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1   Introduction 

 The Poisson regression model forms the basis for a large proportion of the received empirical 

literature involving discrete outcomes and count data.  However, real data considerations and the 

shortcomings of the basic model, itself, have led researchers to employ a wide variety of alternative 

specifications.  Modifications of the Poisson model have been suggested to accommodate: 

 ·  over- and underdispersion, which is a violation of the Poisson restriction that the variance of   

   the observed random variable equal its mean, 

 ·  unobserved individual heterogeneity, for example, in panel data (Hausman, et al. (1984)), 

      which mandates the introduction of a disturbance term into the Poisson specification much like   

   that which appears in conventional regression models, and which induces overdispersion, 

 ·  `non-poissonness,' (Johnson and Kotz (1969)) which is reflected in an overabundance or 

      underabundance of certain specific values, usually zero.1

Another issue which arises occasionally (e.g., Heilbron (1989), Smith (1990)), but remains to be examined in 

detail is an extension of the Poisson regression model to 

 ·  sample selection, which will likely produce distortions in the inference drawn from count data   

   by conventional methods similar to those which arise in the analysis of continuous choice 

     models. 

 The literature on the Poisson regression model often discusses separately specification and 

estimation of the model and its variants and specification testing in the context of the basic model.  The 

focus of this paper is primarily the first of these.  We will present two modifications of the Poisson model, a 

model for handling `excess zeros,' and a specification for modeling sample selection in the spirit of Heckman 

(1979).  Since excess zeros will masquerade as overdispersion, we are also interested in the first two points.  

Our first model extends an existing literature.  In addition, we will present a method of testing this extension 

of the model against the base (Poisson or negative binomial) case.  The test procedure can also be applied to 

the problem of testing for overdispersion in the Poisson model, so, in passing, we will add another method to 

the set of tools that have already been proposed for this problem.  Our second model is a sample selection 

model which does not appear to have been treated elsewhere. 
 

     1The third of these could show up as if it were the first or second.  Terza and Wilson (1990) introduce a variant of our zero altered 
Poisson model specifically to allow for overdispersion by (at least in principle) disconnecting the Poisson mean and variance. 
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 This paper proceeds as follows:  Section 2 will review some of the existing literature on the Poisson 

model and tie together some widely dispersed but related contributions.  We begin with a cursory 

presentation of the basic Poisson specification.  Section 3.1 will describe the specification and estimation of 

our `zero inflated Poisson' (ZIP, Lambert (1992)) regression.  Restrictive variants of the ZIP model have 

appeared elsewhere in the literature.  In addition to presenting a more general model, we will propose a new 

method of testing the specification against the basic Poisson model.  Section 3.2 will describe a framework 

for analyzing sample selection in the context of the Poisson model.  Although this model has been hinted at 

in various places, it appears not to have been formalized previously.  This section will detail a sample 

selection model and provide methods of parameter estimation and computation of appropriate asymptotic 

covariance matrices for the estimates.  The ZIP and sample selection models are combined in Section 3.3.  In 

section 4, we present an application of the techniques to an aspect of consumer behavior, default on credit 

card loans.  We will use the Poisson model to examine the number of major derogatory reports to a credit 

reporting agency for a group of credit card applicants.  The overwhelming majority of applicants have `clean' 

(at least in this respect) credit histories, so there is a prevalence of zeros in the data.  Hence the ZIP model is 

appropriate.  We will apply the model to a general population and to a heavily screened subpopulation (those 

whose applications for credit were accepted), in which the screen clearly produces the sort of 

nonrandomness found in settings in which Heckman's selection model is usually applied.  The statistical 

results suggest unambiguously that models more general than the basic Poisson regression are called for.  
Conclusions are drawn in Section 5.
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2   Poisson and Negative Binomial Regression Models 

 The Poisson model arises in many contexts as the probability distribution for the discrete, 

nonnegative count of the number of occurrences of an event.2  Applications of the basic model include: 

 ·  the number of failures of electronic components per unit of time, 

 ·  the number of individuals arriving at a serving station (bank teller, gas station, cash register,     

etc.) within a fixed interval, 

 ·  the number of homicides per year (Grogger (1990a)), 

 ·  the number of patents applied for and received (Hausman, et al. (1984)), 

and so on.3  The unconditional probability distribution for a Poisson random variable is given by 

 
ii y-( )t

i
i ii i i

i

  (  )e tProb[Y = _ ]  =  p( _ )  =  ,  = 0,1,...y y yt t
!y

λ λ
 (2.1) 

where λ is the mean occurrence rate per unit of time and ti is the length of the interval over which yi is 

observed.4  For our purposes, no generality will be lost by assuming that the time interval is one unit for each 

observation.5  It is easily shown that the unconditional mean of yi given a unit length interval is λ.  The 

model lends itself conveniently to a regression framework by defining the conditional mean function, 

 ix
i i iiE[ _ , =1]  =    =  ,y t ex ′βλ   

where here and in what follows, xi will denote the full set of regressor variables for yi.6  The exponentiation 
 

     2See Johnson and Kotz (1969) for an extensive survey on the unconditional model.  A useful overview is given by Cameron and 
Trivedi (1986). 

     3Other applications in the literature include Gray and Jones (1991) (citation counts), King (1986) (count data in political science), 
Kostiuk and Follman (1989) (success rates of military recruiters), Papke (1986) (industry "births" in different states), and Portney and 
Mullahy (1986) (air quality and the incidence of respiratory illness).  See, as well, Agresti (1984), Arvan (1989), Cooil (1991), 
Coughlin, et al. (1988), Flowerdew and Aitken (1982), Frome (1983), Frome et al. (1973), Gart (1964), and Okoruwa, et al. (1988) 
for a variety of specifications and uses of the Poisson model. 

     4See, e.g., Hoffman and Milligan (1990). 

     5In the context of the regression model to be analyzed here, the case of differing time intervals is handled by including the time 
variable in the linear index function of the model with a coefficient of 1.0.  We will return briefly to this point below. For an 
application, see McCullagh and Nelder (1983, pp. 136-140). 

     6See Cameron and Trivedi (1986), El Sayyad (1973), Engel (1984), Holgate (1964),  Jorgenson (1961), Lawless (1987a, 1987b)  
Maddala (1983), McCullagh Nelder (1983), and Simpson (1987). 
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insures a positive mean.7  Estimation and inference for the Poisson model are considered below. 

 The Poisson distribution has the convenient, albeit restrictive property that 

 ii iE[ ]  =  Var[ ]  =  ,y y λ   

(where, for the moment, we have subsumed the conditioning variables, xi in the subscript).  The equality of 

the mean and variance is the subject of the literature on over- and underdispersion in the Poisson model.  

Although a number of modifications have been proposed, the most frequently cited alternative is the 

negative binomial regression model, 

 

iyi
i ii i

i

i
i

(  + )yp( )  =    (1 -  ,  > 0,  = 0,1,...y )u u
( ) !y

  =  .u
 + 

θΓ θ
θ

Γ θ

θ
θ λ

y

 (2.2) 

where

This has      E[yi]  =  λi

and    Var[yi]  =  λi[1 + (1/θ)λi]  =  λi(1 + αλi) 

The negative binomial model has been formulated with overdispersion, 

 i
i

i

Var[ ]y
 =  1 +  E[ ]  >  1,y

E[ ]y
α  

 

as an end in itself,8 or as a consequence of incorporating unobserved individual heterogeneity (e.g., 

Hausman, et al. (1984)).  Let 

 E[yi│εi]  = λi εi

where εi is a disturbance distributed as gamma with mean 1 and variance α; 

 
     7Note that the normalization needed to accommodate an observation specific interval length is handled by tλi  =  exp(lnti + β'xi).  
Thus, lnti is simply included in the regression with a coefficient of one.  Henceforth, we will omit further reference to the 
normalization and, for simplicity, just assume that ti equals one. 

     8See Cameron and Trivedi (1986) (their model `NegBin II') and King (1989b). 
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This produces 

 
ii i

y- exp(  + )x
i i

ii
i

 exp (  + )e xf( _ )  =  y
!y

′β ε ′β⎡ ⎤ε⎣ ⎦ε  
 

The marginal distribution is 

 
 

i ii i
 0

f (  )  =   f( _ ) ig( ) d ,y y
∞

ε ε ε∫  
 

which is the negative binomial model given earlier.9

 Maximum likelihood estimation of parameters of the Poisson regression model is straightforward.  

The log-likelihood function and its first and second derivatives are 

 
N N

i ii i i
i=1 i=1

log- L  =  log f ( )  =  -  + log  - log ! ,y y y⎡ ⎤λ λ⎣ ⎦∑ ∑  (2.3) 

 
N N

iiiii
i=1 i=1

log- L
  =  (  - )   =  xy ex ,               ∂

λ
∂β ∑ ∑  (2.4) 

 
N2

i ii
i=1

log- L
  =  -    .                                                     x x ′

∂
λ′∂β∂β ∑  (2.5) 

The Hessian is always negative definite, which makes Newton's method a convenient way to compute the 

MLE of β.  Alternatively, the model is a nonlinear regression, so β can be estimated consistently by 

nonlinear ordinary least squares, or efficiently by nonlinear generalized (iteratively reweighted) least 

squares.10

 The log-likelihood and gradient for the negative binomial model are11

 
     9Hausman et al. (1984) present an extensive application of the model from this perspective.  Recent modifications include Wedel, 
et al. (1993), Wasserman (1983), and Winkelmann and Zimmermann (1991a, 1991b, 1991c). 

     10Note that the moment condition in (2.4) is the same as that for the classical regression model and prescribes nonlinear GLS as 
the efficient GMM estimator. 

     11We have manipulated the function to eliminate the gamma integrals.  This simplifies programming and marginally speeds up 
computation of the estimates.  See Greene (1991).  We will use the indicator function, 1(condition) = 1 if the condition is true and 0 if 
not, at various points below. 
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 i( )
N

ii i
i=1

log- L  =  1  - log  ! + log   + log(1- )  (2.6) y yuθ∑ u⎡ ⎤⎣ ⎦N

ii i
i=1

log- L
  =  xu e                                          

∂β ∑                       ∂

 (2.7) 

 ( )
N

i
i i

ii=1

log- L y
  =  1  +log   + (1 - ) 1- .u u

⎡ ⎤⎛ ⎞∂
⎢ ⎥⎜ ⎟∂θ λ⎝ ⎠⎣ ⎦

∑  (2.8) 

The function is a bit less well behaved than the Poisson log-likelihood owing to the need to keep θ positive, 

but is easily handled by a gradient method incorporating a line search.  Among the interesting aspects of this 

model is the robustness of the Poisson MLE of β in the presence of heterogeneity (overdispersion).12

 The literature on testing the Poisson restriction of equal mean and variance (over- or 

underdispersion) is vast.13  The problem of testing for homogeneity does not fit into the classical Neyman-

Pearson methodology because the restricted case lies on the boundary of the parameter space; α = 0, or θ → 

+∞.14  The mechanics of the existing procedures for testing for heterogeneity or overdispersion are tangential 

to the subject of this paper.  The interested reader is referred to the literature cited earlier for details.  

However, the specification test procedure for our zero altered model which is proposed below is readily 

adapted to a test for heterogeneity (see Section 3.1).  An evaluation of this testing procedure versus the 

alternatives is left for further work. 

 Several modifications of the Poisson regression model beyond the negative binomial specification 

are of direct relevance to this study.  They deal primarily with the observed frequencies in the data or the 

functional form of the conditional mean function. 

 Problems of censoring and truncation are common, and arise from the same sources as in the more 

familiar regression settings.  In survey data, for example, respondents are sometimes given a limit category, 

`C or more' for some large value (censoring).  In other settings, such as surveys of users of recreational 

facilities (e.g., Smith (1990), respondents who report zero are sometimes discarded from the sample.  These 

complications can be built directly into the basic Poisson or negative binomial model in same way that they 

 
     12Gourieroux, et al. (1984) and White (1982). 

     13See, e.g., Breslow (1984, 1990), Cameron and Trivedi (1990), Chesher (1984), Collings and Margolin (1985), Cox (1983), Dean 
and Lawless (1989), Ganio and Schafer (1991), Gurmu(1991), King (1989), Lee (1986), Mullahy (1986,1990), Potthoff and 
Whittinghill (1966), and Wasserman (1983). 

     14Note that this is equivalent to the problem of testing for a zero variance, as arises in the random effects classical regression 
model.  See Breusch and Pagan (1980). 
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are handled in classical normal regression model in the form of the tobit and truncated regression models.15  

For the first example given, the log-likelihood function for a model incorporating censoring of the form 

suggested is 

 

 

 
N

i=1

log- L  =  1 .⎡ ⎤⎣ ⎦∑  
 

The counterpart for a model with truncation at zero, as in the second example, would be 

 
N

i
i=1

log- L  =   log p( ) - log (1 - p(0)) .y⎡ ⎤⎣ ⎦∑  (2.9) 

The gradients and Hessians, albeit tedious, are straightforward and appear in general form in Greene 

(1991).16

 We will be interested in two rather sparsely analyzed variations on the Poisson/negative binomial 

models in this study.  First, there are situations in which number of occurrences of a specific value (usually 

zero) exceeds what would be predicted by the Poisson model.  The problem was analyzed by Cohen (1954) 

and is described in some detail in Johnson and Kotz (1969).  Various modifications have been suggested 

which involve a rudimentary parameterization of the `non-Poissonness' of the distribution.  For example, 

Heilbron (1989), who labels this the `zero altered Poisson,' or ZAP(λ,ρ) model, and Mullahy (1986), among 

others, who calls this a `hurdle' model,17 suggest 

 
i

i

i

- k
i

i -

Prob[  = 0]  =  y

1 - eProb[  = k]  =  , k = 1,2,...y
1 - k!e

λ

λ

ρ

ρ⎡ ⎤ λ
⎢ ⎥⎣ ⎦

 

 

 
     15See Greene (1991) for details.   Applications are given by Terza (1985), Grogger and Carson (1988, 1991), Cohen (1954, 1960), 
Creel and Loomis (1990, 1991), van Praag (1993), and Shaw(1988). 

     16Full details for the censored Poisson model appear in Terza(1985).  Greene(1991) gives results for models with truncation and 
for the negative binomial model. 

     17See Cragg (1971) and Lin and Schmidt (1984). 
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Heilbron's interpretation of the model is as a modification of the Poisson model to add mass to the zero 

point,18 while Mullahy's hurdle interpretation (which is closer to ours) treats the modification as a binary data 

generating process.  Thus, "[t]he idea underlying the hurdle formulations is that a binomial probability model 

governs the binary outcome of whether a count variate has a zero or a positive realization."19,20  Note that the 

positive part of the distribution is the truncated Poisson model which appears in (2.9). 

 In the ZAP model, observations which surpass the `hurdle' are positive.  Our interest here is in a 

setting in which the zeros are observed as well, with greater frequency than would otherwise be predicted by 

the Poisson model.  The surfeit of zeros results from a mixture of two processes, both of which produce 

zeros. One generates the regime choice as a binary outcome, while the other generates the count variable, 

which may equal zero as well.  In one regime, the zero value is automatic, while in the other, it is but one 

possible outcome.  Consider, for example, answers to the survey question "[h]ow many children do you 

have?"  Respondents would be of two types, some who have no intention of ever having children and some 

who may have some children or may not yet have any children at the time the question is asked, but might 

later.  The model we propose is a straightforward modification of what Mullahy and Heilbron (following 

Johnson and Kotz) label the `with zeros' (WZ) model, 

 
i

i

Prob[  = 0]  =   + (1 - )f (0)y

Prob[  = j]  =  (1 - ) f (j), j = 1,2,...,y

ψ ψ

ψ
 

 

where ψ is a parameter between 0 and 1.21  This formulation has the virtue of simplicity, though the 

inequality constraint on ψ does complicate the computation of the maximum likelihood estimates. 

 For our purposes, the primary shortcoming of Heilbron/Mullahy's specification is that there are no 

covariates in ψ, so that the construction of a behavioral splitting model (regime generation process) remains. 

 
     18Terza and Wilson (1990) adopt this formulation solely to induce overdispersion. 

     19Mullahy (1986, p. 345). 

     20The Hurdle model has a close resemblance to Schmidt and Witte's (1989) `splitting' model.  They model a binary censoring 
indicator in the context of various survival models with a probit or logit specification.  The counterpart to Mullahy's zero and 
truncated Poisson model is their survival or hazard function. 

     21As Heilbron notes, some negative values of ψ are admissable, though the interpretation of ψ as a mixing parameter will be lost in 
this case. 
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 This interpretation of the model is suggested, more or less in the work of Lambert (1992), upon which much 

of our current study is built.  Once again, her primary motivation is `non Poissonness,' although as will be 

clear below, one of her specifications provides our main building block. 

 The second framework proposed here will be on the subject of sample selection modelling.  There 

appears to have been little progress on this aspect of the model.22  We note that since the Poisson model is a 

bona fide regression model, the problem of sample selection poses itself naturally.  In Smith's (1988) 

application, which drops neatly into this framework, we have a sample of observations which has been 

culled from a larger sample specifically on the basis of their use of recreational sites.   The second purpose of 

this study is to offer one possible specification for handling the problem. 

3   Modified Poisson and Negative Binomial Models 

 Our models for a zero augmented count model and for sample selection are built on the preceding in 

a straightforward fashion.  The first is an extension of Lambert's ZIP model.  The selection model takes the 

approach of modifying the joint discrete distribution of the random variables and the conditional mean 

function of the count variable, rather than relying on a transformation to normality to produce the conditional 

distribution of a latent continuous variable. 

3.1.  ZIP Models 

 Lambert (1992) proposes the following modification of the Heilbron/Mullahy WZ model, which she 

labels the `zero inflated Poisson' or ZIP model:23

  (3.1) 
i i

ii i

  ~  0                    with probability y q

  ~  Poisson ( )           with probability 1 - ,y qλ

where logλi = β′xi as before, and 

 
     22Heilbron notes (p. 2  of a 
normal theory sample selection model.  unt data."  
Smith (1990) makes note of the utility of a selection model for counts of uses of recreational sites, but states that it is "beyond the 
scope of his study."  Bockstael, et al. (1990) note the issue in passing (p. 41) but treat the counts as realizations of a continuous choice 
variable, and make no further mention of the problem.  Shaw's (1988) model is somewhat related to this problem, but his analysis 
centers on direct truncation, not sample selection as we are considering it here.  This appears to be the extent of the received 
commentary on the subject. 

9) "For non-Poisson counts, there is no transformation of Y that would make sen ible the application
Further, it seems difficult to formulate an appealing sample selection model for co

s
i i

i i

w x
i

i iw x
i

e e  =          or          =    =  .q
1 + 1 + 1 + e e

′ ′γ τβ τ

′ ′γ τβ τ
λ
λ

q  
 

     23We have changed the notation a bit, but the substance of the model is identical. 
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Lambert labels the latter the ZIP(τ) model.24  Thus, the ZIP model generalizes Mullahy's WZ model by 

parameterizing a formal probability model for ψ.  Although Mullahy's interpretation of a primary regime 

generating process for ψ is consistent with the ZIP model, in fact, Lambert's primary interest appears to be in 

non-Poissonness, i.e., the shape of the distribution.25  We will propose some extensions of Lambert's ZIP and 

ZIP(τ) models.  First, we will consider an alternative formulation of the splitting variate - the determination 

of qi.26  Second, we will extend the ZIP model to the negative binomial model.  The extension is a natural 

one.  Lambert does mention the possibility of augmenting the mass at zero for other discrete distributions (p. 

12), however, our interest here goes beyond merely specifying an alternative distribution.  The presence of 

excess zeros in the data will likely lead to a conclusion of overdispersion.  In our case, we are interested in 

heterogeneity as the source of the overdispersion.  A zero inflated negative binomial (ZINB or ZINB(τ)) 

model will enable us to distinguish between the effect of the splitting mechanism and the overdispersion 

induced by individual heterogeneity.  In this connection, we are interested in a procedure which will enable 

us to test the zero inflated model against the simple Poisson model or against the negative binomial model.  

The latter will allow us to make a statement as to whether the excess zeros are the consequence of the 

splitting mechanism or are a symptom of unobserved heterogeneity.  We note that the same test that we 

propose here provides an as yet unexamined method of testing the specification of the negative binomial 

model against the Poisson model, independently of the splitting mechanism. 

 We consider a process whereby the observed random variable yi is generated as 

 *
ii i =   y yz   

where zi is a binary (0/1) variable and y is distributed as Poisson(λi) or negative binomial (λi,θ).  The ZIP 

model is, by this construction, a model of `partial observability' - only the product of the two latent variables, 

 
     24Lambert gives her formulation in terms of -τ, but since τ is unrestricted in sign or magnitude, no generality is lost by using our 
slightly more convenient parameterization. 

     25The introduction does state, however, "One interpretation is that slight, unobserved changes in the environment cause the 
process to move back and forth between a perfect state in which defects [the Poisson variate] are extremely rare and an imperfect 
state in which defects are possible but not inevitable."  (Lambert, p. 1.)  This is, of course, consistent with Mullahy's description, 
though, it understates the case a bit since in the perfect state predicted by the model, defects are impossible. 

     26Lambert does mention in passing some alternative formulations for qi in the ZIP(τ) model (p. 3), but confines attention to the 
initial logit model. 
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zi and y, is observed.27  Thus, 

where f(⋅) is the Poisson or negative binomial probability distribution for y.  For an application, consider the 

response to the question how many trips have you taken to a certain sport fishing site?  The answer to this 

question comes at two levels.  There are individuals who would not visit a sport fishing site almost 

regardless of circumstances because this activity does not interest them, whereas there are others for whom 

the number of visits might follow more conventional patterns amenable to a Poisson or negative binomial 

regression - but might, once again, be zero.  The binary part of the model, i.e., the splitting mechanism, lends 

itself conveniently to a probit or logit specification, though we need not limit it to those two choices.  

Likewise, the conditional count variable can have a Poisson or negative binomial (or, in principle, some 

other) distribution.  Clearly, any combination of models for a binary outcome, zi, and count variable, y, might 

be considered.  We will limit our attention to the familiar probit and logit models for zi and the Poisson and 

negative binomial models for y.  We will also consider both the ZIP and ZIP(τ) specifications. 

3.1.1  Estimation 

 Estimation of the parameters of the ZIP model is fairly straightforward.  Lambert suggested the EM 

algorithm, but our experience has been that a straightforward gradient approach with a line search is more 

efficient and poses no unusual calibration problems.  To formulate the log-likelihood and gradient for the 

ZIP models, let 

 qi  =  F(γ′wi) for the ZIP model 
and qi  =  F(τβ′xi)  for the ZIP(τ) model, 

where F(⋅) is either the cumulative normal probability, Φ, for the probit model or the cumulative logistic 

probability, Λ(⋅) for the logit model.  Let f(⋅) denote either the Poisson(λi) or the negative binomial (λi,θ) 

probability density function.  (This produces eight possible models.)  Then, the probability density function 

for the observed random variable, yi, is 

 

i iq q
  

*
i ii i

i i

Prob[  = 0]  =  Prob[  = 0] + Prob[  = 1,  = 0]  =   + (1 - ) f(0)y yz z

Prob[  = k]  =  (1 - ) f( k ), k = 1,2,...y q 

     27See Poirier (1980) and Abowd and Farber (1982). 
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iq i i i i ip( )  =    =  (1 - )f( ) + 1(  = 0) ,y p q y y   

so the log-likelihood is simply 

 
N

i
i=1

log- L  =   log p( ).y∑  (3.2) 

To obtain the gradient, let β* equal either β for the Poisson model or (β,θ) for the negative binomial model.  

Then, each term in Σi (∂logpi/∂β*) is 

 ( )i i
i i i i* *

i

log log f( )1p y
  =  (1- )f( )   +  1( =0) - f( ) .q y y y

p

⎡ ⎤⎛ ⎞ ⎛∂ ∂
⎢ ⎥⎜ ⎟ ⎜

∂ ∂β β⎢ ⎥⎝ ⎠ ⎝⎣ ⎦

i
*

q ⎞∂
⎟

∂β ⎠
 (3.3) 

The derivatives of log f(yi) were given in Section 2.  Also, ∂qi/∂β* will equal 0 in the ZIP model, or τxiqi′ for 

the ZIP(τ) model with a trailing zero for θ if f(yi) is the negative binomial model, since θ does not enter qi.  

(The inner derivative, qi′, is either the standard normal density, φi for the probit model, or 

Λi(1-Λi) for the logit model.)  Finally, the parameters of the ZIP model are either γ, a vector, in the ZIP 

model or τ, a scalar, in the ZIP(τ) model.  Denoting these generically as γ, we have 

 i
ii i

i

 lo ig p q
  =  [1 (  = 0) - f( )]   ( )y y x

 p
′∂ ′β

∂ γ
 (3.4) 

for the ZIP(τ) model.  For the ZIP model, β′xi is replaced with wi, the vector of covariates.  The second 

derivatives are fairly complicated.  In our applications, we have used the BHHH estimator instead as a 

convenient expedient.  Finally, in the ZIP model, the hypothesis that some or all of the parameters in f(yi) 

equal those in qi might be of interest.  Estimation subject to the equality constraints is straightforward, and 

carrying out the test via a Wald or likelihood ratio procedure can be done by conventional procedures. 

 For the ZIP specification, a natural set of starting values for the parameters is provided by the probit 

or logit and independent Poisson or negative binomial estimates.  In the ZIP(τ) case, the Poisson or negative 

binomial model can be used for the regression parameters.  One could then choose a value for τ which 

would produce approximately the correct probability for zero.  An alternative possibility would be to 

estimate τ by fitting a probit or logit model to the binary indicator 1(yi = 0) with the single covariate equal to 

the Poisson estimates of β′xi (only so as to get the right sign and approximately the right magnitude on τ; 

this is not a consistent estimator).  Save for a few badly identified cases found by experimentation in which 
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no solution could be found, convergence of the DFP or Broyden algorithms appears to be routine. 

3.1.2  Specification Testing 

 The ZIP model relaxes the assumption of equal mean and variance in the Poisson model.  To derive 

the unconditional mean and variance of yi, we first consider the Poisson case. The two conditional 

distributions are 

  
ii i

i ii i

f( _  = 0)  =  1,  = 0,y yz

f( _  = 1)  =  Poisson( ),  = 0,1,...y yz λ 

Then 

 
i i i izi i i iE[ ]  =  [E[ _ ]]  =   0 + (1 - )   =  (1 - ) y y q qE z iqλ λ   

and 
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The unconditional Poisson model emerges if qi → 0.  Also, 

so the splitting phenomenon produces overdispersion in its own right.  Thus, qi/(1-qi) is the counterpart to α 

in the negative binomial model as regards overdispersion.  The ratio increases with qi, as might be expected, 

so the more likely is the zero state, the greater is the overdispersion.  For the negative binomial model, the 

conditional means are the same, so the unconditional mean is unchanged.  Only the term Ez[Var[yi│z]] 

changes, from (1-qi)λi to (1-qi)λi(1 + αλi).  Combining terms and simplifying produces the unconditional 

variance for the negative binomial model, 

This shows that the overdispersion arises from these two independent sources.  Moreover, the effects are 

cumulative, since the term in parentheses is greater than α for all positive qi. 

 There is a large literature on testing for overdispersion in the Poisson model.28  With rare exception, 

the diagnostic statistics proposed and analyzed are based on second moments constructed from: 

 ·  deviations of estimated means and variances (e.g., Dean and Lawless(1989)), 

 ·  deviations of a regression slope from one or zero (e.g., Cameron and Trivedi (1990)), 

 ·  deviations of derivatives from zero (LM tests) (e.g., Mullahy (1986). 

While tests such as these are clearly related to the model analyzed here, the potential lack of fit of the 

Poisson or negative binomial model to the observed data seems also to have potential utility as a diagnostic.  

 

i)λ  

i ii iz zi i i

2 2
i i ii i i i i i

i ii i

Var[ ]  =  [Var[ _ ]] + [E[ _ ]]y y yVarE z z

=  [  0 + (1 - ) ] + [  (0 - (1 - )  + (1 - ) (  - (1 - ) ]q q q q ) q q

=   (1 - ) [1 +  ].q q

λ λ λ

λ λ 

 i i
i i i

i i

Var[ ]y q
  =  1 +    =  1 + E[ ]q y

E[ ] 1 - y q

⎡ ⎤
λ ⎢ ⎥

⎣ ⎦
 

 

i i
i ii i i i

i i

Var[ ] +y q
Var[ ]  =  (1 - ) [1 + (  + ) ]     or      =  1 + E[ ].y q q

E[ ] 1 -y q

⎛ ⎞α
αλ λ ⎜ ⎟

⎝ ⎠
y  

 

     28See, for example, Breslow (1990), Cameron and Trivedi (1990), Collings and Margolin (1985), Ganio and Schafer (1992), 
Gurmu (1991), Mullahy (1990), and Potthoff and Whittinghill (1966). 
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For this purpose, Mullahy's (1990) result seems particularly useful.  The test is a moment based test which 

essentially compares the number of zeros in the data with the average predicted probability of a zero.  His 

recommended test statistic is 

 

i

N

i i
i=1d

0

-ˆ
i

N d 1
q  =     where   d  =   [1(  = 0) -  (0)]ˆy p

Nv̂

ˆ=   - p (0)P

and    (0)  =  .p̂ e λ

∑

 

 

The variance term in the denominator is computed as 

 

N
2
id

i=1

N

ii i
i=1

N

ii i i
i=1

-1N

i ii
i=1

1
  =  dv̂ N

ˆˆ p x

y ˆd x

1
x xˆ

N

 +  g Wg  +  2g Wh

1g  =    (0)
N

1h  =   (  - ) 
N

 W  =  .′

λ

λ

⎡ ⎤
λ⎢ ⎥

⎣ ⎦

′ ′∑

∑

∑

∑

 

 

Mullahy's statistic should produce a positive value under any form of heterogeneity.  Indeed, as he notes, 

regardless of the form of heterogeneity, the actual proportion of zero outcomes will tend to exceed the 

proportion expected under a Poisson assumption. 

 The added mass at zero produces overdispersion even in the absence of heterogeneity, so the full 

specification will allow one to distinguish between heterogeneity and the ZIP specification.  But, the models 

are not nested.  For the probit and logit models, setting the ZIP parameters to zero does not produce the 
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restricted model; it produces qi = ½.  The restricted model requires qi to vanish, but this requires τ in the 

ZIP(τ) model or some element of γ in the ZIP model to explode.  None of these is amenable to the familiar 

LR or Wald tests.  Vuong (1989, p. 318) has proposed a test statistic for nonested models which is well 

suited to this application: 

 1 i
i

2m i

( )N m yfV  =   , where   =  logm
( )ys f

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

and f1 and f2 are two competing probability models (e.g., ZINB and negative binomial).  V is the standard 

statistic for testing the hypothesis that E[mi] is zero.  Vuong shows that asymptotically, V has a standard 

normal distribution.  As Vuong notes, the test is directional.  If │V│ is less than the predetermined critical 

value (e.g., 1.96), then the test result does not favor one model or the other.  Otherwise, large positive values 

favor model 1 while large negative values favor model 2.  Carrying out the test requires estimation of both 

models and computation of the sample of predicted probabilities.29 Thereafter, for example, the test statistic 

is a simple t-statistic for testing for a zero mean of the variable 

 i
i

i

Prob [ _ ZINB]y  =  log .m
Prob [ _negative binomialy

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

This test may be more convenient than Mullahy's.  The primary advantage is that Vuong's statistic makes use 

of information about the entire distribution, not just the zero outcomes.  We do note that unlike the more 

familiar test statistics cited earlier, both of these are based on goodness of fit, rather than overdispersion. 

 Vuong's statistic could also be used to test the restriction of the Poisson distribution on the negative 

binomial.  Its power characteristics are less than obvious, though there seems to be no reason a priori to 

expect them to be inferior to those of Mullahy's test or the other moment based tests listed earlier.   An 

investigation of this issue is outside the scope of this study, and is left for further work. 

3.2  A Model for Sample Selection 

 Previous discussions (e.g., Smith, Bockstael et al., Heilbron) have hinted at the utility of a sample 

selection framework for the count data models, but left the derivation of the joint and conditional 

distributions needed to formalize one for further work.  We propose to proceed, instead, by focusing on the 
 

     29The models and test statistics described here are supplied as procedures in LIMDEP (Greene (1991)). 
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conditional mean function, in keeping with Heckman's (1979) treatment of sample selection as a 

specification error.  We specify the joint distribution of the two observed discrete random variables as  

  g(zi)  =  Φ[(2zi-1)γ′wi], zi = 0,1, Φ(⋅) = standard normal CDF, 

  f(yi│zi=1)  =  Poisson(λi) or negative binomial(λi,θ), observed only when zi = 1, 

where   log λi  =  β'xi  +  ρMi

and   Mi  =  φ(γ′wi)/Φ(γ′wi). 

Mi is the Mill's ratio used in two step estimation of the sample selection model in continuous choice 

settings.30  Rather than focus on the joint and conditional latent normal distributions, we direct attention to 

the joint discrete distribution of the observed random variables, zi and yi.  The role of normality in g(zi) is 

only to provide a functional form for its conditional mean function.  As such, any proper CDF would suffice. 

 The specification of the probability model is the same as the probit model based on a latent threshold model 

and the normal distribution.  The choice of the Mill's ratio for the additional term in E[yi│zi=1,xi] is likewise 

arbitrary.  It is made here to preserve the analogy with more familiar continuous choice models. 

 Estimation of the model parameters can be approached in two ways.  The counterpart to Heckman's 

two step estimator would be obtained by estimating γ first as the coefficient vector in a probit model with zi 

as the dependent variable and wi as the vector of covariates.  Then, the constructed regressor, Mi, is included 

in the Poisson model using the selected (zi = 1) sample.  By virtue of the consistency of the probit estimator, 

estimates of the parameters (β,ρ) are consistent.  However, as in the continuous choice case, the 

conventional estimated asymptotic covariance matrix at this step is inappropriate.  This two step estimator 

fits directly into the framework developed by Murphy and Topel (1985).  Their Section 5.1, equation (34), 

 
     30See Heckman (1979) and Greene (1993). 
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  (3.5) -1 -1 -1 -1 -1
2 2 3 1 3 4 1 3 3 1 4 2  =  [  +  -  - ]R R R R R R R R R R R R′ ′ ′Σ

applies here.  Let x denote [xi′,Mi]′ and M = -φi/(1-Φi). For the Poisson model 

  (3.6) 

(Note that R1 and R2 are the uncorrected estimators of the asymptotic covariance matrices for the probit and 

Poisson coefficients respectively.)  The counterpart for the negative binomial model requires that the term (yi 

- λi)xi in R3 and R4 be replaced with ∂logp(yi)/∂(β′,θ)′, which appears in (2.2) and (2.6)-(2.8), and that R2 be 

replaced with a consistent (unconditional) estimator of the asymptotic covariance matrix of the MLE for 

[β,θ].  We have used the BHHH estimator for this purpose. 

 Since ρ is an unrestricted parameter, a test for "selectivity" in this context is a bit simpler than in the 

continuous choice case; a simple asymptotic t-test is equivalent, conditioned, of course on the other 

assumptions already made.  Note, though, that unlike its counterpart in the continuous choice case, ρ is not 

the correlation or covariance of two underlying disturbances.  The correlation between zi and yi and between 

zi and E[yi│xi,zi] are both complicated functions of wi and  xi.  However, the force of the selection "bias" is 

embodied in ρ insofar as the model carries the effect of selectivity through nonzero values of ρ.  Thus, the 

parameterization of the effect is no more complicated here than in the continuous choice case. 

 The second approach would be full information maximum likelihood.  The log-likelihood function 

and gradient are 
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N

i i i i i ii i
i=1

log- L  =  1(  = 0) log(1 - ) + 1(  = 1) log  + log  -  - log !y yz z ⎡ ⎤λ λΦ Φ⎣ ⎦∑  
 

and 

 

N

i
i=1

N
*

i iii
i=1

log- L
  =  1 w

log-L
 =  1(  = 1)(  - )yz x

∂
⎡ ⎤⎣ ⎦∂α

∂
λβ⎡ ⎤

∂ ⎢ ⎥ρ⎣ ⎦

∑

∑

 

 

The BHHH estimator is a convenient estimator for the asymptotic covariance matrix of the estimates given 

the complexity of the first derivatives.  Note that if ρ equals zero, the log-likelihood reduces to the simple 

sum of the probit and Poisson log-likelihoods.  For the negative binomial model, the corresponding 

probability in the log-likelihood and the second part of the gradient are changed to the formulas given in 

Section 2.  Our experience has been that the log-likelihood is occasionally somewhat ill behaved because of 

the Mill's ratio term, but generally presents no unusual difficulties.  Good starting values for the procedure 

are easy to obtain since the two step procedure produces consistent estimates.  FIML estimation is a matter 

of efficiency, not consistency. 

3.3  Combining the ZIP and Selection Models 

 Accommodating sample selection in the ZIP and ZIP(τ) models is straightforward using results 

already given.  The regression defined by λi in (3.1) need only be modified by inclusion of Mi as in the 

previous section.  Estimation conditioned on the selection can then proceed in the same two steps: (1) Probit 

estimation of the selection equation and computation of Mi, and (2) LIML (now) estimation of the ZIP or 

ZIP(τ) model as discussed in Section 3.1.  This setup is essentially the same as the one discussed in the 

previous section.  What remains is to complete the specification of the terms in the asymptotic covariance 

matrix in (3.5) and (3.6).  R1 remains as before, the estimated asymptotic covariance matrix of the parameter 

estimates in the probit selection equation.  R2 is the estimated asymptotic covariance matrix of the 

parameters of the ZIP model.  R3 is 
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N

i
3 i i i i

ii=1

logp  =  1(  = 1) (  + ) ,R z M w M
M

′
∂⎛ ⎞⎛ ρ ⎞′γ ⎜ ⎟⎜ ⎟ ∂ρ⎝ ⎠ ⎝ ⎠

∑ i iw v  
 

where vi is the vector of partial derivatives defined in (3.3) and (3.4).  Note that ∂logpi/∂ρ is one component 

of vi, and that the expression is on the right is constructed for convenience by using  

 i i

i i

log logp p
 =  ,

M M

∂ ∂ρ
∂ ∂ρ

 
 

since the term in logpi involving Mi is ρMi.  Finally, 

 
N

4 i i
i=1

 =  1(  = 1) .R z M i iw v ′∑  
 

 In principle, one could estimate the full model by FIML, by using, in place of (3.5), 

 
N

i=1

log- L  =  1 ,⎡ ⎤⎣ ⎦∑  
 

where p(yi) is defined in the first paragraph of Section 3.1.1. 

4   Application to Credit Reporting Data 

 To illustrate the techniques described above, we have applied them to measurement on an aspect of 

consumer credit behavior.  Among the variables kept as part of the credit history of individuals by reporting 

agencies such as TRW is the number of major derogatory reports (MDRs) within a fixed recent period.  An 

MDR is defined as a delinquency of sixty days or more on a credit account.  For the large majority of 

individuals, as suggested by the data described below, this is zero.  But, for the remainder, values typically 

reaching as many as five, with some observations reaching fourteen or more, are observed.  Thus, at the 

outset, the ZIP models appear to be appropriate for these data.  Moreover, as we have argued elsewhere 

(Greene (1992)), this sort of credit behavior also lends itself well to splitting models, wherein delinquent 

behavior (or, in that earlier study, loan default) is conveniently modelled in a probit sort of setting. 

 Our sample of 1319 individuals is drawn from a population of applicants for a major credit card.31  

We have observed the variables for the ZIP models for all applicants.  Of those 1319 applicants, 1023 were 
 

     31The credit card vendor who provided our data has requested anonymity. 
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given approval.  Since the characteristics that would lead to a credit approval are (one would presume) 

precisely those which would typically mark an individual as unlikely to have any MDRs, this subsample also 

fits neatly into the familiar framework of sample selection models.32  Table 1 describes the observed values 

of the count variable. 

────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Table 1.  Frequencies of MDRs. 
──────────────────────────────────────────────────────────────────────────────────────────────────────────── 

       0     1     2     3     4     5     6     7     8     9    10    11    12    13    14 
──────────────────────────────────────────────────────────────────────────────────────────────────────────── 

Full sample   1060   137    50    24    17    11     5     6     0     2     1     4     1     0     1 

 (pct.)    .804  .104  .038  .018  .013  .008  .004  .005  .000  .002  .001  .003  .001  .000  .001 

 

Selected sample    915    90    13     4     1 

 (pct.)    .894  .088  .013  .004  .001 
──────────────────────────────────────────────────────────────────────────────────────────────────────────── 

 

As expected, the clustering of individuals at zero is more pronounced among the cardholders. 

 
     32Credit card vendors outsource the evaluation of card applications to third parties who have automated the process of credit 
scoring.  Their exact procedures are closely guarded secrets.  However, according to the vendor who provided our data, it is known 
that these evaluators employ relatively simple linear discriminant procedures.  Precisely which variables they use is unknown, but we 
have found that the number of MDRs is a highly significant covariate in any applicant acceptance equation.  This suggests that a 
simultaneous equations approach might be appropriate for our model, but that extension is beyond the current study and is left for 
further work. 
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 Table 2 lists descriptive statistics for the covariates in the Poisson regression and selection 

(cardholder acceptance) equation.33

 
────────────────────────────────────────────────────────────────────────────────────

 

 Table 2.  Descriptive statistics for independent variables. 
 ────────────────────────────────────────────────────────────────────────────────────

 

 Variable  Mean Standard deviation Minimum  Maximum 
 ──────────────────────────────────────────────────────────────────────────────────── 

 Income  Income, in 10,000s 

    3.365  1.694  0.21  13.50 

 Age  Age, in years 

    33.21  10.14  17.00  83.50 

 Cur._Add. Number of months residing at current address 

    55.268  66.272  0.000  540.000 

 Exp._Inc. Average monthly expenditure divided by yearly income 

    0.0687  0.0946  0.0001  0.9063 

 Avg._Exp. Average monthly credit card expenditure 

    185.06  272.22  0.00  3100.00 

 Own_Rent Binary variable indicating home ownership 

    0.440  0.497  0.00  1.00 

 Self_Empl. Binary variable, one for self employed 

    0.070  0.253  0.00  1.00 

 Depndt.  Number of dependents, not including the individual 

    0.994  1.248  0.00  6.00 

 Inc._per Income per dependent 

    2.156  1.363  0.070  11.00 

 Major   Binary variable for whether the individual holds a major credit card 

    0.817  0.387  0.000  1.000 

 Active  Number of active credit card accounts 

    6.997  6.306  0.000  46.000 

 ──────────────────────────────────────────────────────────────────────────────────── 

 

 Table 3 contains estimates of the various ZIP and ZIP(τ) models specified in Section 3.1.  Ignoring, 

for the moment, the ZIP specification, the Poisson model in the first column appears to be clearly inferior to 

the negative binomial model in the second.  There are 1060 zeros in the observed data, which the negative 

binomial predicts far more closely. (The predicted number of zeros is computed as the sample sum of the 

estimates of Prob[yi = 0] for all of the models.)  By the Wald and likelihood ratio tests, it is clear that under 
 

     33The latter is greatly simplified from that used in Greene (1992). 
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any circumstances, the Poisson model would be rejected in favor of the negative binomial.  Indeed, based 

only on the results considered thus far, it is not obvious that any of the ZIP specifications is likely to provide 

an improvement over the negative binomial specification. 
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────────────────────────────────────────────────────────────────────────────────────────────────── 

Table 3.  Parameter estimates for ZIP models. 
Estimated standard errors in are parentheses.  1319 observations. 
─────────────────────────────────────────────────────────────────────────────────────────────────── 

         Poisson          Negative Binomial 

    ─────────────────────────────── ───────────────────────────────── 

        ZIP(τ)      ZIP      ZIP(τ)      ZIP 

    ────────────── ─────────────── ────────────── ────────────── 

  Poisson Neg.Bin Logit Probit Logit Probit Logit Probit Logit Probit 

    (1)   (2)  (3)   (4)  (5)   (6)  (7)   (8)  (9)  (10) 

  ────────────────────────────────────────────────────────────────────────────────── 

                           Regression Model 

  ────────────────────────────────────────────────────────────────────────────────── 

Constant -0.370* -0.878* 0.897* 0.980* 1.111* 1.115* -0.100 -0.100 0.550 0.489 

  (.174) (.384) (.140) (.140) (.145) (.145) (.351) (.351) (.551) (.565) 

 

Income  -0.025 -0.006 -0.022 -0.023 -0.032 -0.048 -0.106 -0.108 -0.047 -0.049 

  (.028) (.057) (.023) (.023) (.023) (.023) (.051) (.051) (.058) (.059) 

 

Major  0.046 0.055 0.193* 0.191* 0.124 0.124 0.065 0.066 0.042 0.042 

  (.105) (.207) (.080) (.081) (.076) (.079) (.185) (.185) (.201) (.202) 

 

Age  0.005 0.011 -0.005 -0.005 -0.006* -0.006* 0.009 0.009 -0.015 -0.014 

  (.004) (.009) (.003) (.003) (.001) (.003) (.009) (,009) (.009) (.010) 

 

Exp._Inc. -18.0* -9.29* -14.0* -14.2* -9.20* -9.18* -8.90* -8.92* -8.63* -8.66*

  (2.20) (1.73) (1.36) (1.36) (1.44) (1.44) (2.69) (2.70) (1.67) (1.76) 

 

Avg._Exp. 0.0014* 0.0006 0.0007 0.0007 0.0003 0.0003 0.0005 0.0005 0.0005 0.0005 

  (.0006) (.0007) (.0005) (.0005) (.0005) (.0005) (.0006) (.0006) (.0006) (.0007) 

 

α   4.813*     1.718* 1.716* 2.803* 2.902*

   (.516)     (.229) (.230) (.781) (.834) 

 

                           Splitting Model 

  ───────────────────────────────────────────────────────────────────────────────── 

Constant     1.957* 1.199*   3.148* 1.830 

      (.326) (.193)   (1.017) (.616) 

 

Age      -0.024* -0.015*   -0.112* -0.065*

      (.009) (.005)   (.040) (.023) 

 

Income      -0.073 -0.043   -0.194 -0.132 

      (.087) (.053)   (.324) (.207) 

 

Own_Rent     0.395 0.235*   0.898* 0.553 

      (.179) (.105)   (.450) (.286) 

 

Self_Empl.     -0.081 -0.045   0.163 .098 

      (.288) (.174)   (.769) .489) 

 

Depndt      -0.203 -0.013   -0.054 -0.028 

      (.125) (.075)   (.342) (.216) 
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Inc._per     -0.005 -0.004   -0.036 -0.023 

      (.121) (.073)   (.396) (.253) 

 
τ    0.856* 0.520*   -0.088 -0.052 

    (.108) (.066)   (.392) (.244) 

 

Log-L  -1367.5 -1028.3 -1134.5 -1134.7 -1083.6 -1083.5 -1029.8 -1029.8 -1020.6 -1020.7 

 

V    23.30 23.21 24.98 24.99 3.899 3.899 2.822 2.573 

 

N
^
0  980 1070 898 899 1064 1063 1074 1073 1047 1049 

 
*Larger than two times the estimated asymptotic standard error. 

──────────────────────────────────────────────────────────────────────────────────────────────────── 
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 Moving through the table, it is obvious that in all cases, the additional generality of the negative 

binomial model over the Poisson is called for, even when the clustering at zero is accounted for by the ZIP 

model.  Compare, for examples, the diagnostic statistics in columns 3 and 7, 4 and 8, 5 and 9, and 6 and 10.  

Likewise, the ZIP(τ) model, which parameterizes the splitting phenomenon with a single parameter, appears 

to be inferior to the more general specifications.  (The comparison is between columns 3 and 5 and between 

4 and 6 for the Poisson model and between 7 and 9 then 8 and 10 for the negative binomial models.)  The 

ZIP model appears to be preferable; one would expect that given its greater number of parameters.  The 

models are not nested unless the variables in the splitting equation are the same as those in the regression, in 

which case, the restriction is that the parameters in the splitting equation all be the same proportion (τ) of 

their counterparts in the regression.34

 For present purposes, the important question is whether the ZIP models in columns (7)-(10) provide 

any improvement over the basic negative binomial in column (2).  The log-likelihood functions are 

uniformly higher, but as noted earlier, since the models are not nested, these are not directly comparable.  

The Vuong statistic, however, is consistent with the observation.  In all cases, the statistic is well over two, 

which does imply that even with the striking improvement from column (1) (Poisson) to (2) (negative 

binomial), the ZIP specification sharpens the model even further.  It would appear from the diagnostic 

statistics that although the negative binomial does capture the cluster at zero well, it does so at the expense of 

the fit to the rest of the distribution.  The ZIP models in columns (9) and (10)  predict the number of zeros as 

well as the unaugmented model (the former slightly underpredicts while the latter slightly overpredicts) but 

apparently capture the shape of the distribution of observed values better at the same time.  Once again, the 

broader parameterization probably explains this. 

 Table 4 presents estimates of the sample selection models.  The probit model is given in the first 

column.  The coefficients are in line with expectations, with the only exception being the sign and magnitude 

of the coefficient on Active (the number of active credit card accounts).  In fact, this variable is acting the 

way it should.  Major credit card vendors are reluctant to open additional accounts for individuals with many 

cards, since the expected profit from the account diminishes when it must compete 

 
     34This is the model estimated by Lambert (1992), though she did suggest the more general specification used here. 
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 ──────────────────────────────────────────────────────────────────────────────────────── 

 Table 4.  Parameter estimates for sample selection models. 
 Estimated standard errors in are parentheses. 
 ──────────────────────────────────────────────────────────────────────────────────────── 

     Poisson                           Negative Binomial 

    ─────────────────────────────       ──────────────────────────── 

    Base         ZIP(τ)       ZIP       Base        ZIP(τ)      ZIP 

    ─────────────────────────────       ──────────────────────────── 

           Regression Model 

    ──────────────────────────────────────────────────────────────── 

 Constant  -4.594       -2.878    -3.090       -4.594      -2.904    -4.190 

    (.467)       (.903)    (.928)       (.552)      (.121)    (.783) 
 

Income   -0.183        0.135     0.135        0.183       0.136     0.174 

    (.056)       (.072)    (.084)       (.075)      (.087)    (.085) 
 

Major    0.572        0.379     0.493        0.572       0.382     0.495 

    (.278)       (.255)    (.315)       (.312)      (.277)    (.330) 
 

Age    0.016        0.012     0.002        0.016       0.012     0.012 

    (.009)       (.010)    (.019)       (.011)      (.010)    (.015) 
 

Exp._Inc.   1.878        1.269     1.719        1.878       1.281     1.752 

    (1.29)       (1.99)    (2.28)       (2.40)      (2.02)    (2.56) 
 

Avg._Exp.  -.00002      .00003   -.00003     -.000007      .00003    .00002 

    (.0004)     (.0006)   (.0006)      (.0007)     (.0006)   (.0008) 
 

Mi    1.788        1.303     1.883        1.788       1.313     2.017 

    (.296)       (.479)    (.466)       (.436)      (.538)    (.489) 
 

α                                 1.211       0.001     0.875 

                                                          (.484)      (.285)    (.834) 

   Probit                         Splitting Model 

   ────── ──────────────────────────────────────────────────────────────── 

 Constant 0.542                           1.505                              1.189 

   (.184)                        (.903)                             (1.52) 
 

Age  -0.0086                        -0.021                             -0.016 

   (0..5)                         (.026)                             (.043) 
 

Income  0.092                          -0.036                              0.247 
   (.053)  

┌────────────────────┐
 (.186)                             (.420) 

 
Own_Rent 0.349   │ Probit Predictions │ -0.298                             -1.054 

   (.101)  ├────────────────────┤ (.316)                             (.821) 
 

Self_Empl. -0.021  
│       Predicted    │

 -0.195 

   (.163) 
 │Actual  0    1 Total│

 (.574)                             (1.37) 

 
Depndt  -0.131  

│   0   67  229   296│

  0.053                             -0.087 

   (.069) 

 │   1   17 1006  1023│

 (.216)                             (.500) 

 
Inc._per -0.015 

 │Total  84 1235  1319│

 -0.271                             -0.945 

   (.071)  

└────────────────────┘

 (.298)                             (1.16) 
 

Major  0.212 

   (.103) 
 

Cur._Add. -0.00041 

   (.0007) 
 

Active  -0.230 



Modified Poisson Models 
─────────────────────────────────────────── 
 

 28

   (.021) 
 τ                       -0.331                             -0.320 

                        (.277)                             (.444) 

 Log-L  -577.1   -394.2      -387.7    -385.1       -386.9      -387.7    -383.0 

 V                         7.94      5.61                     1.21      1.51 

 N
^
0              918         927       917          923         917       912 

 ──────────────────────────────────────────────────────────────────────────────────────── 
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iz

with many other vendors. 

 The regression and ZIP models for the selected data are, as expected, quite different from the full 

sample.  As before, the base Poisson model (column (2)) would be rejected in favor of the base negative 

binomial model (column (5)), based on the likelihood ratio test.  But, unlike the previous case, the negative 

binomial does not predict the zero outcome noticeably better than the Poisson model.  Moreover, unlike our 

previous case, the ZIP models appear to be acting as surrogates for the negative binomial model (or vice 

versa).  In columns (3) and (4), we see that the V statistic clearly favors the ZIP models over the simple 

Poisson model.  However, as noted above, the data also support the negative binomial model over the 

Poisson.  In the context of the negative binomial models (columns (6) and (7)), the ZIP specification appears 

to offer no additional fit to the data.  The V statistics for the last two models are only slightly larger than 1.0, 

and do not favor the ZIP models over the base case.  Note that the overdispersion parameter in the ZIP 

models is no longer statistically significant, and in the ZIP(τ) case, its magnitude is trivial.  The log-

likelihood values suggest the same conclusion, namely that in the selected sample, it is difficult to 

distinguish between the two types of heterogeneity built into the model. 

 The data do support the sample selection model in all cases.  That is, the estimate of ρ is 

substantially larger than twice its standard error in all specifications.  But, the estimate of ρ seems to have 

the wrong sign. Consider that 

 

( )

i i i

i i i

i i

i ii i

 + x z M
i

 + x z M
i i

 x M
i i

Cov[ , ]  =  Cov[ ,E[ _ ]]y yz z

=  Cov[ , ]ez

=  E (  - ) ez

=  (1 - )  - 1 ,e e

′β ρ

′β ρ

′β ρ

⎡ ⎤Φ⎣ ⎦

⎡ ⎤Φ Φ ⎣ ⎦

 

 

which, since Mi is positive, has the same sign as ρ.  However, upon closer inspection, this is not the 

appropriate way to view the force of the model.  Since ρ is the coefficient on Mi in the model, it carries the 

effect of increases in Mi on E[yi│xi,wi].  Increases in Mi are associated with increases in the expected number 

of delinquencies.  But, dMi/dΦi is negative, so increases in the expected number of delinquencies are 

associated with decreases in the probability of obtaining the credit card, which is what one would expect.  
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This outcome persists in all specifications of the model that we examined.  It is interesting that essentially the 

same result occurred in Boyes, et al. (1990) in their model of consumer bank loan default (a zero one 

outcome) and in Greene (1992) in his model of credit card default using this same data set.  In both of these 

cases, a sample selection model based on a cardholder equation similar to the one above for the sampling 

procedure is applied to a model of loan default, which is clearly related to what we are examining here.   

5   Conclusions 

 We have presented several modifications of the Poisson regression model.  Most of these depart 

from received specifications, though our ZIP model is a bit more general than those that appear in some 

other applications. 

 The use of Vuong's statistic to test the specification seems not to have appeared in the received 

literature.  It remains for further work to see if the power of this test is comparable to that of the more 

familiar procedures, which are targeted more directly to the variance of the distribution being modelled.  The 

importance of this to the current study is that the ZIP specification produces overdispersion, but only as a 

consequence of its transformation of the Poisson model into some other distribution.  Thus, a test which is 

targeted specifically toward the variance of the distribution would seem to be misdirected.  In this sense, an 

analogy to the Bowman and Shenton(1972) (skewness and kurtosis) test for normality seems appropriate.  

We conjecture that the Vuong testing procedure offers some real potential for testing the distributional 

assumption in this discrete data context.  In the cases examined, it appeared to perform well and in line with 

expectations.  Whether it shows similar promise in continuous data settings remains to be seen. 

 Our sample selection model is constructed somewhat differently from the conventional continuous 

choice settings.  To maintain the strict analogy, one might have departed from the following specification: 
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*
i i i i

*
i i

i i ii

i 2i i i i i

  =   + ,  ~ N(0,1),u uz w

  =  1(  > 0)z z

_  ~ Poisson( _ )y

log( _ )  =   + , ( , ) ~ (0,0, ,1, ).ux N

′α

ε λ ε

′β σ ρλ ε ε ε

 

 

In the selected sample, it follows, then, that 

 i i iiE[lo ig(E[ _ ])_  = 1]  =   + .y x z x M′β ρσ   

This may be a bit closer to the orthodoxy than our specification, but this remains to be seen.  In the 

continuous choice case, the interesting results surround E[yi│xi,zi=1], not E[log(E[yi│xi])│zi=1], which is 

something very different.  Moreover, the latter specification precludes both the Poisson and negative 

binomial distributions for the marginal distribution of yi.  Details on the nature of the marginal distribution, 

the exact form of E[yi│xi,zi=1], and an estimation strategy for this model remain to be worked out.  The two 

directions suggested here, our selection model or the orthodox approach detailed above, should provide 

appropriate directions for continued work on a wholly satisfactory approach to the sample selection problem 

for count data models. 
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