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Abstract

We consider the economic lot-sizing (ELS) game with general concave ordering cost.

In this cooperative game, multiple retailers form a coalition by placing joint orders to a

single supplier in order to reduce ordering cost. When both the inventory holding cost

and backlogging cost are linear functions, it can be shown that the core of this game is

non-empty. The main contribution of this paper is to show that a core allocation can

be computed in polynomial time.

Our approach is based on linear programming (LP) duality and is motivated by

the work of Owen [19]. We suggest an integer programming formulation for the ELS

problem and show that its LP relaxation admits zero integrality gap, which makes it

possible to analyze the ELS game by using LP duality. We show that, there exists an

optimal dual solution that defines an allocation in the core.

An interesting feature of our approach is that it is not necessarily true that every

optimal dual solution defines a core allocation. This is in contrast to the duality

approach for other known cooperative games in the literature.
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1 Introduction

In the basic economic lot-sizing model (ELS), a retailer is facing a demand for a single

product that occurs during each of a consecutive time periods, which can be satisfied by

orders at that period or at pervious periods. The objective is to decide the order quantity at

each time period so that the demand is satisfied at a minimum total cost, including ordering

cost and inventory holding cost.

In a slightly more general model, referred to as ELS with backlogging, demand of a period

can be backlogged and be fulfilled by orders at later periods. At any period, the unfulfilled

demand incurs penalty cost, called backlogging cost. Throughout the paper, we assume that

backlogging is allowed.

We consider a situation where multiple retailers sell the same product, which is ordered

from a single manufacturer. In a decentralized system, each retailer would solve an ELS

problem. However, by exploiting economies of scale, the retailers may find it beneficial to

form coalitions and place joint orders. One important issue that we are concerned with is

how to allocate the cost or profit in such a way that is considered advantageous by all the

retailers, i.e., no retailer(s) gain more by deviating from the cooperation. This naturally

gives rise to a cooperative game, referred to as the ELS game, and the cost allocation we

are interested in can be studied by using concepts from the cooperative game theory. In this

paper, we mainly focus on the core of the ELS game.

A special case of the ELS game, where backlogging is not allowed and the ordering cost

includes a fixed setup cost and a linear cost, has been recently analyzed by van den Heuvel

et al. [30]. Specifically, they showed for this special case that the core is always nonempty by

invoking the well-known Bondareva-Shapley theorem [2, 24]. They also studied the concavity

of the ELS game.

In this paper, we focus on core allocations of the ELS game under general conditions.

Specifically, our model allows for backlogging and general concave ordering cost. We prove

the existence of a core allocation for the general ELS game. Our main contribution is to

show that an allocation in the core can be computed in polynomial time by solving a linear
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program. We would like to point out that this computational issue is not addressed by van

den Heuvel et al. [30], as the Bondareva-Shapley theorem, to some extent, provides only an

existence proof of a core allocation.

Our approach is based on linear programming (LP) duality, and is inspired by the

work of Owen [19], who used LP duality to show the non-emptiness of the core for a class

of linear production games. Owen’s approach has been applied and/or extended to other

cooperative games; see, for instance, Granot [10], Tamir [28], and Goemans and Skutella [9].

One scheme commonly seen in all these approaches is that one first formulates the underlying

optimization problem of the cooperative game as a linear program, and then use the dual

variables to define an allocation that can be proven in the core. In fact, for all these games,

the set of allocations defined by optimal dual variables, often referred to as Owen set, is

always a subset of the core (see Samet and Zemel [23] for the relationship between Owen set

and the core).

One may formulate the ELS problem with concave ordering cost as a facility location

problem. The LP relaxation of such a formulation always has an integral solution, i.e., there

is no integrality gap between the integer program and its LP relaxation. This fact allows

us to show the existence of a core allocation of the ELS game by directly applying Owen’s

approach. However, the size of the LP relaxation is not necessarily polynomial in the input

of the game. Thus, this approach does not provide a polynomial time algorithm for finding

a core allocation of the ELS game with general concave ordering cost. Instead, we suggest

an alternative integer programming formulation for the ELS problem whose LP relaxation

always has an integral solution as well.

We would like to point out an interesting feature of our approach, that is in contrast to

the duality approach for other known cooperative games in the literature. On the one hand,

allocations defined by some optimal solutions to the dual of the LP relaxation may not be in

the core of the ELS game. On the other hand, there always exists an optimal dual solution

that defines an allocation in the core, which can be found in polynomial time.

Our analysis is based on the fact that there always exists an optimal dual solution that
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has certain monotonicity. Such a property is quite intuitive and might be interesting on its

own.

The topic of this paper also falls into a stream of recent research on applying cooperative

game theory in the area of inventory management. One type of such games is related to

inventory centralization under demand uncertainty [11, 12]. In the simplest model, which is

called the newsvendor game [13], we consider a set of retailers, who face random demands of

a single product. The retailers place a joint order before observing the demands, and after

the demands are realized, the inventory is optimally allocated to the retailers. Hartman et

al. [13] first show that under certain condition of the demand distribution, the newsvendor

game has a non-empty core. This result is subsequently generalized by a series of recent

papers: by Müller et al. [18], Slikker et al. [25], Slikker et al. [26], and Ozen et al. [20].

Finally, Chen and Zhang [5] unified and generalized these existence results by using duality

of stochastic linear programming, and suggest a way to compute an allocation in the core.

Another type of inventory games has been studied by Meca et al. [17], which is closely

related to the game studied in our paper. In both games, the retailers cooperate in order to

reduce ordering cost. The major difference is that, in the game studied in [17], the underlying

optimization problem is the Economic Ordering Quantity (EOQ) model, while in ours it is

the ELS model. More general models have recently been studied by Dror and Hartman [7],

and Anily and Haviv [1].

2 Preliminaries

2.1 Cooperative Games

Here we briefly introduce some basic concepts of cooperative game theory that will be used in

this paper; see Peleg and Sudhölter [21] for more details. Let N = {1, 2 · · · , n} be the set of

players. A collection of players S ⊆ N is called a coalition. The set N is sometimes referred

to as the grand coalition. A characteristic cost function F (S) is defined for each coalition

S ⊆ N , which could be the minimum total cost that coalition S should pay if the members
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of S decide to secede from the grand coalition and cooperate only among themselves. A

cooperative game is determined by the pair (N,F ). For each subset S ⊂ N , the cooperative

game (S, F ) is called a subgame.

In cooperative games with transferable cost, the cost of a coalition S can be transferred

between the players of S. In such games a coalition S can be completely characterized by

F (S). The coalition is allowed to split the cost F (S) among its members in any possible

way.

A vector l = (l1, l2, · · · , lN) is called an allocation for the game (N,F ) if
∑

j∈N lj =

F (N). The core of a cooperative game is a solution concept which requires that no subset

of players has an incentive to secede.

Definition 1. An allocation l is in the core of the game (N, F ), if
∑

j∈N lj = F (N) and for

any subset S ⊆ N ,
∑

j∈S lj ≤ F (S).

There are several interesting questions related to the core of a cooperative game (N,F ).

In particular, we would like to know whether the core of (N, F ) is non-empty or not, and if

yes, how to design an algorithm to find a core allocation efficiently. The first question may

be answered by the Bondareva-Shapely theorem, which we introduce below.

We call any collection B of coalitions balanced if there exists a vector of positive weights

(λS : S ∈ B) such that ∑
S∈B:i∈S

λS = 1 ∀i ∈ N.

Here (λS : S ∈ B) is referred to as a vector of balancing weights. We call the game (N,F )

balanced if for any balanced collection of coalitions B and the corresponding balancing weights

(λS : S ∈ B), we have ∑
S∈B

λSF (S) ≥ F (N).

It is that, due to Bondareva [2] and Shapley [24], a cooperative game has a non-empty

core if and only if it is balanced. Thus, in order to show a cooperative game has a non-

empty core, it is sufficient to show the game is balanced by invoking the Bondareva-Shapley

theorem. However, in general this approach does not provide an efficient way to compute a
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core allocation. Finding core allocations efficiently often gives rise to interesting algorithmic

problems.

Another important concept in game is concavity. A cooperative game (N, F ) is called a

concave game if for every pair of subsets S, T ⊆ N , F (S)+F (T ) ≥ F (S ∪T )+F (S ∩T ). It

is well-known that the core of a concave game is always non-empty. Also, a core allocation

of a concave game can be computed in polynomial time by using ellipsoid algorithm for

linear programming. Moreover, every concave game has a population monotonic allocation

scheme, which is defined as follows.

Definition 2. (adopted from Sprumont [27]) A vector l = (lSi )i∈S,S⊂N is a population mono-

tonic allocation scheme of the cooperative game (N,F ) if and only if it satisfies the following

conditions:

• the vector (lSi )i∈S is in the core of the subgame (S, V ), and

• for all S ⊂ T ⊂ N , lSi ≥ lTi .

Intuitively, a population monotonic allocation scheme gives an allocation vector for each

subgame such that the cost allocation to each individual participating the subgame is non-

increasing with the set of players participating in the subgame.

For non-concave game, a population monotonic allocation scheme may still exist. But

finding such an allocation could be very challenging.

2.2 The Economic Lot-Sizing Problem

The basic economic lot-sizing model was proposed by Manne [16] and Wagner and Whitin

[31]. In this model, demand for a single product occurs during each of T consecutive time

periods numbered through 1 to T . The demand of a given time period can be satisfied

by orders at that period or at pervious periods, i.e., back-logging is not allowed. The

model includes ordering cost and inventory holding cost. The objective is to decide the

order quantity at each time period so that the demand is satisfied at a minimum total cost.
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Without loss of generality, we assume that the initial inventory is zero and lead time is also

zero.

The ELS model considered in this paper was proposed by Zangwill [33], which allows

that the demand of a period to be backlogged for some periods, provided that it is satisfied

eventually by orders at subsequent periods. At any period, the unfulfilled demand incurs

penalty cost refereed to as backlogging cost.

In order to present a mathematical formulation for the economic lot-sizing problem, we

introduce the following notations. In particular, for each t : 1 ≤ t ≤ T , define

• dt: the amount of demand in period t, which is assumed to be an integer;

• zt: the order quantity at period t, which is called an ordering period if zt > 0;

• I+
t : the amount of (non-negative) inventory at the end of period t;

• I−t : the amount of backlogged demand at period t;

• ct(zt): the cost of ordering zt units at period t;

• h+
t : the unit cost of holding inventory at the end of period t;

• h−t : the unit cost of having backlogged demand at period t.

The following mathematical formulation is sometimes called the flow formulation for the

economic lot-sizing problem:

C(d) := min
∑

1≤t≤T

{
ct(zt) + h+

t I+
t + h−t I−t

}

s.t. zt + I+
t−1 − I−t−1 = dt + I+

t − I−t ,∀ t = 1, . . . , T,

I+
0 = I−0 = 0,

zt ≥ 0, I+
t ≥ 0, I−t ≥ 0 ∀t = 1, . . . , T,

(1)

where d = (d1, d2, . . . , dT )T is a vector in RT , and the first constraint is the inventory balance

equation.
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We assume that the ordering cost function ct(·) is non-decreasing and concave with

ct(0) = 0. Under the concavity assumption, problem (1) is a concave minimization problem

over a polyhedron. Therefore, there exists an optimal solution that is an extreme point of

the polyhedron. It follows that, as proved by [33], there exists an optimal solution to (1)

with the following properties:

a): I+
t−1 > 0 implies zt = 0,

b): zt > 0 implies I−t = 0, and

c): I+
t−1 > 0 implies I−t = 0.

Define any period for which I+
t = I−t = 0 as a regeneration period. Then the above

properties imply that there exists an optimal solution to (1) such that there is always a

regeneration period between two ordering periods. An optimal solution with such structure

can be found in polynomial time [33].

2.3 The Economic Lot-Sizing Game

We consider a set of retailers N = {1, 2, · · · , n}, all of which sell the same product and face

an economic lot-sizing problem. For each i ∈ N , let di = (di
1, d

i
2, . . . , d

i
T ), where di

t is the

known demand of retailer i in time period t : 1 ≤ t ≤ T . We assume that the ordering cost,

inventory holding cost, and backlogging cost are independent of retailers.

The retailers can place orders individually, i.e., each of them solves an economic lot-

sizing problem separately to satisfy its own demand. They can also cooperate by placing

joint orders and keeping inventory at a central warehouse. For a collection of retailers S ⊂ N ,

the goal is to minimize the total cost for the coalition, while the aggregated demand being

satisfied.

As the ordering cost is a concave function of the ordering quantity, it is not hard to see

that it leads to cost reduction if the retailers place joint orders. Therefore, a cooperative

game can be defined in this setting. It is called the economic lot-sizing game (N, F ).

In this game, the grand coalition is the set of retailers N . For each subset S ⊆ N ,
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the characteristic cost function F (S) is defined by F (S) = C(dS), where C(·) is defined by

optimization problem (1), dS = (dS
1 , dS

2 , . . . , dS
T ), and dS

t =
∑

i∈S di
t for each 1 ≤ t ≤ T .

Although our main result for the economic lot sizing game is concerned with the case

where ct(·) is a general concave function, we are also interested in an important special class

of the economic lot sizing games, referred to as ELS games with setup cost. In this class of

games, the ordering cost function has a fixed cost component and a variable cost component,

that is, ct(zt) = Ktδ(zt) + ctzt where

δ(x) =





1, if x > 0;

0, otherwise.
(2)

Notice that this cost function is also commonly used in the literature on inventory theory.

2.4 Concavity of the Economic Lot-Sizing Game

Recall that we are interested in proving the non-emptiness of the core and finding an alloca-

tion in the core. It is well known that, for a concave game, the core is always nonempty, there

exist polynomial time algorithms to find an allocation in the core, and to check whether an

allocation is in the core or not. In other words, we have satisfactory answers to the questions

of interest when a cooperative game is concave. Therefore, it is natural to ask whether the

economic lot sizing game (N,F ) is concave or not.

van den Heuvel et al. [30] has shown that the economic lot-sizing game with setup cost

(not general concave ordering cost) is concave when T = 2 and is not concave when T ≥ 5.

We strengthen their result in the following theorem.

Proposition 1. The economic lot-sizing game (N, F ) is not concave when T ≥ 3.

Proof. It suffices to construct an example with T = 3 such that F (·) is not submodular.

In the following example, there are three players, i.e., N = {1, 2, 3}. The demands of the

players are given as

d1 = (1, 1, 1), d2 = (0, ε, 0), and d3 = (0, 0, ε).

9



We assume backlogging is not allowed. Also, we let the holding cost for every period be zero,

and the ordering costs are defined by (2), where

K1 = K2 = K3 = 3/2, c1 = 2, c2 = 1, and c3 = 0.

Under this cost structure, it is easy to verify that, for any demand (d1, d2, d3) with d1 > 0,

the optimal cost is

C(d1, d2, d3)

= K1 + c1d1+

min (c1(d2 + d3), K2 + c2(d2 + d3), c1d2 + K3 + c3d3, K2 + c2d2 + K3 + c3d3)

= 3/2 + 2d1 + min (2(d2 + d3), 3/2 + (d2 + d3), 3/2 + 2d2, 3 + d2) .

Therefore, for ε > 0 sufficiently small, we have

F ({1}) = C(1, 1, 1) = 7

F ({1, 2}) = C(1, 1 + ε, 1) = 7 + ε

F ({1, 3}) = C(1, 1, 1 + ε) = 7

F ({1, 2, 3}) = C(1, 1 + ε, 1 + ε) = 7 + 2ε,

which follows that

F ({1}) + F ({1, 2, 3}) > F ({1, 2}) + F ({1, 3}).

Thus, the game (V,N) is not concave. ¤

3 Existence of a Core Allocation

A necessary and sufficient condition for the non-emptiness of the core for a cooperative game

is given by the famous Bondareva-Shapley Theorem (see Peleg and Sudhölter [21]). van den

Heuvel et al. [30] apply this theorem to prove the core of the economic lot sizing game with

setup cost is nonempty. Contrary to the approach employed in van den Heuvel et al. [30],

we utilize the linear programming (LP) duality to show that the core of the economic lot

sizing game with general concave ordering cost function is nonempty.
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We first focus on the ELS games with setup cost, that is, the ordering cost function is

defined as ct(zt) = Ktδ(zt) + ctzt. In this case, it is well-known that the ELS problem can

be formulated as a facility location problem (see, for instance, Krarup and Bilde [14] for the

case without backlogging, and Pochet and Wolsey [22] for the case with backlogging).

Thus, for the ELS game with setup cost, the characteristic cost function F (S), for any

coalition S, is the optimal value of the following integer program:

F (S) := min
∑

1≤t≤T

∑
1≤τ≤T

dS
τ ptτλtτ +

∑
1≤t≤T

Ktyt

s.t. dS
τ

∑
1≤t≤T

λtτ = dS
τ , ∀τ = 1, . . . , T,

λtτ ≤ yt, ∀1 ≤ t, τ ≤ T,

λtτ , yt ∈ {0, 1}, ∀1 ≤ t, τ ≤ T,

(3)

where the coefficient ptτ is the cost of satisfying one unit demand at period τ by ordering

at period t, i.e., ptτ = ct +
∑τ−1

i=t h+
t if t ≤ τ , and ptτ = ct +

∑t−1
i=τ h−t if t > τ , the binary

indicator variable λtτ = 1 if and only if the demand at period τ is satisfied by the inventory

ordered at period t, and yt = 1 if and only if an order is placed at period t.

In the LP relaxation of problem (3), variables λtτ and yt are required to be non-negative,

rather than integral. It is well known that this LP relaxation has an optimal solution that

is integral (see Pochet and Wolsey [22]). This immediately leads to Theorem 1 below. The

proof of Theorem 1 is straightforward and is presented here for completeness.

For the grand coalition, i.e., when S = N , the dual of the LP relaxation of problem (3)

is

F (N) := max
∑

1≤τ≤T

dN
τ bτ

s.t.
∑

1≤τ≤T

dN
τ βtτ ≤ Kt, ∀t = 1, . . . , T,

bτ − βtτ ≤ ptτ , ∀1 ≤ t, τ ≤ T,

βtτ ≥ 0, ∀1 ≤ t, τ ≤ T.

(4)

Then we have

Theorem 1. Assume that b̄ = (b̄1, · · · , b̄T ) is an optimal solution to dual (4), then the
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allocation l = (l1, · · · , lN) defined by

lk =
T∑

t=1

b̄td
k
t

is in the core of the ELS game (N, F ) with setup cost. Therefore, a core allocation of the

ELS game (N,F ) with setup cost can be computed in polynomial time.

Proof. . By definition, ∑

k∈N

lk =
∑

1≤τ≤T

dN
τ b̄τ = F (N),

Also, notice that the optimal solution b̄ = (b̄1, · · · , b̄T ) to dual (4) is clearly feasible for the

dual of the LP relaxation of problem (3), which is the same as problem (4) with dN
τ being

replaced by dS
τ . Therefore, for any coalition S,

∑

k∈S

lk =
∑

1≤τ≤T

dS
τ b̄τ ≤ F (S),

which implies that l = (l1, · · · , lN) is in the core of the economic lot-sizing game (N, F ) with

setup cost. Obviously, this core allocation can be computed in polynomial time. ¤

Now we consider the ELS game with general concave ordering cost functions ct(·), 1 ≤
t ≤ T . For each t : 1 ≤ t ≤ T and each j = 0, 1, 2, · · · , define

ct(j) = ct(j + 1)− ct(j) and Kt(j) = ct(j)− ct(j)j

Then it is clear that, by the concavity of ct(·),

ct(z) = min
j=0,1,2,···

{Kt(j) + ct(j)z}.

Thus, for the ELS game with general concave ordering cost, the characteristic cost function

F (S), for any coalition S, is the optimal value of the following integer program:

F (S) := min
∑

1≤t≤T

∑
j∈OP

∑
1≤τ≤T

dS
τ pt(j),τλt(j),τ +

∑
1≤t≤T

∑
j∈OP

Kt(j)yt(j)

s.t. dS
τ

∑
1≤t≤T

∑
j∈OP

λt(j),τ = dS
τ , ∀τ = 1, . . . , T,

λt(j),τ ≤ yt, ∀1 ≤ t, τ ≤ T, j ∈ OP

λt(j),τ , yt ∈ {0, 1}, ∀1 ≤ t, τ ≤ T, j ∈ OP

(5)
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where OP = {j|j = 1, 2, · · · , DN =
∑T

t=1

∑
i∈N di

t}, pt(j),τ = ct(j) +
∑τ−1

i=t h+
t if t ≤ τ , and

pt(j),τ = ct(j) +
∑t−1

i=τ h−t if t > τ .

Therefore, we conclude that the ELS game with general concave ordering cost can be

reduced to the ELS game with setup cost. (It is known that a facility locaiton problem with

concave facility cost can be reduced to a facility location problem with setup cost; see, for

instance, Mahdian, Ye, and Zhang [15]). Theorem 1 implies that

Corollary 1. The core of the ELS game with general concave ordering cost is non-empty.

Remark 1. We studied the ELS game by using a facility location formulation for the

ELS problem. This relates the ELS game to the cooperative facility location game studied

by Goemans and Skutella [9]. Although these two games are closely related, we would like

to point out one difference between them. Roughly speaking, in the facility location game,

each demand point is a player of the game, while in the ELS game, each player may have

many demand points (demands of T periods).

Remark 2. Notice that in formulation (5), both the number of variables and the

number of constraints depend on the size of OP , which is not necessarily polynomial in the

number of periods T . Therefore, formulation (5) only gives us a pseudopolynomial time

algorithm for computing a core allocation for the ELS game with general concave cost. The

natural question is that is it possible to reduce the size of OP? For the ELS problem with

demand d = (d1, · · · , dT ), it is known that there exists an optimization solution so that

the size of each order is equal to the total demand of a number of consecutive periods.

This implies that for each concave function ct(zt), we are only interested in its values for

zt ∈ V := {z|z =
∑j

t=i dt for 1 ≤ i ≤ j ≤ T . It is clear that the size of V (d) is

O(T 2). Thus, for each coalition S of retailers, the size of OP in formulation (5) can be

reduced to O(T 2). However, notice that the set V (d) is dependent on the demand vector

d = (d1, · · · , dT ). Thus, for each coalition S, the set V (dS) is dependent on S, so is the set

OP . That is to say, if we solve the dual problem (5) for the grand coalition N , with the size

of OP being polynomial in T , it is not necessarily true that any optimal solution is feasible

to the dual problem (5) for a coalition S ⊂ N . Thus, the proof of Theorem 1 does not go
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through.

To summarize, in this section, we have shown the existence of a core allocation for

the ELS game with general concave ordering cost. However, finding a core allocation in

polynomial time still remains to be a challenging. This motivates us to take a different

approach, which will be discussed in the next section.

4 Computing a Core allocation

The main result of this section is to show that a core allocation for the ELS game with

general concave ordering cost can be computed in polynomial time. Our algorithm is based

on a new LP formulation for the ELS problem.

Here is the outline of our approach. First, we construct a natural 0−1 integer program-

ming formulation for problem (1) where ct(·) is a general concave cost function, and show

that an LP relaxation of this integer program has an optimal integral solution. The size

of the LP relaxation is polynomial in the size of the input. Second, we construct the dual

of this LP relaxation and use the optimal dual solutions of the dual to define allocations

of the economic lot sizing game. Third, we illustrate through counterexamples that these

allocations may not be in the core of the economic lot sizing game. Fourth, building upon

the insight gained from the counterexamples, we strengthen the dual by adding additional

inequalities, and show that allocations derived from the optimal solutions of strengthened

dual are in the core of the economic lot sizing game. It then follows that a core allocation

can be computed by solving an linear program whose size is polynomial in the input of the

game.

Before presenting the natural integer programming formulation, we introduce some no-

tations. For any 1 ≤ i ≤ j ≤ T , we define

dij =

j∑
t=i

dt,
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Cij(d) = min
l:i≤l≤j

{
cl(dij) +

l−1∑
t=i

h−t dit +

j∑

t=l+1

h+
t−1dtj

}
, (6)

and lij be an optimal solution to (6). The integer program is then formulated as follows.

min
∑

1≤i≤j≤T

Cij(d)xij

s.t. dl

∑

i≤l≤j

xij = dl,∀ l = 1, . . . , T,

xij ∈ {0, 1}.

(7)

Proposition 2. If ct(·) is a concave function for every 1 ≤ t ≤ T , then problem (7) and

problem (1) have the same optimal objective values.

Proof. Assume that (zt, I
+
t , I−t ) is an optimal solution to problem (1) with the property that

there is always a regeneration period between two ordering periods. Let

R = {t : 0 ≤ t ≤ T, I+
t = I−t = 0}

be the set of regeneration periods and for each t ∈ R, let n(t) be the smallest integer in R

such that n(t) > t if it exists, otherwise let n(t) = T + 1. By assumption, for each t ∈ R,

there exists exactly one ordering period between t and n(t), denoted by o(t). Then it is clear

that the optimal objective value of problem (1) is

∑
i∈R



co(i)(di+1,n(i)) +

o(i)−1∑
t=i+1

h−t dit +

n(i)∑

t=o(i)+1

h+
t−1dt,n(i)



 ≥

∑
i∈R

Ci+1,n(i)(d).

The right hand side of the above inequality can be represented as

∑
1≤i≤j≤T

Cij(d)xij,

where for each 1 ≤ i ≤ j ≤ T ,

xij =





1, if i− 1 ∈ R and j = n(i);

0, otherwise.

Notice that
∑

i≤t≤j xij = 1 holds for every t. It follows that the optimal value of problem

(7) is no more than C(d).
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On the other hand, assume that xij is an optimal solution to problem (7). For each pair

(i, j) with xij = 1, we let t̄ = lij and define zt̄ = dij, I−k = dik, I+
k = 0 for each k ≤ t̄ − 1,

and I−k = 0, I+
k = dk+1,j for each t̄ ≤ k ≤ j − 1. It can be easily verified that (zt, I

+
t , I−t )

satisfies the constraints of problem (1), and the corresponding objective value is equal to∑
1≤i≤j≤T

Cij(d)xij. This shows that C(d) ≤
∑

1≤i≤j≤T

Cij(d)xij. The proof is complete. ¤

We relax the 0− 1 constraints of problem (7) and obtain its LP relaxation as follows.

min
∑

1≤i≤j≤T

Cij(d)xij

s.t. dl

∑

i≤l≤j

xij = dl,∀ l = 1, . . . , T,

xij ≥ 0,

(8)

whose dual is

max
T∑

t=1

btdt

s.t.

j∑
t=i

btdt ≤ Cij(d), ∀1 ≤ i ≤ j ≤ T.

(9)

Here the dual variable bt can be interpreted as the price of satisfying one unit demand at

period t.

It turns out that the dual problem (9) admits a closed-form solution. In order to present

this optimal dual solution, we introduce another notation. Given T and the demand vector

d = (d1, · · · , dT ), for each 1 ≤ t ≤ T , we defined a T dimensional vector gt(d) as follows:

gt(d)i =





di, if 1 ≤ i ≤ t;

0, if t + 1 ≤ i ≤ T.

It is clear that gT (d) = d. For each 1 ≤ t ≤ T , we define

b∗t =
C(gt(d))− C(gt−1(d))

dt

, (10)

where the function C(·) is defined in the optimization problem (1). By definition, C(gt(d))

is the minimum cost to satisfy the demand from period 1 to period t. It is clear that b∗t ≥ 0

for every 1 ≤ t ≤ T . The following result essentially implies that there exists an optimal

0− 1 solution to the LP problem (8).
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Lemma 1. The solution (b∗t ) defined by (10) is optimal to the dual problem (9), and the

corresponding optimal dual value is equal to C(d).

Proof. First of all, we show that (b∗t ) is a feasible solution to problem (9). To that end, we

notice that for any 1 ≤ i ≤ j ≤ d,

j∑
t=i

b∗t dt

=

j∑
t=i

C(gt(d))− C(gt−1(d))

= C(gj(d))− C(gi−1(d))

≤ Cij(d),

where the last inequality holds since

C(gj(d)) ≤ C(gi−1(d)) + Cij(d), (11)

which in turn follows from the fact that the right hand side of (11) is the cost of a feasible

ordering policy to satisfy the demand from period 1 to period j (i.e., by ordering optimally

to satisfy the demand from period 1 and period i− 1, and ordering at a period in between i

and j to satisfy the total demand from period i to period j), while the left hand side of (11)

is the minimum cost to achieve that.

Moreover, the objective value of problem (9) associated with the solution (b∗t ) is

T∑
t=1

b∗t dt = C(gT (d)) = C(d),

which is the optimal objective value of the integer program (7). Then it follows from the

weak duality of LP, (b∗t ) must be an optimal solution to problem (9) with an objective value

of C(d). ¤

Now we solve the dual problem for the grand coalition, i.e., we solve the following
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problem, called grand dual problem,

max
T∑

t=1

btd
N
t

s.t.

j∑
t=i

btd
N
t ≤ Cij(d

N), ∀1 ≤ i ≤ j ≤ T.

(12)

Assume that b̄ = (b̄1, · · · , b̄T ) is an optimal solution to problem (12). We define an allocation

l = (l1, · · · , lN) as follows:

lk =
T∑

t=1

b̄td
k
t . (13)

The grand dual problem may have multiple optimal solutions (see the following exam-

ples). Given the conceptual similarity of our approach to the linear programming duality

approach to linear production games by Owen [19], it is legitimate to conjecture that l de-

rived from any optimal dual solution b̄ = (b̄1, · · · , b̄T ) is an allocation in the core. However,

the following examples indicate that this is not the case for our economic lot sizing game.

Interestingly, our examples illustrate that some of the optimal dual solutions do give rise to

core allocations while some other optimal dual solutions do not.

Example 1. We consider the game with three periods and two players, i.e., T = 3 and

N = {1, 2}. The demands of the players are given as

d1 = (10, 0, 6), d2 = (0, 2, 0)

We assume that backlogging is not allowed. We let the holding cost for every period be zero,

and the ordering costs are defined by Ktδ(zt) + ctzt, where

K1 = 5, K2 = 9, K3 = 8, c1 = 5, c2 = 0, and c3 = 8.

It is easy to verify that b̄ = (5.5, 4.5, 0) is an optimal solution to problem (12) with dN =

(10, 2, 6) and the associated allocation (55, 9) defined by (13) is in the core. Unfortunately,

it can also be verified that b̄ = (5.5,−23.5, 91
3
) is an optimal solution to problem (12) which

gives an allocation (111,−47). Notice that if these two player does not cooperate, and player

one orders at period 1 and period 2, then the cost that player one pays is 64 which is less

than 111. Therefore, the allocation (111,−47) is not in the core.

18



In Example 1, it seems that what makes the allocation (111,−47) not in the core is

the negativity of the dual variable b̄2. Lemma 1 suggests that there must exist a non-

negative optimal solution to problem (12). However, as illustrated in Example 2, adding

non-negativity constraints does not help in finding an allocation in the core.

Example 2. This example is the same as Example 1 except that we assume c2 = 1

here. Then it is easy to verify that b̄ = (5.5, 5, 11
6
) is optimal to problem (12) and provides

an allocation (62, 10), which is in the core. However, similar to Example 1, b̄ = (5.5, 0, 25
6
)

is optimal to problem (12) and defines an allocation (72, 0), which is clearly not in the core.

The above examples show that, unlike many other cooperative games studied in the

literature, we can not use an arbitrary dual optimal solution to find an allocation in the

core. Fortunately, as we shall prove below, one of the optimal dual solutions to (12) does

define an allocation in the core. To derive our main results, we notice that for every i ≤ j,

the dual constraint
j∑

t=i

btdt ≤ Cij(d) (14)

is equivalent to

j∑
t=i

btdt ≤ ck(dij) +
k−1∑
t=i

h−t dit +

j∑

t=k+1

h+
t−1dtj ∀k : i ≤ k ≤ j. (15)

We can further simplify (15) by introducing some notations.

Given a vector b = (b1, · · · , bT ), for any 1 ≤ i ≤ k ≤ j ≤ T , define

b−t (k) = bt −
k−1∑

l=t

h−l for each t ≤ k,

and

b+
t (k) = bt −

t−1∑

l=k

h+
l for each t ≥ k.

It is clear that b−k (k) = b+
k (k) = bk for any 1 ≤ k ≤ T . Then it is straightforward to verify

that, (15), and thus (14) is equivalent to

k−1∑
t=i

b−t (k)dt +

j∑

t=k

b+
t (k)dt ≤ ck(dij) ∀k : i ≤ k ≤ j. (16)
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Lemma 2. Assume bt − h−t ≤ bt+1 ≤ bt + h+
t for every 1 ≤ t ≤ T − 1. If (14) holds for

d = dN , then it also holds for any d = d′ ≤ dN .

Proof. Recall that (14), (15), and (16) are equivalent to each other. In order to prove the

lemma, it is sufficient to prove that if (16) holds for d = dN , then for every 1 ≤ l ≤ T , (16)

holds for d = d′ = dN − δel0 for some δ > 0 such that d′ ≥ 0, where el0 is the unit vector

with the l0th entry being one.

Consider a pair of indices i ≤ j. We show that (16) holds for i, j, k with i ≤ k ≤ j, and

d = d′. We assume without loss of generality that dN
j > 0 and dN

i > 0. If j < l0 or i > l0,

it is straightforward to show that (16) holds for d = d′. Hence, we focus on the case with

i ≤ l0 ≤ j. Since dN
i > 0 and dN

j > 0, we can choose δ > 0 such that min{dN
i , dN

j } ≥ δ.

Thus, dN
ij − δ ≥ max{dN

i+1,j, d
N
i,j−1}. Notice that if (16) holds for i ≤ j and d = dN , then the

concavity of ck(·) implies that

k−1∑
t=i

b−t (k)dN
t +

j−1∑

t=k

b+
t (k)dN

t + b+
j (k)(dN

j − δ) ≤ ck(d
N
ij − δ) ∀k : i ≤ k ≤ j.

It follows that

k−1∑
t=i

b−t (k)dN
t +

j∑

t=k

b+
t (k)dN

t − δb+
j (k) ≤ ck(d

N
ij − δ) ∀k : i ≤ k ≤ j. (17)

Similarly, we have

k−1∑
t=i

b−t (k)dN
t +

j∑

t=k

b+
t (k)dN

t − δb−i (k) ≤ ck(d
N
ij − δ) ∀k : i ≤ k ≤ j. (18)

Now consider any k such that i ≤ k ≤ j. By the assumption that bt − h−t ≤ bt+1 ≤ bt + h+
t

for every 1 ≤ t ≤ T − 1, we get b+
l0
(k) ≥ b+

j (k) when l0 > k and b−l0(k) ≥ b−i (k) when l0 ≤ k.
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If l0 > k, then,

ck(d
′
ij) = ck(d

N
ij − δ)

≥
k−1∑
t=i

b−t (k)dN
t +

j∑

t=k

b+
t (k)dN

t − δb+
j (k)

≥
k−1∑
t=i

b−t (k)dN
t +

j∑

t=k

b+
t (k)dN

t − δb+
l0
(k)

=
k−1∑
t=i

b−t (k)d′t +

j∑

t=k

b+
t (k)d′t,

where the first inequality follows from (17) and the second inequality follows from the fact

that b+
l0
(k) ≥ b+

j (k).

Similarly, if l0 ≤ k, then,

ck(d
′
ij) = ck(d

N
ij − δ)

≥
k−1∑
t=i

b−t (k)dN
t +

j∑

t=k

b+
t (k)dN

t − δb−i (k)

≥
k−1∑
t=i

b−t (k)dN
t +

j∑

t=k

b+
t (k)dN

t − δb−l0(k)

=
k−1∑
t=i

b−t (k)d′t +

j∑

t=k

b+
t (k)d′t,

where the first inequality follows from (18) and the second inequality follows from the fact

that b−l0(k) ≥ b−i (k).

Therefore, we have shown that (16) holds for d = d′, which completes the proof. ¤

Lemma 3. Assume that b̄ = (b̄1, · · · , b̄T ) is an optimal solution to problem (12). If b̄t−h−t ≤
b̄t+1 ≤ b̄t + h+

t for every 1 ≤ t ≤ T − 1, then the allocation l = (l1, · · · , lN) defined by

lk =
T∑

t=1

b̄td
k
t

is in the core of the economic lot-sizing game (N,F ).

Proof. Notice that for any S ⊆ N ,

∑

k∈S

lk =
∑

k∈S

T∑
t=1

b̄td
k
t =

T∑
t=1

b̄td
S
t .
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Therefore, by the definition of b̄,
∑

k∈N lk is equal to the optimal value of (12), and thus

equal to F (N) by using Lemma 1.

It remains to show
∑

k∈S lk ≤ F (S) for any S ⊆ N . By weak duality of linear program-

ming, it suffices to prove that b̄ is feasible to

j∑
t=i

b̄td
S
t ≤ Cij(d

S),

which is implied by Lemma 2. The proof is complete. ¤

The following lemma is key to prove our main result. It might be of independent interest

as well.

Lemma 4. Given any feasible solution b = (b1, · · · , bT ) to problem (9), we can construct in

polynomial time another feasible solution b̂ = (b̂1, · · · , b̂T ) with the same objective value such

that −h−t ≤ b̂t+1 − b̂t ≤ h+
t for every t : 1 ≤ t ≤ T − 1.

The proof of Lemma 4 is rather long and will be presented in the appendix. Now we

provide some intuition on the inequalities in the lemma. Recall that the dual variable bi

may be interpreted as the price of satisfying one unit of demand at period i. Notice that

the demand at period i + 1 can be either satisfied by orders after period i or by an order

before period i + 1. In the latter case, period i + 1 demand is satisfied by the inventory

carried over from period i to period i + 1 by paying a unit inventory holding cost h+
i . Thus,

it is reasonable to expect that the charge of a unit demand at period i + 1 is no more than

the charge of a unit demand at an period i plus the unit inventory holding cost h+
i . The

inequality b̂i+1 ≥ b̂i − h−i can be explained in a similar way.

Now we are ready to present the main result of this section.

Theorem 2. For the economic lot-sizing game (N, F ) with backlogging, and with general

nondecreasing concave ordering cost, linear inventory holding cost, and linear backlogging

cost, the core is always non-empty and an allocation in the core can be found in polynomial

time.

22



Proof. The non-emptiness of the core is a direct consequence of Lemma 4 and Lemma 3. In

order to show that an allocation in the core can be found in polynomial time, we notice that

by Lemma 4, an optimal solution to the following linear program

max
T∑

t=1

btd
N
t

s.t.

j∑
t=i

btd
N
t ≤ Cij(d

N), ∀1 ≤ i ≤ j ≤ T

bt ≥ bt+1 − h+
t , ∀1 ≤ t ≤ T − 1

bt ≤ bt+1 + h−t , ∀1 ≤ t ≤ T − 1

(19)

is also optimal to problem (12). In addition, problem (19) can be solved in polynomial time,

and any optimal solution of (19) satisfies the conditions of Lemma 3. ¤

Our approach allows us to compute allocations in the core in polynomial time. An

interesting and open question is whether the core allocations derived from our approach

allow us to construct a a population monotonic allocation scheme. Unfortunately, since

problem (19) may have multiple optimal solutions, it is not clear whether and how one

can choose the optimal dual solutions appropriately to construct a population monotonic

allocation scheme.

To illustrate the difficulty, we revisit Example 1. It is easy to verify that b̄ = (5.5, 4.5, 0)

is an optimal solution to problem (19) with dN = (10, 2, 6) and the associated allocation

(55, 9) is in the core. If one more player, player 3 with demand d3 = (0, 1, 0), joins the

game, we can verify that b̄ = (5.5, 1, 1) is an optimal optimal solution to problem (19) with

dN = (10, 3, 6) and the associated allocation (61, 2, 1) is in the core. It is interesting to

observe that the cost of player 1 actually increases while the cost of player 2 decreases. On

the other hand, b̄ = (5.5, 3, 0) is another optimal optimal solution to problem (19) with

dN = (10, 3, 6), which gives a core allocation (55, 6, 3). In this case, the cost allocations of

both player 1 and player 2 do not increase.
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5 Comparison of Different Formulations for the ELS

Game

Notice that for the ELS game with setup cost, both optimal solutions to (19) and (4) define

allocations in the core. It would be interesting to compare the set of optimal solutions of

(19) and (4).

Theorem 3. Consider the ELS game with setup cost. Let A1, A2, and A3 be the sets of

optimal solutions to problems (12), (19), and (4), respectively. Then A2 $ A3 $ A1.

Proof. First of all, notice that the constraint of (4) is equivalent to

∑
1≤τ≤T

dN
τ max{bτ − ptτ , 0} ≤ Kt,∀t = 1, 2, · · · , T. (20)

For any 1 ≤ i ≤ j ≤ T , (20) implies that

j∑
τ=i

dN
τ max{bτ − ptτ , 0} ≤ Kt, ∀t

which in turn implies that

j∑
τ=i

dN
τ bτ ≤ Kt +

j∑
τ=i

dN
τ ptτ ∀t.

Therefore,
j∑

τ=i

dN
τ bτ ≤ Cij(d

N).

It then follows that A3 ⊆ A1. Furthermore, Example 1 (where the game is an ELS game

with setup cost) shows that there exists b ∈ A1 that does not define an allocation in core.

This fact together with Theorem 1 implies A1 * A3 and thus A3 $ A1.

Now we prove A2 ⊆ A3. To this end, let b̃ ∈ A2. It suffices to show that (20) holds for

b̃. For any t, we have

(b̃τ+1 − pt,τ+1)− (b̃τ − ptτ ) = b̃τ+1 − b̃τ − h+
τ ≤ 0, if τ ≥ t
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and

(b̃τ−1 − pt,τ−1)− (b̃τ − ptτ ) = b̃τ−1 − b̃τ − h−τ−1 ≤ 0, if τ ≤ t

where the inequalities follow from the fact that b̃τ+1 ≤ b̃τ + h+
τ and b̃τ−1 ≤ b̃τ + h−τ−1.

Therefore, for each t, if there exists τ ≥ t such that b̃τ − ptτ < 0, then for any τ ′ ≥ τ ,

b̃τ ′ − ptτ ′ < 0; if there exists τ ≤ t such that b̃τ − ptτ < 0, then for any τ ′ ≤ τ , b̃τ ′ − ptτ ′ < 0.

Now we define χ(t) be t− 1 or the largest integer such that b̃τ − ptτ ≥ 0, whichever is larger.

Similarly, we define ψ(t) be t + 1 or the smallest integer such that b̃τ − ptτ ≥ 0, whichever is

smaller.

Thus, for every t,

∑
1≤τ≤T

dN
τ max{b̃τ − ptτ , 0} =

χ(t)∑

τ=ψ(t)

dN
τ

(
b̃τ − ptτ

)
≤ Kt, (21)

where the inequality holds since

χ(t)∑

τ=ψ(t)

dN
τ b̃τ ≤ Cψ(t),χ(t)(d

N) ≤ Kt +

χ(t)∑

τ=ψ(t)

dN
τ ptτ .

It follows that b̃ ∈ A3 and thus A2 ⊆ A3. Moreover, as will be seen from Example 3

(presented immediately after the proof), A2 $ A3. This completes the proof. ¤

The above theorem implies that the dual set given by (19), the set of allocations gener-

ated by the optimal dual solutions of problem (19), is a subset (indeed a true subset in the

following example) of the dual set given by problem (4). An interesting question is whether

the dual set given by problem (4) is the entire core. Unfortunately, the following example

illustrates that this is not the case.

Example 3. We consider the game with three periods and two players, i.e., T = 2 and

N = {1, 2}. Assume that backlogging is not allowed. Also,

K1 = K2 = 1, c1 = c2 = 1, d1 = (3/4, 1/4), d2 = (1/4, 3/4).

and the holding costs are zero. In this case, we only place an order at period one. Thus,

OPT ({1}) = OPT ({2}) = 2, OPT ({1, 2}) = 3,
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and the core is {(v1, v2) : v1 + v2 = 3, 0 ≤ v1 ≤ 2, 0 ≤ v2 ≤ 2}. Solving problem (4), we get

b̄1 = 1 + δ and b̄2 = 2− δ with δ ∈ [0, 1]. Now, the dual set given by problem (4) is

{(b̄1d
1
1 + b̄2d

1
2, b̄1d

2
1 + b̄2d

2
2)} = {(5/4 + 1/2δ, 7/4− 1/2δ) : δ ∈ [0, 1]}

= {(v1, v2) : v1 + v2 = 3, 5/4 ≤ v1 ≤ 7/4},
which is a true subset of the core. In this example, for any δ ∈ [0, 1], (1 + δ, 2 − δ) ∈ A3.

But it is clear that (1 + δ, 2− δ) ∈ A2 only when δ ≥ 1/2. Thus A2 $ A3. In addition, the

dual set generated by A2 is given by

{(b̄1d
1
1 + b̄2d

1
2, b̄1d

2
1 + b̄2d

2
2)} = {(5/4 + 1/2δ, 7/4− 1/2δ) : δ ∈ [1/2, 1]}

= {(v1, v2) : v1 + v2 = 3, 3/2 ≤ v1 ≤ 7/4},
which is a true subset of the dual set given by problem (4).

6 Conclusion

In this paper, we study ELS games with backlogging and with general concave ordering cost.

We show that there exists an allocation in the core, which can be computed in polynomial

time by solving a linear program.

For some cooperative games, it may be useful to study other properties of a cost alloca-

tion rule, for instance, additivity, aggregate monotonicity, coalitional monotonicity, etc.; see

Young [32] for definitions of these properties. But it is our opinion that such properties may

not be properly defined for the ELS game. Therefore, we do not discuss these properties in

this paper.

There are several directions for future research. First, although we know how to find

an allocation in the core, the problem of checking whether a given allocation is in the

core or not is still open. In particular, is there a polynomial time algorithm to check the

membership of the core or is the problem NP-hard [8]? Moreover, our focus in this paper

is the core. However, there are several other important concepts in cooperative game such

as the Shapley value [21] and the nucleolus [6]. It would be interesting to design efficient

algorithms to compute them.
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We have essentially assumed that the retailers have uniform inventory holding costs, we

also assumed that the inventory holding cost and backlogging cost are linear functions. It

would be interesting if some of these assumptions can be relaxed.

Finally, the demand is assumed to be exogenous in this paper. However, in many

practical situations, demand could be a function of the price of the product, and the price

can be optimized, together with inventory decisions, in order to maximize profit (see, for

instance, [3, 4]). It would be interesting to consider ELS games with joint pricing and

inventory decisions.
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Appendix

Proof of Lemma 4

For a given function f : < → <, define its left-side directional derivative as

f ′−(x) = lim
δ→0−

f(x + δ)− f(x)

δ
.

Then we have,

Lemma 5. Assume that u, v : X ⊂ < → < are two concave functions on an interval X. In

addition, u(x) ≤ v(x) for any x ∈ X. Then for any x with u(x) = v(x), u′−(x) ≥ v′−(x).

The proof of Lemma 5 is straightforward and thus omitted.

Before presenting the proof for Lemma 4, we make one observation. The inequality that

we try to prove, i.e., bt − h−t ≤ bt+1 ≤ bt + h+
t for every 1 ≤ t ≤ T − 1, is equivalent to

b+
t (1) ≥ b+

t+1(1) and b−t (T ) ≤ b−t+1(T )

for every 1 ≤ t ≤ T − 1.

Given a feasible solution b = (b1, · · · , bT ) to problem (9), we convert b = (b1, · · · , bT )

to another feasible solution b̂ = (b̂1, · · · , b̂T ) with the same objective value such that −h−t ≤
b̂t+1 − b̂t ≤ h+

t for every 1 ≤ t ≤ T − 1 in two steps. In the first step, we convert b into
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a feasible solution b̃ = (b̃1, · · · , b̃T ) with the same objective value and b̃+
t+1 ≤ b̃+

t + h+
t for

1 ≤ t ≤ T − 1. In the second step, we convert b̃ into a feasible solution b̂ satisfying Lemma

4.

Step 1.

Assume that there exists some t such that bt+1 > bt + h+
t . Let l0 be the smallest such

t. Our objective is to show that we can decrease the value of bl0+1 and increase the value of

bl0 so that bl0+1 ≤ bl0 + h+
l0
. In addition, the new solution is still feasible with the objective

value unchanged, while the smallest index with bt+1 > bt +h+
t will increase by at least 1. We

can repeat the process until bt+1 ≤ bt + h+
t for every 1 ≤ t ≤ T − 1.

If dl0+1 = 0, we can always decrease the value of bl0+1 and keep other dual variables

unchanged, which will not affect either the objective value or the feasibility. Thus, we assume

dl0+1 > 0 in the following analysis.

Let i0 = max{i ≤ l0 : bi+1 − bi < h+
i } or i0 = 0 if the set is empty. It is clear that

i0 +1 ≤ l0. Furthermore, for any i0 +1 ≤ i < l0, bi+1− bi = h+
i . For a given δ > 0, we define

b̃ such that for every j,

b̃j =





bj + δ, if i0 + 1 ≤ j ≤ l0;

bj − di0+1,l0

dl0+1
δ, if j = l0 + 1;

bj, otherwise.

It is clear that b̃ and b have the same objective value. We shall show that there exists some

small δ > 0 such that b̃ is feasible. Specifically, we will show that for any i ≤ l ≤ j,

l−1∑

k=i

b̃−k (l)dk +

j∑

k=l

b̃+
k (l)dk ≤ cl(dij), (22)

where b̃−k (l) = b̃k −
∑l−1

t=k h−k for k ≤ l − 1 and b̃+
k (l) = b̃k −

∑j−1
t=k h+

k for k ≥ l.

If l > l0, or j ≤ i0, or l ≤ l0 and j ≥ l0 + 1, the inequality (22) obviously holds for b̃.

Thus, we assume that max(l, i0 + 1) ≤ j ≤ l0. In this case, define

ui
l(x) =

l−1∑

k=i

b−k (l)dk +

j−1∑

k=l

b+
k (l)dk + b+

j (l)(x− dl,j−1), for x ∈ [dl,j−1, dlj],
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and

vi
l(x) = cl(di,l−1 + x).

Notice that for any i, ui
l(x) ≤ vi

l(x) for any x ∈ [0, dlT ].

We claim that ui
l(dlj) < vi

l(dlj) for any i ≤ l ≤ max(l, i0 + 1) ≤ j ≤ l0. Otherwise, there

must exist i, l, j such that i ≤ l ≤ max(l, i0 + 1) ≤ j ≤ l0 and ui
l(dlj) = vi

l(dlj). Then by

Lemma 5,

b+
j (l) =

{
dui

l−(x)

dx

}
|x=dlj

≥
{

dvi
l−(x)

dx

}
|x=dlj

≥ dvi
l−(x)

dx
, for x ∈ [dlj, dlT ], (23)

where the second inequality follows from the concavity of function vi
l(x). On the other hand,

it is clear that

b+
l0+1(l) > b+

l0
(l) = b+

j (l). (24)

Notice that the function ui
l(x) is linear in (dl,j, dl,l0 ] with a slope of b+

l0
(l) and linear in

(dl,l0 , dl,l0+1] with a slope of b+
l0+1(l), while vi

l(x) is concave. Therefore, (23) and (24) imply

that ui
l(x) > vi

l(x) for x ∈ (dl,j, dl,l0+1], which contradicts the feasibility of b. Thus, ui
l(dlj) <

vi
l(dlj) for any i ≤ l ≤ max(l, i0 + 1) ≤ j ≤ l0. We can now choose δ such that

δ = min

{
min

i,l,k:i≤l≤max(l,i0+1)≤j≤l0

vi
l(dlj)− ui

l(dlj)

dmax(i,i0+1),j

, bi0 + hi0 − bi0+1

}
> 0,

if i0 ≥ 1, and

δ = min
i,l,k:i≤l≤max(l,i0+1)≤j≤l0

vi
l(dlj)− ui

l(dlj)

dmax(i,i0+1),j

> 0,

if i0 = 0. Then b̃ satisfies (22) and thus is still feasible to problem (9).

If δ < bi0 + hi0 − bi0+1 = b+
i0
(1)− b+

i0+1(1), we claim that b̃+
1 (1) ≥ . . . ≥ b̃+

l0
(1) ≥ b̃+

l0+1(1).

If this is not true, it is clear that l0 is the smallest l such that b̃+
l+1(1) > b̃+

l (1). Then, similar

to the argument we used before, we can show that for i ≤ l ≤ max(l, i0 + 1) ≤ j ≤ l0,

ui
l(dlj) < vi

l(dlj), where in the definition of uj
l (·) and vj

l (·), b is replaced by b̃. But this

contradicts the definition of δ.

If δ = b+
i0
(1) − b+

i0+1(1), then b̃+
i0
(1) = b̃+

i0+1(1) = . . . = b̃+
l0
(1). Therefore, the value of

max{i ≤ l0 : bi+1− bi < h+
i } is decreased by at least one. In this case, if b̃+

l0
(1) < b̃+

l0+1(1), we
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repeat the above argument by at most i0 times and each time the value of i0 will be reduced

by at least one. Then we end up with b̃+
1 (1) ≥ . . . ≥ b̃+

l0
(1) ≥ b̃+

l0+1(1).

Therefore, repeating the above argument for each l0 (at most T − 1 different values) we

end up with b̃ with b̃t+1 ≤ b̃t + h+
t for t ≤ T − 1.

Step 2.

We now perform the second step by converting b̃ to b̂ satisfying the conditions of the

lemma. The procedure is similar to Step 1. Assume that there exists b̃t+1 < b̃t − h−t . Let l0

be the largest such t.

If dl0 = 0, we can always decrease b̃l0 while maintaining the same objective value until

b̃l0+1 = b̃l0 − h−l0 . In this case, we still have b̃t+1 ≤ b̃t + h+
t for t ≤ T − 1. Thus, we assume

that dl0 > 0.

Let j0 = min{j ≥ l0 : b̃j+1 − b̃j > −h−j } or j0 = T is the set is empty. It is clear that

j0 ≥ l0 + 1 and for any l0 + 1 ≤ i ≤ j0, b̃i+1 − b̃i = −h−i . For a given δ > 0, define b̂ such

that for every j,

b̂j =





b̃j + δ, if l0 + 1 ≤ j ≤ j0;

b̃j − dl0+1,j0

dl0
δ, if j = l0;

bj, otherwise.

It is clear that b̂ and b̃ have the same objective value. We shall show that there exists

some small δ > 0 such that b̂ is feasible, i.e., for any i ≤ l ≤ j,

l−1∑

k=i

b̂−k (l)dk +

j∑

k=l

b̂+
k (l)dk ≤ cl(dij), (25)

where b̂−k and b̂+
k are defined similarly to b̃−k and b̃+

k , respectively.

If l ≤ l0, or i > j0, or l > l0 and i ≤ l0, the inequality (25) obviously holds for b̂. Thus,

we assume that l0 + 1 ≤ i ≤ min(j0, l). In this case, we define,

uj
l (x) =

l−1∑

k=i+1

b̃−k dk +

j∑

k=l

b̃+
k dk + b̃−i (x− di+1,l−1), for x ∈ [di+1,l−1, di,l−1],
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and

vj
l (x) = cl(x + dlj).

Then we know that uj
l (x) ≤ vj

l (x) for any x ∈ [0, d1,l−1]. We claim that uj
l (di,l−1) <

vj
l (di,l−1) for any l0 + 1 ≤ i ≤ min(j0, l). Otherwise, assume that there exists i, l, and j such

that uj
l (di,l−1) = vj

l (di,l−1). Then we can show, similar to (23) and (24),

b̃−l0 > b̃−l0+1 = b̃−i =

{
duj

l−(x)

dx

}
|x=dil−1

≥
{

dvj
l−(x)

dx

}
|x=di,l−1

≥ dvj
l−(x)

dx
, for x ∈ [di,l−1, d1,l−1].

This implies that uj
l (x) > vj

l (x) for x ∈ (di,l−1, dl0+1,l−1], which contradicts the feasibility of

b̃. Thus, uj
l (di,l−1) < vj

l (di,l−1) for any l0 + 1 ≤ i ≤ min(j0, l). We can now choose δ such

that

δ = min

{
min

i,l,j:l0+1≤i≤min(j0,l)≤l≤j

vj
l (di,l−1)− uj

l (di,l−1)

dl0+1,min(j0,l)

, (b̃l0+1 − b̃l0 + h−l0)
dl0

dl0,j0

, b̃j0+1 − b̃j0 + h−j0

}
> 0,

if j0 < T , and

δ = min

{
min

i,l,j:l0+1≤i≤min(j0,l)≤l≤j

vj
l (di,l−1)− uj

l (di,l−1)

dl0+1,min(j0,l)

, (b̃l0+1 − b̃l0 + h−l0)
dl0

dl0,j0

}
> 0

if j0 = T . Then b̂ satisfies (25) and thus is still feasible to problem (9).

Now we consider two cases.

Case 1. δ = (b̃l0+1− b̃l0 +h−l0)
dl0

dl0,j0
. In this case, we have that b̂l0+1 = b̂l0−h−l0 . Therefore,

the largest integer such that b̂t+1 < b̂t−h−t has decreased by at least 1. This is exactly what

we need.

Case 2. δ < (b̃l0+1 − b̃l0 + h−l0)
dl0

dl0,j0
. In this case, b̂l0+1 < b̂l0 − h−l0 . It implies that

l0 is the largest integer such that b̂t+1 < b̂t − h−t . Then by the same argument as above,

uj
l (di,l−1) < vj

l (di,l−1) for any l0 + 1 ≤ i ≤ min(j0, l), where in the definition of uj
l (·) and

vj
l (·), we replace b̃ with b̂. This would imply that δ <

vj
l (di,l−1)−uj

l (di,l−1)

dl0+1,min(j0,l)
. It then follows

that δ = b̃j0+1 − b̃j0 + h−j0 . Hence we have b̂−j0+1 = · · · = b̂−j0 . Therefore, the value of

min{j ≥ l0 + 1 : b̂j+1− b̂j > −h−j } is no less than j0 + 1. We can repeat the procedure by at

most T − j0 times until Case 2 will not happen (and thus eventually we are in Case 1).
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The only thing that is left to verify is that b̂t+1 ≤ b̂t + h+
t for every 1 ≤ t ≤ T − 1.

This inequality can possibly be violated if during the process one of the following situations

happens. (Notice that for the variables increased, they are increased by the same amount.)

(1) b̃t+1 is increased by δ, but b̃t is unchanged, or b̃t is unchanged, but b̃t−1 is decreased

by a positive amount. It is clear that this can never happen in our procedure.

(2) b̃t+1 is increased by δ, but b̃t is decreased by a positive amount. This happens only

if t = l0. But after the change, b̂l0+1 = b̃l0+1 + δ, and b̂l0 = b̃l0 − dl0+1,j0

dl0
δ. By the definition

of δ, b̂l0+1 = b̂l0 − h−l0 and thus b̂l0+1 ≤ b̂l0 + h+
l0
.
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