (b} (2),...b/"(2)). We model the condition that
previous bids cannot be withdrawn by requiring that (b} (2),...b" (2)) > (b} (1),...b" (1)) . The
auction ends at stage 2 if no bidder revises her bid on any object, i.e. if bf (2) = bg (1),all j € M,
i € N. Otherwise a potential winner is selected again for each object j among all ¢ such that
bg (2) = b (2) := maxy bg, (2), and the auction moves to the next round. Proceeding in this fashion,
if round t > 2 is reached, and if bf (t) = bf (t—1) for all j € M and 7 € N, then the auction ends,
and each object j is assigned to the buyer selected at the end of round ¢ — 1 among all ¢ such that
b (t—1) =0 (t — 1) := maxy bg, (t — 1). The selected buyer pays his last bid &’ (t — 1) = b7 (¢) .
To keep the analysis and the notation as simple as possible, we establish our main results for
the case m = 2, i.e. only two objects on sale. The main insights however apply to the more general

case. We define:

e v; :=u; ({1}), the value to bidder i of having object 1 only;

e w; :=u; ({2}), the value to bidder ¢ of having object 2 only.

We will use interchangeably the terms ‘object v” (object w) and ‘object 1’ (object 2). With only
two objects, a bid by agent ¢ in round ¢ is just an ordered pair (b} (¢),b (t)).
Finally, we assume that the size of the complementarity is independent of the two objects’

‘stand-alone’ values, i.e. the value to bidder i of having both objects is
U ({1,2}) =v; tw; + ki,

For each i € N, the values (v;, w;, k;) are drawn from a joint probability distribution with density
h (v, wi, k) and support [0,1]2 x K. We assume that v; and w; are independent and identically
distributed. Thus, v; and w; have identical marginal distribution, whose density and c.d.f. we
denote by f and F' respectively. The marginal distribution of k; is either degenerate on 0, or is
represented by a density ¢ (and c.d.f. G) with support over the interval [&,E] with £ > 0. The

values (v;, w;, k;) are drawn independently of (vj,w;, k;) for each j # i.



In the next section we examine the case with no complementarities, i.e. k; = 0 for all ¢ € N.

Section 4 will be devoted to the case with positive complementarities.

3 Collusive Equilibria with No Complementarities
In this section we consider the case of purely additive values
Us ({1,2}) =v;+w;, @€ N,

or no complementarities, k; = 0 for each ¢. In this case there is really no point in auctioning the
objects simultaneously, since the efficient allocation of each object is independent of the allocation
of the other objects. A sequence of single-object English auctions would allocate each object to the
bidder with the highest value, and, with suitably chosen reserve prices, would also maximize the
seller’s expected revenue. However, the analysis of the bidders’ equilibrium behavior in the GEA
will provide a useful benchmark for the more realistic case in which complementarities are present.
In particular, the purely additive case will shed light on the role played by multiple objects in
facilitating collusion among the bidders.

We begin with the following simple but important observation: with no complementarities,
it is a perfect Bayesian equilibrium for the GEA that each bidder 7 follow a ‘Separated English
Auctions’ strategy (SEA), bidding on each object j until the price reaches the value w; ({j}). It
is clear that, if all other agents are following this strategy, then player ¢’s best reply is to follow
the same strategy®. Note that the SEA strategies are weakly dominant, hence optimal for each
bidder independent of her beliefs about her opponent’s values. We state the result for an arbitrary

number of objects in the following Proposition.

Proposition 0 With no complementarities, for any n and m, the separated English auctions strat-
eqy (SEA) profile form a perfect Bayesian equilibrium (with some consistent belief system) after

any history in the Generalized English auction.

The SEA strategy profile can be used in the same way as Pareto inferior equilibria are used in
repeated games to support collusive outcomes. They constitute the threat used to deter the bidders
from using aggressive bidding strategies.

The next observation is an immediate implication of the well-known Revenue Equivalence Theo-
rem (Myerson [15]). Since the bidder’s types are drawn from independent probability distributions,
by incentive compatibility the SEA equilibrium is the unique PBE which implements the socially

3Tt is worth pointing out here that this argument would fail in the presence of complementarities.



efficient allocation. The incentive compatibility constraints pin down the interim expected pay-
ment function of each bidder for any given objects’ allocation rule. Therefore, in any equilibrium
of any trading game with no complementarities which implements the socially efficient allocation
the buyers’ interim expected payments must be equal to the sum of the expected payments in m
separate standard English auctions. This also implies that in any perfect Bayesian equilibrium of
the GEA in which all bidders are better off than in the SEA equilibrium the objects cannot be

allocated according to the socially efficient rule.

3.1 Two Bidders

We begin with the case in which there are only two bidders. Proposition 1 establishes the existence
of a symmetric Perfect Bayesian equilibrium which dominates the SEA in terms of buyers’s interim

expected surplus®. Recall that F is the common marginal c.d.f. of v; and w;.

Proposition 1 Suppose that E (x) = fol xdF (x) > % Then the following strategy, together with

some consistent belief system, form a symmetric perfect Bayesian equilibrium.:
o Types (vi,w;) such that v; > w; open with (bz1 (1),0? (1)) =(0,0);
o Type (vi,w;) such that v; < w; open with (b} (1),b7 (1)) = (0,0);
o [f the initial bids are different, all types confirm their bid in round 2.

o [f at any round the bids differ from the ones given above, all types revert to the SEA strategy

described in Proposition 0.

This equilibrium can be described as follows. Each bidder opens by making the minimum bid (zero)
only on her most preferred object. If, at the end of the first round, the bidders discover that they
rank the objects differently, then they stop bidding, and each is able to buy her preferred object at
the lowest possible price. If instead they discover that they rank the two objects in the same way,
then they revert to the Separated English Auctions strategies. The condition E (x) > % guarantees
that, for each type of each bidder, the expected surplus from triggering the SEA strategies after an
opening with different bids is lower than the surplus obtained by buying just her most preferred
object for the minimum price.

In the next subsection, we show that the set of perfect Bayesian equilibria of the GEA contains
other, “more collusive” equilibria, i.e. equilibria in which the bidders end up with a higher interim

expected surplus.

4The existence of this equilibrium has been established independently by Englelbrecht-Wiggans and Kahn [6].



3.2 Getting More out of Collusion

The equilibrium described in Proposition 1 prescribe that the bidders revert to the SEA strategies
when they open with the same bids, i.e. when it becomes common knowledge that their preferred
object is the same. It is thus natural to ask whether in this case the bidders can do better by trying
again to coordinate themselves and buy one object each at relatively low prices. The affirmative

answer to this question is provided by the next proposition.

Proposition 2 Let x, y be two independent random variables with c.d.f. F. Assume that, for each

a € 10,1], the following inequalities hold:
Elz|0<z<1l—a|+E[z|a<z<1]>1, (1)

Elz|z>a+y,l—a>y|+Elz|y—a>2>0,y >a] > 1. (2)

Then the following strategy, together with some consistent belief system, form a symmetric perfect

Bayesian equilibrium:
First round:

o Types (v;,w;) such that v; > w; open with (b1 (1),b

o Types (vi,w;) such that v; < w; open with (b} (1),b

1

Subsequent rounds:

e If the initial bids are either ((0,0),(0,0)) or ((0,0),(0,0)) then all types confirm their
bids;

o If the initial bids are ((0,0),(0,0)), then types (v;,w;) such that v; —w; = a; keep raising
their bid on object v while refraining from bidding on w until either i) the opponent
stops, or ii) the bid reach the value a;. In case i), they do not revise any bid for the next
two rounds;and in case i) they bid (a;,0), for two consecutive rounds, thus moving the
outstanding bid on w from O to 0. If the initial bids are ((0,0),(0,0)), the strategy is

symmetric, with the roles of v and w switched.
Out—of-equilibrium paths:

e [If at any round a bid not in accordance to the above described strategy is observed, then

each type reverts to the SEA strategy.



The equilibrium formally stated in Proposition 2 can be described as follows. The bidders open
by signalling which object they prefer. If they prefer different objects, then the game ends, as in
the equilibrium of Proposition 1. If they prefer the same object, say v, then they keep raising the
price on v while abstaining from competing on w, with bidder ¢ prepared to bid up to the difference
between her two values a; = v; — w;. Thus, if a; > a3_;, bidder ¢ ends up buying object v for the
difference between her opponent’s values ag_;. The opponent stops competing on v when the price
reaches the difference between her values, and buys w for the minimum bid.

In this equilibrium, each bidder’s type set [0, 1]2 is partitioned into lines with slope 1: types on
the same line — i.e. with the same difference between the two objects’ values — behave identically
hence remain indistinguishable until the end of the auction. It is because of this pooling among
low and high types that the bidders abstain from triggering the SEA strategies at the end of the
bidding on one object.

It is worth noting that the equilibrium strategy is simple: only at the final round the bidders’
beliefs play a role in sustaining the equilibrium. It is crucial however that no object is assigned
before the end of the auction, i.e. any object can be still bought even after many rounds in which its
outstanding bid has not moved. It is thus tempting to conclude that simply imposing an “activity
rule” — i.e. a condition specifying that any object whose price does not move for a certain number
of rounds be assigned to a bidder who has made the highest bid — can be effective in preventing
the bidders from achieving this level of collusion. In light of Proposition 2 however, it is possible
to observe that (under some conditions on the c.d.f. F') there exists another symmetric perfect
Bayesian equilibrium yielding the outcome of Proposition 2 in at most three rounds: if the bidders
open signaling that they both prefer the same object, say v, in the second round each places a bid
on v equal to the expected difference between her opponent’s values; and in the third round, the
lowest bidder can buy w for the minimum price. The competition phase on v is thus compressed in
just one round, hence this equilibrium cannot be destroyed by any rule which allows at least two
rounds of inactivity before closing the bidding on an object.

If any positive weight is given to the seller’s surplus, the outcome of this equilibrium is Pareto
inferior even to the one generated by the equilibrium of Proposition 1. Social efficiency requires
that each object be assigned to the agent who values it most, and this is what happens when the
SEA strategies are triggered. In the equilibrium of Proposition 2 the SEA strategies are never
triggered.

Conditions (1) and (2) imply E () > 1, since the latter is obtained setting @ = 0 in (1). The

PR
two conditions are satisfied, for example, by the uniform distribution over [0,1] .



3.3 More than Two Bidders

The equilibria described in Propositions 1 and 2 may seem to rely heavily on the fact that the
number of bidders is equal to the number of objects. However, some degree of collusion is still
possible when there are more bidders than objects. The basic idea is that the bidders can follow the
SEA strategy until only 2 players are left, and then adopt the strategies described in Propositions
1 or 2 to divide the objects.

Proposition 3 If there are n > 2 bidders and the c.d.f. F (z) satisfies E [z |x > z] > 12 for each
z € [0,1], then the following strategy, together with some consistent belief system, form a symmetric

perfect Bayesian equilibrium.:
e Round 1: If v; > w;, open with (0,0), otherwise open with (1,0);

e Round t: if more than two bidders were active at round t — 1, all types use the SEA strategy,
i.e. they increase their bid on each object if their value is higher than the current highest bid

and they are not assigned the object.

If at round t — 1 only i and j # i were active, and bidder j opened with ((,0), then types
(vi,w;) such that v; > w; rise the bid on v only by a small amount. Types (v;,w;) such that

v; < w; use symmetric strategy if j opened with (0,0).

e [f the observed history of bids is not obtained according to the strategies previously described
then adopt the SEA strategy.

A family of c.d.f’s which satisfies the condition E [z |z > 2] > 1 (1+2) for each z € [0,1] is
F (z) = 2%, with a > 1. In this case we have:

a 1_Za+1

a+l1l 1—2z2¢

E(@|lzr>z)=

and it can be checked that the inequality is satisfied for z € [0,1].

The equilibrium of Proposition 2 can also be extended to the case of n > 2 bidders.

Proposition 4 Suppose that there are n > 2 bidders and the c.d.f. F is such that for each pair
(a,z) such that z € [0,1] and a € [0,1 — 2| the two following conditions are satisfied:

Exlz<z<l—-a)+E(@z|lz+a<x<1)>1+=z2 (3)

E(zlx>a+y,l—a>y>2)+E(zly—a>x>zy>a+z)>1+z (4)

Then the following strategy is part of a symmetric perfect Bayesian equilibrium: Behave as in

Proposition 3 except at the following point:

10



e If at round t — 1 only you and another bidder were active then:

o Ifv; > w; and you opened with (0,0) while the other bidder opened with ((),0) then increase

the bid on v and not on w, then stop.

o Ifv; <w; and you opened with (,0) while the other bidder opened with (0,0) then increase

the bid on v and not on w, then stop.

o If both players opened with (0,0) and z was the last offer for both objects then increase the
bid on v up to z+ a;, while keeping the offer for w at z. If the other bidders offers more than
z+ a; then get w for z. Otherwise, get v at the price at which competition ends, and leave w
to the other bidder.

This equilibrium works as the one of Proposition (3): the bidders start signalling which object
they prefer and then push up both prices until only two players are left. The difference is that at
that point the same strategies as in Proposition (2) are used: if bidders have opened showing that
they rank the two objects in the same way, then they compete only on the top ranked object. The
stopping point for each players is z + a;, that is the last bid plus the difference between the two
values.

An important observation is that in the equilibria exhibited in Propositions (1) and (3), or in
Propositions (2) and (4), the probability of collusion decreases as the number of bidders increases.
To be more precise, the probability of assigning each object to the bidder with the highest value
increases as the number of bidders increases. Conditions (3) and (4) are also satisfied by the uniform

distribution.

4 Collusive Equilibria with Large Complementarities

In this section we consider the case of complementarities, i.e. u; (AUB) > u; (A) + u; (B). As
stated in Section 2, we define u; (1) = v;, u; (2) = w; and w; ({1,2}) = v; + w; + ki, i = 1,2, and
we assume that v; and w; are drawn from a symmetric distribution with support |0, 1]2 , marginal
density f, and marginal c.d.f. F. We also assume that for each player ¢ = 1,2, the value of the
complementarity k; is drawn from a distribution with continuous density g and support over an
interval [&,E]. Each random variable k; is independent of (vj,w;, k;) for each j # i.

Finding equilibria for the case in which complementarities are present is complicated by the fact
that, at any given round of the auction, a bidder’s willingness to pay for a given object depends
on the probability of winning the other object. This destroys the ‘belief-free’ nature of the SEA

equilibrium described in Proposition 0. We can show however that, if the complementarities are

11



commonly known to be ‘large’, in a sense to be made precise, then a result similar to the one found
in Proposition 0 can be obtained. Define 6; := v; + w; + k;, the total value of the bundle for agent

2.

Proposition 5 Suppose that there are n players, 2 objects, and k > 1. Then there is a perfect
Bayesian equilibrium with the following outcome: The two objects are allocated to the agent with

the highest 0;, at a price equal to the second highest valuation (i.e. max;.; 6;).

The basic intuition here is as follows. Under the assumptions of Proposition 5, if the buyers compete
on both objects, the auction cannot end with each bidder buying just one object because the value
for each bidder of owning a second object is higher. Therefore, both players behave as if bidding
for a single object, the bundle {v,w}.

The equilibrium of Proposition 5 can be used as a threat to sustain collusive equilibria when large
complementarities are present. The next proposition establishes the existence of an equilibrium

which yields a superior expected surplus for both players. Define
0, = {(v,w,k) €0, x [k, k] | v> w}

and
Oy = {(v,w,k‘) €10,1)% x [k,k] |v< w}.

Proposition 6 There exist two sets A, C O, and Ay C Oy, such that the following strategy form
a PBE:

o Types (vs,w;, k) € [0,1]% x [k, k] \Ay U Ay open with (0,0) and compete for both objects;
o Types (vi,w;) € Ay open with ((),0)
o Types (v, w;) € A, open with (0,0) .

e If the initial bids are {(0,0),(0,0)} or {(0,0),(0,0)} then bidders do not place any further
bid. In all other cases, the bidders play the SEA equilibrium described in Proposition 5.

e If, at any stage, the bids differ from the ones given above, the bidders play the SEA equilibrium

described in Proposition 5.

The set A, and Ay, have the property that if (v,w, k) € A, implies (w,v, k) € A, and vice-versa.

12



The equilibrium of Proposition 6 is a natural generalization of the equilibrium described in
Proposition (1). The set of types of each bidder is divided into three subsets. The first subset
consists of those types who cannot be induced to collude. These are the types who have very
low stand-alone values for each object, and who therefore only value the two objects together. To
illustrate, suppose that agent 1 is of type (0,0, k1) , and define sg := vo+wa+ko. If 1 accepts to buy
only one object at price zero, the utility is zero. On the other hand, competing for both objects
yields a utility equal to Pr(sy < k1) (k1 — E (s2|s2 < k1)), which is positive, although possibly
small. Tt is clear that types like (1,9, k), for 1 and &5 sufficiently small, will also be unwilling to
collude.

However, types with a stand-alone value for v sufficiently high are in fact willing to collude. In
particular assume that bidder 1 has type (vi,wi, k1), with v; > w;. Define s := v; + wy + k1.
Suppose that at the first round bidder 1 learns that her opponent’s type lies in some subset A,, C

O- Then collusion is better than competition if:
.51
v > / (81 — 52) dH (82 |(v2,w2, k‘g) S Aw) (5)
Jk

where H denotes the conditional c.d.f. of sg. In equilibrium, the set A, will be exactly the set of
those types for whom inequality (5) is satisfied. A similar inequality will define A,,. In equilibrium
the two sets A, and A,, have to be defined simultaneously. It is intuitive from inequality (5) that
the two sets will be symmetric.

The shape of the set A, is roughly as follows. Suppose that bidder 1 has v; > w;. Let us
summarize the type of agent 1 by the pair (vi,s;), with v; € [0,1] and s; € [k,2+k]. Then it
is clear that if the pair (v],s}) satisfies inequality (5) then all pairs (v}, s;) with s; < s] will also
satisfy the inequality. The inequality is also satisfied by the types characterized by the pair (0, k).
This type has no use for a single object, but is also sure to lose the competition for the two objects.
Thus, (5) holds with equality. It is also clear that all types characterized by pairs like (v1,v; + k)
are willing to collude. These are types for whom w; = 0 and have the lowest possible value for the
synergy. If they compete for both objects they pay at least k (the lowest possible value for s5),
and receive less utility than vy, which is what they would get accepting collusion. In general, for
a given v; there will be a corresponding value s; (v1) such that types with s; < s1 (v1) are willing
to accepts collusion and types with s; > s1 (v1) prefer to compete for both objects rather than to

accept collusion. The shape of the set A, is thus similar to the one showed in figure 1.
INSERT FIGURE 1 HERE

One case which is particularly simple and striking is the one in which the extent of the com-

plementarity is known and identical across bidders, i.e. the distribution of k; is degenerate on
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some value k*. In this case, provided that the condition E (x) > % holds, the strategies proposed in
proposition 1 are still equilibrium strategies. In other words, the set A, and A,, described in propo-
sition (6) can be taken to be ©, and ©,, respectively, when the complementarities k; are known and
identical across agents. The intuition is straightforward. If k; is the same for each bidder, then it
will be entirely competed away whenever the equilibrium of proposition 5 is triggered. This makes
any attempt to get both objects unattractive, hence even types with very low ‘stand-alone’ values
can be induced to collude.

We conclude this section by reconsidering the conjecture according to which collusion decreases
when complementarities are present. We have shown that the presence of complementarities does
not destroy collusion. In fact, we have seen that large complementarities which are known and
common among the players do not reduce the possibility of collusion at all. What really matters in
hindering collusion is the variability of the extent of complementarities, rather than their absolute

values.

5 Conclusions

When sequential procedures are used to sell multiple objects, the buyers can collude in order to
reduce their payments to the seller. The general feature of collusive equilibria in open ascending
auctions is that each bidder signals to the others which object has the highest value to her. After
the signaling round, the bidders implicitly promise each other not to compete on the objects that
they value less, provided they are not challenged on the objects they value more. We have provided
conditions under which this behavior can be made a perfect Bayesian equilibrium. We have also
shown that at least some degree of collusion may still be present when the ratio of bidders to objects
is high, and when there are complementarities in the bidders utility functions.

As a more general point, the set of equilibria in auctions with multiple objects appears to be
much richer than in the single object case. In this paper, we have shown some of these equilibria.
It is worth pointing out that in all equilibria in which collusion-via-signalling occurs it must be the
case that not too much information is revealed by the equilibrium bidding strategy. To see this,
suppose, for example, that the bidding strategy were to reveal that one bidder has very low values
for both objects. Then the other bidder will decide to compete for both objects, i.e. to revert to
the SEA strategies, since her expected payments on both objects will be low. A bidder with high
values will accept a collusive outcome only if the information revealed is such that her expected
payment in open competition is sufficiently high. But this must imply that there is always some
pooling among low and high values. This in turn implies that in general collusion-via-signalling

not only reduces the revenue to the seller, but also reduces the efficiency of the final allocation.
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Appendix

Propositions 1 and 2 are special cases, with z = 0, of Propositions 3 and 4 respectively.

Proof of Proposition 3. Given the symmetry of the problem, it is enough to check the
optimality of the strategy for types having v; > w;. We will do this proceeding backward.

Consider the first round at which only two agents remain, say 1 and 2. Suppose that bidder 1 has
v1 > w; and opened at round zero with (0, () , while bidder 2 opened with (,0). Suppose also that
the outstanding pair of bids at round ¢ — 1 was (z,2) . Let Fy (v2 | L;) and Fy (v2 | L) denote the
c.d.f. of vy and ws respectively, both conditional on the set L, := {(vz,wg) € [0, 1]2 |z <wy < wg} )

If bidder 1 changes her bids, then the SEA strategies are triggered. The expected utility in this

case is:

U] w1y

(1)1 — Ug) dFV (1)2 |Lz) + / (w1 — wg) dFW (IUQ |Lz)

Jz

S(Ul,wl |Lz) = /
JZ
and we have to check that the deviation is unprofitable, that is:

vy — 2z > S (v1,w1 | Ly)

for each pair (vi,w;) such that v; > wy. Since S (vy,w; | L,) is increasing in wy, it is enough to

check the inequality for the types on the diagonal, i.e. types such that v; = wy. Defining:
Y. (v1) = S (v1,v1 | L), v € [2,1],

the inequalities to be checked are:
v1 — 2z >, (v1), foreach v, € [2,1].

We start by noting that this holds at v; = 2, since both sides are zero; and then observe that the
derivative of the LHS with respect to vy is 1, while the RHS derivative

V1 U1
V. () = / dFy (v2] L2) + / dFy (3| L),

is zero at v; = z, and increasing, hence positive for each v; € (z,1]. Thus the function ~, (v1) is

convex, and we are done if we can prove that
1—2>7v(1).
This can be rewritten as:

1—2>FE[l—wv|L)+E[l1—ws|L,)=2—FEvy|L.] — Fws|L,],
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or, using the symmetry of the joint distribution of vy and wo, as
Elvy|L,| 4+ Efve|U,] > 1+ 2z, (6)

where U, := {(vg,wg) € [0, 1]2 |z <ws < 1}2} . By symmetry, we have% =Pr(L,|z<v9,z<wg) =
Pr (U, |z < wvg,z <wy), hence

Elvy| L]+ Ev2 |U,] =2F [v2| 2z < v,z < wa.

Independence of v9 and wy implies F [vg |z < v,z < ws] = E[ve | 2 < vg], so that condition 6 can
be written as: )
E (v2]z <wg,z <wg) > 5(1—#2).

This is the condition stated in the theorem, and we can therefore conclude that the agents will
collude when the opportunity arises.

The optimality of the strategies when more than two agents are left follows from the fact that
any other strategy simply destroys the opportunity of collusion should it arise, and does not improve
the outcome otherwise.

The only thing which is left to show is that at the opening a player is willing to signal truthfully
the triangle in which her type is. This is going to matter only when the player ends up being one of
the two last players and both players are competing for both objects. We show that for any given
z at which this may happen it is better to have announced the correct triangle at date 0.

If bidder 1 announces the correct triangle, then the expected payoff conditional on being one of
the two last bidders, and on z being the last bid for both bidders, is:

2 =2)+ 38 (run | L) (7

This is because, given the symmetry in the distributions of v; and w; for each ¢, with probability %
the opponent is of type wy > v, so that her initial bid is ((),0), and with probability % the opponent
is of type v2 > wsy. In the first case the auction ends immediately, yielding a payoff v1 — 2z, while in
the second case bidders go on playing the SEA equilibrium.

If the bidder opens with (),0) then the expected payoff conditional on being one of the two last
players and both having valuation at least z for both objects is:

3 (01— 2) + 28 (01 | U,) ®

(notice that now S is conditional to vy > wy rather than to ve < wsg). The expression in (8) does

not exceed the one in (7) if

U1 +S(U1,w1|LZ) > wq +S(v1,w1|Uz),
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which holds with equality if v; = w;. Moreover, the derivatives with respect to v, are
1+ Fy (v1| L)

for the LHS, and
F (v |U,)

for the RHS. Hence the LHS grows faster than the RHS as v; is increased, thus implying that the
inequality holds for each v1 > w;. W

Proof of Proposition 4. Again, because of symmetry it suffices to check the optimality of the
strategy along the equilibrium path for a bidder whose type is in the ‘lower triangle.” We proceed
backward.

Suppose first that only two players are left, say 1 and 2. If 1 opened with (0, ()) and 2 opened with
(0,0), then the analysis of Proposition (3) applies, since condition (3) implies E (z]|z <x <1) >
(14 2) /2 for a = 0, hence deviating to the SEA strategy is not profitable. If both bidders have
opened with (0,0), then we have to show that bidder 1 with type v1 — w; = a; is willing to raise
the bid on the first object only if she is not assigned object v and the outstanding bid is (p, z) with
p < z+ a1. There are two possible deviations from the equilibrium path:

1) Stop bidding on v, and raise the bid on w by a small amount if necessary, i.e. if 1 is not currently

assigned w. This deviation yields at most w; — z. Define

T.(p) = {(vzwe) € [, 1 |+ 2 < g —wa }.

The set T, (p) is the support of bidder 1’s beliefs about 2’s values conditional on the last round’s
bids being (p, z) for each bidder. The expected utility from following the equilibrium strategy is:

U* (v1,w1|T; (p)) = Pri{az <a1|T:(p)} (v1 —2 — E(az|az < a1, T} (p)))
+Pr{az > a1 |T; (p)} (w1 —2),

which can be written as:
U* (v1,w1|T% (p)) = w1 —z+Pr{ag < a1 |T: (p)} (vi —w1 — E (a2 | a2 < a1, T (p))) -

It is clear that the last expression higher than w; — z.
2) Raise the bid on w, without stopping the bidding on v. In this case, the SEA equilibrium is

triggered and we have to verify that:
U™ (v1,01|T% (p)) = S (w1, w1| T (p))
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It is enough to check the inequality at p = z + a;. Triggering the SEA equilibrium before p reaches
that level can only do worse.

Using v1 = wy + aq, the relevant inequality to be checked is therefore:

W1

rw1+ai
wy — 2 > / (w1 + a1 — v) dFy (va| Ty (a1 + 2)) + / (w1 — wp) dFyy (ws Ty (ar + 2))

a1+z Jz

The inequality is satisfied at w; = z and the RHS is increasing and convex. Applying the same

reasoning as in Proposition (3) we conclude that it is enough to check the inequality:

‘1—aq

1
1—a1—22/ (1—U2)dFv(v2|Tz(a1+z))+/ (1= ay — ws) dFy (ws| T (a1 + 2)

a1+z Jz

where use is made of the fact that the highest possible value for w; when v; —wy > a1 is 1 — ay.

The inequality is equivalent to:
E(v2|ve > a1 + w2, 1 —a1 > we > 2) + E(ws|ve —a1 > wy > 2,09 > a1 +2) > 142

or:
E(zlx>a+y,l—a>y>2z)+E(zxly—a>z>2zy>a+z)>1+=2

which is the condition stated in the Proposition.

At last, we check that a bidder wants to stop after the other bidder has stopped the bidding,
rather than competing for both objects. Suppose that the bidder has v; — w; = a and the other
bidder stopped at z + a’ with a’ < a. In this case define:

. = {(ts) € (217 o2 —wn = '}

Then the inequality becomes:
1 _ w1 _
vy —ad —z> / (v1 — v2) dFy (02| Qo ) + / (w1 — w2) dFy (w2| Qur 2)

Ja'+z Jz

Using w; = v; — a we can rewrite the inequality as:
V1 o v1—a _

v —a —z> / (v1 —v2) dF, (UQ] Qa',z) —|—/ (v1 —a —wg)dF, (wg\ Qa/,z)
a’'+z z

Again, the inequality is satisfied at v;1 = z+ a, the RHS is increasing and convex and we have only
to check:

1 1—a
1—ad —2z> / (1 —vq)dF, (v2|ﬁazyz) —l—/ (v —a —wq) dFy, (w2|ﬁazyz)
a'+z z
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In order to compute the integrals observe:

Pr(vggx}vgzwg—l—a',vgz,z,wgZZ):Pr(wggx—a"l—a’ZwQZZ)

_ Prx—d >w>2) % if x>z+d
Pr(l—a >wy > 2) 0 otherwise
Therefore:
B >z td
f (Uz ‘UQ =wy+d, vy > z,wy > 2) = Fl=a')~F(z) ' UZ, =zra
0 otherwise

Similar computations lead to:

f('l.UQ-‘rﬂ,l) . /
2T if 1 —a > wy >z
F(ws vz = wo + a2 > 2wy > 2) = { TTFEE) Zup2
0 otherwise

We therefore have:

Lo b (0l Q) =1 = S50 e

/1 falfﬁ va f (vg —a’) dvs

and
Jwrisv2f (2 —a)dvy [T (y+a) f (y)dy _
F(l—-da)—F(2) F(1—-d)—F(2)

Similarly, we have:

E(m}zﬁxﬁl—a’)—l—a’

1-a — le_a (1 —a—ws) f(wg +d)dws
/Z (1—@—11}2)de (’LUQ‘QGI’Z) == 1—F(z—|—a’)
g Fla=) Ptz [ ] (et ) duy
N 1—F(ad+2) 1-F(z+d)
and ,
le_a wa f (wy +a’) dwy leJ:a(fha) (y—a) f(y)dy
1-F(z+d) B 1-F(z+d)
L™ =) f @)y [yl W)y
1—F(z+da)  1-F(z+a)

Combining these results we obtain the following condition:

1—a —2z > 1—E(m}z§x§1—a’)—a’

/ / 1-a /
+(1—a)F(1_(“—a))—F(a +2) [, Twaf (wy +d) dwy

1—F(d+2) 1—-F(z+4d)
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The inequality has to hold for each a > o’. Noticing that the RHS is decreasing in a, the relevant

condition is obtained setting a = a’. This yields:
Exlz<z<l—-a)+E(z|lz+a<x<1)>1+=z2

which is the condition stated in the Proposition.

The argument for optimality when more than three bidders are active is identical to the one of
Proposition (3): there is no point in triggering the SEA strategies at the opening, since the decision
can always be taken later.

The only thing that remain to be proved is that it is convenient to open in the ‘true’ triangle.
Possible deviations in this case are opening in the ‘wrong’ triangle or opening bidding on both
objects, thus triggering the SEA equilibrium. The initial bid is only relevant if the bidder ends up
among the two last bidders. We will show that for every 2z, and conditional on being one of the two
last bidders, opening in the ‘true’ triangle gives a higher expected utility than any deviation.

The expected utility conditional on being one of the two remaining bidders at z for a type

(v1,wy) such that v; —w; =a; >0 is:
U(O’w)zlv +1(w +Pr(az <aj)(a; — E(az]az < ay))) — = 9)
U1+ 5 (w1 2 < ay)(ag 2laz < ap

where as = v9 —ws and the probability distribution is conditional to vy > 2z, w9 > z. This is because
with probability % the other bidder has opened in the upper triangle, so that the auction ends and
1 obtains v at price z, while with probability % the other bidder opens in the lower triangle. In
the latter case the bidder pays at least z and obtains at least w; It additionally obtains a; minus
the price when the auction is won. Triggering the SEA equilibrium with an opening other than
(0,0) or (0,0) is obviously dominated, since the SEA equilibrium can be triggered later at no cost.
We have therefore only to check that it is not convenient to open in the wrong triangle.

Suppose 1 opens bidding (,0), i.e. signaling the ‘wrong’ triangle. If the other bidder also opens
with (0,0) then the best strategy is to pretend to have a; = 0 and get v for z. This is clearly better
than getting w for a price greater than z. The other possibility is to trigger the SEA strategies: To

show that this cannot be optimal we have to check the inequality:
vy —z > S (v, wi| L)

Under the assumptions stated in the Proposition the inequality is satisfied (The analysis is the
same as before).

If the other bidder opens with (0,) then any attempt to compete on good v triggers the SEA
equilibrium. The payoff in this case is therefore whatever is best between obtaining w; at z and

triggering the SEA equilibrium, that is max {w; — 2,5 (v, w1|U,)}. We therefore conclude that
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the expected payoff, conditional on being one of the two players left at z, when the opening is in

the wrong triangle is:

1 1
U(m’o):§(v1—2)+§max{w1—z,S(Ul,w1|UZ)} (10)

If wy —2z > S(v1,w1|U,) then this is clearly less that the utility obtained in equilibrium. If
w1 —2z < S (v, w1| U,) the condition that the deviation be not profitable, that is (9) is greater than

(10), can be written as:
wy +Pr(as <ar) (e — E(az]az < ar)) —z> S (vi,wi| Uy)

which is satisfied under the conditions stated in the Proposition because it is equivalent to the
condition that it is optimal to follow the equilibrium strategy after opening in the ‘true’ triangle.
|

Proof of Proposition 5 . The following is a symmetric perfect Bayesian equilibrium yielding the

desired outcome. The convention is that bids are a pair, with the first element referring to v.

e Open bidding (1,0).

e If the outstanding bids (l_)v, I_)w) are such that b, + by < v; +w; + k; then keep the bid on v
fixed and keep raising the bid on w.

e If the outstanding bids (l_)v, Z_)w) are such that b, + by, > v; +wj + kj; then:

— Bid only on v if v* > by, w < by,.
— Bid only on w if v* < by, w > by,.

— Stop bidding otherwise.

e If at any point an agent makes an out of equilibrium bid then all the other agents believe
that she is type (1, 1,%) and they bid very high for both objects, confident that they don’t
have to pay.

It is clear that the out of equilibrium strategies are optimal given the beliefs. We have to check
optimality along the equilibrium path. Given the opening bid, it is clear that it is impossible to
buy v for less than 1. Also, v; < b, from that point on Therefore no agent will raise the bid on

v, and each agent ¢ will raise the bid on w up to v; + w; + k; — 1. Any deviation gives zero utility,
since the other agents will bid (Ev, 24k — Ev). |
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Proof of Proposition 6. Using the arguments of Proposition 5 we have that the strategies
described in the last point of the Proposition constitute a perfect Bayesian equilibrium at any
given stage. We are left with the task of finding the appropriate sets A,, Ay, show that the
prescribed strategy is optimal for all types at stage 0, and that for types in A,,, A, it is optimal to
stop bidding when the initial bids are ((0,0),(0,0)) or ((0,0),(0,0)).
Let
Oy = { (v,w,k)|v € [0,1],w € [0,v], k € [k, k] }

and
Ouw = { (v,w,k)|v € [0,w],w € [0,1] ,k € [k, k]}.

Define s = v +w + k, and let H (s) be the c.d.f. on s, that is:
H(z)=Pr{v+w+k <z}

Given our assumption on the support of v,w and k it is clear that H (k) = 0 and H (2 +E) = 1.
Furthermore, given the symmetry of (v,w) and the independence of the distributions of v, w, k we
have that H (s|©,) = H (s|©,,). Define the sets A) = 0, A% = 6,,, and define:

v+w-+k
A}J:{(v,w,k)e(%wz/ (v+w+k—5)dH(S|@w)}
k

v+w+k
A}U:{(u,w,k)e@w\wz/ (v+w+k—s)dH(s!@v)}
k

Thus, Al is the set of types in ©, who prefer to have v for free rather than competing for the
bundle when it is known that the type of the other agent lies in ©,, A symmetric interpretation
holds for A}. Observe that the sets AL and Al are compact and connected.

It is clear that the two sets are symmetric, meaning that if (a,b,c) € Al then (b,c,a) € A}
Furthermore, it is also clear that H (s| A%U) =H (s| A},) Now, given two symmetric sets A and
Al with the property that H (s| All) = H (s| A7) define the sets:

vtw+k
it ={ koo [T koo (54
Jk

v+w-+k
A$+1:{(U7w,k)e@w|w2/ (u+w+k—s)dH(s|AZ)}
k
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If A" and A" are compact and connected then A7*! and A" are also compact and connected.
We claim that the sequence { A7} has a converging subsequence, and that the set A, to which the
subsequence converges is the set we are looking for.
Let H (©,) be the set of non-empty compact subsets of ©,,. For a given set F' € H (0,) define
the set:
B. (F)={y € ©y|ly — x| < for some x € F'}

The space H (0,) is a metric space when endowed with the Hausdorff distance:
p(F,G) =min{e >0|F C B.(G) and G C B. (F)}

Since the set ©, is compact, the set H (0,) is also compact (see e.g. Mas Colell (1985), Proposition
A.5.1). The sequence { A} is a sequence of elements in H (©,), and since the set is compact there
exists a converging subsequence. Let A, be the element to which the subsequence converge, and
observe that since all elements in {A}} are connected then A is connected too (see e.g. Mas Colell
(1985), Proposition A.5.1). The set A, can be obtained using exactly the same procedure.
The sets A, and A,, satisfy the equilibrium conditions. Observe first that for each s and n we
have H (s| A7) — H (s| A7) = 0 This implies that for each s:
Jim H (s|Ay) — H (] Ay,) = H (s| Ay) — H (5] Aw) =0 (11)

Consider now that a type (v,w, k) € A,. The equilibrium strategy prescribes:
1. Open with (0, 0).

2. If the other bidder opens with (0,0) then stop bidding. In all other cases, use the SEA
strategy.

Let us first check that the strategy after opening with (0,0) and observing ((,0). The only
possible deviation is to trigger the SEA equilibrium, which yields:

v1+wi+k
S(vl,wl,k]Aw):/ (v +wy +k —s)dH (s| Ay)
k
Using (11) and the fact that (vq,w1, k) € A, we obtain:

v 2 S(U17w1,k| A’w)

We now check optimality at stage 0. It clearly makes no sense to trigger the SEA strategy. The
only other possible deviation is to bid (,0), thus signalling that the type belongs to A,,. It is not
profitable to use the SEA equilibrium after the other type signals A,, since this is equivalent to
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triggering directly the SEA equilibrium with probability 1, which we know not to be profitable.

Suppose now that collusion is accepted. Then we compare the expected utility of the deviation:
Pr(Ay) w1 + (1 —Pr(Ay)) S (v1, w1, k1] Ay)
with the expected utility of the equilibrium strategy:
Pr(Ay)vi + (1 = Pr(Ay)) S (vi, w1, k1| Aw)
But now observe that the symmetry of A, and A, implies Pr(A,) = Pr(A,) and:
S (v, w1, k1| "Ay) = S (v1, w1, k1| Aw)

Since v; > w1 we conclude that the deviation is not profitable.

A symmetric reasoning shows that types (v1,w1, k1) ¢ A, U Ay are not better off announcing
(0,0) or (0,0). In this case the agent is going to trigger the SEA strategy no matter what the
announcement of the other agent is, so that announcing (0,0) and triggering the SEA equilibrium

from the very beginning is optimal. H
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