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Abstract

This paper discusses a novel application of mathematical programming techniques
to a regression problem. While least squares regression techniques have been used for
a long time, it is known that their robustness properties are not desirable. Specifically,
the estimators are known to be too sensitive to data contamination. In this paper we
examine regressions based on Least-sum of Absolute Deviations (LAD) and show that
the robustness of the estimator can be improved significantly through a judicious choice
of weights. The problem of finding optimum weights is formulated as a nonlinear mixed
integer program, which is too difficult to solve exactly in general. We demonstrate
that our problem is equivalent to one similar to the knapsack problem and then solve
it for a special case. We then generalize this solution to general regression designs.
Furthermore, we provide an efficient algorithm to solve the general non-linear, mixed
integer programming problem when the number of predictors is small. We show the
efficacy of the weighted LAD estimator using numerical examples.

Keywords: Algorithms; Breakdown point; Knapsack problem; Nonlinear mixed integer
programming; Robust regression
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1 Introduction

Consider the well-known statistical linear regression problem. We have n observations on

some “dependent” variable y and some number p ≥ 1 of “independent” variables x1, . . . , xp,

for each one of which we know n values as well. We denote

y =




y1
·
·
·
yn



, X =




x1
1 · · · x1

p

· ·
· ·
· ·
xn

1 · · · xn
p




=




x1

·
·
·

xn




= (x1, . . . ,xp) ,

where y ∈ Rn is a vector of n observations, x1, . . . ,xp are column vectors with n components,

and x1, . . . ,xn are row vectors with p components corresponding to the columns and rows

of the n× p matrix X, respectively. To rule out pathologies we assume throughout that the

rank r(X) of X is full, i.e., that r(X) = p. If the regression model includes an intercept

term, as is typical, x1 is a column of ones, but this is not required.

The statistical linear regression model is

y = Xβ + ε, (1)

where βT = (β1, . . . , βp) is the vector of parameters of the linear model and εT = (ε1, . . . , εn)

is a vector of n random variables corresponding to the error terms in the asserted relation-

ship. The superscript T denotes “transposition” of a vector or matrix throughout this work.

In the statistical model, the dependent variable y is a random variable for which we obtain

measurements or observations that contain some “noise” or measurement errors that are

captured in the error terms ε.

Although (1) gives the statisticalmodel underlying the regression problem, the numerical

problem faced is slightly different. For this, we write

y = Xβ + r (2)

where given some parameter vector β, the components ri of the vector rT = (r1, . . . , rn) are

the residuals that result, given the observations y, a fixed design matrix X, and the chosen

vector β ∈ Rp. It is well-known that when the errors ε are normally (Gaussian) distributed,
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the least squares parameter estimator (which minimizes the `2-norm ‖y−Xβ‖2 =
∑n

i=1(yi−

xiβ)2 of the residuals) has many desirable properties, having the minimum variance among

all linear unbiased estimators, and (being the maximum likelihood estimator) achieving the

minimum possible variance for all consistent estimators as the sample size becomes infinite.

Many other regression estimators, in addition to least squares, have been proposed in the

statistical literature. These techniques have been introduced to improve upon least squares

in some way. Among these techniques are those that are robust with respect to outliers,

as it is known that least squares regression estimates are affected by wild observations.

There have been several measures developed within the statistical literature that quantify

the robustness of a regression estimator. In this paper, we focus on the breakdown point

(c.f. [12]) to be formally defined in Section 2.

One of the earliest proposals for estimating regression parameters was regression per-

formed using the `1-norm, also called Least-sum of Absolute Deviations (LAD). This regres-

sion problem can be solved using linear programming, hence its interest in the operations

research community. LAD regression has become more useful with the advent of interior

point methods for solving linear programs and with the increase in computer processing

speed (Portnoy and Koenker [11]). Furthermore, it is known that LAD regression is more

robust than least squares (c.f. [3]). As far back as the 1960s and 1970s, it was noticed that

empirically, LAD outperformed least squares in the presence of fat tailed data (c.f. [13]).

However, it is only more recently that the robustness properties of LAD regression have

been theoretically determined. For regression problems where there may be outliers in the

dependent variable, LAD regression is a good alternative to least squares, and we show that

judicious choice of weights can improve its robustness properties. Furthermore, LAD can

be utilized to demonstrate that least squares is accurate when indeed it is (if the LAD and

least squares estimates are similar); this can be useful, since the least squares estimator is

more efficient than LAD in the presence of Gaussian errors.

In this paper, we study a mathematical program (nonlinear mixed integer program)

that can be used to improve the robustness of LAD regression. We demonstrate that the

introduction of nonuniform weights can have a positive impact on the robustness properties
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of LAD regression. We develop an algorithm for determining these weights and demonstrate

the usefulness of our approach through several numerical examples. Specifically, we develop

an algorithm for choosing weights that can significantly improve the robustness properties

of LAD regression. In order to study the weighted LAD regression problem, we use and

apply linear and mixed integer programming techniques. Our studies indicate that weighted

LAD regression should be seriously considered as a regression technique in many regression

and forecasting contexts.

The structure of the paper is as follows. In Section 2, we introduce the LAD regression

problem, summarize some of the pertinent research on LAD regression and its robustness

properties. We show (in Section 3) that the problem of incorporating nonuniform weights

can be formulated as a nonlinear mixed integer program. In Section 4, we demonstrate that

this problem is equivalent to a problem related to the knapsack problem. In Section 5, we

discuss a special case of the weight determination problem for which an optimal solution can

be obtained. Using the insights gained in Sections 3-5, we develop an algorithm (in Section

6) to solve the problem approximately, and demonstrate that the algorithm significantly

improves the robustness of the estimators through several numerical examples in Section 7.

2 LAD Regression and Breakdown

In the case of LAD regression, the general numerical problem (2) takes as the (optimal)

parameters β ∈ Rp those that minimize the `1-norm ‖y − Xβ‖1 =
∑n

i=1 |yi − xiβ| of the

residuals. It is well-known that this problem can be formulated as the linear programming

(LP) problem

min eT
nr+ + eT

n r− (3)

such that Xβ + r+ − r− = y

β free, r+ ≥ 0, r− ≥ 0,

where en is the vector with all n components equal to one. In (3) the residuals r of the

general form (2) are simply replaced by a difference r+ − r− of nonnegative variables,

i.e., we require that r+ ≥ 0 and r− ≥ 0, whereas the parameters β ∈ Rp are “free”
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to assume positive, zero, or negative values. From the properties of linear programming

solution procedures, it follows that for any solution inspected by the simplex algorithm,

either r+i > 0 or r−i > 0, but not both, thus giving |ri| in the objective function depending

on whether ri > 0 or ri < 0 for any i ∈ N where N = {1, . . . , n}. Every optimal extreme

point solution β∗ ∈ Rp of the LAD regression problem has the property that there exists a

nonsingular p× p submatrix XB of X such that

β∗ = X−1
B yB, r+ = max {0,y−Xβ∗} , r− = −min {0,y− Xβ∗}

where |B| = p and yB is the subvector of y corresponding to the rows of XB ( c.f. [3]).

The notion of the breakdown point of a regression estimator (due to Hampel [6]) can

be found in [12] and is as follows. Suppose we estimate the regression parameters β by

some technique τ from some data (X,y), yielding the estimate βτ . If we contaminate m

(1 ≤ m < n) rows of the data in a way so that row i is replaced by some arbitrary data
(
x̃i, ỹi

)
, we obtain some new data

(
X̃, ỹ

)
. The same technique τ applied to

(
X̃, ỹ

)
yields

estimates βτ
(
X̃, ỹ

)
that are different from the original ones. We can use any norm ‖ · ‖ on

Rp to measure the distance
∥∥∥βτ

(
X̃, ỹ

)
− βτ

∥∥∥ of the respective estimates. If we vary over

all possible choices of contamination then this distance either stays bounded or not. Let

b (m, τ,X,y) = sup
X̃,ỹ

∥∥∥βτ
(
X̃, ỹ

)
− βτ

∥∥∥

be the maximum bias that results when we replace at most m of the original data
(
xi, yi

)

by arbitrary new ones. The breakdown point of τ is

α (τ,X,y) = min
1≤m<n

{m
n

: b (m, τ,X,y) is infinite
}

,

i.e., we are looking for the minimum number of rows of (X,y) that if replaced by arbitrary

new data make the regression technique τ break down. We divide this by n to get 1
n ≤

α (τ,X,y) ≤ 1. In practice, α (τ,X,y) ≤ .5, since otherwise it is impossible to distinguish

between the uncontaminated data and the contaminated data. The breakdown point of

LAD as well as least squares regression is 1
n or asymptotically 0, see e.g., [12]. Clearly, the

larger the breakdown point, the more robust is the regression estimator.
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However, LAD regression is more robust than least squares in the following manner.

The finite sample breakdown point of the LAD regression estimator is the breakdown point

of LAD regression with a fixed design matrix X and contamination restricted only to the

dependent variable y, denoted by α (τ,y|X). The finite sample breakdown point, or con-

ditional breakdown point, was introduced by Donoho and Huber ([1]). The finite sample

breakdown point has been studied by many authors; see, e.g., [2], [7], [4], and [8]. Ellis and

Morgenthaler ([2]) appear to be the first to mention that the introduction of weights can

improve the finite sample breakdown point of LAD regression, but they only show this for

very small data sets. Mizera and Müller ([9]) examine this question in more detail, showing

that the predictors X can be chosen to increase the breakdown point of LAD.

In this paper, we use the notation and framework set forth by Giloni and Padberg ([4]).

Let N = {1, . . . , n} and let U, L, Z be a mutually exclusive three-way partition of N such

that |U ∪ L| = q. Let e be a column vector of ones and let XZ be the submatrix of X

whose row indexes are in Z. Similarly, we define XU and XL. The subscripts of U and

L on e denote a vector of ones of appropriate dimension. Giloni and Padberg ([4]) define

the notion of q-stability of a design matrix as follows. X is q-stable if q ≥ 0 is the largest

integer such that

XZξ + η+ − η− = 0 , (−eT
UXU + eT

LXL)ξ + eT
Z(η+ + η−) ≤ 0 (4)

ξ 6= 0 , η+ ≥ 0 , η− ≥ 0 (5)

is not solvable for any U, L, Z. They prove that a design matrix X is q-stable if and

only if α (`1,y|X) = q+1
n . This is in direct contrast to least squares regression where

its finite sample breakdown point is 1
n or asymptotically 0. They show that the finite

sample breakdown point of LAD regression can be calculated by the following mixed integer

program MIP1 (where M > 0 is a sufficiently large constant and ε > 0 is a sufficiently

small constant):
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MIP1 min
n∑

i=1

ui + `i = q + 1

such that xiξ + η+
i − η−i + si − ti = 0 for i = 1, . . . , n

si −Mui ≤ 0, ti −M`i ≤ 0 for i = 1, . . . , n

η+
i + η−i +Mui +M`i ≤M for i = 1, . . . , n

ui + `i ≤ 1 for i = 1, . . . , n
n∑

i=1

η+
i + η−i − si − ti ≤ 0,

n∑

i=1

si + ti ≥ ε

ξ free,η+ ≥ 0, η− ≥ 0, s ≥ 0, t ≥ 0, ui, `i ∈ {0, 1} for i = 1, . . . , n.

In our case, we are interested in weighted LAD regression. The weighted LAD regression

problem also can be formulated as a linear program, as follows.

min
n∑

i=1

wi

(
r+i + r−i

)
(6)

such that Xβ + r+ − r− = y

β free, r+ ≥ 0, r− ≥ 0.

Here, we assume that the residual associated with observation i is multiplied by some weight,

wi, where we assume that 0 < wi ≤ 1 without restriction of generality. We note that if we

were to set wi = 0, we would essentially “remove” observation i from the data. We do not

permit this, although, if some (optimal) weight is sufficiently near 0, the user can choose to

remove the observation from the data set.

We now note that since
(
r+i − r−i

)
=

(
yi − xiβ

)
, and by the simplex method either

r+i > 0 or r−i > 0 but not both, then |wi

(
r+i − r−i

)
| = wi

(
r+i + r−i

)
. Therefore, if we were

to transform our data by setting
(
x̂i, ŷi

)
= wi

(
xi, yi

)
, then

(
ŷi − x̂iβ

)
= wi

(
r+i − r−i

)
. In
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such a case, the linear program (6) can be reformulated as

min eT
n r+ + eT

n r−

such that wixiβ + r+ − r− = wiyi for i = 1, . . . , n

β free, r+ ≥ 0, r− ≥ 0.

This shows that weighted LAD regression can be treated as LAD regression with suitably

transformed data. Therefore, the problem of determining the breakdown of weighted LAD

regression with known weights corresponds to determining the breakdown of LAD regression

with data (X̂, ŷ).

The equivalence of weighted LAD regression and ordinary LAD regression on trans-

formed data is also useful in other contexts. For example, LAD regression can be adapted

to the nonparametric estimation of smooth regression curves (see [14] for a general discus-

sion of nonparametric regression estimation), by local fitting of weighted LAD regressions

([15]; [16]). Formulations of the type in this section allowed Giloni and Simonoff ([5]) to

derive the exact breakdown properties of local LAD regression at any evaluation point, and

to make recommendations concerning the best choice of weight function.

In the next section, we formulate the problem of determining the set of weights that

maximizes the breakdown point of weighted LAD regression.

3 Problem Formulation

The task of determining the weights that maximize the finite sample breakdown point of

LAD regression is a complicated one. If one were to try to solve this problem by brute

force, it would require the inspection of all or a large subset of all vectors (if this is possible)

w ∈ Rn, the transformation of the data described above
(
x̂i, ŷi

)
= wi

(
xi, yi

)
, and then

the solution of MIP1 for each case. Instead, we formulate this problem as a nonlinear

mixed integer program. For the solution methods we discuss below, we make the standard

assumption that the design matrix X is in general position, i.e., every p × p submatrix

of X has full rank. We do this in order to simplify the analysis that follows. However,

we note that even in the case where this assumption is violated, the methodology that we
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develop is still valid. This is quite different from many so-called high breakdown regression

techniques (ones where the breakdown point can be as high as .5), where the value of the

breakdown point of the estimators depends upon whether or not the design matrix is in

general position; see [12], p. 118. The mixed integer program is

NLMIP max
w

min
n∑

i=1

(ui + `i)

such that wixiξ + η+
i − η−i + si − ti = 0 for i = 1, . . . , n (7)

si −Mui ≤ 0, ti −M`i ≤ 0 for i = 1, . . . , n (8)

η+
i + η−i +Mui +M`i ≤M for i = 1, . . . , n (9)

ui + `i ≤ 1 for i = 1, . . . , n (10)
n∑

i=1

η+
i + η−i − si − ti ≤ 0 (11)

n∑

i=1

si + ti ≥ ε (12)

wi ≤ 1 for i = 1, . . . , n (13)

ξ free,η+ ≥ 0, η− ≥ 0, s ≥ 0, t ≥ 0, ui, `i ∈ {0, 1} for i = 1, . . . , n. (14)

Note that ξj is unrestricted for j = 1, . . . , p. Also note that NLMIP is a nonlinear problem

because of the first term in the left hand side of (7). Since nonlinear mixed integer programs

are extremely difficult to solve we will resort to heuristics for finding good feasible solutions.

In order to do so, we note that if the weights w ∈ Rn are fixed, then NLMIP is just MIP1

with transformed data. Therefore, if we were to focus on only a specific sets of weights,

we could determine which set is the best by solving the different MIPs and choosing the

set that had the largest objective function value among the MIPs considered. However, as

mentioned by Giloni and Padberg ([4]), MIP1 can take a long time to solve for large data

sets. We thus provide an alternative way of solving MIP1 that is quite efficient when p is

small. We note that this alternative way is similar to the proposal of Mizera and Müller

([9]). We provide its statement and proof here, as we feel it is useful in understanding our

framework for selecting weights.

Proposition 1 In order to determine the finite sample breakdown point of LAD regression,
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it is sufficient to consider
(

n
p−1

)
candidate solutions for the vector ξ ∈ Rp in (4) and (5) .

Proof. Consider a three-way partition U1, L1, Z1 of N where U1∩L1 = ∅, Z1 = N−U1−L1,

and q = |U1 ∪ L1|. Note that (4) has no solution if and only if the objective function value

of the following optimization problem is strictly greater than zero.

OF = min −
∑

i∈U1

xiξ +
∑

i∈L1

xiξ +
∑

i∈Z1

η+
i + η−i

such that XZ1ξ + η+ − η− = 0 (15)

ξ 6= 0, η+ ≥ 0,η− ≥ 0

We note that since this problem includes a constraint of the form ξ 6= 0, its study as a

linear program is more difficult. Therefore, we argue as follows. If we were to assume

that there exist ξ0 ∈ Rp, ξ0 6= 0, such that OF < 0, then consider ξ = ψξ0 where ψ > 0

is some constant. If i ∈ U1 ∪ L1, then the sign of xiξ is the same as that of xiξ0. If

i ∈ Z1, η+
i + η−i ≥ |xiξ| because of (15), and since we are minimizing, equality will hold.

Therefore, ξ = ψξ0 results in OF being multiplied by ψ. It follows that OF < 0 (actually

OF → −∞ since we could let ψ → ∞). It can be shown similarly if OF = 0 or OF > 0 that

ξ = ψξ0 does not change the sign of OF . Therefore we set ξj = γ where γ > 0 and without

restriction of generality we let j = 1. This changes the optimization to the following linear

program:

OF1 = min −
∑

i∈U1

xiξ +
∑

i∈L1

xiξ +
∑

i∈Z1

η+
i + η−i

such that XZξ + η+ − η− = 0

ξ1 = γ

ξ free, η+ ≥ 0,η− ≥ 0

All basic feasible solutions to this linear program are of the form ξ =
(

1 0
XB

)−1 (
γ
0

)

where XB is a (p− 1) × (p) submatrix of XZ with rank p − 1 and we assume that the

square matrix
(

1 0
XB

)
of order p is of full rank. (Note that if a row of X is of the form

(1 0) then this would only reduce the number of possible basic feasible solutions.) By the
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fundamental theorem of linear programming (c.f. [10], Theorem 1), a solution withOF1 ≤ 0

exists if and only if a basic feasible solution exists with OF1 ≤ 0. Thus if OF1 ≤ 0 then

OF ≤ 0. We note that if an optimal solution to OF had ξ1 = γ < 0 then it is possible that

OF ≤ 0 when OF1 > 0 since γ > 0 in the linear program. However, this is no concern to us

since we need to consider all possible three-way partitions and we point out that switching

the roles of U1 and L1 effectively changes the sign of ξ1. Since there are at most n possible

rows of X that could be included in XZ1 there are no more than
( n
p−1

)
possible subsets of

XZ for any Z. Therefore, the proposition follows.

4 An equivalent problem

In this section, we show that the problem NLMIP can be reduced to a problem which is

related to the knapsack problem. Consider the following problem:

EQMIP max
w

min
z,ξ

n∑

i=1

zi (16)

such that
n∑

i=1

|wixiξ|zi ≥ 0.5
n∑

i=1

|wixiξ| (17)

wi ≤ 1 for i = 1, . . . , n (18)

ξ 6= 0, zi ∈ {0, 1} for i = 1, . . . , n. (19)

Imagine a hiker who has available n objects that he can choose from and the weight of the

ith object is |αi|, where αi = wixiξ. The hiker has to select a subset of these objects such

that the weight of the subset is at least half of the weight of the entire set. Obviously,

the problem is trivial if the weights |αi| were known. One would order the objects by non-

decreasing weights and then select them one by one until the total weight of the selected

items is greater than or equal to half of the total weight of all of the n objects. The problem is

made difficult by the fact that the weights |αi| are determined by several unknown variables

(ξ and w), and further complications arise due to the max-min nature of the objective

function. Nevertheless, this demonstration of equivalence and the insight that we gain from

understanding the problem in this manner plays an important role in the development of

the algorithm to follow. In the following proposition, we show that the two problems are
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equivalent in the sense that there is a simple method of constructing the optimal solution

of one when the optimal solution of the other is known.

Proposition 2 The problems NLMIP and EQMIP are equivalent.

Proof. Let us assume that the optimal solution of EQMIP is known. Let Z denote the

subset of indices from the set {1, . . . , n} for which zi = 1. We now construct a solution for

NLMIP from the solution of EQMIP as follows:

If i 6∈ Z and αi < 0, then set η+
i = −αi, (20)

if i 6∈ Z and αi ≥ 0, then set η−i = αi, (21)

if i ∈ Z and αi < 0, then set si = −αi and ui = 1 and (22)

if i ∈ Z and αi ≥ 0, then set ti = αi and `i = 1. (23)

Set all other variables in NLMIP to zero. Let us denote the set of indices i satisfying

(20)-(23) by G1,G2,G3 and G4 respectively. Note that G3 ∪ G4 = Z and G1 ∪ G2 = Zc. Let

α =
∑n

i=1 |αi|. Let M = maxi∈Z |αi| and let ε =
∑

i∈Z |αi|. We first show that ε > 0. If we

assume the contrary, i.e., ε = 0, then it implies that the left hand side of (17) is zero and

consequently, so is the right hand side of (17) and the optimal value of the objective function

is 0. This means that for each i, either wi = 0 or xiξ = 0. Note that the assumptions that

X is in general position and ξ 6= 0, implies that at least one of the xiξ 6= 0. Then for that

i, we can choose wi = 1 and zi = 1 and show that the optimum value of the objective can

be increased to 1, which in turn implies that the solution could not be optimal. We now

show that the solution constructed for NLMIP is feasible. It is fairly obvious from the

construction of the solution that the constraints (7)-(14) are satisfied, except the inequality

12



in (11). To show that this holds, we note that

n∑

i=1

(η+
i + η−i − si − ti) =

∑

i∈G1

η+
i +

∑

i∈G2

η−i −
∑

i∈G3

si −
∑

i∈G4

ti (24)

=
∑

i 6∈Z
|αi| −

∑

i∈Z
|αi| (from (20 − 23)) (25)

=
n∑

i=1

|αi| − 2
∑

i∈Z
|αi| (26)

≤ 0 (from (17)). (27)

So far we have shown that the optimal solution for EQMIP is feasible for NLMIP . To

show that this solution is also optimal for NLMIP , we assume the contrary, i.e., assume

that there is a solution to NLMIP which has a higher value of the objective function than

the optimal solution to EQMIP . From this supposed solution of NLMIP , we construct a

new solution for EQMIP by setting zi = ui +`i. It is easy to verify that the new solution is

feasible for EQMIP , by observing the following: (a) An optimal solution to NLMIP has

an equivalent solution, which is also optimal, in which at most one of the four variables η+
i ,

η−i , si and ti for any i can be positive. (b) When η+
i or η−i is positive, the corresponding

ui = `i = 0. (c) When si (or ti) is positive, then ui = 1 (or `i = 1). (d) Using (a), (b)

and (c), one reverses the arguments in (24)-(27) to show that the solution of EQMIP so

obtained satisfies the constraint (17). With this construction, it is now easy to see that

this solution has an optimal value of the objective function that is higher than that of the

assumed optimal solution of EQMIP . This contradiction shows that the optimal solution

of EQMIP must also be an optimal solution of the NLMIP .

To finish the proof, one must now show that a solution of NLMIP has an equivalent

solution which is also an optimal solution of EQMIP . The construction of this is done by

setting zi = ui + `i, and the proof of optimality can be obtained by reversing the arguments

given above.
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5 The case of uniform design simple linear regression

In this section, we discuss the special case of simple linear regression (p = 2) with a uniform

design, i.e., xi
1 = 1 and xi

2 = i, for i = 1, . . . , n (there is no loss of generality in taking the

values of xi
2 as the integers; any equispaced set of values yields the same weights). We refer

to this problem as the uniform simple linear problem. We show how to obtain an exact

solution for this problem. The problem stated in (16)-(19) without any restriction on wi

now becomes:

USLMIP max
w

min
z,ξ

n∑

i=1

zi (28)

such that
n∑

i=1

|wi(ξ1 + iξ2)|zi ≥ 0.5
n∑

i=1

|wi(ξ1 + iξ2)| (29)

ξ 6= 0, zi ∈ {0, 1} for i = 1, . . . , n. (30)

A crucial result for determining the optimal values of wi and ξ is given by the following

lemma.

Lemma 1 For the problem USLMIP , there is an optimum solution of wi, which is sym-

metrical, i.e., wi = wn−i for i = 1, . . . , n.

Proof. Define φi = ξ1 + iξ2 and let the optimal values of ξ1 = δ1 and ξ2 = δ2; this implies

that φi = δ1 + iδ2. Construct a new solution by selecting ξ1 = δ1 + nδ2 and ξ2 = −δ2.

We refer to the function φ for the new solution as φ̄ to distinguish it from the original

solution. Then φ̄i = δ1 +(n− i)δ2, or φi = φ̄n−i. Note that as far as the regression problem

is concerned, it is as if the two solutions differ only in the arrangements of the entries of

the xξ vector. This means that there is an optimal solution for which wi = wn−i since a

symmetric choice of wi will cater to both choices of φ and φ̄.

Based on the above result, we limit ourselves to symmetric linear functions for wi. More

explicitly, the functions we choose to examine are linear functions of the distance from the

center of the range of x, being of the form:

wi =
{
w0 + iw1 if i ≤ n/2
w0 + (n− i)w1 if i > n/2.
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We note that the problem defined in (28)-(30) is invariant in scaling for w and ξ. Therefore,

without loss of generality, we can impose two conditions such as w0 = ξ1 = 1. Thus the

simple linear problem reduces to the problem of finding just two parameters w1 and ξ2.

Clearly, the two unknown quantities also depend on the value of n, the size of the problem.

To remove this dependency, we convert the problem in (28)-(30) to an equivalent continuous

problem in which the variable i is replaced with a variable x, where 0 ≤ x ≤ 1. After solving

this problem by conducting a search over the two unknown parameters, we re-convert the

solution to the discrete case. The solutions obtained are w1 = 4/n and ξ2 = −1.35/n. The

optimal value of the objective function in the continuous version of the problem is 0.3005n.

This shows that the finite sample breakdown point of weighted LAD regression can reach

over 30%. Note that if we simplified the problem by not considering the weights w (i.e.,

wi = 1 for i = 1, . . . , n), then the optimum breakdown for the continuous version of this

problem is 0.25n (c.f. [2]). This implies that for the uniform simple linear problem, the

breakdown can be increased by about 20% by a judicious choice of weights.

The solution to the uniform simple linear problem after normalizing the weights such

that wi ≤ 1 for i = 1, . . . , n is

wi =





1+i( 4
n)

1+bn
2
c( 4

n) if i ≤ n/2

1+(n−i)( 4
n)

1+bn
2
c( 4

n) if i > n/2.

Thus the selected weights range from approximately 1
3 to 1. Our algorithm for the deter-

mination of general weights given in the next section is based upon this solution for the

uniform simple linear problem.

6 Weights for General Regression Designs

In this section, we describe a general weight-determination algorithm, and describe in more

detail how NLMIP can be solved once the weights are chosen. The key idea in generalizing

the weights is to note that the symmetric linear weights have the property that the weights

decrease linearly with the distance from the “center” of the range of the predictor. The
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proposed general weights have a corresponding property, decreasing linearly with the sum

of the distances for the predictors from the coordinatewise median of the observation, where

the distances are scaled by the range of each predictor. The median is chosen as the center

of the data since the LAD estimator for univariate location is the median. This yields the

following algorithm for choosing the weights.

Algorithm for choosing weights

Step 1: Let zi
j = (xi

j − mini{xi
j})/maxi{xi

j}, j = 1, . . . , p (if x1 is a column of ones, set

zi
1 = 0 for all i). For j = 1, . . . , p, let mj denote the median of the entries zi

j for i = 1, . . . , n.

Step 2: Let ri =
∑p

j=1 |zi
j −mj |.

Step 3: Let ri = (ri − minν rν)/(maxν rν − minν rν).

Step 4: Let wi = 1 − 2
3ri.

Note that steps 3 and 4 of the algorithm guarantee that these weights are (virtually) identical

to those derived earlier for the uniform simple linear case when the data take that form.

Once the weights are chosen, the results of section 3 provide a way of approximately

solving EQMIP , and hence NLMIP . The details are as follows.

Algorithm for solving EQMIP

Step 1: Let N denote the set {1, · · · , n}. Let Kk denote all of the subsets of N , such that

|Kk| = p− 1 for k = 1, · · · , r. Clearly, r = n!/((p− 1)!(n− p+ 1)!). For k = 1, · · · , r, solve

the following system of linear equations for the unknown p×1 vector ξk:

wixiξk = 0 for i ∈ Kk

and ξk
1 = 1. Note that this system is guaranteed to have a unique solution, based on the

assumptions on xi. Let

αk
i = wixiξk.

Step 2: Reorder the elements |αk
i | for i = 1, . . . , n in decreasing order so that |αk

i | now
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denotes the ith order statistic. Identify the smallest index m∗(k) satisfying

m∗(k)∑

i=1

|αk
i | ≥ 0.5

n∑

i=1

|αk
i |.

Step 3: Find m∗ = mink m
∗(k). Let k∗ be the value of k for which this is minimum. The

solution is given by:

If i > m∗ and αk∗
i < 0, then set η+

i = −αk∗
i ,

if i > m∗ and αk∗
i ≥ 0, then set η−i = αk∗

i

if i ≤ m∗ and αk∗
i < 0, then set si = −αk∗

i and ui = 1 and

if i ≤ m∗ and αk∗
i ≥ 0, then set ti = αk∗

i and `i = 1.

Set all other variables to zero.

7 Examples

In this section we illustrate the benefits of weighting using the proposed algorithm. We

first determine the breakdown points for 21 one- and two-predictor designs that cover a

wide range of possible patterns, all of which are based on n = 500 observations. In the

one predictor case, we generate n observations from either a uniform, exponential (with

mean 1) or normal distribution, as these represent varying degrees of nonuniformity in the

design. We also consider the situation where a certain percentage (either 10% or 20%) of the

observations are replaced by observations placed at roughly four standard deviations away

from the mean of the predictor. The existence of unusual values for the predictors (called

leverage points in the statistics literature) is of particular interest, since it is well-known

that LAD regression is very sensitive to leverage points.

We also examine two-predictor (multiple) regressions by generating two predictors using

the six possible combinations of uniform, exponential, and normal distributions. We also

examine the effects of leverage points, by replacing 20% of the observations with values

placed at roughly four standard deviations away from the mean of the predictor for both

predictors.
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The results are given in Table 1. For each design the breakdown point (expressed as a

percentage of the total sample size) is given for LAD, weighted LAD based on applying the

algorithm for choosing weights once, and weighted LAD based on applying the algorithm for

choosing weights iteratively. Iterating is done by treating the weighted design WX (where

W is a diagonal matrix of weights) as the current design, and reapplying the algorithm.

At each iteration, the breakdown point is determined, and iteration continues until the

breakdown point stops increasing (the total number of iterations in each case is given in

parentheses in the table). These breakdown points were computed exactly here, but in the

situation where a user is faced with designs too large to determine the breakdown exactly,

we suggest utilizing the heuristic for finding a good upper bound of the breakdown suggested

by Giloni and Padberg ([4]) and then iterating until the upper bound no longer increases

(of course, another possibility would be to just iterate once).

The table makes clear the benefits of weighting. Just one iteration of the weighting

algorithm typically increases the breakdown point 3-5 percentage points, and as much as

6-7 percentage points when there are leverage points. Even more impressively, iterating the

weighting algorithm leads to gains in breakdown of at least 5 percentage points in most

cases, and as much as 10-15 percentage points in many. The weighted LAD estimator is

much more robust than the LAD estimator, and therefore more trustworthy as a routine

regression tool.

We conclude with discussion of a well-known data set from the robust regression liter-

ature, the so-called Stars data set ([12], p. 27). Figure 1 contains three graphs. At the

top left is a scatter plot of the original data, which is a plot of the logarithm of the light

intensity versus the logarithm of the temperature at the surface of 47 stars in the star clus-

ter CYG OB1. The plot (called a Hertzsprung-Russell star chart) also includes the least

squares regression line, the LAD regression line, and the weighted LAD regression line using

the weights defined by our weight selection algorithm, including iteration. There are four

obvious outliers in this data set all with logged temperature approximately equal to 3.5.

These outlying data points are what are referred to as “red giants,” as opposed to the rest

of the stars which are considered to lie in the “main sequence.” It is apparent that the least
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Design Leverage LAD breakdown WLAD breakdown WLAD breakdown
point point (1 iteration) point (# iterations)

Exponential 14.0% 17.8% 26.6% (4)
Exponential 10% 11.2% 14.6% 27.0% (4)
Exponential 20% 14.6% 17.2% 27.0% (4)
Normal 23.0% 27.0% 30.2% (2)
Normal 10% 14.8% 22.4% 29.6% (2)
Normal 20% 15.0% 20.0% 29.8% (2)
Uniform 24.6% 29.8% 29.8% (1)
Uniform 10% 7.2% 10.4% 27.4% (3)
Uniform 20% 11.8% 14.8% 26.8% (3)
Exponential/Exponential 14.0% 20.6% 23.6% (4)
Exponential/Exponential 20% 13.4% 20.0% 21.6% (4)
Exponential/Normal 14.0% 16.2% 19.6% (4)
Exponential/Normal 20% 13.4% 16.6% 21.2% (2)
Exponential/Uniform 14.0% 17.4% 21.0% (3)
Exponential/Uniform 20% 11.6% 13.8% 21.0% (4)
Normal/Normal 22.8% 25.4% 25.8% (2)
Normal/Normal 20% 13.2% 17.4% 21.4% (2)
Normal/Uniform 23.0% 25.2% 25.2% (1)
Normal/Uniform 20% 11.6% 13.6% 21.6% (3)
Uniform/Uniform 23.4% 25.4% 25.4% (1)
Uniform/Uniform 20% 11.0% 13.2% 20.6% (3)

Table 1: Breakdown points for various designs.

squares line is drawn towards the red giants, which is not surprising, given its breakdown

point of 1/47. By contrast, the weighted LAD line is unaffected by the outliers, and goes

through the main sequence. The WLAD line has breakdown 10/47 if only one iteration of

the weighting algorithm is used, and increases to 13/47 with two iterations.

It is interesting to note, however, that the LAD line is also drawn towards the outliers,

despite the fact that the LAD line has not broken down (its breakdown point is 5/47, so the

four outliers are not enough to break it down). This illustrates that weighting can be helpful

if outliers occur at leverage points, even if the LAD estimator has not broken down. The

top right plot reinforces that LAD has not broken down. In this plot the light intensities

of the four giants have been further contaminated (by adding 10 to the values). The least
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squares line follows the outliers, but the LAD line is virtually identical to what it was in

the original plot, since it has not broken down (although it still does not follow the main

sequence, as the weighted LAD line still does). In the third plot of the figure, two more

stars have their light intensities contaminated. Since there are now 6 outliers, the LAD line

breaks down, and is as poor as the least squares line, while the weighted LAD line is still

resistant to the outliers.

8 Conclusions and Directions for Future Research

In this paper, we have demonstrated that weighted LAD regression is a regression technique

whose robustness properties can be studied by mathematical programming methods. We

have developed a computationally feasible method for calculating the optimum weights

and have demonstrated that the optimum breakdown can be significantly increased by a

judicious choice of weights. These results leave open the statistical properties of weighted

LAD regression, which would be fruitful topics for further research. These include study

of the asymptotic properties of weighted LAD regression, its small-sample properties, and

investigation of whether nonlinear weights might lead to better performance.
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Figure 1: Stars data and modifications, with three regression lines.
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