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Abstract

The least squares linear regression estimator is well-known to be highly sensitive to
unusual observations in the data, and as a result many more robust estimators have
been proposed as alternatives. One of the earliest proposals was least-sum of absolute
deviations (LAD) regression, where the regression coefficients are estimated through
minimization of the sum of the absolute values of the residuals. LAD regression has
been largely ignored as a robust alternative to least squares, since it can be strongly
affected by a single observation (that is, it has a breakdown point of 1/n, where n is
the sample size). In this paper we show that judicious choice of weights can result
in a weighted LAD estimator with much higher breakdown point. We discuss the
properties of the weighted LAD estimator, and show via simulation that its performance
is competitive with that of high breakdown regression estimators, particularly in the
presence of outliers located at leverage points. We also apply the estimator to several
real data sets.
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1 Introduction

The linear regression problem is certainly one of the most important data analysis situa-

tions (if not the most important). In this situation the data analyst is presented with n

observations of a response variable y and some number p of predicting variables x1, . . . , xp

satisfying

y = Xβ + ε, (1)

where ε is a vector of errors and

y =




y1

·
·
·

yn




, X =




x1
1 · · · x1

p

· ·
· ·
· ·

xn
1 · · · xn

p




=




x1

·
·
·

xn




= (x1, . . . ,xp) , ε =




ε1

·
·
·

εn




(note that usually x1 is a column of ones, but this is not required). We assume that X is

of full rank (that is, r(X) = p).

It is well-known that if the errors ε are normally distributed with constant variance the

optimal estimator of β is the ordinary least squares (OLS) estimator, based on minimizing

the `2-norm ‖y − Xβ̂‖2 =
∑n

i=1(yi − xiβ̂)2 of the residuals. Unfortunately, it is also well-

known that the least squares estimator is very nonrobust, being highly sensitive to unusual

observations in the y space (outliers) and X space (leverage points).

A way of quantifying this sensitivity is through the notion of the breakdown point of

a regression estimator (Hampel, 1968). Suppose we estimate the regression parameters β

by some technique τ from data (X,y), yielding the estimate βτ . If we contaminate m

(1 ≤ m < n) rows of the data in a way so that row i is replaced by some arbitrary data
(
x̃i, ỹi

)
, we obtain some new data

(
X̃, ỹ

)
. The same technique τ applied to

(
X̃, ỹ

)
yields

estimates βτ
(
X̃, ỹ

)
that are different from the original ones. We can use any norm ‖ · ‖ on

Rp to measure the distance
∥∥∥βτ

(
X̃, ỹ

)
− βτ

∥∥∥ of the respective estimates. If we vary over

all possible choices of contamination then this distance either stays bounded or not. Let

b (m, τ,X,y) = sup
X̃,ỹ

∥∥∥βτ
(
X̃, ỹ

)
− βτ

∥∥∥
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be the maximum bias that results when we replace at most m of the original data
(
xi, yi

)

by arbitrary new ones. The breakdown point of τ is then defined as

α (τ,X,y) = min
1≤m<n

{m

n
: b (m, τ,X,y) is infinite

}
, (2)

the minimum proportion of rows of (X,y) that if replaced by arbitrary new data make the

regression technique τ break down. The minimum possible value of the breakdown point

is 1/n and the maximum value is .5 (the latter value since otherwise it is impossible to

distinguish between the uncontaminated data and the contaminated data). Clearly, the

larger the breakdown point, the more robust is the regression estimator.

The least squares regression estimator has breakdown 1/n, and many alternative estima-

tors have been proposed to provide more robust regression estimation. One of the earliest

proposals was regression performed through minimization of the `1 norm of the residuals,

‖y−Xβ̂‖1 =
∑n

i=1 |yi−xiβ̂|, also called least-sum of absolute deviations (LAD) regression.

There is a good deal of empirical evidence going back more than 30 years that LAD regres-

sion is more robust than OLS in the presence of fat-tailed errors (see, e.g., Sharpe, 1971).

Despite this, LAD regression has gained relatively little favor in the robustness statistical

literature, for several perceived reasons:

1. LAD estimation is more than difficult than OLS estimation, because of the nondiffer-

entiability of the criterion function. In fact, as Portnoy and Koenker (1997) pointed

out, modern linear programming techniques have made the computation time of LAD

regression competitive with, or even superior to, OLS even for extremely large data

sets. This can be contrasted with high breakdown regression estimators, which are

far more computationally intensive than OLS (Rousseeuw and Leroy, 1987; Hawkins

and Olive, 2002). As an example of the gains these new methods can provide, LAD

estimation for a dataset with 100,000 observations and 100 variables takes more than

12 minutes using the Barrodale-Roberts modified simplex algorithm and only 30 sec-

onds using the Frisch-Newton interior point algorithm on a Pentium 4 PC (3.2GHz

processor) using the quantreg package (Koenker, 2004).
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2. The asymptotic theory for LAD regression is not as well-developed as for OLS re-

gression. While this is true to a certain degree, it is also true for high-breakdown

regression estimators.

3. The LAD regression estimator is not at all robust to observations with unusual pre-

dictor values; that is, it has a low breakdown point.

It is this final claim that is the starting point for this paper. In the next section, we

discuss what is known about the breakdown of LAD regression, focusing on recent exact

results. We discuss how the use of a weighted version of LAD regression can improve its

robustness considerably, and describe an algorithm for choosing weights that leads to such

improvements. In Section 3 we give the asymptotic properties of the resultant estimators,

and examine finite-sample properties using Monte Carlo simulations. We apply the method

to several data sets in Section 4. We conclude the paper with discussion of potential future

work.

2 LAD Regression and Breakdown

If contamination is permitted in both the predictor and response variables, the breakdown

point of LAD is the same as that of OLS, 1/n (see, e.g., Rousseeuw and Leroy, 1987, page 12).

LAD regression is, however, more robust than least squares in the following sense. Define

the finite sample breakdown point of the LAD estimator to be the breakdown point of LAD

regression with a fixed design matrix X and contamination restricted only to the dependent

variable y, denoted by α (τ,y|X). This is the ordinary breakdown (2) for given predictor

matrix X. This is a natural criterion in the regression context, since standard regression

theory proceeds based on conditioning on the observed values of the predictors. The finite

sample breakdown point, or conditional breakdown point, was introduced in Donoho and

Huber (1983). Mizera and Müller (2001) and Giloni and Padberg (2004) showed that the

finite sample breakdown point of LAD regression can be greater than 1/n, depending on

the predictor values, with the former authors discussing how X can be chosen to increase

the breakdown point of LAD. Giloni and Padberg (2004) showed that the breakdown can
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be calculated using a mixed integer program, and described an algorithm for solving it;

Giloni, Sengupta, and Simonoff (2004) proposed an alternative algorithm similar to that of

Mizera and Müller (2001) that is very efficient for large samples when p is small.

Ellis and Morgenthaler (1992) appear to be the first to mention that the introduction of

weights can improve the finite sample breakdown point of LAD regression (by downweight-

ing observations that are far from the bulk of the data), but they only show this for very

small data sets. Giloni, Sengupta, and Simonoff (2004) examined this question in more

detail. The weighted LAD (WLAD) regression estimator is defined to be the minimizer of
n∑

i=1

wi|yi − xiβ|, (3)

This estimation problem can be formulated as a linear program,

min
n∑

i=1

wi

(
r+
i + r−i

)
(4)

such that Xβ + r+ − r− = y

β free, r+ ≥ 0, r− ≥ 0.

Here, the residual ri associated with observation i is multiplied by some weight, wi, where

we assume that 0 < wi ≤ 1 without loss of generality. In the formulation of the linear

program the residuals r are replaced by a difference r+−r− of nonnegative variables. Since
(
r+
i − r−i

)
=
(
yi − xiβ

)
, and by the simplex method either r+

i > 0 or r−i > 0 but not both,

then |wi

(
r+
i − r−i

)
| = wi

(
r+
i + r−i

)
. Therefore, transforming the data by setting

(
x̃i, ỹi

)
=

wi

(
xi, yi

)
, implies

(
ỹi − x̃iβ

)
= wi

(
r+
i − r−i

)
. This means that the linear program (4) can

be reformulated as

min eT
n r+ + eT

n r−

such that wixiβ + r+ − r− = wiyi for i = 1, . . . , n

β free, r+ ≥ 0, r− ≥ 0.

That is, weighted LAD regression can be treated as LAD regression with suitably trans-

formed data, and determining the breakdown of weighted LAD regression with known

weights corresponds to determining the breakdown of LAD regression with data (X̃, ỹ).
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The problem of choosing weights w to maximize the breakdown of the resultant weighted

LAD estimator is a nonlinear mixed integer program. Giloni, Sengupta, and Simonoff (2004)

showed that this problem is equivalent to a problem related to the knapsack problem, and

solved a specific form of the problem for the simple regression case with a uniform design,

resulting in a WLAD breakdown over 30% (LAD regression has a 25% breakdown point in

this situation). They also proposed a simple weighting scheme for multiple regression that

yields breakdown points over 20% for various two-predictor problems. We propose here

an improved weighting scheme that is fast computationally and leads to higher breakdown

values. As was noted by Ellis and Morgenthaler (1992), the goal is to downweight observa-

tions that are outlying in the predictor space (that is, are leverage points). Unfortunately,

usual measures of leverage suffer from masking, in that multiple leverage points near each

other can cause them to “hide” each other. High-breakdown measures of leverage can be

calculated, but these are computationally intensive.

We will instead use conventional measures of leverage, but will measure outlyingness

relative to what is (hopefully) a clean subset of the data. We define this subset to be the set

of ` observations that are closest to the coordinatewise medians, where distance is the sum of

coordinatewise distances, and the variables have all been scaled to be in the range [0, 1]. The

size ` should be large enough to include much of the data, but small enough so that it doesn’t

include outlying observations; we use ` = .6n here. The notion of identifying outlying

observations by defining a clean subset of the data and then measuring the distance of

observations relative to that subset was introduced by Rosner (1975) for univariate Gaussian

data. The first application of this idea to multivariate and regression data appears to have

been in Simonoff (1991). Other applications of this idea for multivariate and regression data

can be found in Hadi (1992, 1994), Hadi and Simonoff (1993), Billor, Hadi, and Velleman

(2000), and Atkinson and Riani (2000).

The definition of the clean subset used here is that used by Billor, Hadi, and Velleman

(2000) as version 2 of their algorithm for finding a clean subset of a multivariate data set

(page 285), and as they note this is a robust method of choosing the clean subset. Let XS

be this clean subset. The set of leverage values for an observation xi relative to the clean
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subset is hi = xi(X′
SXS)−1xi′, using the usual (least squares) notion of leverage. Since the

leverage is proportional to the squared Mahalanobis distance (Chatterjee and Hadi, 1988,

page 102), the weight is taken to be wi =
√

minj(hj)/hi; that is, it is inversely proportional

to the distance from the clean subset.

WLAD regression is a particular example of generalized M (GM)-estimation (Mallows,

1975). It is known that the maximum breakdown point of all GM-estimators decreases as

a function of p (Maronna, Bustos, and Yohai, 1979), implying that the breakdown point

of WLAD regression cannot be arbitrarily high for models with many predictors. In the

next section we use Monte Carlo simulations to study the properties of WLAD regression,

and show that despite this, WLAD estimation can be competitive with high breakdown

estimation even for reasonably large values of p.

3 The Properties of WLAD Regression Estimation

We begin this section with discussion of the asymptotic properties of the WLAD estimator.

Consider again the regression model (1), and assume that the errors are independent and

identically distributed with cumulative distribution function F . Assume that max ‖ xi ‖ =

o(n1/4), F is twice differentiable at 0, and f(0) = F ′(0) > 0. Let β̂w be the WLAD

estimator of β. Let W = diag(w1, . . . , wn), and assume that the weights are known positive

values that satisfy maxwi = O(1) and maxw−1
i = O(1).

Theorem 1 As n → ∞,
√

n(β̂w − β) is asymptotically p-variate normal with mean 0 and

covariance matrix

Q−1(X′W2X)Q−1ω2,

where Q = limn→∞ X′WX/n and ω = [2f(0)]−1.

The proof of this theorem is given in the Appendix. The implication of this theorem is that

confidence regions for β can be constructed based on β̂w using the estimated asymptotic

covariance, (X′WX)−1(X′W2X)(X′WX)−1ω̂2, where ω is estimated in some reasonable

way. In the simulations that follow we use a kernel estimator to estimate f(0), and hence

ω.
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We explore the finite-sample properties of WLAD regression using Monte Carlo simu-

lations, performed using the R package (R Development Core Team, 2004). In addition to

the WLAD estimator, we also report results for least squares, (unweighted) LAD, and MM

estimators. The MM estimator (Yohai, 1987) uses an inefficient high-breakdown method as

an initial estimate, but then uses M-estimation to improve efficiency while still maintain-

ing a high breakdown point. We also included an M-estimator (Huber, 1973) and the least

trimmed squares (LTS) high breakdown estimator (Rousseeuw, 1985) in the simulations, but

the MM estimator consistently outperformed both, so we do not report those results here.

The (W)LAD estimators were constructed using the quantreg package (Koenker, 2004),

while the LTS and MM estimators were constructed using the MASS package (Venables and

Ripley, 2002). We examine various values of sample size n and number of predictors k (note

that p = k+1, as the models include an intercept term), and different outlier/leverage point

proportion and position combinations. Predictors were generated multivariate normal (with

each variable having mean 7.5 and standard deviation 4), with certain observations being

modified to be leverage points in some situations, and 500 simulations replications were

generated for each setting. All regression functions had intercept equal to 0 and all slopes

equal to 5, with variance of the Gaussian errors equal to 1.

Figure 1 summarizes the results of simulations where n = 40 and k = 2. Each bar’s

height represents n × MSE, where MSE is the mean squared error of the slope estimate,

separated by predictor, with the shaded portion corresponding to squared bias and the

unshaded portion corresponding to variance. Although both predictors were generated to

have variance equal to 16, by random chance the second predictor had much lower variability

(sample variance 10.1), resulting in higher values of n × MSE for that predictor’s slope

estimate for all methods. As can be seen in the figure, the difference in variability of the

predictors affects the relative performance of the methods.

When there are no outliers, all of the estimators are (virtually) unbiased, and relative

efficiency drives the results. As expected, OLS is most efficient, with the MM estimator

close. The LAD estimators are less efficient, with WLAD having highest variability (as

would be expected, since observations with predictor values farthest from the center are
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downweighted, and it is these observations that increase efficiency). Relative performance

changes markedly in the presence of outliers however, with the nonrobust OLS estimator

no longer effective. The first five plots refer to outliers with mean 3 standard deviations

from the true expected value, while the last (“large outliers”) refers to outliers with mean 7

standard deviations from the true value. The last three plots refer to situations where the

observations with outliers first had their predictor values adjusted to make them leverage

points (the predictor values were centered roughly 4 standard deviations from the predictor

mean). Given that the weighting scheme of the WLAD estimator is designed to downweight

leverage points, it is not surprising to see much better performance for WLAD in this

situation compared to LAD (in fact, the breakdown point of LAD is 17.5% while that of

WLAD is 22.5%, so deteriorating performance for LAD in the 20% outliers case would be

expected). That breakdown is not the entire story, however, is clear from the much better

performance of WLAD compared to MM, especially when the outliers are at leverage points.

This is being driven by much lower squared bias, although the variance of WLAD is also

lower when there are 20% large outliers at the leverage points.

Figure 2 gives corresponding results where n = 100 and k = 6. Although it is not

feasible to calculate exact breakdown values for the (W)LAD estimators, upper bounds on

those values can be determined (by running the mixed integer program for many iterations,

but not to convergence), and they are 16% (for LAD) and 20% (for WLAD), respectively,

in this case for the designs with 20% leverage points. Despite the fact that the breakdown

point for WLAD is not greater than the observed percentage of generated outlier obser-

vations (implying that breakdown can occur), it is still an effective estimator, once again

outperforming the MM estimator in the presence of leverage points. Once again, the es-

timator exhibits good bias properties, although that is outweighed by high variance when

the data do not contain leverage points. Figure 3 gives results for n = 1000 and k = 20.

Even in this case, where the large number of predictors implies a maximum breakdown

point of WLAD less than 2% for the design with 20% leverage points, the performance of

WLAD is similar to that seen earlier, with the estimator outperforming the MM estimator

for large outliers in the presence of leverage points. Thus, it is apparent that the goal of
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increasing the breakdown point of the estimator is a reasonable one, even when there are

more outliers than the breakdown value. This will also be evident in several of the data

examples discusses in the next section.

We also examined the usefulness of the asymptotic distribution derived in Theorem 1 as a

tool for inference, by examining the properties of hypothesis tests based on the approximate

normal distribution. Construction of such tests requires estimating ω = [2f(0)]−1, which is

done here using a kernel density estimate (see, e.g., section 3.1 of Simonoff, 1996), with the

amount of smoothing chosen using the bandwidth selector of Sheather and Jones (1991).

The adequacy of the approximation was evaluated by determining the average rejection

proportions (empirical sizes) of Wald (Gaussian-based) tests for each coefficient of the actual

null value at a nominal .05 level and then averaging over all slopes, so the goal would be

tests with size close to .05.

Results for the simulation situations previously examined are summarized in Table 1.

We give results for the actual tests, and also for tests where the coefficient estimates are

recentered at the null value, so that the bias of the estimators does not affect performance.

For the n = 1000 case with leverage points, separate average empirical sizes are given

for the predictors with and without leverage points for the uncorrected tests, since their

performances are very different. It can be seen that while the bias seen earlier (especially in

the leverage point case) results in very anticonservative tests (which would presumably also

be true for the other estimators, since they are even more biased), when this bias is corrected,

the tests have size reasonably close to .05. Thus, the evidence suggests that the assumption

of a Gaussian distribution for the coefficient estimator, and the implied estimates of standard

errors of the coefficient estimates, are reasonable even for small samples.

4 Application to Real Datasets

In this section we apply the WLAD estimator to several well-known datasets from the ro-

bustness and outlier identification literature. The Hertzsprung-Russell stars data (Rousseeuw

and Leroy, 1987, page 27) consist of measurements of the logarithm of light intensity versus

logarithm of effective surface temperature for 47 stars. The data are given in the leftmost
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plot in Figure 4. Although there is a direct relationship between the two variables for most

of the observations, four stars have low temperature with high light intensity (these are so-

called “red giant” stars). The OLS fit (dotted line) is drawn to these outliers, as is the LAD

fit (dashed line), but the WLAD fit (solid line) follows the general pattern of the points

well (note that the LAD estimate actually passes through one of the outliers). It might

be thought that the improved performance of WLAD over LAD is because of its higher

breakdown point, but this is not, in fact, the case. The breakdown point of LAD here is

10.6% (5/47), so the four observed outliers are not enough to break down the estimator.

This can be seen in the middle plot of Figure 4, where the four outliers have had their

responses adjusted upwards by 10. The OLS line continues to follow the points, but the

LAD line is virtually unchanged (and no longer passes through any of the outliers), because

it has not broken down (not surprisingly, the WLAD line is unchanged). Thus, WLAD

provides a better fit than LAD even when LAD has not broken down. On the other hand,

the improved breakdown point of WLAD (which is 14/47 = 29.8%) becomes apparent if

two more values are perturbed upwards (the rightmost plot of Figure 4). With six outliers

LAD has broken down, and tracks the unusual points in a similar way to OLS (once again

passing through one of them), while WLAD still follows the bulk of the points.

Hawkins, Bradu, and Kass (1984) constructed an artificial three-predictor data set with

75 observations, where outliers were placed at cases 1–10. The LAD estimator has break-

down point 10.7% (8/75) and breaks down, with the fitted regression hyperplane going

through one of the outlier points (it goes through cases 5, 20, and 32). In contrast the

WLAD estimator, with breakdown point 20% (15/75) works well, going through cases 18,

25, and 30, with each of the outlier observations having absolute residual at least 2.3 times

that of any of the clean points. The fitted WLAD regression is

Y = −0.446 + 0.159X1 + 0.090X2 − 0.032X3,

with z-statistics for the three slopes being 1.15, 0.78, and −0.37, respectively. That is, there

is little evidence for any relationship here, which is consistent with the way the data were

constructed, as none of the t-tests for the three predictors in an OLS fit on observations
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11-75 are statistically significant (in contrast to the fit on all of the observations, where the

outliers result in variables X2 and X3 being significant predictors).

The final data set examined here is the modified wood gravity of Rousseeuw (1984).

These data are based on a real data set (with n = 20 and k = 5), but were modified to

have outliers at cases 4, 6, 8, and 19. Both LAD and WLAD have the same breakdown

point (15% = 3/20), but despite this, while LAD performs poorly (passing through the

outlier case 8), WLAD performs well, with each of the four outlier cases having absolute

residual more than 7.7 times that of any of the clean points. Thus, the WLAD weighting

is beneficial even when breakdown is not improved. The fitted WLAD regression is

Y = 0.387 + 0.321X1 − 0.422X2 − 0.541X3 − 0.336X4 + 0.523X5,

with z-statistics for the five slopes being 8.50, −2.64, −15.18, −6.32, and 7.79, respectively.

An OLS fit on the clean data also identifies predictors 1, 3, 4, and 5 as being most important,

although in that case the coefficient for variable 2 is not statistically significant (in contrast

to an OLS fit on the entire data set, where variables 4 and 5 are insignificant, because of

the effect of the outliers).

5 Conclusion

In this paper we have proposed a weighted version of LAD regression designed to increase

the breakdown of the estimator that is easy to compute and has performance competi-

tive with high breakdown estimators, particularly in the presence of leverage points. These

weighting ideas also apply to other estimators. Given the good bias properties of the WLAD

estimator, it is reasonable to wonder if a similar weighting scheme used for a more efficient

GM-estimator, such as that of Krasker and Welsch (1982), would reduce the variance while

preserving robustness, and be even more effective than WLAD. The LAD estimator is a

special case of regression quantile estimators (Koenker and Bassett, 1978; Koenker, 2000),

which have been shown to be useful in highlighting interesting structure in regression prob-

lems, including nonnormality and heteroscedasticity in the error distribution; it would be

interesting to see if weighted versions of such estimators would be more resistant to the
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effects of unusual observations.

Appendix

Consider the model

y = Xβ + ∆nu,

where ∆n = diag(δ1, . . . , δn), β ∈ <p, and u is a vector of independent and identically

distributed errors with cumulative distribution function F . Assume that the δis are known

values satisfying max δi = O(1) and max δ−1
i = O(1), and that max ‖ xi ‖ = o(n1/4).

Assume that F is twice differentiable at 0, and f(0) = F ′(0) > 0. Let Qn = X′∆−1
n X/n =

Q + O(n−1/4 logn). Let β̂ be the least absolute deviation (LAD) estimator of β that

minimizes
n∑

i=1

|yi − xiβ|.

Lemma 1 As n → ∞,

β̂ − β =
n−1Q−1

n

f(0)

n∑

i=1

xi′Ψ(ui) + O((logn/n)3/4),

where Ψ(x) = I(x < 0) − .5.

Proof: This result follows from an adaptation of the proof of Theorem 2.1 of Zhou and

Portnoy (1998) (hereafter ZP). In that theorem the multipliers δi are estimated based on

a linear function of a parameter vector γ, so the results quoted here are based on taking

γ̂ = γ in that proof. Let Wn(t) =
∑n

i=1 xi′Ψ(ui). By Lemma A.1 of ZP,

Wn(β̂ − β) = O(n−3/4). (5)

Let Mn = c0n
−1/2(logn)1/2. Then, by Lemma A.2 of ZP,

sup
‖t‖≤Mn

‖ Wn(t)− Wn(0) + f(0)Qt ‖= Op(n−3/4(logn)3/4). (6)

Substituting β̂ − β for t in (6) and then substituting (5) into (6) gives

Wn(0) = f(0)Q(β̂ − β) + Op(n−3/4(logn)3/4).
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The result of the lemma then follows.

The next lemma uses this result to establish the asymptotic distribution of the LAD

estimator under known heteroscedasticity.

Lemma 2 As n → ∞,
√

n(β̂ − β) is asymptotically p-variate normal with mean 0 and

covariance matrix

Q−1(X′X)Q−1ω2,

where Q is defined as in Lemma 1 and ω = [2f(0)]−1.

Proof: This is a direct consequence of Lemma 1. The Central Limit Theorem implies

asymptotic normality, and since

V

(
n∑

i=1

xi′Ψ(ui)

)
= (X′X)/4

the result follows.

These results then allow us to derive the asymptotic distribution of the WLAD estimator

under the usual i.i.d. conditions, as follows.

Proof of Theorem 1: This follows from Lemma 2. Let X̃ = WX and ỹ = Wy. Then the

weighted LAD estimation problem is equivalent to unweighted estimation for the model

ỹ = X̃β + Wε.

Lemma 2 implies that
√

n(β̂w − β) is asymptotically p-variate normal with mean 0 and

covariance matrix

Q−1(X̃′W2X̃)Q−1ω2,

where Q = limn→∞ X̃′W−1X̃/n. Substituting WX for X̃ gives the result.
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Table 1: Average empirical size of tests for slope coefficients (nominal size α = .05).

n k Outlier structure Uncorrected tests Bias-corrected tests
40 2 None .067 .068

10%, no leverage .092 .059
20%, no leverage .206 .050
10%, leverage .132 .079
20%, leverage .218 .073
20% large outliers, leverage .325 .071

100 6 None .073 .073
10%, no leverage .065 .058
20%, no leverage .061 .036
10%, leverage .123 .074
20%, leverage .139 .069
20% large outliers, leverage .334 .048

1000 20 None .057 .057
10%, no leverage .060 .044
20%, no leverage .063 .031
10% large outliers, leverage .904, .053 .040
20%, leverage .366, .060 .055
20% large outliers, leverage .927, .056 .045
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Figure 1: Results of simulations with n = 40 observations and two predictors. Bars represent
n× mean squared error for each estimator, separated into squared bias (shaded) and variance
(unshaded) parts.
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Figure 2: Results of simulations with n = 100 observations and six predictors. Bars repre-
sent n× mean squared error for each estimator, separated into squared bias (shaded) and
variance (unshaded) parts.
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Figure 3: Results of simulations with n = 1000 observations and 20 predictors. Bars
represent n× mean squared error for each estimator, separated into squared bias (shaded)
and variance (unshaded) parts.
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Figure 4: OLS (dotted line), LAD (dashed line) and WLAD (solid line) regression fits for
Hertzsprung-Russell stars data. Left plot refers to original data, middle plot refers to data
with original outliers adjusted upwards, and right plot refers to data with two additional
observations adjusted upwards.
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