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Abstract

We consider the problem of finding a low–rank approximate solution to a system of linear
equations in symmetric, positive semidefinite matrices. Specifically, let A1, . . . , Am ∈ Rn×n

symmetric, positive semidefinite matrices, and let b1, . . . , bm ≥ 0. We show that if there
exists a symmetric, positive semidefinite matrix X to the following system of equations:

Ai •X = bi for i = 1, . . . , m

then for any fixed d = 1, . . . , O(log m), there exists an X0 º 0 of rank at most d such that:

β · bi ≤ Ai •X0 ≤ α · bi for i = 1, . . . ,m

where:

α = 1 + O

(
log m

d

)
, β =





Ω
(
m−2/d

)
for d = O

(
log m

log log m

)

Ω
(
(log m)−3 log m/(d log log m)

)
otherwise

Moreover, such an X0 can be found in randomized polynomial time. This complements a
result of Barvinok [2] and provides a unified treatment of and generalizes several results in
the literature [3, 6, 7, 8].

1 Introduction

In this note we consider the problem of finding a low–rank approximate solution to a system of
linear equations in symmetric, positive semidefinite (psd) matrices. Specifically, let A1, . . . , Am ∈
Rn×n be symmetric psd matrices, and let b1, . . . , bm ≥ 0. Consider the following system of linear
equations:

Ai •X = bi for i = 1, . . . , m; X º 0, symmetric (1)

It is well–known [1] (see also [2, 9]) that if (1) is feasible, then there exists a solution X º 0
of rank no more than

√
2m. However, in many applications, such as graph realization [10] and
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dimension reduction [7], it is desirable to have a low–rank solution, say, a solution of rank at
most d, where d ≥ 1 is fixed. Of course, such a low–rank solution may not exist, and even if
it does exist, one may not be able to find it efficiently. Thus, it is natural to ask whether one
can efficiently find an X0 º 0 of rank at most d (where d ≥ 1 is fixed) such that X0 satisfies (1)
approximately, i.e.:

β(m,n, d) · bi ≤ Ai •X0 ≤ α(m, n, d) · bi for i = 1, . . . , m (2)

for some functions α ≥ 1 and β ∈ (0, 1]. The quality of the approximation will be determined
by how close α and β are to 1. Our main result is the following:

Theorem 1 Let A1, . . . , Am ∈ Rn×n be symmetric psd matrices, and let b1, . . . , bm ≥ 0. Suppose
that there exists an X º 0 such that Ai • X = bi for i = 1, 2, . . . , m. Let r = min{√2m,n}.
Then, for any d ≥ 1, there exists an X0 º 0 with rank(X0) ≤ d such that:

β(m,n, d) · bi ≤ Ai •X0 ≤ α(m,n, d) · bi for i = 1, . . . , m

where:

α(m, n, d) =





1 +
12 log(4mr)

d
for 1 ≤ d ≤ 12 log(4mr)

1 +

√
12 log(4mr)

d
otherwise

(3)

and

β(m,n, d) =





1
5e
· 1
m2/d

for 1 ≤ d ≤ 2 log m

log log(2m)
1
4e
· 1
logf(m)/d(2m)

for
2 log m

log log(2m)
< d ≤ 4 log(4mr)

1−
√

4 log(4mr)
d

for d > 4 log(4mr)

(4)

and f(m) = 3 log m
log log(2m) . Moreover, such an X0 can be found in randomized polynomial time.

Remarks:

(a) From the definition of r, we see that the bounds above can be made independent of n and
the ranks of A1, . . . , Am.

(b) Note that f(m)/d ≤ 3/2 in the region d > 2 log m
log log(2m) .

(c) If max1≤i≤m rank(Ai) = O(1), then the lower bound can be sharpened to Ω
(
m−2/d

)
for all

d ∈ {1, . . . , 4 log(4mr)}; see the proof of Proposition 2.

(d) The constants can be improved if we only consider one–sided inequalities.

It turns out that Theorem 1 provides a unified treatment of and generalizes several results in
the literature:
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(a) (Metric Embedding) Let `m
2 be the space Rm equipped with the Euclidean norm, and let

`2 be the space of infinite sequences x = (x1, x2, . . .) of real numbers such that ‖x‖2 ≡(∑
j≥1 |xj |2

)1/2
< ∞. Given an n–point set V = {v1, . . . , vn} in `m

2 , we would like to
embed it into a low–dimensional Euclidean space as faithfully as possible. Specifically, we
say that a map f : V → `2 is an D–embedding (where D ≥ 1) if there exists a number
r > 0 such that for all u, v ∈ V , we have:

r · ‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ D · r · ‖u− v‖2

The goal is to find an f such that D is as small as possible. It is known [3, 7] that for
any fixed d ≥ 1, an O

(
n2/d

(
d−1 log n

)1/2
)
–embedding into `d

2 exists. We now show how

to derive this result from Theorem 1. Let ei be the i–th standard basis vector in `d
2, and

define Eij = (ei − ej)(ei − ej)T for 1 ≤ i < j ≤ n. Let U be the m× n matrix whose i–th
column is the vector vi, where i = 1, . . . , n. Then, it is clear that the matrix X = UT U
satisfies the following system of equations:

Eij •X = ‖vi − vj‖2
2 for 1 ≤ i < j ≤ n

Now, Theorem 1 implies that we can find an X0 º 0 of rank at most d such that:

Ω
(
n−4/d

)
· ‖vi − vj‖2

2 ≤ Eij •X0 ≤ O

(
log n

d

)
· ‖vi − vj‖2

2 for 1 ≤ i < j ≤ n

Upon taking the Cholesky factorization X0 = UT
0 U0, we recover a set of points u1, . . . , un ∈

`d
2 such that:

Ω
(
n−2/d

)
· ‖vi − vj‖2 ≤ ‖ui − uj‖2 ≤ O

(√
log n

d

)
· ‖vi − vj‖2 for 1 ≤ i < j ≤ n

as desired. We should point out that by using different techniques, Matoušek [7] was able
to show that in fact an Θ(n)–embedding into `d

2 exists for the cases where d = 1, 2.

We remark that if we do not restrict the dimension of the range of f , then by the Johnson–
Lindenstrauss lemma [3, 4], for any ε > 0, there exists an (1 + ε)–embedding of V into
`d
2, where d = O(ε−2 log n). In [2, Chapter V, Proposition 6.1], Barvinok generalizes this

result and shows that if the assumptions of Theorem 1 are satisfied, then for any ε ∈ (0, 1)
and d ≥ 8ε−2 log(4m), there exists an X0 º 0 of rank at most d such that:

(1− ε)bi ≤ Ai •X0 ≤ (1 + ε)bi for i = 1, . . . ,m

Thus, Theorem 1 complements Barvinok’s result and generalizes the corresponding results
in the study of bi–Lipschitz embeddings into low–dimensional Euclidean space [3, 7].

(b) (Quadratic Optimization with Homogeneous Quadratic Constraints) Consider the following
optimization problems:

v∗maxqp = maximize xT Ax

subject to xT Aix ≤ 1 i = 1, . . . , m
(5)

v∗minqp = minimize xT Ax

subject to xT Aix ≥ 1 i = 1, . . . , m
(6)
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where A1, . . . , Am are symmetric positive semidefinite matrices. Both of these problems
arise from various applications (see [6, 8]) and are NP–hard. Their natural SDP relaxations
are given by:

v∗maxsdp = maximize A •X

subject to Ai •X ≤ 1 i = 1, . . . , m
X º 0

(7)

v∗minsdp = minimize A •X

subject to Ai •X ≥ 1 i = 1, . . . , m
X º 0

(8)

It is clear that if X = xxT is a rank–1 feasible solution to (7) (resp. (8)), then x is a feasible
solution to (5) (resp. (6)). Now, let X∗

maxsdp be an optimal solution to (7). It has been
shown in [8] that one can extract a rank–1 matrix X0 from X∗

maxsdp such that (i) X0 is

feasible to (7) and (ii) A •X0 ≥ Ω
(

1
log m

)
· v∗maxqp. We now derive a similar result using

Theorem 1. By definition, the matrix X∗
maxsdp satisfies the following system:

A •X∗
maxsdp = v∗maxsdp, Ai •X∗

maxsdp = bi ≤ 1 for i = 1, . . . , m

As we shall see from the proof of Theorem 1, one can find a rank–1 matrix X ′
0 º 0 such

that:
E

[
A •X ′

0

]
= v∗maxsdp, Ai •X ′

0 ≤ O(log m) · bi for i = 1, . . . , m

It follows that the matrix X0 = Ω
(

1
log m

)
·X ′

0 º 0 is feasible to (7), and that E [A •X0] =

Ω
(

1
log m

)
· v∗maxsdp ≥ Ω

(
1

log m

)
· v∗maxqp.

In a similar fashion, if X∗
minsdp is an optimal solution to (8), then one can extract a

rank–1 matrix X ′
0 º 0 from X∗

minsdp such that X0 = O(m2) · X ′
0 is feasible for (8) and

E [A •X0] = O(m2) · v∗minqp, thus recovering a result of Luo et al. [6].

In [6] the authors also consider a complex version of (5) and (6), in which the matrices
A and Ai are complex Hermitian and the components of the decision vector x can take
on complex values. They show that if X∗

maxsdp (resp. X∗
minsdp) is an optimal solution to

the corresponding SDP relaxation (7) (resp. (8)), then one can extract a complex rank–1
solution that achieves Ω

(
1

log m

)
(resp. O(m)) times the optimum value. Our result shows

that these bounds are also achievable for the real version of (7) and (8) if we allow the
solution matrix to have rank at most 2.

2 Proof of the Main Result

We first make some standard preparatory moves (see, e.g., [2, 6, 8]). Let X º 0 be a solution to
the system (1). By a result of Barvinok [1] and Pataki [9], we may assume that r0 ≡ rank(X) <
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√
2m. Let X = UUT for some U ∈ Rn×r0 , and set A′i = UT AiU ∈ Rr0×r0 , where i = 1, . . . ,m.

Then, we have A′i º 0, rank(A′i) ≤ min{rank(Ai), r0}, and

bi = Ai •X =
(
UT AiU

) • I = A′i • I = Tr(A′i)

Moreover, if X ′
0 º 0 satisfies the inequalities:

β(m,n, d) · bi ≤ A′i •X ′
0 ≤ α(m, n, d) · bi for i = 1, . . . , m

then upon setting X0 = UX ′
0U

T º 0, we see that rank(X0) ≤ rank(X ′
0), and

Ai •X0 =
(
UT AiU

) •X ′
0 = A′i •X ′

0

i.e. X0 satisfies the inequalities in (2). Thus, in order to establish Theorem 1, it suffices to
establish the following:

Theorem 1’ Let A1, . . . , Am ∈ Rn×n be symmetric psd matrices, where n <
√

2m. Then, for
any d ≥ 1, there exists an X0 º 0 with rank(X0) ≤ d such that:

β(m,n, d) · Tr(Ai) ≤ Ai •X0 ≤ α(m,n, d) · Tr(Ai) for i = 1, . . . ,m

where α(m,n, d) and β(m,n, d) are given by (3) and (4), respectively.

The proof of Theorem 1’ relies on the following estimates of a chi–square random variable.

Proposition 1 Let ξ1, . . . , ξn be i.i.d. standard Gaussian random variables. Let α ∈ (1,∞) and
β ∈ (0, 1) be constants, and set Un =

∑n
i=1 ξ2

i . Note that Un ∼ χ2
n. Then, the following hold:

Pr
(
Un ≥ α2n

) ≤
[
α exp

(
1− α2

2

)]n

= exp
[n

2
(
1− α2 + 2 log α

)]
(9)

Pr
(
Un ≤ β2n

) ≤
[
β exp

(
1− β2

2

)]n

= exp
[n

2
(
1− β2 + 2 log β

)]
(10)

Proof To establish (9), we let t ∈ [0, 1/2) and compute:

Pr
(
Un ≥ α2n

)
= Pr

{
exp

[
t
(
Un − α2n

)] ≥ 1
}

≤ E [
exp

[
t
(
Un − α2n

)]]
(by Markov’s inequality)

= exp
(−tα2n

) · (E [
exp

(
tξ2

1

)])n (by independence)

= exp
(−tα2n

) · (1− 2t)−n/2

Let f : [0, 1/2) → R be given by f(t) = exp
(−tα2n

) · (1− 2t)−n/2. Then, we have:

f ′(t) = − exp
(−tα2n

)
α2n(1− 2t)−n/2 + exp

(−tα2n
)
n(1− 2t)−(n/2+1)

and hence f is minimized at t∗ =
(
1− α−1

)
/2. Note that t∗ ∈ (0, 1/2) whenever α ∈ (1,∞).

Thus, we conclude that:

Pr
(
Un ≥ α2n

) ≤ f (t∗) =
[
α exp

(
1− α2

2

)]n
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To establish (10), we proceed in a similar fashion. For t ≥ 0, we have:

Pr
(
Un ≤ β2n

)
= Pr

{
exp

[
t
(
β2n− Un

)] ≥ 1
}

≤ E [
exp

[
t
(
β2n− Un

)]]
(by Markov’s inequality)

= exp
(
tβ2n

) · (E [
exp

(−tξ2
1

)])n (by independence)

= exp
(
tβ2n

) · (1 + 2t)−n/2

Now, let f : [0,∞) → R be given by f(t) = exp
(
tβ2n

) · (1 + 2t)−n/2. Then, we have:

f ′(t) = exp
(
tβ2n

)
β2n(1 + 2t)−n/2 − exp

(
tβ2n

)
n(1 + 2t)−(n/2+1)

and hence f is minimized at t∗ =
(
β−2 − 1

)
/2. Moreover, we have t∗ > 0 whenever β < 1. It

follows that:

Pr
(
Un ≤ β2n

) ≤ f (t∗) =
[
β exp

(
1− β2

2

)]n

as desired. tu
In the sequel, let d ≥ 1 be a given integer. Consider the following randomized procedure for
generating an X0 º 0 of rank at most d:

Algorithm 1 Procedure GenSoln

Input: An integer d ≥ 1.
Output: An psd matrix X0 of rank at most d.
1: generate i.i.d. Gaussian random variables ξj

i with mean 0 and variance 1/d, and define
ξj = (ξj

1, . . . , ξ
j
n), where i = 1, . . . , n; j = 1, . . . , d

2: return X0 =
∑d

j=1 ξj
(
ξj

)T

We remark that the above procedure is different from those in [6, 8]. Let X0 º 0 be the output
of GenSoln. The following propositions form the heart of our analysis.

Proposition 2 Let H ∈ Rn×n be a symmetric positive semidefinite matrix. Consider the spectral
decomposition H =

∑r
k=1 λkvkv

T
k , where r = rank(H) and λ1 ≥ λ2 ≥ · · · ≥ λr > 0. Set

λ̄k = λk/(λ1 + · · ·+ λr). Then, for any β ∈ (0, 1), we have:

Pr (H •X0 ≤ βTr(H)) ≤ r · exp
[
d

2
(1− β + log β)

]
≤ r · exp

[
d

2
(1 + log β)

]
(11)

On the other hand, if β satisfies eβ log r ≤ 1/5, then (11) can be sharpened to:

Pr (H •X0 ≤ βTr(H)) ≤
(√

5eβ

2

)d

(12)
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Proof We first establish (11). Let qk =
√

λk · vk. Then, we have H =
∑r

k=1 qkq
T
k . Observe that

qT
k ξj is a Gaussian random variable with mean 0 and variance σ2

k ≡ d−1
∑

l

(
qT
k el

)2, where el is
the l–th coordinate vector. Moreover, we have:

r∑

k=1

σ2
k =

1
d

r∑

k=1

∑

l

(
qT
k el

)2
=

1
d
· Tr(H) and E




d∑

j=1

(
qT
k ξj

)2


 = d · σ2

k

Hence, we conclude that:

Pr




d∑

j=1

(
qT
k ξj

)2 ≤ βdσ2
k


 = Pr (Ud ≤ βd) ≤ exp

[
d

2
(1− β + log β)

]
for k = 1, . . . , r

Now, observe that H •X0 =
∑r

k=1

∑d
j=1

(
qT
k ξj

)2. Hence, we conclude that:

Pr (H •X0 ≤ βTr(H)) ≤
r∑

k=1

Pr




d∑

j=1

(
qT
k ξj

)2 ≤ βdσ2
k


 ≤ r · exp

[
d

2
(1− β + log β)

]

To establish (12), we proceed as follows. Clearly, we have H • X0 =
∑r

k=1

∑d
j=1 λk

(
vT
k ξj

)2.
Now, observe that u =

(
vT
k ξj

)
k,j
∼ N (0, d−1Ird). Indeed, vT

k ξj is a Gaussian random variable,
as it is the sum of Gaussian random variables. Moreover, we have:

E
[
vT
k ξj

]
= 0 and E

[(
vT
k ξj

) (
vT
l ξj′

)]
=

1
d
· vT

k vl =
1
d
· 1{k=l}

It follows that H•X0 has the same distribution as
∑r

k=1

∑d
j=1 λkξ̃

2
kj , where ξ̃kj are i.i.d. Gaussian

random variables with mean 0 and variance 1/d. Now, we compute:

Pr (H •X0 ≤ βTr(H)) = Pr




r∑

k=1

d∑

j=1

λkξ̃
2
kj ≤ β

r∑

k=1

λk




= Pr




r∑

k=1

d∑

j=1

λ̄kξ̃
2
kj ≤ β




(
where λ̄k = λk

/ r∑

k=1

λk

)

Define:

p
(
r, λ̄, β

) ≡ Pr




r∑

k=1

d∑

j=1

λ̄kξ̃
2
kj ≤ β




Then, by Proposition 1, we have:

p
(
r, λ̄, β

) ≤ Pr




r∑

k=1

d∑

j=1

λ̄r ξ̃
2
kj ≤ β


 = Pr


d

r∑

k=1

d∑

j=1

ξ̃2
kj ≤

β

rλ̄r
· rd


 ≤

(
eβ

rλ̄r

)rd/2
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On the other hand, we have:

p
(
r, λ̄, β

) ≤ Pr




r−1∑

k=1

d∑

j=1

λ̄kξ̃
2
kj ≤ β


 ≤ Pr




r−1∑

k=1

d∑

j=1

λ̄k

1− λ̄r
ξ̃2
kj ≤

β

1− λ̄r




Now, observe that:
1

1− λ̄r

r−1∑

k=1

λ̄k = 1

whence:

p
(
r, λ̄, β

) ≤ p

(
r − 1,

λ̄1:r−1

1− λ̄r
,

β

1− λ̄r

)

It then follows from an easy inductive argument that:

p
(
r, λ̄, β

) ≤ min
1≤k≤r

{(
eβ

kλ̄k

)kd/2
}

(13)

Let α = p
(
r, λ̄, β

)2/d. Note that α ∈ (0, 1). By (13), we have λ̄k ≤
(
kα1/k

)−1
eβ for k = 1, . . . , r.

Upon summing over k and using the fact that
∑r

k=1 λ̄k = 1, we obtain:

r∑

k=1

1
kα1/k

≥ 1
eβ

(14)

If r = 1, then we have α ≤ eβ. Henceforth, we shall assume that r ≥ 2. Note that for any
α ∈ (0, 1), the function t 7→ (tα1/t)−1 is decreasing for all t ≥ 1, since we have:

d

dt

(
1

tα1/t

)
=

log α− t

t3α1/t
< 0

Hence, it follows that:

r∑

k=1

1
kα1/k

≤ 1
α

+
∫ r

1

1
tα1/t

dt =
1
α

+
∫ log(1/α)

log(1/α)
r

et

t
dt (15)

where we use the change of variable z = −t−1 log(1/α) in the last step. Using the expansion:

et

t
=

1
t

∑

j≥0

tj

j!
=

1
t

+
∑

j≥0

tj

(j + 1)!

8



we compute:
∫ log(1/α)

log(1/α)
r

et

t
dt = log r +

∑

j≥0

tj+1

(j + 1)(j + 1)!

∣∣∣
log(1/α)

log(1/α)
r

= log r +
∑

j≥0

logj+1(1/α)
(j + 1)(j + 1)!

(
1− 1

rj+1

)

≤ log r +
∑

j≥0

logj+1(1/α)
(j + 1)!

= log r +
1
α
− 1

≤ log r +
1
α

(16)

Upon combining (14), (15) and (16), we conclude that:

1
eβ

≤ 2
α

+ log r

which, together with the assumption that eβ log r ≤ 1/5, implies that α ≤ 5eβ/2. tu
Proposition 3 Let H ∈ Rn×n be a symmetric positive semidefinite matrix. Consider the spectral
decomposition H =

∑r
k=1 λkvkv

T
k , where r = rank(H) and λ1 ≥ λ2 ≥ · · · ≥ λr > 0. Then, for

any α > 1, we have:

Pr (H •X0 ≥ αTr(H)) ≤ r · exp
[
d

2
(1− α + log α)

]
(17)

Proof As before, let qk =
√

λk · vk. Then, using the arguments in the proof of Proposition 2,
we conclude that:

Pr




d∑

j=1

(
qT
k ξj

)2 ≥ αdσ2
k


 = Pr(Ud ≥ αd) ≤ exp

[
d

2
(1− α + log α)

]
for k = 1, . . . , r

Now, observe that H •X0 =
∑r

k=1

∑d
j=1

(
qT
k ξj

)2. Hence, we have:

Pr (H •X0 ≥ αTr(H)) ≤ r · exp
[
d

2
(1− α + log α)

]
(18)

as desired. tu
Proof of Theorem 1’ We first establish the upper bound. We write α = 1+α′ for some α′ > 0.
Using the inequality log(1 + x) ≤ x− x2/2 + x3/3, which is valid for all x > 0, it is easy to show
that:

1− α + log α = −α′ + log(1 + α′) ≤





−α′

6
for α′ ≥ 1

−α′2

6
for 0 < α′ < 1

(19)
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Let T = 12 log(4mn)
d . If T ≥ 1, then set α′ = T ; otherwise, set α′ =

√
T . In the former case, we

have α′ ≥ 1, and hence by Proposition 3 and the bound in (19), for each i = 1, . . . , m, we have:

Pr (Ai •X0 ≥ αTr(Ai)) ≤ rank(Ai) · exp
(
−dα′

12

)
≤ 1

4m

where the last inequality follows from the fact that rank(Ai) ≤ n. In the latter case, we have
α′ ∈ (0, 1), and a similar calculation shows that:

Pr (Ai •X0 ≥ αTr(Ai)) ≤ rank(Ai) · exp
(
−dα′2

12

)
≤ 1

4m

for each i = 1, . . . , m. Hence, we conclude that:

Pr (Ai •X0 ≤ α(m,n, d) · Tr(Ai) for all i = 1, . . . , m) ≥ 1− 1
4

=
3
4

(20)

where α(m, n, d) is given by (3). Next, we establish the lower bound. We consider the following
cases:

Case 1: 1 ≤ d ≤ 2 log m
log log(2m)

Let β =
(
5em2/d

)−1
in Proposition 2. Since r <

√
2m, we have:

eβ log r <
1

10m2/d
log 2m ≤ 1

10
<

1
5

by our choice of d. It follows that (12) of Proposition 2 applies, and we conclude that:

Pr (Ai •X0 ≤ βTr(Ai)) ≤
(

1
2

)d/2

· 1
m

for i = 1, . . . , m

Together with (20), we have:

Pr (βTr(Ai) ≤ Ai •X0 ≤ α(m,n, d) · Tr(Ai) for all i = 1, . . . , m) ≥ 3
4
−

(
1
2

)d/2

> 0

for all d ≥ 1.

Case 2: 2 log m
log log(2m) < d ≤ 4 log(4mn)

Suppose that d = k log m
log log(2m) for some k > 2. Let β =

(
4e log3/k(2m)

)−1
in Proposition 2. Upon

noting that m3/d = log3/k(2m) and using (11) of Proposition 2, we have:

Pr (Ai •X0 ≤ βTr(Ai)) ≤ rank(Ai) ·
(√

eβ
)d
≤ rank(Ai) ·

(
1
2

)d

· 1
m3/2

<
√

2 ·
(

1
2

)d

· 1
m

Together with (20), we have:

Pr (βTr(Ai) ≤ Ai •X0 ≤ α(m,n, d) · Tr(Ai) for all i = 1, . . . ,m) ≥ 3
4
−
√

2
(

1
2

)d

> 0

10



for all d ≥ 2.

Case 3: d > 4 log(4mn)
We write β = 1− β′ for some β′ ∈ (0, 1). Using the inequality log(1− x) ≤ −x− x2/2, which is
valid for all x ∈ [0, 1], we have:

1− β + log β = β′ + log(1− β′) ≤ −β′2

2

Let β′ =
(

4 log(4mn)
d

)1/2
. By assumption, we have β′ ∈ (0, 1). By (11) of Proposition 2, for each

i = 1, . . . , m, we have:

Pr (Ai •X0 ≤ βTr(Ai)) ≤ rank(Ai) · exp
(
−dβ′2

4

)
≤ 1

4m

It follows that:

Pr (βTr(Ai) ≤ Ai •X0 ≤ α(m,n, d) · Tr(Ai) for all i = 1, . . . ,m) ≥ 3
4
− 1

4
=

1
2

This completes the proof of Theorem 1’. tu

3 A Refinement

In this section we show how Theorem 1’ can be refined using the following set of estimates for a
chi–square random variable:

Fact 1 (Laurent, Massart [5]) Let ξ1, . . . , ξn be i.i.d. standard Gaussian random variables. Let
a1, . . . , an ≥ 0, and set:

|a|∞ = max
1≤i≤n

|ai|, |a|22 =
n∑

i=1

a2
i

Define Vn =
∑n

i=1 ai(ξ2
i − 1). Then, for any t > 0, we have:

Pr
(
Vn ≥

√
2|a|2t + |a|∞t2

)
≤ e−t2/2 (21)

Pr
(
Vn ≤ −

√
2|a|2t

)
≤ e−t2/2 (22)

Fact 1 allows us to use the condition number of the given matrix H to compute the deviation
probabilities in Propositions 2 and 3. To carry out this program, let us first recall some notations.
Let H be a symmetric positive semidefinite matrix. Define r = rank(H), and let K = λ1/λr

be the condition number of H, where λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the eigenvalues of H. Set
λ̄k = λk/(λ1 + · · ·+ λr). We then have the following proposition:

Proposition 4 The following inequalities hold:

(a) 1
r ≤ |λ̄|∞ ≤ K

r ;

(b) |λ̄|22 ≤ 1
r−1+K + K(K−1)

(r−1+K)2
;

11



(c)
√

1 + r−1
K2 · |λ̄|∞ ≤ |λ̄|2;

(d) |λ̄|22 ≤ K|λ̄|∞.

Proof

(a) The first inequality follows from the fact that
∑r

j=1 λ̄j = 1. To establish the second
inequality, suppose to the contrary that |λ̄|∞ > K/ri. Then, we have λ̄r > 1/r, whence∑r

j=1 λ̄j > (r − 1)/r + K/r > 1, which is a contradiction.

(b) Let λ̄r = x. Then, we have λ̄1 = Kx. To bound |λ̄|22, we first observe that for x < u ≤
v < Kx and ε ≥ min{u − x,Kx − v} > 0, we have (u − ε)2 + (v + ε)2 > u2 + v2. This
implies that the vector λ̄∗ that maximizes |λ̄|22 satisfies (r−1)λ̄∗r +Kλ̄∗r = 1, or equivalently,
λ̄∗r = 1

r−1+K . This in turn yields:

|λ̄|22 ≤
r − 1

(r − 1 + K)2
+

K2

(r − 1 + K)2
=

1
r − 1 + K

+
K(K − 1)

(r − 1 + K)2

as desired.

(c) We have:
|λ̄|22
|λ̄|2∞

= 1 +
r∑

j=2

λ̄2
j

λ̄2
1

≥ 1 +
r − 1
K2

as desired.

(d) We compute:

|λ̄|22
|λ̄|∞

= λ̄1 +
r∑

j=2

λ̄2
j

λ̄1
≤ λ̄1 + (r − 2)λ̄1 +

λ̄1

K2
≤ K

r

(
r − 1 +

1
K2

)
≤ K

where we use the fact that |λ̄|∞ = λ̄1 ≤ K/r in the second inequality.

tu
Using Fact 1 and Proposition 4, we obtain the following refinements to Theorem 1’:

Theorem 2 Under the setting of Theorem 1’ and the additional assumptions that mini ri =
Ω(log m) and K ≡ max1≤i≤m Ki = O(

√
r), the event:

{Ai •X0 ≥ Θ(1) · Tr(Ai) for i = 1, . . . ,m}

occurs with constant probability.
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Proof Using the fact that
∑r

k=1

∑d
j=1 λ̄k = d and setting t = 1−β√

2
·
√

d
|λ̄|2 , we conclude by (22)

that:

Pr




r∑

k=1

d∑

j=1

λ̄kξ̃
2
kj ≤ β


 = Pr





r∑

k=1

d∑

j=1

λ̄k

(
ξ̃2
kj −

1
d

)
≤ β − 1





= Pr





r∑

k=1

d∑

j=1

λ̄k

(
ξ̃2
kj −

1
d

)
≤ −

√
2|λ̄|2t





≤ exp
(
−(1− β)2

4
· d

|λ̄|22

)

≤ exp [−Ω(βri)]

Hence, by taking β = Θ(1), we conclude that:

Pr (Ai •X0 ≤ Θ(1) · Tr(Ai)) = O(1/m) for i = 1, . . . , m

which in turn implies the theorem. tu
Theorem 3 Under the setting of Theorem 1’ and the additional assumptions that mini ri =
Ω(log m) and K ≡ max1≤i≤m Ki = O(1), the event:

{Ai •X0 ≤ Θ(1) · Tr(Ai) for i = 1, . . . ,m}
occurs with constant probability.

Proof Using the arguments in the proof of Theorem 2, we see that:

Pr (H •X0 ≥ αTr(H)) = Pr





r∑

k=1

d∑

j=1

λ̄k

(
ξ̃2
kj −

1
d

)
≥ α− 1





Let

t =

√
|λ̄|22 + 2|λ̄|∞(α− 1)− |λ̄|2√

2|λ̄|∞
(23)

It then follows from (21) and the definition of t in (23) that:

Pr (H •X0 ≥ αTr(H)) ≤ exp
(−t2/2

)
(24)

Note that:

t =
1√
2
· |λ̄i|2
|λ̄i|∞

·
(√

1 + 2
|λ̄i|∞
|λ̄i|22

(α− 1)− 1

)
(by equation (23))

≥ 1√
2
·
√

1 +
ri − 1
K2

i

·



√
1 +

2(α− 1)
Ki

− 1


 (by Proposition 4(c),(d))

= Ω(
√

αri)
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Hence, by taking α = Θ(1), we conclude that:

Pr (Ai •X0 ≥ Θ(1) · Tr(Ai)) = O(1/m) for i = 1, . . . , m

which in turn implies the theorem. tu

4 Conclusion

In this note we have considered the problem of finding a low–rank approximate solution to a sys-
tem of linear equations in symmetric, positive semidefinite matrices. As we have demonstrated,
our result provides a unified treatment of and generalizes several results in the literature. A
main ingredient in our analysis is a set of tail estimates of a chi–squared random variable. We
believe that these estimates could be of independent interest.

As a further illustration of our techniques, suppose that we are given positive semidefinite ma-
trices Ak of rank rk, where k = 1, . . . ,K. Consider a knapsack semidefinite matrix equality:

K∑

k=1

Ak •Xk = b, Xk º 0 for k = 1, . . . ,K

Our goal is to find a rank–one matrix X0
k º 0 for each Xk such that:

β · b ≤
K∑

k=1

Ak •X0
k ≤ α · b

Then, our result implies that the distortion rates would be on the order of log(K(
∑

k rk)) as op-
posed to K(

∑
k rk) obtained from the standard analysis where the terms are treated as K(

∑
k rk)

independent equalities.

References

[1] Alexander I. Barvinok, Problems of Distance Geometry and Convex Properties of Quadratic
Maps, Discrete and Computational Geometry 13:189–202, 1995.

[2] Alexander Barvinok, A Course in Convexity, Graduate Studies in Mathematics Volume 54,
American Mathematical Society, 2002.

[3] Sanjoy Dasgupta, Anupam Gupta, An Elementary Proof of the Johnson–Lindenstrauss
Lemma, Technical Report TR–99–06, International Computer Science Institute, Berkeley,
CA, 1999.

[4] W. B. Johnson, J. Lindenstrauss, Extensions of Lipschitz Mapping into Hilbert Space, Con-
temporary Mathematics 26:189–206, 1984.

[5] B. Laurent, P. Massart, Adaptive Estimation of a Quadratic Functional by Model Selection,
The Annals of Statistics 28(5):1302–1338, 2000.

14



[6] Zhi–Quan Luo, Nicholas D. Sidiropoulos, Paul Tseng, Shuzhong Zhang, Approximation
Bounds for Quadratic Optimization with Homogeneous Quadratic Constraints, to appear in
SIAM Journal on Optimization, 2006.
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