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Abstract

For long-memory time series, we show that the Toeplitz system Σn(f)x = b can be solved in
O(n log5/2 n) operations using a well-known version of the preconditioned conjugate gradient method,
where Σn(f) is the n×n covariance matrix, f is the spectral density and b is a known vector. Solutions
of such systems are needed for optimal linear prediction and interpolation. We establish connections
between this preconditioning method and the frequency domain analysis of time series. Indeed,
the running time of the algorithm is determined by rate of increase of the condition number of the
correlation matrix of the discrete Fourier transform vector, as the sample size tends to ∞. We derive
an upper bound for this condition number. The bound is of interest in its own right, as it sheds
some light on the widely-used but heuristic approximation that the standardized DFT coefficients
are uncorrelated with equal variances. We present applications of the preconditioning methodology
to the forecasting and smoothing of volatility in a long memory stochastic volatility model, and to
the evaluation of the Gaussian likelihood function of a long-memory model.

1 Introduction

The solution of Toeplitz systems plays an important role in time series analysis, for example in linear
forecasting and the evaluation of the Guassian likelihood function. Given a zero-mean weakly stationary
time series {Xt}∞t=−∞ with spectral density f , the minimum mean squared error linear predictor based on
X = (X0, . . . , Xn−1)′ is obtained as the solution for x in a linear system of form Σn(f)x = b involving the
n×n Toeplitz covariance matrix Σn(f) = cov(X), where b is known. We are interested in the fast solution
of such systems when n is large, in the face of long-range dependence, so that we can efficiently forecast
volatility and estimate long-memory models. Here, the autocovariances decline slowly, at a power law
rate, and Σn(f) is quite ill-conditioned. We will assume that the autocovariances are known. Although
there is not always an analytical expression for these, they can be computed to any desired degree of
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accuracy for lags 0 to n − 1 in O(n log n) operations using an algorithm of Bertelli and Caporin (2002)
for all of the models in widespread use.

The Levinson Algorithm (Levinson 1946; see also Brockwell and Davis 1991, Percival and Walden
1993) yields the solution of an n × n Toeplitz system in O(n2) operations. By exploiting the Toeplitz
structure, Levinson’s Algorithm achieves a strong improvement over the O(n3) cost of solving general
n × n linear systems. The algorithm also sheds light on time series analysis itself, revealing interesting
and useful connections between autocorrelations, partial autocorrelations, the optimal linear prediction
coefficients, and the variances of the one-step-ahead linear prediction errors.

For the analysis of time series in the frequency domain, the Fast Fourier Transform (FFT; Cooley and
Tukey 1965; Gentleman and Sande 1966) yields the n discrete Fourier transform (DFT) coefficients of
any n-dimensional vector in O(n log n) operations, as compared to the naive cost of O(n2). This allows
for implementation of the FFT even for extremely large values of n, and accounts for the ubiquitous use
of FFT algorithms in time series analysis and signal processing.

In recent years, it has been realized that the FFT can also be used for fast solution of Toeplitz systems,
yielding algorithms that are far faster than Levinson’s. Two main classes of FFT-based algorithms for
solving large Toeplitz systems have developed: Superfast algorithms (see Ammar and Gragg 1988) and
Preconditioned Conjugate Gradient (PCG) algorithms (see Axelsson and Barker 1984, Golub and Van
Loan 1996 for the general algorithm, R. Chan and Ng 1996, Strang 1986 and T. Chan 1988 for the Toeplitz
case). Unfortunately, in order to be numerically stable and accurate, the Superfast algorithms require
that the Toeplitz matrix be well-conditioned (see Bunch 1985), which is not the case for long-memory
series.

The PCG methods, which yield a numerical solution to the system given a desired degree of accuracy,
require iterative approximations to the solution of an equivalent linear system C̃−1

n (f)Σn(f)x = C̃−1
n (f)b,

where the matrix C̃n(f), called a preconditioner, is defined in terms of the entries of the first row of
Σn(f), i.e., the autocovariances up to lag n − 1, in such a way that each iteration can be carried out
in O(n log n) operations using the FFT. It is known that the number of iterations required to attain
convergence of the PCG algorithm is proportional to the square root of the condition number of the
preconditioned matrix C̃−1

n (f)Σn(f). Thus the growth rate of this condition number determines the
asymptotic computational complexity of the PCG algorithm. This growth rate has been derived for a
variety of situations and choices for the preconditioner (see, e.g., R. Chan 1989, R. Chan and Yeung 1992,
R. Chan Yip and Ng 2000), but under conditions that rule out long memory. We will focus in this paper
on a particular circulant preconditioner C̃n(f) due to T. Chan (1988), defined by Equation (3) in the
next section.

An interesting fact, apparently not previously noted, is that the preconditioned covariance matrix
based on C̃n(f) is equivalent, up to a similarity transform, to the correlation matrix of the DFT coeffi-
cients. This equivalence allows us to apply existing results from the long-memory time series literature
on properties of covariances between DFTs to help us to derive sharp bounds for the condition number
of the preconditioned matrix. Another interesting and useful connection is that the eigenvalues of C̃n(f)
are equal to the expected values of the periodogram ordinates at the Fourier frequencies.

We will show that for long-memory time series, the computational cost of the PCG algorithm based on
C̃n(f) is O(n log5/2 n). This rate follows from our Theorem 1 below, which states that under appropriate
assumptions, the condition number of the preconditioned matrix is O(log3 n). Our proof is based on
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frequency domain time series techniques, exploiting the fact that the preconditioned matrix and the
correlation matrix of the DFTs have the same condition number.

The derivation of the condition number of the correlation matrix of the DFTs is of interest in its
own right, as it sheds some light on the widely-used but heuristic approximation that the standardized
DFT coefficients are uncorrelated with equal variances. Our Lemma 2 is also of independent interest,
as its proof establishes a lower bound on the smallest eigenvalue of the product of a Toeplitz matrix
generated by a spectral density f and another Toeplitz matrix generated by 1/f . Results on the trace
of such a product in a long memory context have been studied by Dahlhaus (1989, Theorem 5.1). The
approximation of this product by an identity matrix was used to justify in the long-memory case Whittle’s
(1953) approximation to the log likelihood for the parameters of Gaussian time series models.

In Section 2, we state our assumptions and establish notation. In Section 3, we present more details
on PCG using C̃n(f), and in Section 4 we point out its previously unexplored connections with DFTs.
In Section 5, we present our results on the condition number of the correlation matrix of DFTs, along
with a discussion to put these results into the context of existing results from the time series literature.

In Section 6, we present three applications of the PCG algorithm. The first two applications are for
the long memory stochastic volatility (LMSV) model of Breidt, Crato and de Lima (1998) and Harvey
(1998). For this model, there are no simple expressions for the infinite-order autoregressive AR(∞)
coefficients, so one cannot obtain an approximation to the optimal linear predictor by truncating the
AR(∞) predictor. Furthermore, for the purposes of diagnostic checking, one would like to be able to
evaluate some proxy for the latent volatility process. This was suggested originally by Harvey (1998),
who proposed to use the linear combination of log squared returns which minimizes the mean squared
error. This minimization problem reduces to a Toeplitz system in the covariance matrix Σn(f) of the
log squared returns. Harvey (1998) mentioned that there are fast algorithms for solving such systems.
He did not provide a reference, but presumably was referring to the class of Superfast algorithms, which
as we have mentioned above do not actually provide a fast solution to this problem. However, as we
show in this paper, the PCG algorithm does achieve this. An empirically successful application of the
PCG algorithm for forecasting volatility with the LMSV model in large data sets was given by Deo,
Hurvich and Lu (2004), though the computational complexity was not established there. Our search for
a rigorously justifiable, computationally efficient solution to the problems of forecasting and smoothing
in the LMSV model led eventually to the development of this paper.

The third application in Section 6 is to the evaluation of the Gaussian likelihood function of a
long-memory model, focusing primarily on the Autoregressive Fractionally Integrated Moving Average
ARFIMA(p, d, q) case. Currently, one can use Levinson’s algorithm to evaluate the likelihood function
in O(n2) operations as advocated by Sowell (1992). We show that the quadratic form term in the likeli-
hood can be evaluated in O(n log5/2 n) operations using the PCG algorithm together with a methodology
called Toeplitz Embedding, described in Appendix C. We also provide an extremely accurate and easily
computed approximation to the determinant term in the likelihood. We present simulations comparing
the performance of the Maximum Likelihood method with that of Whittle’s method and an approximate
algorithm of Haslett and Raftery (1989) as implemented in Splus. We also investigate the effect on the
maximum likelihood method of estimating the mean in the case where it is unknown.
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2 Assumptions and Notation

We consider the zero-mean weakly stationary time series {Xt} with spectral density f(ω), ω ∈ [−π, π].
We impose the long-memory structure by the following assumption.

Assumption 1.
f(ω) = |1− e−iω|−2df∗(ω) , ω ∈ [−π, π] ,

where d ∈ (−1/2, 1/2), f∗(ω) is positive on [−π, π] and differentiable on [−π, π] \ {0} and there exists
c ∈ (0,∞) such that

|f∗′(ω)| ≤ c|ω|−1 , ω ∈ [−π, π] \ {0} .

Assumption 1, also used by Moulines and Soulier (1999), is satisfied for all stationary invertible
ARFIMA models with d ∈ (−1/2, 1/2). The assumption is also satisfied in the signal plus noise case
where f is the sum of the spectral density of a stationary invertible ARFIMA spectral density with
d ∈ (0, 1/2) and a white noise spectral density.

Given a partial realization {Xt}n−1
t=0 , define the discrete Fourier Transform and periodogram

JX,j =
1√
2πn

n−1∑
t=0

Xte
iωjt , IX,j = |JX,j |2 ,

where ωj = 2πj/n is the j’th Fourier frequency, j = 0, . . . , n− 1. Denote the autocovariance sequence of
{Xt}∞t=−∞ by {cr}∞r=−∞ where cr = E[XtXt−r]. The expected value of the periodogram can be written
(see Priestley 1981, pp. 395, 417-418) as

E[IX,j ] =
∫ π

−π

Kn(ωj − ω)f(ω)dω =
1
2π

∑

|r|<n

n− |r|
n

cre
irωj , (1)

for j = 0, . . . , n− 1, where

Kn (µ) =
sin2 (nµ/2)

2πn sin2 (µ/2)
is the Fejer kernel.

Let Σn(f) denote the n× n Toeplitz covariance matrix of (X0, . . . , Xn−1)′ with (j, k) element

Σn(f)j,k = cj−k = E(XjXk) =
∫ π

−π

ei(j−k)ωf(ω)dω , j, k = 0, . . . , n− 1 . (2)

For any positive definite Hermitian matrix A, denote the smallest and largest eigenvalues by λmin(A)
and λmax(A), and denote the condition number by κ(A) = λmax(A)/λmin(A).

3 Preconditioned Conjugate Gradient Algorithm and C̃n(f)

As we explain in Appendix A, κ[Σn(f)] = O(n2|d|), so when d ∈ (−1/2, 1/2) \ {0}, Σn(f) is not well-
conditioned. As shown in Axelsson and Barker (1984), and Golub and Van Loan (1996), the number of

4



iterations required in the non-preconditioned Conjugate Gradient algorithm (CG) to reach a specified
degree of relative reduction in the error is proportional to

√
κ[Σn(f)] which in this case would be O(n|d|).

Furthermore, as explained in Appendix C, the cost of each iteration of CG in our situation is O(n log n).
Thus, the cost of the conjugate gradient algorithm without preconditioning is O(n1+|d| log n). This is
faster than Levinson’s algorithm, but can still be quite slow if |d| is close to 1/2.

Preconditioning is a technique for improving the condition number of a matrix. Suppose that C(f)
is a symmetric, positive definite matrix that approximates Σn(f), but is easier to invert. We can solve
Σn(f)x = b indirectly by solving the preconditioned system.

C−1(f)Σn(f)x = C−1(f)b.

The preconditioned conjugate gradient algorithm consists of applying the ordinary conjugate gradient
algorithm to the preconditioned system. As explained in Appendix C, the number of iterations required
for PCG is proportional to

√
κ[C−1(f)Σn(f)], which needs to be smaller than

√
κ[Σn(f)] in order for

PCG to be more computationally efficient than CG.

T. Chan’s preconditioner C̃n(f) is the n× n matrix with (j, k)th entry

C̃n(f)j,k = c̃j−k =
1
2π

(
n− |j − k|

n

)
cj−k +

1
2π

|j − k|
n

cn−|j−k| , (3)

for j, k = 0, . . . , n − 1. For notational convenience, we have divided here by a factor of 2π compared
to T. Chan’s original definition. Note that c̃j−k = c̃n−|j−k|, so C̃n(f) is a circulant matrix. By the
properties of circulant matrices (see, e.g., Brockwell and Davis 1991, Proposition 4.5.1, page 134) , C̃n(f)
has eigenvalues

λj [C̃n(f)] =
n−1∑
r=0

c̃re
irωj , (4)

and corresponding eigenvectors

vj =
1√
n

(
1, eiωj , e2iωj , . . . , e(n−1)iωj

)′
,

for j = 0, . . . , n− 1.

As we explain in Appendix C, if C̃n(f) is used, the cost of each iteration of PCG is O(n log n)

operations, so the total cost of the PCG algorithm is O

(
n log n

√
κ[C̃−1

n (f)Σn(f)]
)

.

Next, we compare the number of iterations required to achieve a Σn norm (see Appendix C) of 10−20

for the error vector in the CG algorithm and the PCG algorithm (using C̃n(f)) for solving a Toeplitz
system Σn(f)x = b, in a long-memory forecasting context. Table 1 describes the results for a long-memory
ARFIMA(0,d,0) time series {Xt} with spectral density

f(ω) =
σ2

η

2π
|2 sin(ω/2)|−2d , −π ≤ ω ≤ π,

with d = 0.37, innovation variance σ2
η = 0.27 and autocovariances

ck =
σ2

ηΓ(1− 2d)Γ(k + d)
Γ(d)Γ(1− d)Γ(k − d + 1)

, k = 0, 1, 2, . . . .
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The minimum mean squared error one-step-ahead linear forecasting coefficients for Xn based on Xn−1, . . . , X0

are given by the solution to the Toeplitz system above, with b = (c1, . . . , cn)′.

The numerical results in Table 1 confirm that preconditioning is beneficial.

Table 1: Number of Iterations for CG and PCG algorithms based on ARFIMA (0,d,0)

n 22 23 24 25 26 27 28 29 210 211 212 213 214 215

CG 4 9 14 18 25 32 42 54 67 88 112 143 186 238
PCG 4 6 7 7 7 8 9 8 9 9 10 11 10 11

4 Connections Between C̃n(f) and Properties of DFTs

We observe first that the eigenvalues of C̃n(f) are equal to the expected values of the periodogram
ordinates, {E[IX,j ]}n−1

j=0 . Indeed, substituting the formula (3) for c̃r in (4) yields

λj [C̃n(f)] =
1
2π

n−1∑
r=0

[
n− r

n
cr +

r

n
cn−r

]
eirωj =

1
2π

∑

|r|<n

n− |r|
n

cre
irωj = E[IX,j ] (5)

by (1). Equation (5) suggests a link between the properties of T. Chan’s circulant preconditioner C̃n(f)
and the frequency domain analysis of time series. We now expand this link by showing that the precondi-
tioned matrix and the correlation matrix of the DFTs are similar matrices, and therefore have the same
eigenvalues and condition number.

Define the unitary matrix Vn = (v0, . . . , vn−1) and
Λ[C̃n(f)] = diag

{
λ0[C̃n(f)], . . . , λn−1[C̃n(f)]

}
so that

C̃n(f) = VnΛ[C̃n(f)]V ∗
n . (6)

Denoting the similarity between two matrices A and B by A ∼ B, we have

C̃−1
n (f)Σn(f) ∼ C̃−1/2

n (f)Σn(f)C̃−1/2
n (f) = VnΛ−1/2[C̃n(f)]V ∗

n Σn(f)VnΛ−1/2[C̃n(f)]V ∗
n

∼ Λ−1/2[C̃n(f)]V ∗
n Σn(f)VnΛ−1/2[C̃n(f)] := M(f) . (7)

Let Dn (ω) = (2πn)−1/2
∑n−1

j=0 eiωj be the Dirichlet kernel. Then the (j, k)th entry of M(f), j, k =
0, . . . , n− 1 is

mjk =
{∫ π

−π

Kn (ωj − ω) f (ω) dω

∫ π

−π

Kn (ωk − ω) f (ω) dω

}−1/2 ∫ π

−π

Dn (ω − ωj) Dn (ωk − ω) f (ω) dω

= {E[IX,j ]E[IX,k]}−1/2
E[JX,jJX,k].

Hence the matrix M(f) is the correlation matrix of the DFT vector, (JX,0, . . . , JX,n−1)′. Furthermore,
from the discussion above, the condition number of M(f) is the same as the condition number of the
preconditioned matrix C̃−1

n (f)Σn(f).
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5 The Condition Number of the Correlation Matrix of DFTs

Results on pairwise correlations of DFTs from a long memory series have been obtained by Robinson
(1995) in a local context, Moulines and Soulier (1999) in a global context. These bounds have been
used to establish properties of various semiparametric estimators of the long memory parameter. Matrix
properties of the full n × n correlation matrix are also of intrinsic interest. For principal submatrices
of any fixed size, Moulines and Soulier (1999) have shown that as n increases the smallest eigenvalue is
bounded away from zero, and derived an upper bound for the spectral radius of the difference between
this submatrix and the identity matrix. However, the properties of the n×n correlation matrix as n →∞
remain an open question. We will derive bounds for the extreme eigenvalues of this matrix, which imply
that the condition number is O(log3 n).

An approximation often applied in a short-memory context is to treat the vector J = (JX,0, . . . , JX,n−1)′

as having covariance matrix Cov(J) = E[JJ∗] = diag[f(ω0), . . . , f(ωn−1)], so that the correlation matrix
of J is an n × n identity matrix. Thus, the standardized periodogram ordinates IX,j/f(ωj) for j =
1, . . . , n/2 are often treated as independent exponential random variables, in keeping with Whittle’s ap-
proximation to the Gaussian log likelihood. From (7), the approximation Cov(J) = diag[f(ω0), . . . , f(ωn−1)]
treats Σn(f) as if it were the circulant matrix VnΛ[C̃n(f)]V ∗

n . Thus, Whittle’s approximation may be
viewed as a circulant approximation to the covariance matrix Σn(f).

Even in short memory time series, none of the above approximations is exactly true except in the
case of Gaussian white noise. Nevertheless, Brockwell and Davis (1991, Proposition 4.5.2, p. 136)
show that the entries of Cov(J)−diag[f(ω0), . . . , f(ωn−1)] converge uniformly to zero, assuming that the
autocovariances are absolutely summable. Note, however, that this assumption rules out the long-memory
case.

In long-memory time series, diag[f(ω0), . . . , f(ωn−1)] is either undefined or has a zero entry, due to
the nature of the spectral density at zero frequency. However, M(f), the correlation matrix of J , remains
well-defined and positive definite, and we analyze its extreme eigenvalues here.

We present an upper bound for λmax[M(f)] in the following lemma.

Lemma 1. Let M(f) be given by (7) with f (ω) satisfying Assumption 1. Then

λmax[M(f)] = O
(
log

3
2 n

)
.

Our next lemma provides a lower bound for λmin

[
C̃−1

n (f)Σn(f)
]
.

Lemma 2. Let Σn(f) and C̃n(f) be the matrices defined by (2) and (3) with f satisfying Assumption 1.
Then

λmin

[
C̃−1

n (f)Σn(f)
]
≥ C log−

3
2 n ,

where C is a positive constant.

Combining Lemmas 1, 2 and (7), we immediately obtain the following theorem.
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Theorem 1. Let Σn(f) and C̃n(f) be defined by (2) and (3) with f satisfying Assumption 1. Then the
condition number of C̃−1

n (f)Σn(f) is κ
[
C̃−1

n (f)Σn(f)
]

= O
(
log3 n

)
.

6 Applications in Forecasting, Smoothing and Maximum Like-
lihood

6.1 Forecasting from a Long Memory Stochastic Volatility Model

An LMSV model for returns {rt} is given by

rt = σ exp (ht/2) εt, (8)

where σ > 0, the εt are i.i.d. with mean zero and variance 1, and {ht} is a stationary zero-mean Gaussian
long-memory process independent of {εt}. Two popular choices for the distribution of εt are the standard
normal distribution and a unit-variance normalized t-distribution with ν degrees of freedom. We will
assume here that {ht} follows an Autoregressive Fractionally Integrated Moving Average ARFIMA(p, d, q)
given by

Φ (B) (1−B)dht = Θ (B) ηt,

where B denotes the backshift operator, the ηt are i.i.d. N(0,σ2
η), 0 < d < 0.5, Φ(B) and Θ (B) are

polynomials of order p and q respectively with all roots outside the unit circle. It should be emphasized
that all of our procedures can be easily extended to accommodate other long-memory model specifications
for {ht}, such as the Fractional Exponential (FEXP) model. See Hurvich (2002) for details on the FEXP
model.

The spectral density of {log r2
t } is f(ω) = f1(ω)+var(log ε2t )/(2π), where f1(ω) is the spectral density

of {ht}. The variance of {log r2
t } is var(ht) + var(log ε2t ), and the autocovariances of {log r2

t } for all lags
greater than zero are the same as the corresponding autocovariances of {ht}.

Suppose that we are interested in forecasting {log r2
t }, which serves as a proxy for volatility. There is no

simple formula for the AR(∞) coefficients of this series, so we cannot attempt to approximate the optimal
linear forecast of log r2

n based on mean-corrected values of log r2
n−1, . . . , log r2

0 by truncating the AR(∞)
predictor. Fortunately, as we have justified theoretically, the optimal linear forecasting coefficients for
this model can be obtained efficiently by solving the Toeplitz system: Σnx = b using the PCG algorithm.
For example, the optimal one-step-ahead linear forecasting coefficients can be obtained by solving the
system with b = (c1, . . . , cn)′, the autocovariances of {ht} for lags 1 to n. Here, Σn is the covariance
matrix of {log r2

t }n−1
t=0 . This methodology was used to forecast aggregates of future squared returns in

Deo, Hurvich and Lu (2004).

In Table 2, we compare the number of iterations required to achieve a Σn norm of 10−20 for the
error vector in the CG and PCG algorithms for solving the one-step prediction problem described above,
assuming that {ht} is ARFIMA(0, d, 0) with d = 0.37, innovation variance σ2

η = 0.27 and var log ε2t =
5σ2

η. The preconditioning is seen to speed the algorithm.
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Table 2: Number of Iterations for CG and PCG Algorithms: LMSV Model

n 22 23 24 25 26 27 28 29 210 211 212 213 214 215

CG 4 7 8 10 13 15 18 23 27 34 43 54 66 87
PCG 4 5 5 6 6 7 7 8 8 8 9 9 9 10

6.2 Smoothing of Latent Process for LMSV model

As pointed out in Harvey (1998), when the latent process {ht} in Equation (8) is assumed to follow
a finite-order autoregressive process, the minimum mean square linear estimator (MMSLE) of ht can
be computed easily with a state-space smoothing algorithm. However, such an approach is not easy
to implement with an LMSV model. The AR(∞) representation of {ht} must be truncated and the
truncation must be at large lags due to the long-memory nature of the process. Harvey (1998) proposed
a direct approach for the exact smoothing which is feasible for high frequency data only with the PCG
algorithm.

The MMSLE of ht is given by
ĥ = ΣhΣ−1

y (y − µ1) (9)

where µ = E[log r2
t ], y = (log r2

0, log r2
1, . . . , log r2

n−1)
′, Σy is the autocovariance matrix of y, Σh is the

autocovariance matrix of (h0, . . . , hn−1)′, and 1 is an n×1 vector of ones. Since {ht} is uncorrelated with
{log ε2t}, and since {log ε2t} has zero autocorrelations at all nonzero lags, Σy = Σh + (var log ε2t )I, where
I is an n× n identity matrix. The quantity µ can be estimated by the sample mean of log r2

t , though we
ignore the distinction between these two quantities here.

In Equation (9), Σy and Σh are both n × n Toeplitz matrices. Efficient computation of ĥ can be
carried out in a two-step procedure. First, the PCG algorithm is applied to solve the Toeplitz system
Σyx = (y − µ1) for x = Σ−1

y (y − µ1). Then the circulant embedding technique (See Appendix C) is
applied to evaluate Σhx.

We consider the log squared returns (seasonally adjusted) for S&P 500 index, recorded every 30
minutes, from Nov. 21, 1994 to Nov. 2, 1999, a total of 15000 observations. Figure 1 plots the log
squared returns, and the smoothed latent volatility process {ĥt} based on an LMSV-ARFIMA(1, d, 0)
model. The model was fitted to the log squared returns using Whittle’s method.

The normalized log squared returns log r2
t−ĥt can be used for diagnostic checking and model selection.

Fig 2 (a) and (b) present the sample autocorrelations of the raw and normalized log squared returns.
Apparently, the ARFIMA(1, d, 0) model for the latent process is adequate since most of the persistence
in log r2

t is captured by the model. The negative autocorrelations at the first few lags in Figure 2 (b)
could be due to either mild misspecification of the model or to spurious autocorrelations introduced by the
smoothing methodology. Simulations from this model (not shown here) exhibit the latter phenomenon.
We will not pursue this issue further here, however.
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Figure 1: Time series plots of (a) Log Squared Returns, log r2
t and (b)Smoothed Latent Volatility Process, ĥt.

The plots are based on S&P 500 index, from Nov. 21, 1994 to Nov. 2, 1999, a total of 15000 observations.

6.3 Evaluation of the Gaussian Log Likelihood Function

Suppose we can assume a parametric model, indexed by a vector θ, for a zero-mean weakly stationary
series {yt}. Let Σn,θ denote the n × n covariance matrix for (y0, . . . , yn−1) under the model θ. The
Gaussian log likelihood function, multiplied by −2, is

−2 log L(θ) = n log 2π + log |Σn,θ|+ y′Σ−1
n,θy (10)

Exact Evaluation of this log likelihood for ARFIMA models was considered by Sowell (1992), who fo-
cused on the exact calculation of the autocovariances c0,θ, . . . , cn−1,θ under the model. But given these
autocovariances, the calculation of the quadratic form y′Σ−1

n,θy using Levison’s algorithm as advocated by
Sowell (1992) would still require O(n2) operations, rendering the calculation of the maximum likelihood
estimator infeasible in large sample sizes. Recently, Bertelli and Caporin (2002) proposed an FFT-based
algorithm for numerically evaluating c0,θ, . . . , cn−1,θ for any ARFIMA model, to any desired degree of
accuracy in O(n log n) operations. This methodology can also be employed for other model classes, such
as the Fractional Exponential (FEXP) model (see Hurvich 2002). Furthermore, for either the ARFIMA
or the FEXP model class, we can use the PCG method developed in this paper together with the circulant
embedding described in Appendix C (see Equation (22)) to evaluate y′Σ−1

n,θy in O(n log5/2 n) operations.

Unfortunately, the determinant term log |Σn,θ| cannot be calculated using PCG. While there do exist
Superfast algorithms for evaluating this determinant in O(n log2 n) operations (see Kravanja and Barel
2000), their stability in the long-memory case has not been explored. We will consider instead two ap-
proximations to this determinant term. The first approximation is from Böttcher and Silbermann (1999
Theorem 5.47, Page 177), and is given in Appendix D. The second approximation is the one used in Whit-
tle’s method, n log(2π) +

∑n−1
j=1 log fθ(ωj), where fθ is the spectral density under the model θ. In Table

3, we report the exact determinant together with the two approximations for several ARFIMA(0, d, 0)
and ARFIMA(1, d, 0) models for various values of d with n = 500 and unit innovation variance. The
ARFIMA(1, d, 0) had Φ(B) = 1 − 0.35B. It is seen that the approximation (B&S) of Böttcher and
Silbermann (1999) matches the exact value to several significant figures, while Whittle’s approximation

10
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Figure 2: ACF of (a) Raw Log Squared Returns, log r2
t and (b) Normalized Log Squared Returns, log r2

t − ĥt.

is far less accurate.

Table 3: Log Determinant of Toeplitz Covariance Matirx for ARFIMA Processes

Determinant Model d = −0.45 d = −0.25 d = −0.05 d = 0.05 d = 0.25 d = 0.45
Exact 1.38147 0.44755 0.01909 0.01992 0.56576 2.64280
B&S (0, d, 0) 1.38129 0.44751 0.01909 0.01992 0.56579 2.64298

Whittle 5.59315 3.10730 0.62146 -0.62146 -3.10730 -5.59315
Exact 1.12488 0.36297 0.10670 0.19368 0.91196 3.16162
B&S (1, d, 0) 1.12426 0.36280 0.10670 0.19368 0.91186 3.16136

Whittle 4.73158 2.24574 -0.24011 -1.48303 -3.96887 -6.45471

In Table 4 we report the mean squared errors of several estimators of d in the ARFIMA(0, d, 0)
model described above. The parameters to be estimated are the innovation variance, and the memory
parameter d. We found similar results for the ARFIMA(1, d, 0) model, which we do not report here
to save space. For each of several choices of d we generated 1000 simulated replications, with sample
sizes n = 50, 500, 5000. The first method was Maximum Likelihood (ML), based on minimizing (10), but
replacing log |Σn,θ| by the approximation of Böttcher and Silbermann. We note here that we also tried
minimizing the exact log likelihood function (10) using the exact determinant in the ARFIMA(0, d, 0)
case, and the mean squared errors were identical to those obtained using Böttcher and Silbermann’s, to
several significant figures. The other two estimators considered in Table 4 are Whittle’s estimator, i.e.,
the minimizer of

n−1∑

j=1

[log fθ(ωj) + I(ωj)/fθ(ωj)]

11



and a modified maximum likelihood (MML) estimator that minimizes

n−1∑

j=1

[log fθ(ωj)] + y′Σ−1
n,θy .

Note that both of these objective functions can be evaluated in O(n log n) operations. In the MML
objective function, the log determinant term from (10) is replaced by the approximation to it used in
Whittle’s method, but the second term is the same quadratic form that appears in the exact likelihood
function, rather than Whittle’s approximation to it,

∑n−1
j=1 I(ωj)/fθ(ωj).

Table 4: MSE for Estimators of d for ARFIMA(0, d, 0) Process When Mean is Known

Estimator Sample Size d = −0.45 d = −0.25 d = −0.05 d = 0.05 d = 0.25 d = 0.45
ML 0.006602 0.014849 0.016605 0.015882 0.013167 0.006792

Whittle 50 0.010869 0.018500 0.022051 0.022218 0.021602 0.013918
MML 0.011849 0.018520 0.019826 0.019632 0.017562 0.002942
ML 0.000926 0.001224 0.001196 0.001179 0.001129 0.000773

Whittle 500 0.001141 0.001282 0.001281 0.001284 0.001296 0.001057
MML 0.001011 0.001257 0.001244 0.001239 0.001231 0.000884
ML 0.0001245 0.0001241 0.0001238 0.0001236 0.0001232 0.0001155

Whittle 5000 0.0001342 0.0001251 0.0001256 0.0001260 0.0001274 0.0001342
MML 0.0001250 0.0001248 0.0001249 0.0001250 0.0001254 0.0001271

The results in Table 4 show that the ML estimator significantly outperformed the Whittle estimator,
by more than 20% in some cases. The larger the absolute value of d and the smaller the sample size, the
stronger the improvement. The MML estimator also outperformed the Whittle estimator.

In the above results, it was assumed that the mean of the time series is known to be zero. In
practice, the mean will typically be unknown, and allowances must be made for this problem. Since
the Whittle objective function omits zero frequency, it is invariant to the mean, and therefore needs no
further adjustment. The ML objective function, however, is not invariant to the mean, and the traditional
adjustment is to replace the quadratic form in (10) by (x − x)′Σn,θ(x − x) where x denotes the sample
mean. It was found in Cheung and Diebold (1994) that the performance of the ML estimator with
mean adjustment performs noticeably worse than the non-adjusted version. This is presumably caused
in part by the slow convergence of the sample mean when d ∈ (−1/2, 1/2) \ {0}. For d in this range,
var(x) ∼ An2d−1, A > 0.

We re-ran the simulations described above, this time working with mean-adjusted data. Here, we
adjusted the quadratic form as described above for both the ML and MML methods. We also included
results on an approximate ML algorithm of Haslett and Raftery (1989) (H&R) as implemented in the
Splus command arima.fracdiff, for which the program automatically removes the sample mean. The
results are summarized in Table 5. We find, as did Cheung and Diebold (1994), that when the mean
is treated as unknown and the sample size is small, the ML estimator does not outperform the Whittle
estimator. However, we see that when n = 5000, ML does perform better than the Whittle estimator
when |d| is large. Furthermore, the MML estimator outperforms the Whittle estimator for all sample
sizes when |d| is large. The H&R estimator performs worse than the ML estimator in most cases.
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Table 5: MSE for Estimators of d for ARFIMA(0, d, 0) Process When Mean is Unknown

Estimator Sample Size d = −0.45 d = −0.25 d = −0.05 d = 0.05 d = 0.25 d = 0.45
ML 0.005184 0.017933 0.025730 0.026979 0.028055 0.030072

Whittle 50 0.010869 0.018500 0.022051 0.022218 0.021602 0.013918
MML 0.009463 0.018602 0.022845 0.023212 0.021955 0.011642
H&R 0.004918 0.020805 0.028117 0.028466 0.028306 0.030101
ML 0.000912 0.001327 0.001356 0.001360 0.001361 0.001297

Whittle 500 0.001141 0.001282 0.001281 0.001284 0.001296 0.001057
MML 0.000984 0.001291 0.001295 0.001292 0.001282 0.001027
H&R 0.001045 0.001386 0.001374 0.001366 0.001351 0.001276
ML 0.0001243 0.0001261 0.0001267 0.0001269 0.0001271 0.0001244

Whittle 5000 0.0001342 0.0001251 0.0001256 0.0001260 0.0001274 0.0001342
MML 0.0001248 0.0001257 0.0001261 0.0001261 0.0001263 0.0001262
H&R 0.0001539 0.0001250 0.0001266 0.0001271 0.0001297 0.0001326

7 Appendix A

Here, we explain why κ[Σn(f)] = O(n2|d|), when f satisfies Assumption 1. For simplicity, we assume
here that if d ∈ (0, 1/2) the autocovariance sequence satisfies cr ∼ Cr2d−1 as r →∞ where C > 0. This
holds for all long-memory models in widespread use, though it is not equivalent to our Assumption 1. We
refer to Robinson (1995) for further discussion on this point. By Brockwell and Davis (1991, Proposition
4.5.3, p. 137), 2π infω∈[−π,π] f(ω) ≤ λmin[Σn(f)] and λmax[Σn(f)] ≤ 2π supω∈[−π,π] f(ω).

If d ∈ (0, 1
2 ), Assumption 1 implies that f is bounded below by a positive constant so λmin[Σn(f)] is

bounded below by a positive constant, uniformly in n, and by Grenander & Szegö (1984), since Σn(f) is
Hermitian, λmax[Σn(f)] is bounded by the maximum absolute row sum, which is in turn bounded by

2 (|c0|+ |c1|+ . . . + |cn−1|) ∼ C

n−1∑
r=0

r2d−1 ∼ Cn2d ,

so that κ[Σn(f)] = O(n2|d|).

If d ∈ (− 1
2 , 0), Assumption 1 implies that f is bounded above, so λmax[Σn(f)] is bounded above,

uniformly in n, and

λmin [Σn(f)] ≥ λmin

[
Σn(f)Σn(f−1)

]
λmin

[
Σ−1

n (f−1)
] ≥ 4π2λ−1

max

[
Σn(f−1)

] ≥ Cn−2|d| ,

by the proof of Lemma 2 and the discussion above, so that once again κ[Σn(f)] = O(n2|d|).

8 Appendix B: Proofs

Let J̃k be the normalised DFT at frequency ωk, J̃k = JX,kE− 1
2 (IX,k) and J̃ =

(
J̃0, . . . , J̃n−1

)
.
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Proof of Lemma 1. Note that M(f) = E
(
J̃∗J̃

)
. First we write

M(f) = In + ∆M,

where In is an n× n identity matrix. Since

λmax (M(f)) ≤ 1 + λmax (∆M) , (11)

we will derive an upper bound for λmax (∆M) . We will use the following inequality:

λmax (∆M) ≤ max
k
|λk (∆M)| = λ

1
2
max (∆M∆M∗) ≤ trace

1
2 (∆M∆M∗) . (12)

Let ∆mjk denote the (j, k)th entry of ∆M. Then

trace (∆M∆M∗) =
∑

j 6=k

|∆mjk|2 =
∑

j 6=k

∣∣∣E
(
J̃∗j J̃k

)∣∣∣
2

since ∆mjj = 0 for all j.

Let

φjk = ∆mjk + ∆mj,n−k + ∆mn−j,k + ∆mn−j,n−k

= E
(
J̃∗j J̃k

)
+ E

(
J̃∗j J̃∗k

)
+ E

(
J̃∗j J̃k

)
+ E

(
J̃j J̃k

)
,

j, k = 0, . . . ,
[

n
2

]
. Note that E

(
J0Jn/2

)
= 0 when n is even. By Lemma 9 (and its proof) of Moulines

and Soulier (1999) and our Lemmas 4 and 5, we have

trace (∆M∆M∗) = O




[n/2]∑

k=1

(|φ0k|+ |φn/2,k|1{n is even}
)

+
[n/2]∑

j=1

j−1∑

k=1

|φjk|



= O




[n/2]∑

k=1

(
k2|d|−2 + n−1

)
+

[n/2]∑

j=1

j−1∑

k=1

k−2|d|j2|d|−2 log2 j


 = O

(
log3 n

)
.

By (11), (12) and the above equation, we have λmax [M(f)] = O
(
log

3
2 n

)
.¤

Proof of Lemma 2. We write

C̃
−1

n (f)Σn (f) =
[
C̃n

(
f−1

)
C̃n (f)

]−1 [
C̃n

(
f−1

)
Σ−1

n

(
f−1

)] [
Σn

(
f−1

)
Σn (f)

]
.

Since λmin (ABC) ≥ λmin (A)λmin (B)λmin (C) , it suffices to show that

λmin

[
C̃n

(
f−1

)
C̃n (f)

]−1

≥ C, (13)

λmin

[
C̃n

(
f−1

)
Σ−1

n

(
f−1

)] ≥ C log−
3
2 n (14)

and
λmin

[
Σn

(
f−1

)
Σn (f)

] ≥ C. (15)
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Since both C̃n (f) and C̃n

(
f−1

)
are circulant matrices (see Equation (6)),

λmin

[
C̃n

(
f−1

)
C̃n (f)

]−1

= λ−1
max

[
C̃n

(
f−1

)
C̃n (f)

]
=

{
max

k
λk

[
C̃n

(
f−1

)]
λk

[
C̃n (f)

]}−1

. (16)

Let {Yt}n−1
t=0 be from a zero-mean process {Yt}∞t=−∞ with spectral density f−1 (ω) . Also let

ηn,k =
{

ω−2d
k , k 6= 0

n−2d, k = 0
,

then

max
k

λk

[
C̃n

(
f−1

)]
λk

[
C̃n (f)

]
= max

0≤k≤[n/2]
E (IX,k)E (IY,k) = max

0≤k≤[n/2]

E (IX,k)
ηn,k

E (IY,k)
η−1

n,k

≤ max
0≤k≤[n/2]

E (IX,k)
ηn,k

max
0≤k≤[n/2]

E (IY,k)
η−1

n,k

≤ C,

by (5) and Lemma 3. Combining this with (16), we obtain (13).

By (7) and Lemma 2,

λmin

[
C̃n

(
f−1

)
Σ−1

n

(
f−1

)]
= λ−1

max

[
Σn

(
f−1

)
C̃−1

n

(
f−1

)]
= λ−1

maxM
(
f−1

) ≥ C log−3/2 n.

We have shown (14). We next prove (15). Let

un (ω) = f
1
2 (ω)

(
1, eiω, . . . , ei(n−1)ω

)∗
, vn (ω) = f−

1
2 (ω)

(
1, eiω, . . . , ei(n−1)ω

)∗
,

then
Σn (f) =

∫ π

−π

un (ω)u∗n (ω) dω, Σn

(
f−1

)
=

∫ π

−π

vn (ω) v∗n (ω) dω.

Since
∫ π

−π
un (ω) v∗n (ω) dω = 2πIn,

λmin

[
Σn

(
f−1

)
Σn (f)

]− 4π2 ≥ λmin

[
Σn

(
f−1

)
Σn (f)− 4π2In

] ≥ 0,

by Lemma 6. ¤

Lemma 3. There exist finite constants C1 and C2 such that,

C1ω
−2d
k ≤ E (IX,k) ≤ C2ω

−2d
k ,

for k = 1, . . . ,
[

n
2

]
and

C1 ≤ n−2dE (IX,0) ≤ C2.

Proof. For E (IX,0) , the inequality follows from Theorem 2 of Deo and Hurvich (1998). For k =
1, . . . ,

[
n−1

2

]
, the inequality follows from Lemma 6 of Moulines and Soulier (1999). When n is even, the

lower bound for E
(
IX,n/2

)
follows from Lemma 8 of Moulines and Soulier (1999). We now derive an
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upper bound for E
(
IX,n/2

)
. Let δ be a positive constant, 0 < δ < π,

E
(
IX,n/2

)
= 2

∫ π

0

Kn (ω) f (π − ω) dω

= 2
∫ δ

0

Kn (ω) f (π − ω) dω + 2
∫ π

δ

Kn (ω) f (π − ω) dω

≤ 2 max
ω∈(π−δ,π)

f (ω)
∫ δ

0

Kn (ω) dω +
1

2πn sin2 (δ)

∫ π−δ

0

f (ω) dω

≤ C,

since maxω∈(π−δ,π) f (ω) ≤ C,
∫ δ

0
Kn (ω) dω <

∫ π

0
Kn (ω) dω = 1/2, maxω∈(δ,π) Kn (ω) = (4πn)−1 sin−2 (δ)

(see p. 89 of Zygmund 1977) and f (ω) is integrable.¤

Lemma 4. For k = 1, . . . ,
[

n−1
2

]
,

E
(
J̃X,0J̃X,k

)
=

{
O

(
kd−1

)
, d > 0

O
(
n2dkd−1

)
, d < 0 .

Proof. By Lemma 3, we have

n−2dE
1
2 (IX,0)E

1
2 (IX,k) ≥ Ck−d. (17)

Now

2πE (JX,0JX,k) =
1
n

n−1∑
s=0

n−1∑
t=0

E (XsXt) eiωks =
1
n

n−1∑
s=0

n−1∑
t=0

cs−te
iωks =

1
n

c0

n−1∑
s=0

eiωks +
1
n

n−1∑

s 6=t

cs−te
iωks.

The first term of RHS is zero. Letting u = s− t, the second term is

1
n

n−1∑
u=1

cu

(
n−1−u∑

v=0

eiωkv + einωkv
n−1−u∑

v=1

e−iωkv

)
= O

(
1
n

n−1∑
u=1

u2d−1 |ωk|−1

)
=

{
O

(
n2dk−1

)
, d > 0

O
(
k−1

)
, d < 0 ,

since
∑u

v=0 eixv = O
(
x−1

)
uniformly in u for 0 < x < π by page 2 of Zygmund (1977). The lemma

follows from (17) and the above equation.¤

Lemma 5. If n is even, E
(
J̃X,n/2J̃X,k

)
= O

(
n−1/2

)
, k = 1, . . . ,

[
n−1

2

]
.

Proof. By Lemma 3, we have
E

1
2

(
IX,n/2

)
E

1
2 (IX,k) ≥ Cω−d

k . (18)

Now

|Dn (π − ω)| =
∣∣∣∣∣

1
(2πn)

1
2

n−1∑
t=0

ei(π−ω)t

∣∣∣∣∣ =

∣∣∣∣∣∣

(
1− e−iω

)

(2πn)
1
2

n
2−1∑
t=0

e−2iωt

∣∣∣∣∣∣
=

∣∣∣∣∣

(
1− e−iω

)

(2πn)
1
2

sin (nω/2)
sin ω

∣∣∣∣∣ ≤ Cn−
1
2 ,
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since
∣∣1− e−iω

∣∣ ≤ C |ω| for −π ≤ ω ≤ π. Hence

∣∣E (
JX,n/2JX,k

)∣∣ =
∣∣∣∣
∫ π

−π

Dn (π − ω) D (ωk − ω) f (ω) dω

∣∣∣∣

≤
∫ π

−π

|Dn (π − ω)| |D (ωk − ω)| f (ω) dω

≤ Cn−
1
2

∫ π

−π

|Dn (ωk − ω)| f (ω) dω

≤ Cn−
1
2

(∫ π

−π

Kn (ωk − ω) f (ω) dω

∫ π

−π

f (ω) dω

) 1
2

= Cn−
1
2 c

1
2
0 E

1
2 (IX,k)

≤ Cn−
1
2 ω−d

k ,

by the Cauchy Schwartz inequality and Lemma 3. The lemma follows from (18) and the above equation.¤

The next lemma is a version of Cauchy-Schwartz inequality.

Lemma 6. Let α (x) and β (x) be two n×m matrices, m ≤ n. Let

U =
∫

α (x)α∗ (x) dx, V =
∫

β (x)β∗ (x) dx, G =
∫

α (x)β∗ (x) dx.

If U is positive definite, then
λmin (UV −GG∗) ≥ 0 .

Proof. First note that

λmin

(
V − U−1GG∗

)
= λmin

(
V −G∗U−1G + G∗U−1G− U−1GG∗

)

≥ λmin

(
V −G∗U−1G

)
+ λmin

(
G∗U−1G− U−1GG∗

)
. (19)

Let A be an n× n matrix. Then
∫

(Aα (x) + β (x)) (Aα (x) + β (x))∗ dx = AUA∗ + AG + G∗A∗ + V

is nonnegative definite. Plugging A = −G∗U−1 into the above equation, we have the nonnegativity of
V −G∗U−1G, that is

λmin

(
V −G∗U−1G

) ≥ 0 . (20)

Let a be the eigenvector corresponding to λmin

(
U−1GG∗

)
. We have

λmin

(
G∗U−1G− U−1GG∗

) ≥ a∗
(
G∗U−1G− U−1GG∗

)
a

≥ a∗G∗U−1Ga− a∗U−1GG∗a

≥ λmin

(
G∗U−1G

)− λmin

(
U−1GG∗

)

= 0 ,

since G∗U−1G and U−1GG∗ have the same set of eigenvalues. Similarly, λmin

(
U−1GG∗ −G∗U−1

) ≥ 0.

Hence λmin

(
G∗U−1G− U−1GG∗

)
= 0. Combining this with (19) and (20), we obtain

λmin

(
V − U−1GG∗

) ≥ 0 . (21)
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Now
λmin (UV −GG∗) = λmin

[
U

(
V − U−1GG∗

)] ≥ λmin(U)λmin

(
V − U−1GG∗

) ≥ 0 ,

by the positive definiteness assumption on U and (20).¤

9 Appendix C: Implementation of CG and PCG Algorithms

Here, we present some details on the CG and PCG algorithms. For a more extensive discussion, see
Golub and Van Loan (1996) and Shewchuk (1994). Much of our description here applies for any n × n
symmetric positive definite matrix Σn.

Suppose we wish to solve the system Σnx = b. The conjugate gradient method proceeds by generating
successive approximations x(i) to the solution x, residuals r(i) corresponding to the x(i), and search
directions d(i) used in updating the approximate solutions and residuals. The x(i) are updated at each
iteration by a multiple αi of the search direction vector d(i): x(i+1) = x(i) + αid(i).

The Conjugate Gradient Algorithm is summarized by the following iterative procedure:

d(0) = r(0) = b− Σnx(0) , x(0) = (0, . . . , 0)′ ,

α(i) =
r(i)

′r(i)

d(i)
′Σnd(i)

,

x(i+1) = x(i) + α(i)d(i),

r(i+1) = r(i) − α(i)Σnd(i),

β(i+1) =
r(i+1)

′r(i+1)

r(i)
′r(i)

,

d(i+1) = r(i+1) + β(i+1)d(i).

For the Conjugate Gradient method, the error can be bounded in terms of the condition number
κn := κ(Σn). It can be shown (Golub & Van Loan 1996) that

||x(i) − x||Σn ≤ 2αi||x(0) − x||Σn

where α =
√

κn−1√
κn+1 and ||y||Σn =

√
y′Σny. The number of iterations jε required to reach a relative

reduction of ε in the error is proportional to
√

κn since

jε =
log(ε/2)
log(α)

=
log(ε/2)

log(1− 2√
κn+1 )

∼ log(ε/2)
− 2√

κn+1

∝ √
κn

assuming κn →∞ as n →∞ and ε < 1. Note that if κn remains bounded as n increases, then superlinear
convergence (i.e. O(1) iterations) is achieved.

The Preconditioned Conjugate Gradient algorithm essentially applies the conjugate gradient method
to the preconditioned system C−1Σnx = C−1b, where C is symmetric and positive definite. The use of
a preconditioner C will accelerate the convergence if κ(C−1Σn) < κ(Σn).
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The PCG algorithm can be implemented as follows: we first decompose C as C = EE′ where E is
positive definite. Then the system Σnx = b can be transformed into the problem

(E−1ΣnE′−1)x̂ = E−1b,

where x̂ = E′x. We solve first for x̂ using the CG algorithm, replacing the Σn in the iterations described
above with E−1ΣnE′−1 and replacing b with E−1b. Then x = E′−1

x̂.

Suppose now that Σn is a positive definite, symmetric Toeplitz matrix, and that the preconditioner C
is a circulant matrix C = Cn(g) = VnΛgV

∗
n where g is a positive continuous function on [0, 2π] symmetric

around π, and Λg = diag{g(ω0), . . . , g(ωn−1)}. Note that C
1
2
n (g) = VnΛ

1
2
g V ∗

n is also circulant. It is
important to note that, given its eigenvalues g(ω0), . . . , g(ωn−1), the circulant preconditioner Cn(g) can
be multiplied by a vector using the FFT in O(n log n) operations, since the m’th element of Cn(g)y is

(Cn(g)y)m = (VnΛgV
∗
n y)m

=
1
n

n−1∑

j=0

g(ωj) exp(iωmj)
n−1∑

k=0

yk exp(−iωjk)

for any n× 1 vector y.

We are now ready to discuss the computational cost of implementing the PCG algorithm using T.
Chan’s circulant preconditioner C̃n for solving Toeplitz systems. The eigenvalues of C̃n can be computed
using the FFT in O(n log n) operations in view of (4). For each iteration of the PCG algorithm, the

most costly computations are to evaluate C̃
− 1

2
n y or Σny for some vector y. Only O(n log n) operations

are necessary for computing C̃
− 1

2
n y using the FFT since C̃

− 1
2

n is a circulant. To compute Σny, we use a
technique called circulant embedding, in which Σn is embedded into a 2n-by-2n circulant matrix, i.e.,

[
Σn ×
× Σn

] [
y
0

]
=

[
Σny
†

]
. (22)

For example, the first row of the 2n × 2n circulant matrix (call it A) on the lefthand side of (22)
is γ = (c0, c1, . . . , cn−1, c0, cn−1, cn−2, . . . , c1) where (c0, c1, . . . , cn−1) is the first row of Σn. The j’th
eigenvalue of A is

∑2n−1
k=0 γk exp(iωjk) where γk represents k’th element of γ. Therefore, the eigenvalues

of A can be obtained using the FFT and the multiplication in the lefthand side of (22) can be carried
out in O(2n log 2n) operations.

It follows that the cost per iteration in PCG is O(nlog n) operations, and the total cost of the algorithm

is O

[
n log n

√
κ(C̃−1

n Σn)
]
.

10 Appendix D: Accurate Approximation For Determinant of
Covariance Matrix

We specialize to our situation the result of Böttcher and Silbermann (1999 Theorem 5.47, Page 177),
with the substitutions α1 = −d, t1 = 1, β1 = 0, N = 1 and b = f∗, noting a typographical error
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in their Equation (5.80): Their G(b) should be G(b)n. Suppose that f satisfies Assumption 1, with
d ∈ (−1/2, 1/2). Define

αk =
1
2π

∫ π

−π

log f∗(ω) cos(kω)dω , k = 0, 1, 2, . . . .

Then
|Σn(f)| ∼ (2π)nenα0nd2

Ẽ , (23)

as n →∞, where

Ẽ = exp

( ∞∑

k=1

k α2
k + 2d

∞∑

k=1

αk

)
G2(1− d)/G(1− 2d) (24)

and G is the Barnes G-Function (see Weisstein 2004).

For ARFIMA models or FEXP models, α0 = log[σ2
η/(2π)] where σ2

η is the innovation variance.
For the ARFIMA(0, d, 0) model, αk = 0 for all k > 0. For the ARFIMA(1, d, 0) model, f∗ is the
spectral density of an AR(1) process, so the αk decay exponentially fast to zero. For the particular case
considered in this paper, we evaluated the αk by numerical integration and found that the sums in (24)
had effectively converged after the first 20 terms.
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