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The Max-Min-Min Principle of Product Differentiation
1. Introduction

A primary goal of the theory of product differentiation is the determination of market

structure and conduct of firms that can choose the specifications of their products besides

choosing output and price. Traditional models of product differentiation and marketing have

focused on products that are defined by one characteristic only.1 One-characteristic models are

sufficient for the understanding of the interaction between product specification and price. The

main question in this setting is the degree of product differentiation at equilibrium -- does the

acclaimed "Principle of Minimum Differentiation" (stating that product specifications will be very

similar at equilibrium) hold? Intensive research on this question has conclusively determined that

the Principle of Minimum Differentiation does not hold for any well-behaved model.2 Thus, as

long as we confine product differentiation to one dimension, there will be significant differences

in the equilibrium product specifications. However, most goods are defined by a long vector of

product attributes, anda priori, the failure of the Principle of Minimum Differentiation is not

clear in multi-attribute competition.

The Principle of Minimum Differentiation fails in one-dimensional models because

product similarity increases competition, and reduces prices and profits. In multi-attribute

models, different possibilities emerge: products can be significantly differentiated along all

dimensions (max-max-...-max differentiation) or products may have quite different degrees of

product differentiation in different dimensions (for example, in three dimensions, maximum

differentiation in one dimension and minimum differentiation on the rest, ormax-min-min). The

logic of the results of the one-dimensional model is not sufficient to show which of these

configurations will be the equilibrium in multi-attribute settings.

The present paper determines the equilibrium configuration in a standard two-dimensional

model asmax-min. That is, we establish that firms will try to maximally differentiate in one

dimension and minimally differentiate in another. We call this thePrinciple of Maximum-

Minimum Differentiation. We further show that when products can be differentiated in three
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dimensions, firms differentiate maximally in one dimension and minimally in the remaining two.

We call this thePrinciple of Max-Min-Min Differentiation .

In our setup, the disutility of distance function has different weights in each dimension.

These weights measure the importance that consumers place in each attribute of the product. We

find that the nature and number of equilibria depend crucially on these weights. For example,

in the two attribute model, when consumers care a lot about the attribute of the first dimension

(and therefore place a high weight on it), themax-minequilibrium results where firms maximally

differentiate in the first dimension only. Similarly, when the consumers place a high weight on

the second attribute, themin-maxequilibrium results, where firms maximally differentiate in the

second dimension only. When the weights are roughly comparable, both equilibria exist.

The same pattern holds in the three-characteristics model. Themax-min-minequilibrium,

where firms maximally differentiate in the first dimension only, occurs when the weight of the

first attribute is large. When, in addition, the weight of the second attribute is significant as well,

themin-max-minequilibrium occurs as well. When all weights are comparable, themin-min-max

equilibrium occurs in addition to the previous two.

The qualitative relationship between weights and type and number of equilibria is very

important because it can be used to show a seamless transition from Hotelling’s one-characteristic

paradigm to models of two and three characteristics. The original one-dimensional model of

Hotelling can be embedded in a two dimensional model where the weight placed by the

consumers in the second attribute is negligible. We show that, if this second weight is small, the

equilibrium of the two-dimensional model will have maximal differentiation in the first

dimension, and no differentiation in the second dimension (max-min). Adding a third attribute

that the consumers do not consider important preserves the equilibrium pattern, which now

becomesmax-min-min. Only when the second weight is significant, a second equilibrium (min-

max-min) appears.
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The qualitatively different degrees of product differentiation in different dimensions at the

equilibrium of the two- and three-dimensional models, raises the possibility that wrong

conclusions will be drawn from empirical observation that does not fully cover all dimensions.

For example, in three dimensions, if the maximal differentiation in one dimension remains

unobserved, the equilibrium may seem to be one of uniformly minimal differentiation. However,

if the only dimension observed is the one about which consumers care the most, then maximal

differentiation will be observed. This raises serious concerns about the validity of empirical

observation of degrees of product differentiation, since empirical observation is typically

incomplete.

All our results are established in a framework of a two-stage game, in the first stage of

which, firms simultaneously choose locations, while in the second stage they simultaneously

choose prices. Thus, the equilibria we describe are subgame perfect, and firms anticipate the

effects of changes in their locations to the equilibrium prices. Intuitively, this game structure

captures the fact that prices are more flexible (easier to change) in the short run, while product

specifications are not; pricing decisions often are made when product specifications cannot be

changed.3

In the existing literature, few papers have allowed determination of product specifications

in two characteristics, notably Economides (1993), Neven and Thisse (1990) and Vandenbosch

and Weinberg (1995).4 Neven and Thisse (1990) investigate product quality and variety

decisions of two firms in a two dimensional product space. They combine the "horizontal"

differentiation (ideal point) and "vertical" differentiation (vector attribute) paradigms, and

investigate subgame-perfect equilibria for product and price decisions in a duopoly. Vandenbosch

and Weinberg (1994) analyze a model of two-dimensional vertical (quality) differentiation.

After a working paper version of our article had been circulating, we discovered that

Tabuchi (1994) had independently derived similar results for a model of two-dimensional variety

differentiation. The main difference between Tabuchi’s model and ours is that we use weights
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on the disutilities of distance in each attribute and consumers’ ideal points are distributed on a

square; in contrast, Tabuchi has no weights but allowed for a rectangular shape of fixed area.

We show that there is a formal equivalence between the two models, i.e., a rectangle tall in the

first dimension in Tabuchi is equivalent to a high preference weight of the first dimension in our

model. Nevertheless, the intuitive interpretation of the results is quite different. Further, we

provide results in the three-dimensional model.

The remainder of this paper is organized as follows. In Section 2, we present the market

environment. In Section 3, we analyze the two dimensional market and derive the price and

position equilibria. We extend the model to three dimensions in Section 4. Finally in Section

5, we conclude with a discussion of our results and provide directions for future research.

2. The Model

We describe the model in general terms that are relevant for markets of either two or

three attributes. We assume that there are two firms, labelled 1 and 2, and each offers a single

n-attribute product. The position of a product i can be represented in n-dimensional attribute

space by an n-tuple,θi ∈ [0, 1]n. The elements ofθi give the position of the product on each

of the n attributes. Each consumer is represented by an ideal point which gives the coordinates

of the product which the consumer prefers the most if all products were sold at the same price.

A consumer j can therefore be represented by the vector of coordinates of his ideal point,Aj

∈ [0, 1]n.

Each consumer’s utility is a decreasing function of the square of the weighted Euclidean

distance between the product specifications and the consumer’s ideal point.5 Formally, a

consumer of type Aj derives the following utility from buying one unit of product i at price

pi:

U(Aj; θi; pi) = Y - w θi - Aj
2 - pi. (1)
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Y is a positive constant, the same for all consumers and assumed to be high enough so that all

consumers buy a differentiated product.w is a vector of weights that the consumers attach to

attributes. We assume that thew vector is same across all individuals.

Consumers’ ideal points are distributed uniformly over the attribute space; consumers also

possess perfect information about brand positions and prices in the market. Firms maximize

profits and have zero marginal costs of production.6 Firms compete by following a two-stage

process. In the first stage, they simultaneously choose product positions. Once these are

determined, they simultaneously choose prices in the second stage. We seek subgame-perfect

equilibria of the game implied by this framework. Thus, firms anticipate the impact of location

decisions on equilibrium prices. Given this basic model structure, we analyze next the two-

dimensional market in detail.

3. The Two Dimensional Model

3.1 Demand Formulation

In two dimensions, the joint space of consumers ideal points and products locations is a

unit square. A product i is represented by the vectorVi = (xi, yi), whereas an arbitrary consumer

can be identified by the address (a, b). Without loss of generality, we assume that y2 ≥ y1 and

x2 ≥ x1. A consumer’s utility for product i takes the form

Ui(a, b; xi, yi, pi) = Y - w1(a - xi)
2 - w2(b - yi)

2 - pi for i = 1, 2. (2)

The demand for product i is generated by consumers who obtain greater utility from it

than from the other product. The locus of consumers who are indifferent between brands 1 and

2 satisfies U1(a, b; x1, y1, p1) = U2(a, b; x2, y2, p2), which is equivalent to

b(a) = [(p2 - p1) + S - 2aw1X]/[2w 2Y]

where S = w1(x2
2 - x1

2) + w2(y2
2 - y1

2), X = x2 - x1, and Y = y2 - y1. This represents a straight

line which partitions the total market (the unit square) into two demand areas for the firms.
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Given our assumptions regarding the product positions, the area below the separating line

represents firm 1’s demand and the area above it represents firm 2’s demand. The slope of the

separating line (b-line) is independent of the prices, but the intercept is not. The location of the

line within the unit square depends upon the price difference, p1 - p2, between the two firms.

When firm 1 increases its price (or firm 2 decreases its price), the separating line shifts down

reducing the market area for firm 1. Figure 1 shows the cases of scenario A that arise when

∂b/∂a < 1 ⇔ w1X < w2Y, i.e., the weighted difference in positions along attribute 2 is greater

than the weighted difference in positions along attribute 1. Similarly, scenario B arises when

w2Y < w1X.

The demand for firm 1, D1, is obtained by integrating the b(a) line over the appropriate

range of a. Since consumers always buy one product or the other, D2 = 1 - D1. Assuming zero

costs, profits areΠ1(p1, p2; x1, y1, x2, y2) = p1D1, Π2(p1, p2; x1, y1, x2, y2) = p2D2.

3.1.1 Scenario A

We first analyze scenario A and show how the demand expressions and profit functions

depend upon the relative price difference between the firms. We fix the positions of both brands

and the price of firm 2, p2. As price p1 decreases, the b line that separates the market areas shifts

upward. The three lines in Figure 1 represent cases 1A, 2A, and 3A respectively. The demand

expressions for each case are summarized below. We label the demand expressions for firm i

in case k as Di
k.

Case 1A: When 0 ≤ (p2 - p1 + S) ≤ 2w1X, the demand of firm 1 is D1
1A ≡ (p2 - p1 +

S)2/(8w1w2XY).

Case 2A: When 2w1X ≤ (p2 - p1 + S) ≤ 2w2Y, the demand of firm 1 is D1
2A ≡ (p2 - p1 + S -

w1X)/(2w2Y).

Case 3A: When 2w2Y ≤ (p2 - p1 + S) ≤ 2(w1X + w2Y), the demand of firm 1 is D1
3A ≡ (p2 -

p1 + S - w1X -w2Y)2/(8w1w2XY).
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3.1.2 Scenario B

In Scenario B, the product positions satisfy w1Y < w2X; we again have three cases for the

demand. These demand expressions and price domains are summarized below.

Case 1B: When 0≤ (p2 - p1 + S) ≤ 2w2Y, the demand of firm 1 is D1
1B = D1

1A.

Case 2B: When 2w2Y ≤ p2 - p1 + S ≤ 2w1X, the demand of firm 1 is D1
2B ≡ (p2 - p1 + S -

w2Y)/(2w1X).

Case 3B: When 2w1X ≤ (p2 - p1 + S) ≤ 2(w1X + w2Y), the demand of firm 1 is D1
3B = D1

3A.

It is easy to check that the demand expressions are continuous across the different price domains.

The different segments of D2 can be derived in a manner analogous to that for D1.

3.2 Price Equilibrium

In this section, we show that a unique non-cooperative price equilibrium exists for any

pair of product positions (chosen by the two firms in the first stage) in both two and three

dimensions, and we calculate the equilibrium prices.

The main step in proving existence is in establishing that each firms’ profit function is

quasi-concave in its own price. The concavity properties of the profit function depend upon the

choice of the utility function and the distribution of consumer preferences. Caplin and Nalebuff

(1991) have established twin restrictions on utility functions and preference distributions that

guarantee existence of price equilibria for a number of firms with n-dimensional product

specifications. Our utility function (2) is a special case of the general utility function of Caplin

and Nalebuff (Assumption A1, p. 29). In addition, the uniform distribution of consumer

preferences is concave and confirms with theρ-concavity conditions employed in Caplin and

Nalebuff. Hence our model satisfies assumptions A1 and A2, of Caplin and Nalebuff. Then

from their Theorems 1 and 2, a price equilibrium exists in our model, for any pair of positions.

Since the profit function is twice differentiable and the distribution of preferences is concave

(and therefore log-concave), Caplin and Nalebuff’s uniqueness result (Proposition 6, p. 42)
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ensures that the price equilibrium is unique for each pair of product positions. What remains is

to calculate the equilibrium prices for each pair of locations. This has to be done for each case

in each scenario. The equilibrium price functions are obtained by solving the first order

conditions of the profit functions ∂Π1/∂p1 = ∂Π2/∂p2 = 0 and checking the second order

conditions for the positive price solution.7 We describe these equilibria in the appendix of an

unabridged working paper version of this article available from the authors upon request.

We now illustrate the relationship between our two dimensional model and Tabuchi’s

(1994) formulation.8 Tabuchi models location-price equilibria in a rectangular product space,

but assumes that both attributes are equally important for consumers. We assume that the two

dimensional product space is a unit square, but associate different weights along the two

dimensions. We find that the demand and profit expressions as well as the price equilibria are

equivalent in these two formulations via a set of transformations on the product coordinates and

attribute weights. Specifically, let (x1, y1, x2, y2) and (w1, w2) be the product coordinates and

attribute weights, respectively, in our formulation, and let (X1, Y1, X2, Y2) be the product

coordinates in Tabuchi’s model, where consumers are distributed uniformly in the rectangular

product space [0, c] x [0, 1/c]. The transformation that establishes equivalence is (x1 = X1/c,

x2 = X2/c, y1 = cY1 and y2 = cY2; w1 = c2, and w2 = 1/c2). Thus, a less wide and more tall

rectangle in Tabuchi is formally equivalent to our unit square with more weight given to the

second (i.e., the vertical) characteristic. Since the demand and profit expressions are the same,

so are the equilibrium prices for equivalent positions in the two models.

3.3 Product Equilibria

We now establish the subgame-perfect equilibrium positions of firms. With subgame-

perfection, firms anticipate the equilibrium prices in the subgames. We can write profits in the

locations stage as
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Πi(x1, y1, x2, y2) ≡ Πi(p1
*(x1, y1, x2, y2), p2

*(x1, y1, x2, y2), x1, y1, x2, y2), i = 1, 2.

Thus, a change in location has two effects on profits: a direct effect, and an indirect effect

through prices.9

Depending on the ratio of the weights w≡ w2/w1, there are either one or two location

equilibria (and their mirror images). At all equilibria, there is minimum differentiation in one

dimension and maximum differentiation in the other. The first candidate equilibrium is (x1
*,

y1
*) = (1/2, 0), (x2

*, y2
*) = (1/2, 1), i.e., firms are located in the middle of the horizontal segments

of the box, implying minimum differentiation in x and maximum differentiation in y. We call

this themin-maxequilibrium. The second candidate equilibrium is (x1
** , y1

** ) = (0, 1/2), (x2
** , y2

** )

= (1, 1/2), i.e., firms are located at the middle points of the vertical segments of the box,

implying minimum differentiation in y and maximum differentiation in x. We call this themax-

min equilibrium.

We find thatfor w < 0.406 only the max-min equilibrium [(x1
** , y1

** ) = (0, 1/2), (x2
** , y2

** )

= (1, 1/2)] exists; for w > 1/0.406 = 2.46, only the min-max equilibrium [(x1
*, y1

*) = (1/2, 0),

(x2
*, y2

*) = (1/2, 1)] exists; and for 0.406 < w < 2.46, both the max-min and the min-max

equilibria exist.10 The nature of the best responses underlying these equilibria are shown in

Figure 2. The arrows in these gradient plots show the direction in which the profit function of

firm 1 increases, when firm 2 is located at (1/2, 1). Remembering the definition of w, w =

w1/w2, note that themin-maxequilibrium exists when w2 is relatively large, and similarly, the

max-minequilibrium exists when w1 is relatively large. When w1 and w2 are roughly of

similar magnitude, as in Figure 2(c) both equilibria exist. When one weight is much larger than

the other, there is only one equilibrium where maximal differentiation occurs in the dimension

that corresponds to the higher weight.

At both equilibria, the firms share the market equally. At the first equilibrium, prices for

both brands are p1 = p2 = w2 and profits areΠ1 = Π2 = w2/2; at the second equilibrium, prices
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are p1 = p2 = w1 while profits are Π1 = Π2 = w1/2. Therefore, when the weights differ, and

when both equilibria exist, both firms are better off at the equilibrium that corresponds to

maximal differentiation in the product dimension for which the consumers care most. Firms are

likely to coordinate to that equilibrium.

Positions implying maximal differentiation on both attributes (max-max) are not

equilibrium positions, even though both firms have profits equal to the equilibrium profits when

they are maximally differentiated on both attributes. Given that its opponent has located at the

corner of the square, a firm has a unilateral incentive to deviate from the diametrically opposite

corner and move inwards thereby increasing its market share. Such an inward move in one

attribute is based on incentives that are analogous to those in the one-dimensional Hotelling

(1929) model with linear transportation costs. In that model, profits are equal for any symmetric

locations, but each firm had a unilateral incentive to move toward the other firm. The two

opposing forces, one driving firms apart due to price competition, and the other bringing them

together, due to market share dynamics, are resolved in favor of market share forces. In contrast,

in the one-dimensional model with quadratic costs, where again the opposing forces operate on

a single attribute, the resolution is in favor of price competition, and the equilibrium is at

maximal differentiation. When there are two or more dimensions, the two opposing forces

resolve along different dimensions. Due to the dominance of price competition, we see maximal

differentiation along the most important attribute, whereas the market share effect encourages

firms to occupy central positions on the less important attribute.

An example of a product category that exhibits max-min differentiation is ice cream.

Consider a single flavor, say chocolate. Most of the important differences among brands are

dictated by their fat and sugar contents. These characteristics govern both flavor and how healthy

(or perhaps more accurately unhealthy) each brand is. A trip to the grocery store with a casual

inspection of the nutrition labels will reveal that the amount of fat per 100 gram serving

(approximately 1/2 to 3/4 cup, depending on the ice cream’s density) varies from none for the
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fat-free brands to about 22 grams for the super premium brands (e.g. Haagen Daas). Yet all

brands tend to have in the neighborhood of 25 grams of carbohydrates or sugar.

It is natural to ask whether this pattern of equilibria generalizes to higher dimensions.

In higher dimensions, will competitors differentiate on more than one attribute or continue to

differentiate only on one attribute? Will we continue to get just two equilibria or will the number

of equilibria depend on the dimensionality of the product space? To answer these questions, we

analyze a three-dimensional market in the next section.

4. The Three Dimensional Model

4.1 Demand Formulation

In three dimensions, the joint space of consumers and product locations is a unit cube.

A product i is represented by the vectorθi = (xi, yi, zi) whereas an ideal point for consumer j

is denoted by Aj = (a, b, c). We continue to assume that x2 ≥ x1, y2 ≥ y1, z2 ≥ z1, and that the

attribute weights w1, w2, w3, are constant across consumers. Thus, the utility of consumer Aj

when he buys one unit of productθi is

Ui(a, b, c; xi, yi, zi) = Y - w1(a - xi)
2 - w2(b - yi)

2 - w3(c - zi)
2 - pi; i = 1, 2.

The market areas are given by three-dimensional regions of the cube separated by a plane,

rather than two-dimensional regions of a square separated by a line as in the two-dimensional

case we discussed earlier. The locus of consumers on this plane, who are indifferent between

buying from either firm, is given by

c(a, b) = (p2 - p1 + S - 2aw1X - 2bw2Y)/(2w3Z)

where S = w1(x2
2 - x1

2) + w2(y2
2 - y1

2) + w3(z2
2 - z1

2), X = x2 - x1, Y = y2 - y1, Z = z2 - z1, and

(a, b) ∈ [0, 1] × [0, 1] are the coordinates of the consumer in the first two dimensions. The

region below (above) the plane is composed of customers of product 1 (2). As before, when firm
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1 decreases its price p1 (or firm 2 increases p2), the plane shifts upwards, thereby increasing

firm 1’s demand, D1. The demand for firm 1 is obtained by integrating the c(a, b) plane over

the appropriate range of a and b. Since consumers buy one product or the other, D2 = 1 - D1.

As the demand expressions for the two firms depend upon the position and orientation of the

separating plane, the demand expressions change whenever the indifference plane shifts its

location and passes through a corner of the unit cube. To capture the dependence of the demand

expressions on the relationship between prices and firm locations, we first distinguish between

twelve scenarios that are characterized by the locations of the firms.

We first document all twelve scenarios. The defining features of these scenarios are:

Scenario 1A: w1X ≤ w2Y ≤ (w1X + w2Y) ≤ w3Z;

Scenario 1B: w1X ≤ w2Y ≤ w3Z ≤ (w1X + w2Y);

Scenario 2A: w1X ≤ w3Z ≤ (w1X + w3Z) ≤ w2Y;

Scenario 2B: w1X ≤ w3Z ≤ w2Y ≤ (w1X + w3Z);

Scenario 3A: w2Y ≤ w1X ≤ (w1X + w2Y) ≤ w3Z;

Scenario 3B: w2Y ≤ w1X ≤ w3Z ≤ (w1X + w2Y);

Scenario 4A: w2Y ≤ w3Z ≤ (w2Y + w3Z) ≤ w1X;

Scenario 4B: w2Y ≤ w3Z ≤ w1X ≤ (w2Y + w3Z);

Scenario 5A: w3Z ≤ w1X ≤ (w1X + w3Z) ≤ w2Y;

Scenario 5B: w3Z ≤ w1X ≤ w2Y ≤ (w1X + w3Z);

Scenario 6A: w3Z ≤ w2Y ≤ (w2Y + w3Z) ≤ w1X;

Scenario 6B: w3Z ≤ w2Y ≤ w1X ≤ (w2Y + w3Z).

We now focus on the dependence of the demand expressions and profit functions on the

relative price difference between the firms. Within each scenario (configuration of attribute

weights and product positions), we identify seven cases that are distinguished by the difference

in the prices p2 - p1. We now present the demand expressions originating in Scenario 1A, and

discuss the other scenarios in the Appendix to this paper.
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In Scenario 1A, for any fixed price p2, if p1 is such that p2 - p1 + S ≤ 0, then firm

1 has non-positive demand. In order to calculate the demand segment D1
1A, we need to define

the region of integration. The separating plane intersects the (a, b) plane in a straight line given

by blimit = (p2 - p1 + S - 2aw1X)/(2w2Y). This straight line,blimit, intersects thea axis at

point aint = (p2 - p1 + S)/(2w1X). Now, when p1 is reduced so that 0≤ L ≤ 2X, where L =

(p2 - p1 + S), the separating plane intersects all three axes as in case 1, Figure 3, and we have:

Case 1A: when 0≤ L ≤ 2w1X, demand for firm 1 is

D1
1A = ∫

0
aint ∫

0
blimit

c(a, b) db da = L3/H,

where H = 48w1w2w3XYZ.

When p1 is further decreased, the separating plane passes through the corner (1, 0, 0)

of the product space and as shown in case 2, Figure 3, and we have:

Case 2A: when 2w1X ≤ L ≤ 2w2Y, demand is

D1
2A = ∫

0
1 ∫

0
blimit

c(a, b) db da = D1
1A - (L - w1X)3/H

When p1 is further reduced, the plane while moving up crosses the corner (0, 1, 0) and

we have:

Case 3A: when 2w2Y ≤ L ≤ 2(w1X + w2Y),

D1
3A = ∫

0
aint ∫

0
1

c(b, a) db da +∫1
aint1

∫
0
blimit

c(b, a) db da = D1
2A - (L - 2w2Y)3/H,

where aint1 = (L - 2w2Y)/(2w1X) is the intercept of theblimit line with the line b = 1.

On further reduction in p1, we have case 4a, Figure 3, where the indifference plane

intersects the vertical faces of the unit cube:

Case 4A: when 2(w1X + w2Y) ≤ L ≤ 2w3Z, we have

D1
4A = ∫

0
1 ∫

0
1

c(b, a) db da = D1
3A + (L - 2(w1X + w2Y))3/H,

which simplifies further to a linear function in p1 given by
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D1
4A = (L - w1X - w2Y)/(2w3Z).

When p1 is further reduced so that the separating plane moves past the (0, 0, 1) corner,

we have:

Case 5A: when 2w3Z ≤ L ≤ 2(w1X+w3Z),

D1
5A = ∫

0
aint2 ∫

0
blimit1

db da +∫
0
aint2 ∫1

blimit1
c(b, a) db da +∫1

aint2
∫
0
1

c(b, a) db da

where blimit1 = (L - 2aw1X - 2w3Z)/(2w2Y) is the line of intersection of c(a, b) with the plane

c = 1. aint2 is obtained by substituting b = 0 inblimit1. Hence,aint2 = (L - 2w3Z)/(2w1X),

whereas,bint2 = (L - 2w3Z)/(2w2Y), is obtained by setting a = 0 inblimit1. The demand

expression then is

D1
5A = D1

4A - (L - 2w3Z)3/H.

Next, on further reduction in p1, the plane passes past (1, 0, 1) and we get:

Case 6A: when p1 satisfies 2(w1X + w3Z) ≤ L ≤ 2(w2Y + w3Z), we have

D1
6A = ∫

0
1 ∫

0
blimit1

db da +∫
0
1 ∫1

blimit1
c(b, a) db da

which reduces to

D1
6A = D1

5A + (L - 2(w1X + w2Y))3/H.

Finally, we calculate the point of intersection ofblimit1 with the line c = 1 and b =

1 to get aint3 = (L - 2(w2Y + w3Z))/(2w1X). Now, as shown in case 7, Figure 3, we have:

Case 7A: when 2(w2Y + w3Z) ≤ L ≤ 2(w1X + w2Y + w3Z), the demand is given by

D1
7A = ∫

0
aint3 ∫

0
1

db da +∫1
aint3

∫
0
blimit1

db da +∫1
aint3

∫1
blimit1

c(b, a) db da.

This reduces to

D1
7A = D1

6A + (L - 2(w2Y + w3Z))3/H.
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This completes Scenario 1A. The different segments of D2 can be derived in a manner

analogous to that for D1. It is easy to show that all demand expressions are continuous across

the different price domains (cases).

4.2 Price Equilibrium

Following the arguments based on Caplin and Nalebuff given for the two dimensional

model in section 3.2, it is apparent that a unique price equilibrium exists for each set of product

positions in three dimensions. We therefore begin by describing the equilibrium price

expressions within each case of scenario 1A.

Case 1A: The demand for firm 1 is given by D1
1A and for firm 2 is given by D2

1A = 1 -

D1
1A. The first order conditions yield three solutions. We eliminate infeasible solutions to obtain

the equilibrium prices,

p1
1A*= (S2 + KS + K2)/(15K), p2

1A*= (4S2 - 11KS + 4K2)/(15K)

where K = (S3 + 600 w1w2w3XYZ + 20[3w1w2w3XYZ(S3 + 300 w1w2w3XYZ)] 1/2)1/3.

The above equilibrium prices apply to product positions which satisfy 0≤ p2
1A* - p1

1A*

+ S < 2w1X. Positions that result in case 1A also satisfy w1X ≤ w2Y ≤ (w1X + w2Y) ≤ w3Z.

We define the pairs of locations that satisfy these conditions (and therefore result in case 1A)

as R1A. For fixed values of the weights, R1A is a subset of the six-dimensional hypercube [0,

1]6. The condition p2
1A* - p1

1A* + S ≥ 0 is always true, whereas p2
1A* - p1

1A* + S < 2w1X is

satisfied if

10w1
2X2 > 12w2w3YZ + 3w1SX (G1)

Case 2A: The first order conditions yield two solutions. After eliminating the one that

gives negative prices , the equilibrium prices are:

p1
2A* = (9(S - w1X)(4w2w3YZ - w1

2X2) + Jw1
2X2 + 108Jw2w3YZ)/(24(12w2w3YZ - w1X

2))
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p2
2A* = (9(S - w1X)(-20w2w3YZ + w1

2X2) - Jw1
2X2 + 972Jw2w3YZ)/(24(12w2w3YZ - w1X

2))

where J = (9S2 - 18w1SX - 15w1
2X2 + 288w2w3YZ)1/2.

Substitution of equilibrium prices in the defining condition of case 2A, results in 2w1X ≤ p2
2A* -

p1
2A* + S < 2w2Y. The LHS of this inequality is satisfied when condition (G1) fails, i.e., when

(10w1
2X2 ≤ 12w2w3YZ + 3w1SX), whereas the RHS of the inequality is satisfied when

3S + J < 24w2Y - 9w1X. (G2)

These two conditions, in conjunction with w1X ≤ w2Y ≤ (w1X + w2Y) ≤w3Z, define region R2A,

of location pairs for which p1
2A* and p2

2A* define an equilibrium.

Case 3A: The equilibrium prices can be obtained by solving the system of equations

below:

(p1 + p2)M + 1 = 0, p1M + (p2 - p1 + S - w1X - w2Y)/(2w3Z) - N3/(48w1w2w3XYZ) = 0,

where N = (p2 - p1 + S - 2w1X - 2w2Y) and M = N2/(16w1w2w3XYZ) - 1/(2w3Z).

We were unable to obtain closed form solutions to this set of equations. The equilibrium

prices for this case apply to product locations which satisfy 2w2Y ≤ (p2
3A* - p1

3A* + S) < 2(w1X

+ w2Y). The LHS for the above inequality is satisfied when (G2) fails and the RHS is satisfied

when

4w1X + 4w2Y - 2w3Z > S. (G3)

These conditions along with w1X ≤ w2Y ≤ (w1X + w2Y) ≤w3Z, define the region R3A of

product coordinates for which the above equations yield equilibrium prices

Case 4A: Equilibrium prices are:

p1
4A* = (S - w1X - w2Y + 2w3Z)/3, p2

4A* = (-S + w1X + w2Y + 4w3Z)/3
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Substitution of equilibrium prices in the defining condition of case 4A, results in 2(w1X + w2Y)

≤ p2
4A* - p1

4A* + S < 2w3Z. The LHS of this inequality is satisfied when condition (G3) fails, i.e.,

(4(w1X + w2Y) -2w3Z ≤ S), whereas the RHS is satisfied when

S < 4w3Z - 2(w1X + w2Y). (G4)

These two conditions, along with w1X ≤ w2Y ≤ (w1X + w2Y) ≤w3Z, define region R4A.

Case 5A: The equilibrium prices can be obtained by solving the system of equations

below:

(p1 + p2)B + 1 = 0; p1B + (p2 - p1 + S - w1X - w2Y)/(2w3Z) - A3/(48w1w2w3XYZ) = 0

where A = (p2 - p1 + S - 2w3Z) and B = A2/(16w1w2w3XYZ) - 1/(2w3Z).

We were unable to obtain closed form solutions for this set of equations. The equilibrium prices

for this case apply to product locations which satisfy 2w3Z ≤ (p2
5A* - p1

5A* + S) < 2(w1X + w3Z).

The LHS for the above inequality is satisfied when (G4) fails and the RHS is satisfied when

3S - E > 15w1X + 16w3Z - 18w2Y. (G5)

These conditions, together with w1X ≤ w2Y ≤ (w1X + w2Y) ≤w3Z, define the region R5A of

product coordinates for which the above equations yield equilibrium prices.

Case 6A: The first order conditions yield two solutions. After eliminating the one with

negative prices we have the following equilibrium prices:

p1
6A* = (9I(20w2w3YZ - w1

2X2) - Ew1
2X2 + 972Ew2w3YZ)/(24(12w2w3YZ - w1X

2))

p2
6A* = (9I(-4w2w3YZ + w1

2X2) + Ew1
2X2 + 108Ew2w3YZ)/(24(12w2w3YZ - w1X

2))

where I = (S - w1X - 2w2Y - 2w3Z) and E = (9I2 + 24(14w2w3YZ - w1
2X2))1/2.

These equilibrium expressions apply for product positions that satisfy 2(w1X + w3Z) ≤ p2
6A* -

p1
6A* + S < 2(w3Z + w2Y). The LHS of this inequality is true when (G5) fails while the RHS

is true when



18

3S - E≤ 6w3Z + 6w2Y - 9w1X. (G6)

Case 7A: The first order conditions yield three solutions. After eliminating the complex

roots, the equilibrium prices are given by:

p1
7A* = (128T2 - 11FT + 128F2)/(15F), p2

7A* = (T2 + TF + F2)/(15F)

where T = (2w1X + 2w2Y + 2w3Z - S) and

F = (T3 + 600w1w2w3XYZ + 20(3w1w2w3XYZ(T 3 + 300w1w2w3XYZ) 1/2)1/3.

These equilibrium expressions apply for product positions that satisfy 2(w2Y + w3Z) ≤ p2
7A* -

p1
7A* + S < 2(w3Z + w2Y + w1X). While the RHS is always true, the other condition LHS is true

if condition (G6) fails. This condition together with w1X ≤ w2Y ≤ (w1X + w2Y) ≤w3Z, define

region R7A.

4.3 Product Equilibrium

We now establish the subgame perfect equilibrium positions of firms. With subgame-

perfection, firms anticipate the equilibrium prices in the subgames. We can write profits in the

location stage as

Πi(θ1, θ2) ≡ Πi(p1
*(θ1, θ2), p2

*(θ1, θ2), θ1, θ2), i = 1, 2.

Thus a change in location has two effects on profits: a direct effect, and an indirect effect through

prices.

As in two dimensions, we find thatmaximal differentiation on all attributes, i.e., max-

max-max is not an equilibrium for any set of attribute weights. The proof is presented in an

appendix to an unabridged working paper version of this article available from the authors upon

request. In particular, we find that,at the equilibrium locations, the two firms are maximally

differentiated on only one attribute and are minimally differentiated on the rest. That is,

the subgame-perfect location-price equilibria are always of the typemax-min-minor min-max-min
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or min-min-max. Depending upon the ratio of the weights, there are one, two, or three locational

equilibria (and their mirror images).

The first candidate equilibrium is (x1
*, y1

*, z1
*) = (1/2, 1/2, 0), (x2

*, y2
*, z2

*) = (1/2, 1/2,

1), i.e., firms are located in the middle of the horizontal planes of the cube, implying minimum

differentiation on the x and the y attributes. We call this themin-min-max equilibrium. The

second candidate is (x1
** , y1

** , z1
** ) = (1/2, 0, 1/2), (x2

** , y2
** , z2

** ) = (1/2, 1, 1/2). We call this

min-max-min equilibrium. The final candidate equilibrium is given by (x1
*** , y1

*** , z1
*** ) = (0,

1/2, 1/2), (x2
*** , y2

*** , z2
*** ) = (1, 1/2, 1/2). We name this themax-min-min equilibrium. We

can show that

1) Themin-min-maxequilibrium given by θ1
* = (1/2, 1/2, 0),θ2

* = (1/2, 1/2, 1), holds when

the weights satisfy w3/w1 ≥ 0.406 and w3/w2 ≥ 0.406.

2) Themin-max-minequilibrium, given by the positionsθ1
** = (1/2, 0, 1/2),θ2

** = (1/2, 1,

1/2), holds when w2/w1 ≥ 0.406 and w2/w3 ≥ 0.406.

3) Themax-min-minequilibrium, given by the locationsθ1
*** = (0, 1/2, 1/2),θ2

*** = (1, 1/2,

1/2), holds when w1/w2 ≥ 0.406 and w1/w3 ≥ 0.406.

The method of proof is summarized as follows. Suppose that firm 2 is located at (x2
*,

y2
*, z2

*) = (1/2, 1/2, 1). We identify the direction in which profits of firm 1 increase as its

location changes by calculating the (vector) gradient of profitsDΠ1. We do this by evaluating

analytic expressions forDΠ1. We identify locations for firm 1 that represent a local maximum,

minimum, or saddle point of its profit function. Let w1 < w2. We find that, when w3 is large

such that w3/w2 ≥ 1 and w3/w1 ≥ 1, there is only one local maximum ofΠ1, at θ1 = (1/2, 1/2,

0); therefore it is also aglobal maximum (in x1, y1 and z1) of the profit function Π1. It

follows that for w3/w2 ≥ 1 and w3/w1 ≥ 1, location (1/2, 1/2, 0) is the best response to

(1/2,1/2,1). For the same range of weight ratios, by symmetry with respect to the horizontal

plane passing through (1/2,1/2,1/2),θ2
* = (1/2, 1/2, 1) is the global best response to (1/2, 1/2,

0). Thus, for this range of weight ratios,min-min-maxis an equilibrium.
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Given that firm 2 is located atθ2
* = (1/2, 1/2, 1), when w3 is smaller so that the

weights satisfy w3/w1 > 1 and 0.406 < w3/w2 < 1, there are two local maxima of firm 1’s

profits, at θ1
* = (1/2, 1/2, 0) andθ1

** = (1/2, 0, 1/2). Let the "middle location" profits of firm

1 be Π1(M) ≡ Π1(1/2, 1/2, 0) and let the "left" profits beΠ1(L) ≡ Π1(1/2, 0, 1/2). For the

above range of weight ratios,Π1(M) > Π1(L); therefore (x1
*, y1

*, z1
*) = (1/2, 1/2, 0) is the

(global) best reply of firm 1 to (x2
*, y2

*, z2
*) = (1/2, 1/2, 1). By symmetry then, (x2

*, y2
*, z2

*)

= (1/2, 1/2, 1) is the global best response to (x1
*, y1

*, z1
*) = (1/2, 1/2, 0); thereforemin-min-max

is a subgame perfect equilibrium.

When w3 is reduced further, eitherA: 0 ≤ w3/w2 ≤ 0.406 and w3/w1 > 1, or B: 0.406 <

w3/w2 < 1 and 0.406 < w3/w1 < 1 is first satisfied. Consider first the relationships inA. When

the weights satisfy inequalitiesA, firm 1’s profit function has two local maxima corresponding

to the "left" and "middle" locations described above. In contrast to the previous case, in this

situation, Π1(M) < Π1(L); therefore,θ1
** = (1/2, 0, 1/2) is the best reply to (1/2, 1/2, 1).

However,θ2
* = (1/2, 1/2, 1) isnot the best reply to (1/2, 0, 1/2). This is established as follows.

Let firm 1 be at (1/2, 0, 1/2). The problem of the choice of location by firm 2 is symmetric to

the analogous problem of firm 1. From the view point of firm 2, the relative weights are w2/w1

> 1 and w2/w3 > 2.463 > 1. It follows from previous arguments (made for firm 1) that (1/2,

1, 1/2) is a global best reply to (1/2, 0, 1/2). Therefore (1/2, 1/2, 1) is not the best reply to

(1/2, 0, 1/2) andmin-min-maxis not an equilibrium whilemin-max-minis an equilibrium when

inequalitiesA hold.

Consider next the relationships inB: 0.406 < w3/w2 < 1 and 0.406 < w3/w1 < 1. When

inequalitiesB are satisfied, there are three local maxima for firm 1’s profit function. These

correspond to the "middle", and "left" locations defined above and a "right" location given by

θ1
*** = (0, 1/2, 1/2). Here the best response is the "middle" location (1/2, 1/2, 0). Hence,

min-min-maxis an equilibrium when the weights satisfy conditionsB.



21

When w3 is lowered so that the weights satisfy 0 < w3/w2 ≤ 0.406 and 0.406 < w3/w1

< 1, there are three local maxima for firm 1’s profit function. The global maximum is at the

"left" location, i.e, (1/2, 0, 1/2). Once, firm 1 is at the "left" location, then as shown above, (1/2,

1/2, 1) is no longer the global maximum for firm 2. Firm 2 has an incentive to be at (1/2, 1, 1/2)

andmin-min-maxis no longer a subgame perfect equilibrium. Finally, when 0 < w3/w2 ≤ 0.406

and 0 < w3/w1 ≤ 0.406, as above, there are three local maxima, but the "left" location for firm

1 is the global maximum, leading to themin-max-minlocational equilibrium.

The above argument characterized conditions whenmin-min-maxis an equilibrium. Notice

that in the entire discussion above, we assumed w1 < w2. Hence, under all conditions, the global

maxima for firm 1’s profits were either at the "left" or the "middle" location. When w2 ≤ w1,

we can show that the global maxima would be either at the "right" or the "middle" location.

Finally, by repeating the entire argument described above, but focussing instead on the

weight ratios w2/w1 and w2/w3, we can characterize the conditions under whichmin-max-min

is an equilibrium. By focussing on w1/w2 and w1/w3 instead, we can characterize the

conditions on the weights for whichmax-min-minis an equilibrium.

Putting all these together, the regions of existence of these equilibria can easily be

illustrated on the three dimensional simplex in Figure 4, where w1 + w2 + w3 = 1, w1, w2, w3

≥ 0. On segment AC define the points D and D′ such that (AD)/(DC) = (CD′)/(AD′) = 0.406,

with similar definitions of E, E′, F, and F′ on segments AB and BC. The region of the weights

w = (w1, w2, w3) ∈ (CDHF′) that leads to amin-min-maxequilibrium is shaded. Similarly,w

∈ (AE′KD′) leads to amax-min-minequilibrium, and w ∈ (BFME) leads to amin-max-min

equilibrium. Notice that, roughly speaking, each equilibrium has maximal differentiation in the

dimension that corresponds to the highest weight. Further, when the weights are roughly similar

and fall in the central hexagon (MGHIKL), all three equilibria exist. In regions where two

weights are high but the third weight is low, two equilibria exist, each with maximal

differentiation in the dimension that corresponds one of the two high weights. For example, for



22

w ∈ (DGMLD′), min-min-maxandmax-min-minare both equilibria. In regions where only one

weight is large (close to the vertices) only one equilibrium exists -- the one that differentiates

maximally in the dimension the large weight. For example, forw ∈ (CD′LF) only themax-

min-minequilibrium exists.

At each of equilibrium, both firms charge equal prices and share the market equally. This

pattern of equilibrium positions confirms our understanding that in multidimensional spaces, firms

seek to differentiate their offerings on one dimension only in order to reduce the impact of price

competition. Once products are differentiated maximally in one dimension, firms assume

identical (central) positions on the other attributes.11

5. Conclusion

In this paper we have examined product positioning and pricing in a multi-attribute

framework. We derived subgame-perfect equilibrium positions and associated prices for a

duopoly. In one dimension, maximal differentiation holds as shown in D’Aspremontet al.

(1979). We find that, in two dimensions, there are two equilibria when all consumers consider

the two attributes as equally important. In each of these equilibria, firms are maximally

differentiated on one attribute and minimally differentiated on other. Moreover, when firms are

minimally differentiated on one attribute, they occupy central positions on that attribute. We also

find that when attributes are differentially weighted by the consumers, so that one attribute has

significantly greater importance than the other, only a single equilibrium remains. In this

equilibrium firms maximally differentiate on the more important attribute and occupy central

positions on the other attribute.

In moving from two to three dimensions we showed that the essential character of the

equilibrium does not change. In particular, at the three-dimensional equilibrium, firms are

maximally differentiated on one dimension only. In three dimensions, depending on the

importance that consumers place in each attribute, there is one, two, or three equilibria. In each
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equilibrium, firms are maximally differentiated on one attribute and minimally differentiated on

the other two. An equilibrium with maximal differentiation in a certain dimension occurs when

consumers place sufficient importance to the corresponding attribute. Thus, if consumers place

importance only to the first attribute, the equilibrium ismax-min-min, i.e., it has maximal

differentiation in the first dimension only. When consumers place importance on the second

attribute as well, themin-max-minequilibrium occurs too. Further, when consumers place

importance on the third attribute as well, themin-min-maxequilibrium occurs in addition to the

other two. Thus, for example, when all attributes are weighted equally, all three equilibria (max-

min-min, min-max-min, andmin-min-max) exist.

That the character of the equilibrium is stable is not surprising. Both the two-and three-

dimensional cases use the preference function defined in expression (1) in section 2. In fact, the

two-dimensional case can be viewed as a special case of the three-dimensional one where w3

= 0. If only the most important of three attributes is differentiated, then knowledge of the three-

dimensional solution implies the two-dimensional and the one-dimensional ones. Reasoning in

the reverse direction, if a product is only differentiated in the most important attribute, then we

would expect not only the third, but any additional attributes to be minimally differentiated.

Unfortunately, we have not yet been able to prove that conjecture.

Up to this point we have used the unit square in two dimensions (and the unit cube in

three) as both the space of location of consumers’ ideal points and the space of product offerings.

Keeping the consumers space and preference distribution the same, we now allow the space of

product offerings to be significantly larger, so that each attribute can range from 1/2 -k to 1/2

+ k, with k arbitrarily large. The character of equilibrium remains unchanged, with maximal

differentiation in only one dimension. In that dimension, products occupy positions outside the

consumers’ space. The equilibrium locations in two dimensions are (-1/4, 1/2) for firm 1 and

(5/4, 1/2) for firm 2. In three dimensions, for example, the max-min-min equilibrium is at (-1/4,

1/2, 1/2) and (5/4, 1/2, 1/2).
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An important aspect of our results is the multiplicity of equilibria in both the two and the

three-dimensional models. When consumers value all attributes roughly equally, all locational

n-tuples with maximal differentiation in one dimension and minimal differentiation in all others,

are equilibria. As more weight is put on a particular dimension, equilibria get eliminated one by

one until we reach a unique equilibrium. This shows that advertising can have a very important

role in eliminating certain equilibria. If advertising can get consumers to pay more attention to

a certain product attribute, and perhaps weigh it more heavily in preference formation, it can

determine which of several equilibria will hold. Therefore, a firm with a unique ability to

produce a product consistent with one of the equilibrium positions will certainly want to advertize

in an attempt to direct the market to that equilibrium. It is noteworthy that this depends only on

the relative importances of the different attributes and not on the relative preferences of

individual consumers for different levels of any specific attribute.

There are a number of directions in which these results can be extended.12 First, there

is the obvious extension to higher dimensional spaces. Are the equilibrium locations of a n-

dimensional attribute spaces only differentiated in one dimension?13 Second, how do the

locational results fare when there are more than two competitors? Third, what for what classes

of distributions can we extend our duopoly positioning results? All these are very interesting

questions that we leave for further research.
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Appendix: Demand Definitions for the Three-Dimensional Model

We describe the demand expressions and regions pertaining to Scenario 1B, first and then

describe the relationships among the remaining scenarios.

Scenario 1B:

Case 1B: when 0≤ L ≤ 2w1X, demand for firm 1 is D1
1B = D1

1A;

Case 2B: when 2w1X ≤ L ≤ 2w2Y, demand for firm 1 is D1
2B = D1

2A;

Case 3B: when 2w2Y ≤ L ≤ 2w3Z, demand is D1
3B = D1

3A;

Case 4B: when 2w3Z ≤ L ≤ 2(w1X + w2Y), D1
4B = D1

3A - (L - 2w3Z))3/H;

Case 5B: when 2(w1X + w2Y) ≤ L ≤ 2(w1X + w3Z), D1
5B = D1

5A;;

Case 6B: when 2(w1X + w3Z) ≤ L ≤ 2(w2Y + w3Z), we have D1
6B = D1

6A; and

Case 7B: when 2(w2Y + w3Z) ≤ L ≤ 2(w1X + w2Y + w3Z), D1
7B = D1

7A.

As is evident from the above, the two scenarios differ across only one demand expression.

However, the regions of the product space associated with cases 3, 4, and 5, are different across

the two scenarios.

We now show how the remaining scenarios can be obtained from the two that were

analyzed above. We define transformation rules that we use on the above derived demand

expressions and price inequalities so as to obtain the corresponding expressions in the other

scenarios. The transformation rules are as follows:

rep2 = (w1X → w1X, w2Y → w3Z, w3Z → w2Y); rep3 = (w1X → w2Y, w2Y → w1X, w3Z→w3Z);

rep4 = (w1X → w2Y, w2Y → w3Z, w3Z → w1X); rep5 = (w1X → w3Z, w2Y → w1X, w3Z→w2Y);

and rep6 = (w1X → w3Z, w2Y → w2Y, w3Z → w1X).

These rules work as follows. In order to obtain the seven cases of demand and the

associated price domains for Scenario 2A, we apply rep2 on the corresponding demand

expressions and price domains of Scenario 1A. For example, the demand expression for case 1

of Scenario 2A can be obtained by simultaneously substituting in D1
1A above, w1X in place of
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w1X, w3Z in place of w2Y, and w2Y in place of w3Z. These replacement rules follow from

the geometric symmetry associated with the sides of the unit cube. Similarly, Scenario 2B can

be analyzed by applying rep2 on the corresponding expressions of Scenario 1B. The other

scenarios can be analyzed in an analogous manner.



FIGURE CAPTIONS

Figure 1 - Market Areas for the Two Firms. page 6.

Figure 2 - Gradient of Profit Function for Firm 1. Firm 2 is Located at (1/2, 1). page 9.

Figure 3 - Market Areas (Volumes) in Three Dimensions. page 13.

Figure 4 - Regions Defining Equilibrium Types in the Three Dimensional Simplex of

Preference Weights. page 22.











ENDNOTES

1. See Hotelling (1929), Vickrey (1964), D’Aspremont, Gabszewicz and Thisse (1979), Salop
(1979), Economides (1984), Anderson, de Palma, and Thisse (1992), among others in
economics and Hauser and Shugan (1983), Moorthy (1988) and Kumar and Sudarshan (1988)
in marketing.

2. See Neven (1985) for a discussion of the necessary conditions for minimal differentiation.
Also note that the failure of minimal differentiation does not necessarily imply maximal
differentiation. D’Aspremontet al. (1979) establish a maximal differentiation equilibrium in
a one-dimensional variant of Hotelling (1929) by assuming a quadratic disutility of distance
(transportation cost) function. Economides (1986b) establishes intermediate (neither minimum
nor maximal) differentiation equilibria for a disutility of distance (transportation cost) function
of the form da, 5/3 < a <1.26. Economides (1984) establishes intermediate differentiation
equilibria by allowing for a finite maximal utility (reservation price) for a differentiated good
in the original linear disutility of distance function of Hotelling (1929).

3. See Salop (1979), Economides (1989), and Rao and Steckel (1995).

4. This is in contrast with analysis on the interaction of price and location competition in
multidimensional settings without explicit locational determination as in Economides (1986a),
or locational determination in Ben Akivaet al. (1989), or two-dimensional models that can be
reduced to one-dimensional competition as Lane (1981), Hauser and Shugan (1983), Hauser
(1988), and Ansari, Economides and Ghosh (1994).

5. Models of product differentiation that use a quadratic utility loss function include
D’Aspremontet al. (1979), Neven (1985), and Economides (1989). Ideal point models in
marketing assume that preferences are negatively related to the square of the Euclidean
distance between the product and the consumer’s ideal point (see, e.g. Green and Srinivasan
(1978)).

6. Positive constant marginal costs lead to formally equivalent results. The first order
conditions with positive marginal costs are formally equivalent to the first order conditions
with zero costs if we redefine prices to be price-cost differences.

7. Because of the complexity of the problem, we solved this system of equations numerically.
While we were unable to obtain closed form solutions, we implemented our numerical routine
with a wide variety of starting values so that we have maximum confidence in our results.

8. We are grateful to an anonymous referee for pointing out the equivalence.

9. Essentially the indirect effect is through the price of the opponent: dΠi/dxi = ∂Πi/∂xi +
(∂Πi/∂pi)(dpi

*/dxi) + (∂Πi/∂pj)(dpj
*/dxi) = ∂Πi/∂xi + (∂Πi/∂pj)(dpj

*/dxi), since ∂Πi/∂pi = 0 at the
Nash equilibrium of the price subgame.

10. The method of our proof is detailed in the product equilibrium section later in the paper.



11. Finally, we must note that we have not shown that these are the only locational equilibria.
However, we were unable to locate any other equilibrium despite extensive search.

12. It should be clear that the Principle of Max-Min-Min differentiation is dependent on the
assumptions implicit in our framework. As these assumptions are relaxed the character of the
equilibrium may indeed change. For example, in a two-dimensional spacial model with one
dimension providing linear disutility and the other providing quadratic, Ben-Akiva, De Palma
and Thisse (1989) show that the likelihood of minimal differentiation in the second dimension
varies as a function of the absolute values of the weights of the utility function, the size of
the market, the degree of heterogeneity in the market, and the number of firms. Some of
these characteristics are fixed in our model. In particular, we only allow two firms.
Additionally, the size of the market and the degree of heterogeneity are fixed in our model by
the assumptions that the product space is a unit square (in two dimensions) or a unit cube
(ion three) and that consumers are uniformly distributed over it. While the Ben-Akivaet al.
(1989) results come from a different model than ours, they suggest that the max-min and the
max-min-min results might vanish if the product space or other aspects of the problem were
altered. These are questions for future research.

13. This idea was suggested to us independently as a conjecture by Jacques Thisse.


