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Abstract

We present a correction for sample selectivity in the Poisson regression
model for count data. The model is similar to that devised by Heckman for the
linear regression model. Estimation by a two step method is suggested using
nonlinear least squares at the second step.

The model described here was presented in Greene (1994). Terza (1995)
describes an alternative approach that has a more orthodox specification of the
regression function. We show in this note that Terza’s approach is essentially
the same as Greene’s.
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1. Introduction

Heckman’s (1976, 1979) model has provided the standard approach for accounting
for sample selectivity in the linear regression model. The model is built around a
classical regression model,

v=0%+te
Data on the dependent variable, y;, and regressors, X; , are only observed when
an associated variable, z; crosses a threshold. The selection equation is usually
specified in the form of a binary choice model for inclusion in the sample:

2P =ow;+u;

z; = 1iff z7 > 0 and 0 otherwise.

The disturbances, €; and u; are assumed to have bivariate normal distribution
with zero means, variances o2 and 1, and correlation p, so the second equation
corresponds to the familiar probit model. In the selected population,

Elyi|xi, 2z = 1] = B'%; + po M;

M= pla'ws)
1

T b(a'w;)”

If p # 0, ordinary least squares produces inconsistent estimates of 3. Heckman’s
approach to estimation involves first estimating a by maximum likelihood in the
probit model, then estimating (3,0) (6=po) by least squares regression of y; on x;
and M;, in which the latter is computed using the estimates computed at step 1.
Heckman (1979) and Greene (1981) give details on computation of the appropriate
standard errors for the estimates. The model has recently been criticized for the
robustness of the normality assumption, but it remains the approach of choice in
many applied studies.

This note will present extensions of Heckman’s model and approach to the
Poisson regression model. The Poisson regression model for count data is

=i \¥i
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The conditional mean is A;. Maximum likelihood estimation of the Poisson re-
gression model is straightforward and routine with currently available software.
Greene (1994) extended this model to Heckman’s framework by specifying the
probit model as before, then respecifying the conditional mean function as
Elyilxi, z; = 1] = 7 0%

where M; is as before. Once again, data on y; and Xx; are observed only when z;
equals 1. The two step estimation procedure begins by fitting the probit model
by maximum likelihood, as earlier, computing estimates of M; for the selected
observations, then fitting the Poisson model with this augmented conditional mean
function by maximum likelihood. The standard errors for the latter are adjusted
using the results of Murphy and Topel (1985).

Terza (1995) argues that the connection between the selection model and the
Poisson conditional mean function is ill defined. He formally derives a counterpart
to Heckman’s model for the Poisson regression which leads to a different, albeit
similar conditional mean function, and suggests a two step estimator based on
the probit model followed by nonlinear least squares. In this paper, we will show
how Terza’s model reduces to Greene’s when a linear Taylor series approximation
to the conditional mean function is employed. We then reconsider the estimation
techniques, and examine the results that three different estimators produce. In
Section 2, the formalities of Terza’s and Greene’s frameworks are given. An
application is presented in Section 3. Some conclusions are drawn in Section 4.

2. Sample Selection Models for Count Data

Greene’s (1994) proposal for the Poisson model is essentially to mimic the condi-
tional mean function in Heckman’s framework. Thus, he proceeds directly from
the selection mechanism to

In Ely:|x;, z; = 1] = B'x; + O0M; = In ).

The functional form is suggested as an ad hoc method of incorporating the se-
lection mechanism into the Poisson model. He then suggests the same two step
approach as Heckman, a probit model in step 1 followed, in this case, by maxi-
mum likelihood estimation of (3,6) in step 2. If this conditional distribution is
correctly specified, the inverted Hessian of the log-likelihood would an appropriate
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estimator for the asymptotic covariance matrix of the MLE. Since M; has been
estimated using parameters estimated at an earlier step, the estimated asymptotic
covariance matrix must be adjusted. Murphy and Topel’s (1985) results are used
to obtain the corrected covariance matrix: Let X and W denote the data matrices
whose N rows are x; and w’ and let X be the asymptotic covariance matrix of the
probit maximum likelihood estimator of a. Then, let

Vi =Y — A,
V= diag[vi])
6;' — (CI:"W;)M; + Mf

A = diag[é;].

The asymptotic covariance matrix for this MLE is estimable with the sample
estimate of

Q, = [X'AX]™ + 6[X'AX]  [X'VIAWI|S[W'V2AX][X'AX] L.

(The third and fourth terms in the expression reported in Greene (equation 3.6)
vanish asymptotically and may thus be omitted.)

There is no direct connection drawn between the selection equation and the
respecified conditional mean function in the preceding. As noted, the appendage
of OM; to Ely;|x;] is strictly ad hoc. Terza (1995) begins with

In Ely:|x;, w] = B'%; + wi.
With joint normality of u; and ¢;, it follows that
Elyilxi, z = 1] = Elys|x:, us >k—-a'w,-]

— P'xita?/2 [M]

®(a'wi)
=P % [W(0,T;)]
= A\Y;,
where 7; = o'w;.
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(A full derivation of this result is given in Terza (1995).) The last result provides a
nonlinear conditional mean function. This gives the functional form for nonlinear
least squares estimation of (3*,8), where 3" equals 3 save for the constant term,
which is offset by 02/2. To construct the expression for the asymptotic covariance
matrix , let

A = diag(N;)
vi =y — Elylx;, 2: = 1]
A g )
D= /\e%%f

P = diag(p:)

Then, we use
Qr = [X'AZX] " H{X'A?VZX + (X'ATPW)S(W'PA%X)}[X'AZX] !

It is tempting at this point to proceed to full information maximum likelihood
estimation of (3, a, 6) based on the Poisson distribution. But, y; is not distributed
as Poisson in the selected propulation if it is in the full population. The conditional
(on the selection) distribution in Terza’s model remains to be derived. (It is
assumed a priori in Greene’s.)

With the exception of the constant term, the parameters in Terza’s and Greene’s
model are the same. Consider an alternative formulation of Terza’s result:

In Efy|x;,z: =1] = B"x+In¥(6 + 7).

Now, expand this expression in a linear Taylor series around € = 0. The central

result is
In¥(8,7) = In¥(0, 1) + 92250

|6=0

8ln ®(047;
=0 4 g220im)

l6=0

- P(0+7i)
2@+7) |90

= OM;.
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Thus, the expansion produces the conditional mean function specified in Greene
(1994). (The constant term must be reinterpreted.) As such, the formulation
in Greene can be interpreted as the linear approximation to what is obtained
by a formal derivation of the conditional mean function under selection. The
parameters can be estimated, as before, by nonlinear least squares. The estimator
of the asymptotic covariance matrix for (3*,8) is the sample estimate of

Q¢ = [X'AZX|"H{X'A?2VIX 4+ (X' A2AW)Z(W'A2AX) }X'AZX]

where the individual parts were defined earlier.

3. Application to Credit Scoring

Greene (1994) presents an application of the Poisson model with selectivity. The
illustration involves an aspect of consumer credit behavior, the number of major
derogatory reports (MDRs) in the recent credit history of a sample of credit card
applicants. (An MDR is defined as a reported delinquency of sixty days or more
on a credit account.) For most people and most accounts, the number is zero.
But, as shown in Table 1,

INSERT TABLE 1 HERE

there is a large amount of variation across applicants and, in this sample, a large
number of nonzero entries.! We have data on applications for a major credit
card and whether the application was granted or not. The figures in Table 1 show
clearly that the distribution of MDRs differs substantially between those accepted
and those rejected. (This is to be expected, as this is one of the major criteria for
acceptance.) Table 2 lists descriptive statistics for the covariates in the Poisson
regression for MDRs and probit model for cardholder acceptance.

INSERT TABLE 2 HERE

Table 3 gives estimates for the probit model and the Poisson regression model
computed by the three methods outlined earlier. All three estimators

INSERT TABLE 3 HERE

1The data used here are a random 10 percent sample from the data used in Greene (1992).
We have used 1319 observations in total. The selected sample of accepted applications is 1023
observations. The data are available from the author upon request.
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produce quite similar results. Greene’s estimator yields a slightly smaller sum of
squared residuals. Although the estimated slopes are similar, the two nonlinear
least squares estimates of § are quite different, and the extremely large standard
error for the one computed by Terza’s method is surprising. The estimated models
are actually a bit closer even than suggested by the similar slope estimates. Table
4 lists the estimated marginal effects, E[y:|x;, z; = 1]/0x; for the four sets of
estimates. For the four cases,

OEy;|lz;,zs =1
[yzlc?' =2 = Elyi|z;, z = 1] {Be + acu }
Tk
ar = 0 if z; does not appear in w;,
a = 1 for the uncorrected model,
a = 06; in Greene’s formulations,
a = Mjy; — M;in Terza’s formulation.

In the last of these, My; is M; evaluated at § + 7;. (A linear Taylor series approx-
imation to this function around § = 0 produces #6; as might be expected.) The
marginal effects for the four variables in the regression model are given in Table
4. As noted, these are quite similar for the two models estimated by nonlinear
least squares.

INSERT TABLE 4 HERE

4. Conclusions

The preceding has shown two methods of accommodating sample selection in
the Poisson regression model. (Extensions to the negative binomial regression
model and explicit treatment of heteroskedasticity are examined in Terza’s study.)
The parameter estimates are similar, and neither is appreciably more difficult
to estimate than the other. Terza’s approach produces a slightly poorer fit to
the data, but this appears not to be systematic. The very large standard error
produced his aproach compared to Greene’s is surprising, however.



The literature on sample selection in this context is relatively thin, and there is
only limited existing theory to draw on. There is a loose end in the preceding, as
well as in Terza’s formulation. In the original design of the sample selection mod-
els, the phenomenon under study is that in the selected population, the observed
response variable will tend to be above or below the conditional mean (depending
on the sign of the correlation between the disturbances) in the selected popula-
tion. Here, the selectivity has been modelled, instead, as a form of heterogeneity
which shifts the conditional mean function in the selected population. Thus, it is
not quite the same phenomenon as Heckman addressed in his early work on the
subject. We leave pursuit of that issue for continuing work on this subject.
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Table 1. Frequencies of MDRs.

0 1 2 3 4 5 -] T 8 9 10 " 12 13 14

Full sample 1060 137 50 24 17 1 5 (-] 0 2 1 & 1 0 1
(pct.) .804 .104 .038 .018 .013 .008 .004 .005 .000 .002 .001 .003 .001 .000 .001

Selected sample 915 90 13 [ 1
(pct.) .894 .088 .013 .004 .001




Table 2. Descriptive statistics for independent variables.

Variable Mean Standard deviation Minimum Maximum
Income Income, in 10,000s

Full sample 3.365 1.694 0.21 13.50

Cardholders 3.451 1.707 0.21 13.50
Age Age, in years

Full sample 33.21 10.14 17.00 83.50

Cardholders 33.22 10.22 17.00 83.50
Cur._Add. Number of months residing at current address

Full sample 55.268 66.272 0.000 540.000

Cardholders 55.258 64.710 0.000 540.000
Exp._Inc. Average monthly expenditure divided by yearly income

Full sample 0.0687 0.0946 0.0001 0.9063

Cardholders 0.0885 0.0991 0.0001 0.9063
Avg._Exp. Average monthly credit card expenditure

Full sample 185.06 272.22 0.00 3100.0

Cardholders 238.61 287.71 0.00 3100.0
Own_Rent Binary variable indicating home ownership

Full sample 0.440 0.497 0.00 1.00

Cardholders 0.062 0.500 0.00 1.00
Self_Empl. Binary variable, one for self employed

Full sample 0.070 0.253 0.00 1.00

Cardholders 0.062 0.241 0.00 1.00
Depndt. Number of dependents, not including the individual

Full sample 0.994 1.248 0.00 6.00

Cardholders 0.970 1.243 0.00 6.00
Inc._Per Income per dependent

Full sample 2.156 1.363 0.070 11.00

Cardholders 2/219 1.351 0.070 11.00
Major Binary variable for whether the individual holds a major credit card

Full sample 0.817 0.387 0.00 1.00

Cardholders 0.840 0.367 0.00 1.00
Open Number of open, current trade accounts

Full sample 6.360 6.053 0.00 37.00

Cardholders 7.049 6.026 0.00 30.00
Active Number of active credit card accounts

Full sample 6.997 6.306 0.000 46.000

Cardholders 7.049 6.026 0.000 30.000
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Table 3.

Estimated Parameters.
Estimated standard errors are in parentheses.

Number of Major Derogatory Reports

Cardholder
Selection Corrected
Probit Poisson Poisson. Greene Terza
Constant 0.542 -3.616 -4 .594 -5.345 -4.068
(0.184) (0.422) (0.521) (0.740) (0.596)
Age -0,00857 0.0188 0.0162 0.0128 0.0142
(0.00498) (0.00872) (0.00996) (0.0110) (0.0106)
Income 0.0920 0.134 0.183 0.191 0.136
(0.0532) (0.0543) (0.0613) (0.0596) (0.0586)
Exp._Inc. 1.986 1.878 1.775 1.734
(1.265) (1.296) (0.943) (1.075)
Avg._Exp. 0.0000483 -0.0000236 -0.0000268 -0.0000362
(0.000395) (0.000419) (0.000308) (0.000405)
Major 0.212 0.242 0.572 1.376 0.811
(0.103) (0.268) (0.316) (0.590) (0.491)
Mills Ratio 1.788 1.989 3.465
(0.431) (0.296) (30.689)
Sum of Squared Deviations 165.319 168.262
Own_Rent 0.349
(0.101)
Depndt. -0.131
(0.069)
Inc._Per -0.0150
€0.0714)
Self_Empl. -0.201
(0.163)
Open -0.286
(0.0245)
Cur._Add. -0.000409
(0.000700)
Active -0.230
(0.0214)
Log-Likelihood -407.944 -394.157
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Table 4. Estimated Marginal Effects

Uncorrected Corrected Greene Terza :
Variable Poisson Poisson MLE Nonlinear LS Nonlinear LS




