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Abstract

It is not unusual for the response variable in a regression model to be
subject to censoring or truncation. Tobit regression models are a specific
example of such a situation, where for some observations the observed
response is not the actual response, but rather the censoring value (of-
ten zero), and an indicator that censoring (from below) has occurred. It
is well-known that the maximum likelihood estimator for such a linear
model (assuming Gaussian errors) is not consistent if the error term is
not homoscedastic and normally distributed. In this paper we consider
estimation in the Tobit regression context when those conditions do not
hold, as well as when the true response is an unspecified nonlinear func-
tion of linear terms, using sliced inverse regression (SIR). The properties
of SIR estimation for Tobit models are explored both theoretically and
based on Monte Carlo simulations. It is shown that the SIR estimator
has good properties when the usual linear model assumptions hold, and
can be much more effective than other estimators when they do not.
An example related to household charitable donations demonstrates the
usefulness of the estimator.

Key words: Dimension reduction; Heteroscedasticity; Nonnor-
mality; Single-index model.
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1 Introduction

A common occurrence in many regression models is the existence of truncation
or censoring in the response variable. Tobin (1958) pioneered the study of such
models in economics, analyzing household expenditures on durable goods while
taking into account the fact that expenditures cannot be negative. That is, for
some observations the observed response is not the actual response, but rather
the censoring value (often zero), and an indicator that censoring (from below)
has occurred. More specifically, the so-called Type I Tobit model (Amemiya,
1984) is defined as follows. Given a univariate response y∗ and a p-dimensional
predictor vector X, the model is defined as

y∗ = ηT

1X + ε, ε ∼ Normal(0, σ2), (1)

y =

{
y∗ if y∗ > 0
0 if y∗ ≤ 0

,

where η1 ∈ IRp is the unknown parameter. While the true response is y∗,
only the left censored version y of y∗ is observable. Additionally, a censoring
indicator δ is defined, with δ = 1 if y∗ > 0 and δ = 0 otherwise. Generally, the
left censoring does not have to be fixed at 0, or at any constant value. In that
case, we define an appropriate censoring variable C, such that y = max(y∗, C).

The parameters η1 and σ2 can be estimated consistently using maximum
likelihood, but it is well-known that the MLE of η1 is not consistent if the error
term ε is not homoscedastic and normally distributed. Several estimators have
been proposed that are consistent under more general situations, and will be
described in more detail in Section 3.

Generalizations of this model are also possible. Following Amemiya (1984),
a Type II Tobit model is defined as

y∗
1 = ηT

1X + ε1, ε1 ∼ Normal(0, σ2
1),

y∗
2 = ηT

2X + ε2, ε2 ∼ Normal(0, σ2
2),

y2 =

{
y∗

2 if y∗
1 > 0

0 if y∗
1 ≤ 0

.

A Type III Tobit model is

y∗
1 = ηT

1X + ε1, ε1 ∼ Normal(0, σ2
1),

y∗
2 = ηT

2X + ε2, ε2 ∼ Normal(0, σ2
2),

y1 =

{
y∗

1 if y∗
1 > 0

0 if y∗
1 ≤ 0

y2 =

{
y∗

2 if y∗
1 > 0

0 if y∗
1 ≤ 0

.
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For the Type II model, what is observed are y2 and the indicator variable δ;
δ = 1 if y∗

1 > 0 and δ = 0 otherwise, which reflects the sign of y∗
1. For the Type

III model, y1, y2, and δ are observed.
In this article, we generalize the Type I Tobit model to be of the form

y∗ = f(ηT

1X, . . . , ηT

dX, ε), (2)

y =

{
y∗ if y∗ > 0
0 if y∗ ≤ 0

,

where f is an unknown differentiable function, d ≤ p, the error ε is stochastically
independent of X but unspecified. In this model, the mean E(y∗|X) may be
nonlinear, and the variance V ar(y∗|X) may be heteroscedastic, and both may
depend on X through linear terms. We also briefly consider the generalization
of the Type II and Type III models in a similar fashion, where the linear terms
are replaced by functions of linear terms in a way corresponding to (1) and (2).

Section 2 describes the principle of sufficient dimension reduction, and how
such an approach can be used to estimate the ηi vectors (i = 1, · · · , d) in the To-
bit models described in this section. The specific dimension reduction estimator
sliced inverse regression (SIR) is the focus of the discussion. In Section 3 Monte
Carlo simulations are used to compare the performance of SIR to maximum
likelihood estimation, as well as to other Tobit model estimators that have been
proposed to address the presence of nonnormal and/or heteroscedastic errors.
A real data example is analyzed in Section 4. Section 5 concludes the paper
with a discussion of further potential work.

2 Sufficient Dimension Reduction and the To-

bit Model

2.1 Sufficient dimension reduction

Sufficient dimension reduction considers the following regression structure for a
univariate response y and a p × 1 predictor vector X:

y X | ηTX, (3)

where represents independence, and η = (η1, . . . , ηd) is a p×d matrix with d ≤
p. In practice, d is often far less than p; thus, we can replace the p-dimensional
X with the d-dimensional ηTX, and dimension reduction is achieved. More
importantly, such a dimension reduction loses no regression information of y
given X because of (3), so it is called sufficient dimension reduction (SDR;
Cook, 1998).

Such an η always exists (by trivially taking η as the identity matrix). Since
any basis of the subspace spanned by the columns of η, Span(η), leads to (3),
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we call Span(η) a dimension reduction subspace. We further define the central
subspace, denoted by Sy|X , as the intersection of all dimension reduction sub-
spaces. By definition, Sy|X is a unique and parsimonious population parameter
that contains all regression information of y |X, and thus is the main object of
interest in our dimension reduction inquiry. Its dimension, d = dim(Sy|X), is
called the structural dimension of the regression.

The structure of Sy|X covers many known regression representations, such as
the transformed linear regression model h(y) = ηT

1X + ε, where h is a transfor-
mation function; the single-index model y = f(ηT

1X) + ε, where f is a smooth
link function; the heteroscedastic model y = f(ηT

1X) + g(ηT
2X) × ε, where f

and g are both univariate functions; and the nonparametric additive model
y =

∑d
j=1 fj(η

T
j X) + ε, where f ’s are univariate functions. In all of these mod-

els ε is a random error independent of predictors with no restriction on its
distribution.

Depending on available data and study-specific goals, regression analysis
may focus more on the conditional mean E(y |X), and less on other aspects of
the conditional distribution of y |X. In these situations, a dimension reduction
inquiry hinges on finding a p × d matrix γ, with d ≤ p, such that,

y E(y |X) | γTX.

That is, γT X contains all of the information about y that is available through
E(y |X). We call the subspace Span(γ) a mean dimension reduction subspace.
Subsequently, the intersection of all such mean dimension reduction subspaces
is called the central mean subspace, and is denoted as SE(y|X). We assume the
existence of Sy|X and SE(y|X) throughout this article.

A dimension reduction subspace is always a mean dimension reduction sub-
space, and SE(y|X) ⊆ Sy|X , since y X | ηT X implies that y E(y |X) | ηT X.
In some cases, the central subspace and the central mean subspace coincide.
For instance, for the transformed linear model, the single-index model, and the
additive model that are discussed above, SE(y|X) = Sy|X .

There are a number of numerical methods for estimating the central subspace
and the central mean subspace, for instance, sliced inverse regression (SIR; Li,
1991), sliced average variance estimation (SAVE; Cook and Weisberg, 1991),
principal Hessian directions (PHD; Li, 1992), and iterative Hessian transfor-
mation (IHT; Cook and Li, 2002). In this article, we focus on sliced inverse
regression, one of the first and perhaps the most popular method for sufficient
dimension reduction.

2.2 Sliced inverse regression

It is known that, under the linearity condition that is to be discussed below,
the inverse mean vector, Σ−1

x E(X |Y ), resides in the central subspace (Li, 1991,
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Cook, 1998). Thus, the population solution of SIR amounts to the following
eigen-decomposition

Σx|y υj = λj Σx υj. (4)

Here Σx denotes the covariance matrix of X, and Σx|y denotes the covariance
matrix of the inverse mean E(X | y). The eigenvectors, υ1, . . . , υd, that corre-
spond to the d nonzero eigenvalues λ1 ≥ . . . ≥ λd, consist of a basis for the
central subspace.

Given n independent realizations {(Xi, yi), i = 1, . . . , n} of (X, y), SIR first
partitions the range of y into h slices so that each yi belongs to one of the slices.
The sample estimate of E(X | y) is then obtained by averaging over all the Xi’s
whose corresponding yi’s belong to the same slice. The usual sample covariance
matrices Σ̂x|y and Σ̂x are then computed and substituted in (4), resulting in
the SIR sample estimates. The number of slices h is a tuning parameter in
SIR, but it has been shown by various studies that the choice of h does not
usually affect the SIR estimates, as long as h > d and n is large enough for the
asymptotics to provide useful approximations (Li, 1991, Cook, 1998). Under
the linearity condition, the SIR estimates are known to be

√
n-consistent up to

a multiplicative constant (Li, 1991).
The structural dimension d is determined by a sequence of tests of hypothe-

ses, d = k versus d > k, k = 0, . . . , p− 1 (Li, 1991). For a given k, the statistic,
Λ̂k =

∑p
j=k+1 λj , where λj’s are the eigenvalues in (4), has an asymptotic chi-

squared distribution with (p − k)(h − k − 1) degrees of freedom, when X is
multivariate normal, and is distributed as a linear combination of chi-squared
variables, where the weights can be estimated consistently, when the linearity
condition is met. Based on this statistic, we conclude that the structural di-
mension d is greater than k if the null hypothesis d = k is rejected at a given
nominal level. We then increment k by 1, and repeat the asymptotic test. The
estimate of d is taken as the minimum k such that the null hypothesis d = k is
not rejected.

Note that SIR does not impose any traditional assumptions on the con-
ditional distribution of y |X. Instead, it requires the linearity condition, an
assumption placed on the marginal distribution of X, which states that, for any
b ∈ IRp,

E(bTX | ηT

1X, . . . , ηT

dX) = c0 + c1η
T

1X + . . . + cdη
T

dX, (5)

for some constants c0, c1, . . . , cd. Elliptical symmetry of the marginal distribu-
tion of X is sufficient for (5) to hold (Eaton, 1986), and in particular, (5) holds
when X is multivariate normal. The linearity condition is not a severe restric-
tion, since it holds to a reasonable approximation as p increases with d fixed
(Hall and Li, 1993). In addition, the condition may be induced by predictor
transformation, re-weighting (Cook and Nachtsheim, 1994), or clustering (Li,
Cook, and Nachtsheim, 2004).
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2.3 The SIR estimator for the tobit model

In this section we discuss the application of sliced inverse regression to different
Tobit models. We begin with the Type I Tobit model.

Proposition 1. For the Type I Tobit model, S(y,δ) |X ⊆ Sy∗|X .

Proof: Let η be a basis for the central subspace Sy∗ |X of regression of y∗ on
X. By definition, y∗ X | ηTX. Since (y, δ) is a function of y∗, by Proposition
4.5 of Cook (1998), (y, δ) X | ηTX. Thus Span(η) is a dimension reduction
subspace for regression of (y, δ) on X. Because S(y,δ) |X is the smallest dimension
reduction subspace for (y, δ) on X, S(y,δ) |X ⊆ Sy∗|X .

Remark 1: Proposition 1 implies that one can gain information on the central
subspace of interest, Sy∗ |X , by estimating the central subspace S(y,δ) |X . More-
over, it is expected that equality between S(y,δ) |X and Sy∗ |X will normally hold
in practice, since proper containment (such that S(y,δ) |X ⊂ Sy∗ |X) may often be
the exception rather than the rule in practice (Cook, 1994).

Remark 2: Proposition 1 is applicable to all estimation methods for the central
subspace. Here we focus on SIR as an example. For the Type I Tobit model,
operationally, one only need to modify the usual slicing procedure of SIR to the
so-called double slicing (Li, Wang, and Chen, 1999). That is, we first partition
the response based on the indicator variable δ, and then slice y in each subgroup.
Proposition 1 then implies that the SIR estimates are consistent estimates for
the vectors η1, . . . , ηd in (2).

Remark 3: The conclusion of Proposition 1 holds in more general cases. For
instance, when C X | (ηTX, y∗), or, when C (X, y∗), one can show that
S(y,δ) |X ⊆ Sy∗ |X, where C is the censoring variable as defined in Section 1. See
Cook (2003) for a more detailed discussion.

The next proposition deals with the Type II and Type III Tobit models.

Proposition 2 (i) For the Type II Tobit model, SE(δ |X) ⊆ SE(y∗1 |X), and
SE((y2,δ) |X) ⊆ SE((y∗1 ,y∗2 ) |X). (ii) For the Type III Tobit model, SE((y1,δ) |X) ⊆
SE(y∗1 |X), and SE((y2,δ) |X) ⊆ SE((y∗1 ,y∗2) |X). (iii) SE((y∗1 ,y∗2 ) |X) = SE(y∗1 |X) +SE(y∗2 |X).

Proof: (i) and (ii) can be shown by noting that both δ and (y1, δ) are functions
of y∗

1, and (y2, δ) is a function of (y∗
1, y

∗
2). (iii) holds following Proposition 4 of

Cook and Setodji (2004).

Remark 4: For the Type II and Type III Tobit models, Proposition 2 suggests
a way of estimating the central subspaces, SE(y∗1 |X), SE(y∗2 |X), and SE((y∗1 ,y∗2 ) |X),
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respectively. For Type II models, Proposition 2 (i) indicates that one is able
to estimate SE(y∗1 |X) via estimating SE(δ |X) by applying sliced inverse regression
on the observed binary response δ for the given predictor vector X. Moreover,
one can estimate SE((y∗1 ,y∗2 ) |X) through SE((y2,δ) |X) by applying SIR on bivariate
responses (y2, δ). For Type III models, both y1 and δ are observed simultane-
ously. Hence, Proposition 2 (ii) gives similar results to Proposition 2 (i), except
that SE(δ |X) in (i) is replaced by SE((y1,δ) |X). Finally, Proposition 2 (iii) shows
that the information from SE(y∗2 |X) can be obtained by “subtracting” SE(y∗1 |X)

from SE((y∗1 ,y∗2) |X).

Remark 5: Proposition 2 is focused on the central mean subspace. If we extend
our consideration to the central subspace, conclusions (i) and (ii) still hold, but
(iii) should be changed to Sy∗1 |X +Sy∗2 |X ⊆ S(y∗1 ,y∗2) |X . As a result, we may obtain
extra irrelevant information by subtracting SE(y∗1 |X) from SE((y∗1 ,y∗2) |X) when we
seek the estimate of SE(y∗2 |X).

Chen and Li (1998) proposed an approximate formula for standard devia-
tions of SIR estimates. With λ1 ≥ . . . ≥ λd denoting the d non-zero eigenvalues
in SIR decomposition (4), the j-th SIR direction υj can be associated with the
vector of the square root of the diagonal elements from the matrix,

1 − λj

λj
n−1 Σ−1

x , (6)

as the estimated standard deviations. Applying this result, one can obtain t-
ratios for the elements of SIR estimators. The properties of such t-ratios are
examined in the next section.

3 Comparison of SIR to Other Tobit Estima-

tors

In this section we compare the performance of SIR for the Type I Tobit model
to that of other estimators using Monte Carlo simulations, including the pos-
sibilities of nonnormal and/or heteroscedastic errors. The maximum likelihood
estimator (MLE) is defined as the maximizer of the Tobit likelihood function

∏

δi=0

[1 − Φ(ηT

1xi/σ)]
∏

δi=1

σ−1φ[(yi − ηT

1xi)/σ)],

where Φ and φ are the distribution and density function, respectively, for the
standard normal. Amemiya (1973) demonstrated consistency and asymptotic
normality of the MLE under model (2) but Goldberger (1980) and Arabmazar
and Schmidt (1982) showed that these properties are critically dependent on
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the assumption of normality, and Arabmazar and Schmidt (1981) showed that
the assumption of homoscedasticity is also required.

Powell (1984) addressed these difficulties by proposing that η1 be estimated
based on least absolute deviations (LAD), rather than least squares. The esti-
mator minimizes

n∑

i=1

|yi − max(Ci, η
T

1xi)|

over all η1. Powell (1984) demonstrated that under various regularity conditions,
but without assuming normality or homoscedasticity, the LAD estimator is
consistent and asymptotically normal, and also described how the covariance
matrix of η̂1 can be estimated in practice.

It is known that the LAD estimation algorithm sometimes suffers from con-
vergence difficulties, particularly when the censoring proportion is high (Fitzen-
berger, 1997). Chernozhukov and Hong (2002) proposed a computationally sim-
ple three-step estimation procedure for quantile regression estimation of η1. The
estimator is based on (1) estimating a parametric model for δ, (2) fitting the
(uncensored) quantile estimator to a subset of the observations with estimated
probability of not being censored high enough based on the parametric model,
and then (3) fitting the uncensored quantile estimator to the subset of observa-
tions with estimated fitted values (based on step (2)) larger than the observed
censoring values. This results in a censored quantile regression (CQR) estima-
tor with asymptotic properties identical to those of the LAD estimator when
estimating the 50% quantile.

Censored regression data is common in survival data, although in that con-
text censoring is typically from the right rather than from the left. Heller and
Simonoff (1990) investigated the performance of various regression estimators
under right censoring, and found that the method of Buckley and James (1979)
performed best. This estimator is based on modifying the usual least squares
normal equations to account for censoring using the Kaplan-Meier (Kaplan and
Meier, 1958) product limit estimator of the error distribution. It can be adapted
to left-censored data by substituting −y for y, and then reversing the signs of
all of the regression coefficients.

Each of the estimators described in this section thus far is designed for the
linear model (1), rather than the more general model summarized in (2). An
alternative to SIR for model (2) with d = 1 is the density weighted average
derivative estimator (WADE; Powell, Stock, and Stoker, 1989), which is based
on the result that

E

[
g(xi)

∂f(xi)

∂xi

]
= −2E

[
∂g(xi)

∂xi
yi

]

is proportional to η1, where g(·) is the density function of the predictors. This
quantity is estimated using a kernel density estimator, and Powell and Stoker
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(1996) described strategies for choosing the bandwidth for the kernel estimator.
We now describe the results of Monte Carlo simulation comparisons of the

properties of different censored regression estimators. The first set of simula-
tions examine the situation where the true regression model is the Type I Tobit
model (1), implying that the estimators designed for this linear model should
work best. The issue here, then, is whether the SIR estimator (which is designed
for the more general model (2)) is competitive with estimators designed for the
linear model. The situations examined correspond to several samples sizes n and
number of predictors p: (n = 50, p = 5), (n = 200, p = 5), (n = 200, p = 10),
and (n = 500, p = 20). The data were generated from a linear model with pa-
rameter vector ηT

1 = βT
1/
√

30 for p = 5, where βT
1 = (0, 1, 2, 3, 4), ηT

1 = βT
2/
√

60
for p = 10, where β2 is β1 twice, and ηT

1 = βT
3/
√

120 for p = 20, where β3

is β2 twice. The intercept term was then determined so as to yield censoring
rates of 25% and 50%, based on a censoring distribution that was fixed at zero
(random censoring was also examined, but the results were similar to those for
fixed censoring). The errors ε were distributed as either Gaussian or Cauchy
random variables with unit scale parameters (simulations based on double ex-
ponential and t3 errors were also examined, but the comparative performance
of the different estimators was very similar to that for Gaussian errors for those
error distributions, and so are not given). The effectiveness of the estimators is
measured by the average absolute correlation between the true index ηT

1X and
estimated index η̂T

1X (recall that SIR and WADE only estimate the slope coef-
ficients up to a multiplicative constant, since the model (2) is only identifiable
up to a constant; this measure removes that scaling effect). There were 1000
simulation replications for each set of runs.

Table 1 summarizes the results of these simulations. The performance of the
MLE, Buckley-James estimator (BJ), LAD estimator, weighted average deriva-
tive estimator (WADE), and SIR estimators are given. Results for the CQR
estimator of Chernozhukov and Hong (2002) were virtually identical to those of
the LAD estimator, so they are not given. As would be expected, the Gaussian-
based MLE and least squares-based BJ are best under Gaussian errors, but the
LAD and SIR estimators have performance that is close to that of the MLE.
The WADE estimator lags behind slightly. Under Cauchy errors, the MLE
and BJ estimators perform noticeably worse (particularly BJ), and WADE fails
completely. On the other hand, the performance of the SIR estimator is simi-
lar to that of LAD, except for the smallest sample size (where it is still better
than MLE and BJ). Thus, the SIR estimator is competitive with the estimators
designed for the linear model, under both Gaussian and non-Gaussian errors.

Of course, the benefit of the SIR estimator comes for the more general model
(2), when estimators such as MLE, BJ, and LAD are not necessarily appropriate.
Figure 1 summarizes results for a set of nonlinear models that are consistent
with model (2). The four models are defined as follows:
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y1 = (1 − τ ) × 0.5ηT

1X + τ × exp(−ηT

1X) × sin(0.5πηT

1X) + 0.5ε1

y2 = 0.25ηT

1X + [(1 − τ ) × 0.2 + τ × exp(−ηT

1X)] × ε2

y3 = ηT

1X + 6[(1 − τ ) × 0.2ε3 + τ × ε4]

y4 = (1 − τ ) × 0.5ηT

1X + τ × exp(−0.75ηT

1X) × ε5.

We examine the case with n = 200, and p = 10. The predictors X are indepen-
dent standard normal predictors, and the true direction is ηT

1 = (1, 1, 1, 0, . . . , 0).
Censoring is fixed at zero, and all of the error terms εi are independent of X.
The errors are standard normal, with the exception of ε4, which is χ2 on one
degree of freedom.

In each model, the parameter τ controls the “distance” between the model
and a Gaussian linear model (with linear mean, constant variance, and Gaussian
error). With τ ranging from 0 to 1, model 1 is a deviation from a linear mean
function, model 2 from constant variance, model 3 from a Gaussian error, and
model 4 evolves into a model with no mean effect but only a variance component.
Average absolute correlations of the true and estimated indices are given for τ =
0(.1)1, which are then connected by lines, based on 100 simulation replications
in each case.

It is apparent from Figure 1 that SIR provides consistently effective perfor-
mance for all four models, just as it is designed to do, and is usually the most ef-
fective estimator. For models 1 (nonlinear mean function) and 3 (non-Gaussian
error) the LAD and CQR estimators are second-best, with their performance
deteriorating as the model becomes more nonlinear; the other estimators fare
much worse. In models 2 (nonconstant variance) and 4 (variance-only) the pat-
tern is similar, except that MLE, BJ, and WADE become a bit better as τ
approaches 1 (although still behind SIR). The superiority of SIR over MLE,
BJ, LAD, and CQR is not surprising, since the latter estimators are not de-
signed for nonlinear mean functions, but the poor performance of WADE is
striking; clearly the SIR estimator is a better choice for potentially nonlinear
relationships.

In any regression application, inference about the statistical significance of
slope parameters is an important consideration. As noted earlier, equation (6)
provides a way of estimating the standard error of SIR slope estimates, and
thereby constructing approximate t-ratios for significance testing. Table 2 sum-
marizes the properties of such statistics in the linear model situation. The table
gives the observed average size for the t-tests for all of the slope coefficients
in a model under different conditions, based on 1000 simulation replications,
when the nominal size is .05. In addition to the approximate standard errors
based on (6), the table also gives results based on bootstrap estimates of the
standard errors (Efron, 1979). The bootstrap is based on 100 replications, and
corresponds to resampling all of the observations, rather than residuals. It is
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apparent that the bootstrap works well in all of the situations, but the approxi-
mate standard errors also lead to reasonable (although slightly anticonservative)
performance, except when the sample is small (n = 50); for n = 500, the ap-
proximate standard errors and bootstrap standard errors lead to t-ratios with
virtually identical performance.

We close this section with a brief discussion of results when the structural
dimension of the regression relationship d is greater than one. The other Tobit
estimators, naturally, are not designed for this situation, but SIR estimation
allows for the identification and estimation of multiple linear terms in (2). The
models examined are similar, but not identical, to those examined in Li (1991).
The first model is

y = x1(x2 + x3 + 1) + σε

(corresponding to the two indices x1 and x2 + x3 + 1). The predictors are
generated to be normally distributed and uncorrelated with each other. The
second model is

y = x1/[.5 + (x2 + 1.5)2] + σε

(corresponding to two indices x1 and x2+1.5). All simulations have n = 400 and
p = 10, and are based on 1000 replications. In all cases the resultant censoring
proportion was roughly 50%, based on fixed-at-zero censoring.

Table 3 summarizes the results. The entries in the table are the absolute
correlations between the actual and estimated index values. The methods other
than SIR are not designed to estimate more than one index, of course, but it
is still meaningful to see how correlated the fits implied by the single set of
coefficient estimates that they produce are with the actual index values implied
by the true coefficients. Since SIR will not identify the indices in a systematic
way (the first column in the output does not necessarily correspond to the same
index from simulation replication to replication), we determined the absolute
correlations for all four possibilities (actual first index and index based on first
SIR component, actual first index and index based on second SIR component,
actual second index and index based on first SIR component, and actual sec-
ond index and index based on second SIR component), and assigned the SIR
components such that the average absolute correlation with the fits of the true
indices was maximized. It can be seen that for all of the estimators other than
SIR the estimated coefficients correspond to the first index, being much less
correlated with the second index. The first estimated SIR index is only slightly
less correlated with the first actual index than are those for MLE and BJ, but
SIR also provides a second index that is highly correlated with the second actual
index. LAV and CQR seem to mix the two components together more in their
single set of estimated coefficients, as they have the lowest correlation with the
first component, but a higher correlation than do MLE and BJ with the second
component (although much lower than SIR’s second component). As would be
expected, performance is weaker for σ = 1 than for σ = .5.
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We are also interested in whether the SIR test for the number of indices is
effective. Table 4 gives the average p-values for the test of k versus at least k+1
components for k = 0 through 4; for both models, the first two tests should be
statistically significant, while the last three should not be. The existence of at
least one component is clear, and for the lower σ cases, the test for a second com-
ponent is on average marginally statistically significant as well. As expected,
none of the tests for more than two components are close to statistical signifi-
cance on average. It is easier to identify the existence of the second component
in the first model, which is consistent with the higher absolute correlations in
Table 3.

4 Example

Yen (2002) studied data relating to donations of U.S. households to charitable
organizations, using data from the 1995 Consumer Expenditure Survey. Of
the 5085 households in the data, only 395 made any donations to charities,
implying that (as Yen notes) a Tobit regression analysis is appropriate. In this
paper we focus on the total amount donated by each household, with predictors
including income, household size, the number of vehicles in the household, the
number of wage earners, and the age of the head of the household. Yen (2002)
also included several indicator variables as predictors, but since the consistency
of SIR requires the linearity condition, it is less-suited for models with such
predictors, so we omit them here. Several of the remaining predictors are long
right-tailed, but we do not transform them, in order to stay consistent with
the analysis in Yen (2002). Table 5 gives the Tobit maximum likelihood and
SIR estimates, along with asymptotic standard errors. When analyzing the
donations, according to the MLE (the first column of the table), household
income, number of vehicles, and the age of the head of the household are all
statistically significant predictors at a .05 level, and are all (as expected) directly
related to the amount of donations.

Unfortunately, a cursory examination of the data shows that the donation
amount is extremely long right-tailed, with increasing variability as the level of
donations increases. The LAD estimator is insensitive to this heteroscedasticity,
of course, but the high censoring proportion of over 92% means that neither the
LAD nor CQR estimators are calculable. This suggests analyzing the data using
the log of the donation amount (when it is positive) as the response, as was done
in Yen (2002). This changes the inferential implications of the model, since the
MLE for this response (second column) no longer finds the number of vehicles
statistically significant.

Analysis using SIR is identical whether or not the response is logged, as
is clear from model (2). The test of zero versus more than zero dimensions
is highly significant (239.2 on 25 degrees of freedom), and the test of one ver-
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sus more than one dimension is also significant (26.8 on 16 degrees of freedom,
p = .044). None of the other tests are close to significance, indicating two
dimensions. Note that this test is based on assuming a multivariate normal dis-
tribution for the predictors, so it can only be considered a rough guideline here.
The coefficients for the two indices are given in the last two columns of Table 5.
All of the coefficients are statistically significant for the first index, and this
is clearly (based on the coefficients) a location index. Income, household size,
number of vehicles, and age of the head of the household are all directly related
to donation amount (given the other predictors). Interestingly, the number of
earners is inversely related to donation amount, which might seem surprising,
but is actually to be expected; it is easy to imagine that given the total house-
hold income, an increase in the number of earners in the household actually
corresponds to a more difficult financial situation for a family, and lower levels
of charitable donations.

The second index only includes two statistically significant predictors, num-
ber of earners and age of the head of household, both coefficients having the
same sign. It appears that this index could be related to nonconstant vari-
ance. Figure 2 is a plot of the standardized residuals from a linear regression
with the observed logged total donations as the response and the fitted first
SIR index as the predictor versus each of these two variables, for those obser-
vations with positive donations. The pictures can only be suggestive, since all
of the zero-donation households are not included, but it can be seen that for
both variables (number of earners particularly) the variability decreases as the
variable increases, suggesting that a standard Tobit fit to these data could be
problematic because of heteroscedasticity.

5 Discussion and Conclusions

In this paper we have adapted the sliced inverse regression approach in sufficient
dimension reduction to the Tobit (censored) regression situation. The resultant
estimator is

√
n-consistent for true index coefficients up to a multiplicative con-

stant under a wide range of circumstances, has good small-sample properties,
and is easy to compute. Although we have focused here on the Type I Tobit
model, it also can be adapted to Type II and Type III Tobit models, and further
work in that direction is warranted. Since heteroscedasticity, nonnormality, and
nonlinear relationships are common in econometric or business data for which
the Tobit model is appropriate, it would seem that the SIR estimator is a useful
alternative to consider when fitting such models.
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25% censoring proportion 50% censoring proportion

Gaussian Cauchy Gaussian Cauchy

n = 50, p = 5
MLE .953 .680 .944 .696
BJ .952 .625 .943 .611
LAD .926 .870 .897 .817
WADE .898 .573 .889 .525
SIR .933 .776 .907 .893

n = 200, p = 5
MLE .989 .843 .986 .879
BJ .989 .636 .986 .617
LAD .981 .974 .971 .965
WADE .949 .553 .947 .494
SIR .980 .958 .984 .957

n = 200, p = 10
MLE .975 .707 .971 .782
BJ .975 .525 .971 .558
LAD .958 .935 .938 .892
WADE .898 .433 .889 .376
SIR .971 .911 .965 .905

n = 200, p = 20
MLE .979 .710 .975 .800
BJ .979 .442 .975 .503
LAD .963 .944 .947 .910
WADE .880 .327 .870 .274
SIR .976 .930 .972 .926

Table 1: Average absolute correlations of the true and estimated linear predic-
tors for different estimators under linear model conditions.
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25% censoring proportion 50% censoring proportion

Gaussian Cauchy Gaussian Cauchy

n = 50, p = 5 .138 .202 .126 .235
.028 .065 .032 .075

n = 200, p = 5 .067 .072 .081 .075
.059 .034 .061 .035

n = 200, p = 10 .076 .086 .068 .089
.057 .046 .048 .045

n = 200, p = 20 .058 .056 .056 .060
.055 .045 .054 .054

Table 2: Average empirical size of .05 level SIR t-tests for slope coefficients. The
first line corresponds to using approximate standard errors, while the second line
corresponds to using bootstrap standard errors.
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Model 1: y = x1(x2 + x3 + 1) + σε
σ = .5 σ = 1

Component 1 Component 2 Component 1 Component 2

SIR .923 .774 .924 .650
MLE .952 .227 .949 .189
BJ .949 .243 .949 .191
LAV .869 .475 .862 .462
CQR .867 .478 .863 .456

Model 2: y = x1/[.5 + (x2 + 1.5)2] + σε
σ = .5 σ = 1

Component 1 Component 2 Component 1 Component 2
SIR .933 .772 .909 .510
MLE .947 .243 .929 .180
BJ .947 .246 .930 .179
LAV .875 .426 .850 .386
CQR .875 .424 .857 .359

Table 3: Average absolute correlations of estimated indices and actual indices
for two-index models.

Model σ k = 0 k = 1 k = 2 k = 3 k = 4

1 .5 2.9 × 10−11 .062 .531 .747 .805
1 1.1 × 10−7 .184 .589 .780 .822

2 .5 1.7 × 10−9 .075 .563 .772 .825
1 6.1 × 10−4 .339 .666 .808 .841

Table 4: Average p-values for test of k versus at least k + 1 components for
two-index models.
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MLE SIR

Total Logged

donations total donations First index Second index

Intercept −5543.36 −17.287
(322.08) (1.090)

Income 0.126 0.350 0.172 −0.013
(0.012) (0.038) (0.002) (0.009)

Household size 0.269 0.284 0.507 −0.321
(0.289) (0.883) (0.052) (0.200)

Number of vehicles 0.544 0.698 0.484 −0.270
(0.247) (0.770) (0.048) (0.184)

Number of earners −0.773 −0.373 −0.665 0.906
(0.511) (1.554) (0.094) (0.361)

Age of household head 0.137 0.414 0.192 0.049
(0.023) (0.071) (0.004) (0.016)

Table 5: Tobit regression results for charitable donation data.
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Figure 1: Average absolute correlations of the true and estimated linear predic-
tors for different estimators under four nonlinear model conditions. MLE: long
dashed-and-dotted line; BJ: short dashed-and-dotted line; LAD: long dashed
line; CQR: short dashed line; WADE: dotted line; SIR: solid line.
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Figure 2: Plots of the standardized residuals from a linear regression with the
observed logged total donations as the response and the fitted first SIR index
as the predictor versus number of earners and age of head of household, respec-
tively, for households with positive charitable donations.
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