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Abstract

We propose a new method to measure the wealth-consumption ratio, the price-dividend

ratio of a claim to aggregate consumption. It combines no-arbitrage restrictions with data on

bond yields and stock returns. The estimated wealth-consumption ratio is much higher on

average than the price-dividend ratio on stocks and has lower volatility. This implies that the

consumption risk premium is substantially below the equity risk premium, or that total wealth

is less risky than stock market wealth. Measuring the wealth-consumption ratio is important

because changes in the wealth-consumption ratio enter as a second asset pricing factor besides

consumption growth in the two leading representative-agent asset pricing models, the external

habit model and the long-run risk model. The benchmark calibrations of these two asset

pricing models have dramatically different implications for the wealth-consumption ratio,

motivating our measurement exercise.
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From a macro-economist’s perspective, stock market wealth (equity) is only a small fraction

of total household wealth in the U.S. Other financial wealth, housing wealth, non-corporate busi-

ness wealth, durable wealth, and especially human wealth constitute the bulk of total household

wealth. In this paper we argue that total wealth has dramatically different risk-return character-

istics than equity. Because it is less risky, it has both a lower mean return and a lower volatility.

Correspondingly, the wealth-consumption ratio, which is the price-dividend ratio on a claim to

aggregate consumption, is much higher on average and less volatile than the price-dividend ratio

on equity.

Financial economists have written down models that were designed to match salient features

of equity returns. The canonical consumption-based asset pricing model has spawned a large

literature that seeks to solve its empirical shortcomings. Within the representative agent context,

two main paradigms have emerged. The first approach introduces time-varying risk-aversion in

preferences. The external habit model of Campbell and Cochrane (1999), henceforth EH model,

is a prominent exponent.1 The EH model was designed to show that equilibrium asset prices

can be made to look like the data in a world without predictability in cash-flows, i.e. aggregate

consumption and dividend growth are i.i.d. The second approach introduces predictability in

aggregate consumption growth. The long-run risk model of Epstein and Zin (1991) and Bansal and

Yaron (2004), henceforth LRR, is the leading exponent in this class.2,3 The LRR model embodies

a different philosophy: it tries to make sense of asset prices in a world where persistent shocks

to cash-flows are the driving force. Because these shocks are small, predictability in consumption

and dividend growth is hard to detect. These two models are the workhorses of modern finance,

because reasonably calibrated versions deliver a large equity premium, a low risk-free rate, and

time-varying expected returns.

Since consumption-based asset pricing models take a stance on aggregate consumption growth,

they have implications for the price-dividend ratio on a claim to aggregate consumption, the wealth-

consumption ratio. The wealth-consumption ratio is a key moment of interest in both models,

because the log stochastic discount factor (SDF) is a function of the change in log consumption and

the change in the log wealth-consumption ratio. Thus, the properties of the wealth-consumption

ratio are intimately linked to the conditional market prices of risk generated in each model. Our

1Early contributions in the habit literature include Abel (1990), Constantinides (1990), Ferson and Constantinides
(1991), Abel (1999). See Menzly, Santos, and Veronesi (2004) and Wachter (2006) for more recent contributions.
Chen and Ludvigson (2007) estimate the habit process for a class of EH models.

2Hansen, Heaton, and Li (2006), Parker and Julliard (2005) and Malloy, Moskowitz, and Vissing-Jorgensen
(2005) measure long-run risk based on leads and long-run impulse responses of consumption growth. Bansal, Kiku,
and Yaron (2006) estimate the long-run risk model. Piazzesi and Schneider (2006) study its implications for the
yield curve, Bansal, Dittmar, and Lundblad (2005) and Yang (2007) study the implications for the cross-section of
equity portfolios, and Benzoni, Goldstein, and Collin-Dufresne (2005) for credit spreads.

3Bekaert, Engstrom, and Grenadier (2005) are the first to combine features of both models. It shares the focus
on affine pricing models with ours and with Lettau and Wachter (2007). Bansal, Gallant, and Tauchen (2007)
estimate both long-run risk and external habit models.
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first contribution is to investigate the “macro” properties of total wealth in these two models.

Section 1 documents that the benchmark calibrations of the EH and the LRR models imply wealth-

consumption ratios with dramatically different properties, further motivating our measurement

exercise.

Our second and main contribution is to measure the wealth-consumption ratio in US data.

This is the price-dividend ratio on total wealth, which consists of human wealth, housing wealth,

and broadly-defined financial wealth (private business wealth, durable wealth, stocks, bonds, life

insurance). While we observe the cash flow on human wealth, labor income, we do not observe

the discount rate (expected return), and therefore not the price. With housing wealth, as well as

with other parts of broad financial wealth, such as private business wealth, the Flow of Funds’

measurement may not accurately reflect market prices. Our approach in this paper is to (i) not

take a stance on expected returns on human wealth, and (ii) not to use the Flow of Funds’ measures

of housing and financial wealth. Rather, we use data on aggregate consumption and labor income

and put our trust in well-measured stock and bond prices to infer the economy’s market prices of

risk. Once market prices of risk are estimated, we value a claim to aggregate consumption. Its

price-dividend ratio is the wealth-consumption ratio. Likewise, human wealth is measured as the

expected present discounted value of future labor income.

Our work embeds the methodology of Campbell (1991, 1993, 1996) into the no-arbitrage frame-

work of Ang and Piazzesi (2003). As Campbell (1993), we take a stance on the state variables

that are in the investor’s information set and assume that their dynamics are given by a vector

autoregressive system. As in Ang and Piazzesi (2003), we assume that the log SDF is affine in

innovations to the state vector, with market prices of risk that are also affine in the same state

vector (Section 3). In a first step we estimate the dynamics of the state. In a second step, we

estimate the market prices of risk. The second estimation imposes three sets of moments. The

first set contains Euler equation for all traded assets in the state space. The second set imposes

restrictions on assets that pay one unit of consumption, labor income, broad financial income, or

dividend income. We impose the consistency requirements that the sum of these “strip” prices

equals the price of the entire cash-flow stream. The third set of restrictions are Euler equations of

assets we measure precisely: the cross-section of equity portfolio returns, a cross-section of returns

on bonds of different maturities, and a cross-section of nominal bond yields.

Our estimation reveals that total wealth is considerably less risky than equity. The consumption

risk premium, the expected excess return on total wealth, is 3.3% per year, half the size of the

equity risk premium. This corresponds to an average wealth-consumption ratio of 46, much higher

than the average price-dividend ratio on equity of 26. The wealth-consumption ratio is also less

volatile than the price-dividend ratio on equity (17.9% versus 26.7%). Total wealth has very much

the risk-return profile of a real bond, not that of a stock.
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Using the same procedure, we value a claim to aggregate labor income. Human wealth has risk-

return properties that closely resemble those of total wealth, not in the least because human wealth

is estimated to be 89% of total wealth. This is consistent with Jorgenson and Fraumeni (1989). In

contrast to the literature (Campbell (1996), Shiller (1995), Jagannathan and Wang (1996), Baxter

and Jermann (1997), and Lustig and Van Nieuwerburgh (2007)), our approach avoids having to

take a stance on the expected returns on human wealth. We find that human wealth is bond-like,

an assumption typically made in the portfolio literature. Lettau and Ludvigson (2001a, 2001b)

measure the cointegration residual between log consumption, broadly-defined financial wealth, and

labor income, “cay”. Their construction does not take into account the contribution of the volatility

of price-dividend ratio on human wealth to the volatility of the wealth-consumption ratio.

Our methodology delivers a closed-form variance decomposition of the wealth-consumption

ratio, the analog to Campbell and Shiller (1988)’s decomposition of the price-dividend ratio. We

find that most of the variance in the wc ratio is accounted for by the variance of total wealth returns

rather than by the variance of consumption growth. While the modest variability of the wc ratio

implies only modest predictability, almost all predictability is concentrated in returns rather than

consumption growth rates. Most of the predictability of future returns is predictability of future

real interest rates rather than future risk premia. These properties contrast with predictability

properties of equity returns. First, there is a lot more predictability as witnessed by the more

volatile price-dividend ratio. Second, most predictability is concentrated in returns not in cash-

flows (which is similar to the wc ratio). Third, most predictability in returns in predictability in

future risk premia rather than future risk-free rates.

Both models can account for some of the features of the measured wealth-consumption ratio.

The LRR model delivers the observed dichotomy between total wealth and equity by assigning more

long-run cash-flow risk to dividends than to consumption. Its benchmark calibration generates a

much lower and less volatile wealth-consumption ratio than a price-dividend ratio on equity. On

the predictability side, it delivers more cash-flow predictability than observed. The EH model

replicates the variance decomposition of the wealth-consumption ratio very well. It also generates

a lot of action in expected returns. However, the wealth-consumption ratio seems too volatile.

Section 2 argues that our results extend to a world with heterogeneous households where hu-

man wealth (or housing or private business wealth for that matter) are non-tradeable or carry

idiosyncratic risk that cannot be insured away. We show that, as long as there is a non-zero set

of households that participates in the equity and in the bond market, the no-arbitrage SDF that

prices stocks and bonds also prices both individual and aggregate labor income (or housing or

proprietary business income) streams. This is true even when most households only hold a bank

account (one-period nominal bonds) and in the presence of generic borrowing or wealth constraints.
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1 The Wealth-Consumption Ratio in Leading Asset Pric-

ing Models

The wealth-consumption ratio plays a crucial role in the two leading asset pricing models, the

external habit model and the long-run risk model. In this section, we show that the log stochas-

tic discount factor in each of these models can be written as a linear function of log changes in

consumption and log changes in the wealth-consumption ratio. This two-factor representation

highlights the importance of the wc ratio dynamics for the models’ respective asset pricing impli-

cations. Interestingly, the external habit (EH) and long-run risk (LRR) models turn out to have

dramatically different implications for the wealth-consumption ratio, at least under their bench-

mark parameterizations. This discrepancy further motivates the efforts in this paper to measure

the wealth-consumption ratio in the data.

1.1 The Total Wealth Return

We start from the budget constraint

W T
t+1 = Rc

t+1(W
T
t − CT

t )

which states that the beginning-of-period (or cum-dividend) total wealth W T
t which is not spent

on consumption CT
t earns a gross return Rc

t+1 and leads to beginning-of-next-period total wealth of

W T
t+1. Total wealth consists of human wealth, housing wealth, durable wealth, and financial wealth

(stocks, bonds net of credit card and housing debt, pensions and life insurance, private business

wealth) of the household sector. The return on a claim to aggregate consumption, the total wealth

return, is defined as

Rc
t+1 =

Wt+1

Wt − Ct

=
Ct+1

Ct

WCt+1

WCt − 1
.

The total wealth return Rc
t+1 is a weighted combination of the returns on these wealth categories.

Total consumption is the sum of non-durable and services consumption, which includes housing

services consumption, and durable consumption. In what follows, we use lower-case letters to

denote natural logarithms.

We start by using the Campbell, (1991, 1993) approximation of the log total wealth return

rc
t = log(Rc

t) around the long-run average log wealth-consumption ratio Ac
0.

rc
t+1 = κc

0 + ∆ct+1 + wct+1 − κc
1wct, (1)
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where we define the log wealth-consumption ratio as

wct = log

(
W T

t

CT
t

)
= wT

t − cT
t ,

The linearization constants κc
0 and κc

1 are non-linear functions of the unconditional mean wealth-

consumption ratio Ac
0 ≡ E[wT

t − cT
t ]:

κc
1 =

eAc
0

eAc
0 − 1

> 1 and κc
0 = − log

(
eAc

0 − 1
)

+
eAc

0

eAc
0 − 1

Ac
0. (2)

1.2 The Long-Run Risk Model

Setup The long-run risk literature works off the class of preferences due to Kreps and Porteus

(1978), Epstein and Zin (1989, 1991), and Duffie and Epstein (1992); see equation (38) in Appendix

A.1. These preferences impute a concern for the timing of the resolution of uncertainty. A first

parameter α governs risk aversion and a second parameter ρ governs the willingness to substitute

consumption inter-temporally. In particular, ρ is the inverse of the inter-temporal elasticity of

substitution (EIS). We adopt the consumption growth specification of Bansal and Yaron (2004):

∆ct+1 = µc + xt + σtηt+1, (3)

xt+1 = ρxxt + ϕeσtet+1, (4)

σ2
t+1 = σ2 + ν1(σ

2
t − σ2) + σwwt+1, (5)

where (ηt, et, wt) are i.i.d. mean-zero, variance-one, normally distributed innovations. Consump-

tion growth contains a low-frequency component xt and is heteroscedastic, with conditional vari-

ance σ2
t . These two state variables capture time-varying growth rates and time-varying economic

uncertainty.

SDF Representation The first proposition shows that the log SDF is a linear function of the

growth rate of consumption and the growth rate of the log wealth-consumption ratio. The log

wealth-consumption ratio itself is a linear function of the two state variables xt and σ2
t , as noted

in Bansal and Yaron (2004).

Proposition 1. For ρ 6= 1, the log SDF in the long-run risk model can be stated as

mLRR
t+1 =

{
1 − α

1 − ρ
log β +

ρ − α

1 − ρ
κc

0

}
− α∆ct+1 −

α − ρ

1 − ρ
(wct+1 − κc

1wct) (6)
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where the log wealth-consumption ratio is linear in the two state variables zLRR
t = [xt, σ

2
t − σ̄2]:

wct = ALRR
0 + ALRR′

1 zLRR
t . (7)

Appendix A.2 proves this proposition. The result relies on the Campbell approximation of returns

and the joint log-normality of consumption growth and the two state variables.4,5 The same ap-

pendix also spells out the (non-linear) system of equations that solves for the mean wc ratio ALRR
0 ,

and its dependence on the state ALRR
1 in equation (7) as a function of the structural parameters

of the model. This system imposes the non-linear dependence of κc
1 and κc

0 on ALRR
0 (equation 2).

This proposition highlights how central the properties of the wealth-consumption ratio are for the

LRR model’s asset pricing implications.

Calibration We calibrate the long-run risk model choosing the benchmark parameter values of

Bansal and Yaron (2004).6 We use ρ = 2/3, α = 10, and β = .997 for preferences in (6); and

µc = .45e−2, σ̄ = 1.35e−2, ρx = .938, ϕe = .126, ν1 = .962, and σw = .39 ∗ 10−5 for the cash-flow

processes in (3)-(5). The vector ΘLRR = (α, ρ, β, µc, σ̄, ϕe, ρx, ν1, σw) stores these parameters.7 We

then solve for the loadings of the state variables in the log wealth-consumption ratio expression

(7) and find: ALRR
0 = 5.85, ALRR

1 = [5.16,−175.10]. The corresponding linearization constants are

κc
0 = .0198 and κc

1 = 1.0029. Since κc
1 is essentially 1, the second asset pricing factor in the SDF is

essentially the log change in the wealth-consumption ratio.

Simulation We run 5,000 simulations of the model for 236 quarters each, corresponding to the

period 1948-2006. In each simulation we draw a 236× 3 matrix of mutually uncorrelated standard

normal random variables for the cash-flow innovations (η, e, w) in (3)-(5). We start off each run at

the steady-state (x0 = 0 and σ2
t = σ̄2). For each run, we form log consumption growth ∆ct, the two

state variables [xt, σ
2
t −σ̄2], the log wealth-consumption ratio wct and its first difference, and the log

total wealth return rc
t . We compute their first and second moments.8 These moments are based on

4Appendix A.1 shows that the ability to write the SDF in the LRR model as a function of consumption growth and
the consumption-wealth ratio is general. It does not depend on the linearization of returns, nor on the assumptions
on the stochastic process for consumption growth in equations (3)-(5).

5When ρ equals 1, the wealth-consumption ratio is constant, and the SDF does not satisfy (6). Appendix F.1
shows that the consumption risk premium equals the risk premium in a model without long-run risk when ρ = 1.
Appendix F.1 also discusses the implications for the dividend claim.

6Since their model is calibrated at monthly frequency but the data are quarterly, we work with a quarterly
calibration instead. We have also simulated the model at monthly frequency or quarterly frequency and computed
annualized statistics. The results were very similar. Appendix A.7 describes the mapping from monthly to quarterly
parameters.

7The corresponding monthly values are ΘLRR =
(
10, .6666, .998985, .0015, .0078, .044, .979, .987, .23 ∗ 10−5

)
.

8Most population moments are known in closed-form, so that we do not have to simulate. However, the simulation
approach has the advantages of generating small-sample biases that may also exist in the data and delivering
(bootstrap) standard errors.
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the last 220 quarters only, for consistency with the length for our data for consumption growth and

the growth rate of the wealth-consumption ratio (1952.I-2006.IV).9 Column 1 of Table 1 reports the

moments for the long-run risk model under the benchmark calibration. All reported moments are

averages of the statistics across the 5,000 simulations. The standard deviation of these statistics

across the 5,000 simulations can be interpreted as a small-sample bootstrap standard error on the

moments, and is reported it in parentheses below the point estimate.

1.3 The External Habit Model

Setup We use the specification of preferences proposed by Campbell and Cochrane (1999), hence-

forth CC. The log SDF is

mt+1 = log β − α∆ct+1 − α(st+1 − st),

where Xt is the external habit, the log surplus-consumption ratio st = log(St) = log
(

Ct−Xt

Ct

)

measures the deviation of consumption from the habit, and has the following law of motion:

st+1 − s̄ = ρs(st − s̄) + λt(∆ct+1 − µc).

The steady-state log surplus-consumption ratio is s̄ = log
(
S̄
)
. The parameter α continues to

capture risk aversion. The “sensitivity” function λt governs the conditional covariance between

consumption innovations and the surplus-consumption ratio and is defined below in (11). To stay

with the spirit of the CC exercise, we assume an i.i.d. consumption growth process:

∆ct+1 = µc + σ̄ηt+1, (8)

where η is mean zero, variance one, i.i.d., and normally distributed. It is the only shock in this

model. The following proposition shows that the log SDF in the EH model is a linear function of

the same two asset pricing factors as in the LRR model: the growth rate of consumption and the

growth rate of the consumption-wealth ratio.

Proposition 2. The log SDF in the external habit model can be stated as

mt+1 = log β − α∆ct+1 −
α

A1
(wct+1 − wct) (9)

9This has the added benefit that the first 16 quarters are “burn-in,” so that the first observation we use for the
state vector is different in each run.
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where the log wealth-consumption ratio is linear in the sole state variable zEH
t = st − s̄,

wct = AEH
0 + AEH

1 zEH
t , (10)

and the sensitivity function takes the following form

λt =
S̄−1

√
1 − 2(st − s̄) + 1 − α

α − A1

(11)

Appendix B.1 proves this proposition. The result relies on three assumptions: (1) the Campbell

approximation of returns, (2) the joint log-normality of consumption growth and the state variable,

and (3) the particular form of the sensitivity function in equation (11). Just like CC’s sensitivity

function delivers a risk-free rate that is linear in the state st − s̄, our sensitivity function delivers

a log wealth-consumption ratio that is linear in st − s̄. To minimize the deviations with the CC

model, we pin down the steady-state surplus-consumption level S̄ by matching the steady-state

risk-free rate to the one in the CC model. Taken together with the expressions for AEH
0 and AEH

1 ,

this restriction amounts to a system of three equations in three unknowns
(
A0, A1, S̄

)
.10 The

formulation of SDF in function of the wealth-consumption ratio suggests that, for the EH model

to matter for asset prices, it needs to alter the properties of the wc ratio in the right way.

Calibration We calibrate the long-run risk model choosing the benchmark parameter values of

Campbell and Cochrane (1999). Since their model is calibrated at monthly frequency but our data

are quarterly, we work with a quarterly calibration instead. Appendix B.8 describes the mapping

from monthly to quarterly parameters. We use α = 2, ρs = .9658, and β = .971 for preferences,

and µc = .47e−2 and σ̄ = .75e−2 for the cash-flow process (8), and summarize the parameters in

the vector ΘEH = (α, ρs, β, µc, σ̄).11 After having found the quarterly parameter values, we solve

for the loadings of the state variables in the log wealth-consumption ratio and find: AEH
0 = 3.86,

AEH
1 = 0.778, and S̄ = .0474. The corresponding Campbell-Shiller linearization constants are

κc
0 = .1046 and κc

1 = 1.021583. The simulation method is parallel to the one described for the

LRR model. We note that the riskfree rate is nearly constant in the benchmark calibration; its

volatility is .03% per quarter.

10Details are in Appendix B.2. Appendix B.7 discusses an alternative way to pin down S̄. Appendix F.4 shows
how to relax the Campbell-Shiller approximation of returns by including a second-order term in the approximation
of log(exp(wct)− 1). The proposition remains unchanged, and the coefficients A0 and A1 are unchanged as well for
all practical purposes. This suggests that our arguments does not hinge on the accuracy of the Campbell-Shiller
approximation.

11The corresponding monthly values are ΘEH = (α, ρs, β, µc, σ̄) =
(
2, .9885, .990336, .1575e−2, .433e−2

)
.
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1.4 Properties of the Wealth-Consumption Ratio

The LRR and EH models have dramatically different implications for the wealth-consumption

ratio, as summarized in Table 1. The first column is for the LRR model and the second column

is for the EH model. Starting with the LRR model, we notice that the log wealth-consumption

ratio is not that volatile. Its quarterly (and annual) volatility is 2.35%. Almost all the volatility

in the wealth-consumption ratio comes from volatility in the persistent component of consumption

(the volatility of x is about 0.5% and the loading of wc on x is about 5). The persistence of both

state variables induces substantial persistence in the wc ratio: its auto-correlation coefficient is

0.91 at the 1-quarter horizon, 0.70 at the 4-quarter horizon, and 0.47 at the 8-quarter horizon (not

reported). The standard errors indicate low sampling uncertainty.

The change in the wc ratio, which is the second asset pricing factor, has a volatility of 0.90. For

comparison, aggregate consumption growth, the first asset pricing factor, has a higher volatility

of 1.45%. The change in the log wc ratio has near-zero autocorrelation. The correlation between

the two asset pricing factors is -.06, statistically indistinguishable from zero. The log total wealth

return, defined below in (17), has a volatility of 1.64% per quarter in the LRR model. The low

autocorrelation in ∆wc and ∆c generate low autocorrelation in total wealth returns. The total

wealth return is strongly positively correlated with consumption growth (+.84) because most of

the action in the total wealth return comes from consumption growth.

The final panel reports the consumption risk premium, the expected return on total wealth in

excess of the risk-free rate (including a Jensen term). Appendix A.4 provides the expression and

a decomposition for the consumption risk premium. Total wealth is not very risky in the LRR

model; the quarterly risk premium is 40 basis points, which translates into 1.6% per year. Each

asset pricing factor contributes about half of the risk premium. A low consumption risk premium

indicates that the average wealth-consumption ratio must be very high. Indeed, expressed in annual

levels (eALRR
0 −log(4)), the mean wealth-consumption ratio is 87.

[Table 1 about here.]

The second column of Table 1 reports the moments of the wealth-consumption ratio under

the benchmark calibration of the EH model. First and foremost, the wc ratio is volatile in the

EH model: it has a standard deviation of 29.3%, which is 12.5 times larger than in the LRR

model. This volatility comes from the high volatility of the surplus consumption ratio (38%).

The persistence in the surplus-consumption ratio drives the persistence in the wealth-consumption

ratio: its auto-correlation coefficient is 0.93 at the 1-quarter horizon, 0.74 at the 4-quarter horizon,

and 0.55 at the 8-quarter horizon (not reported).

The change in the wc ratio has a volatility of 9.46%. This is more than 10 times higher than the

volatility of the first asset pricing factor, consumption growth, which has a standard deviation of
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0.75%. The high volatility of the change in the wc ratio translates into a highly volatile total wealth

return. The log total wealth return has a volatility of 10.26% per quarter in the EH model, six

times the value of the LRR model. The change in the log wc ratio has near-zero autocorrelation,

as does the change in consumption. As in the LRR model, the total wealth return is strongly

positively correlated with consumption growth (.91). In the habit model this happens because

most of the action in the total wealth return comes from changes in the wc ratio. The latter are

highly positively correlated with consumption growth (.90, in contrast with the LRR model).12

The consumption risk premium is high in the EH model because total wealth is risky; the

quarterly risk premium is 267 basis points, which translates into 10.7% per year. Most of the

risk compensation in the EH model is for bearing ∆wc risk. The high consumption risk premium

implies a low mean log wealth-consumption ratio of 3.86. Expressed in annual levels, the mean

wealth-consumption ratio is 12.

To sum up, total wealth is not very risky in the LRR model and the wc ratio is smooth. The

opposite is true in the EH model. Essentially, the LRR model drives a wedge between the riskiness

of total wealth and equity, whereas the EH model does not. The stark differences in the properties

of the wealth-consumption ratio in the two workhorse models of modern asset pricing makes proper

measurement of the wealth-consumption ratio imperative.

2 Measuring Human Wealth

The return on total wealth is a portfolio return that aggregates the returns on human wealth, and

non-human wealth (housing, durable, and financial wealth). An important question is under which

assumptions one can measure the returns on human wealth, and by extension on total wealth. The

easiest way to derive these results in our paper is under the assumption that the representative

agent can trade her human wealth. Starting with Campbell (1993), the literature makes this

assumption explicitly. However, in reality, households cannot directly trade claims to their labor

income. The securities they do trade cannot be used to hedge against idiosyncratic labor income

shocks, i.e., markets are incomplete. A similar argument holds for the idiosyncratic risk they carry

in the form of housing wealth or certain components of financial wealth, such as private business

wealth. To aggravate matters, a substantial fraction of households only trades in a one-period

bond (a bank account). This raises the question under what assumptions our approach of backing

out market prices of risk from traded assets (stocks and bonds), and using them to price a claim

to non-tradeable, aggregate labor income (or aggregate consumption) is a valid one.

Appendix E argues that these assumptions are rather mild. Our approach (and that of the

entire Campbell (1993) machinery) applies to a setting with heterogeneous agents who face non-

12This correlation does not diminish much when we time-aggregate quarterly data. The corresponding correlation
between the annualized series is .87.
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tradeable, non-insurable labor income risk, as well as potentially binding borrowing constraints. We

can allow for many of these households to be severely constrained in the menu of assets they trade.

For example, they could just have access to a one-period bond. We show that, as long as there

exists a non-zero set of households who trade in the stock market (securities that are contingent

on the aggregate state of the economy) and the bond market, then the claim to aggregate labor

income is priced off the same SDF that prices traded assets such as stocks and bonds. In other

words, if there exists a SDF that prices stocks, it also prices aggregate labor income. This broadens

the validity of our approach, and gives much more content to the measurement exercise that is

about to follow.

3 Measuring the Wealth-Consumption Ratio in the Data

3.1 Estimation Strategy

In this section, we measure the wealth-consumption ratio in the data, proceeding in two broad

steps. In a first step we define the state variables in the agent’s and econometrician’s information

set, and posit a law of motion for them.

State Evolution Equation The N×1 vector of state variables in the data, zt, follows a Gaussian

VAR with one lag:

zt = Ψzt−1 + Σ
1
2 ǫt

with ǫt ∼ IIDN (0, I) and Ψ is a N ×N matrix. The vector z is demeaned. The covariance matrix

of the innovations is Σ. We use a Cholesky decomposition of the covariance matrix, Σ = Σ
1
2 Σ

1
2
′,

where Σ
1
2 is has non-zero elements on and below the diagonal. The Cholesky decomposition

makes the order of the variables in z important. The state z contains (in order of appearance):

the Cochrane-Piazzesi factor, the nominal short rate (yield on a 3-month Treasury bill), realized

inflation, the spread between the yield on a 5-year Treasury note and a 3-month Treasury bill,

the log price-dividend ratio on the CRSP stock market, real dividend growth on the CRSP stock

market, the return on a factor mimicking portfolio for consumption growth, the return on a factor

mimicking portfolio for labor income growth, real per capita consumption growth, and real per

capita labor income growth:13

zt = [CPt, y
$
t (1), πt, y

$
t (20) − y$

t (1), pdm
t , ∆dm

t , rfmpc
t , rfmpy

t , ∆ct, ∆yt]
′

Our data are quarterly and run from 1952.I until 2006.IV (220 observations). Appendix C describes

data sources and definitions in detail. The VAR structure implies that ∆ct = µc + e′czt, where µc

13The factor mimicking portfolio returns are defined below.
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denotes the unconditional mean consumption growth rate and ec is N × 1 and denotes the column

of an N × N identity matrix that corresponds to the position of ∆c in the state vector. Likewise,

the nominal short rate dynamics satisfy y$
t (1) = y$

0(1) + e′ynzt, where y$
0(1) is the unconditional

average nominal short rate and eyn selects the second column of the identity matrix. πt+1 is the

(log) inflation rate between t and t + 1; inflation has an unconditional mean π0.

To keep the analysis tractable, we impose substantial structure on the companion matrix Ψ.

For example, expected returns on stocks are only allowed to vary with the price-dividend ratio.

We specify these restrictions below. We estimate Ψ by OLS, equation-by-equation. We form each

innovation zt+1(·) − Ψ(·, :)zt and compute their (full rank) covariance matrix Σ.

Stochastic Discount Factor We adopt the SDF methodology used in the no-arbitrage term

structure literature, following Ang and Piazzesi (2003). The nominal pricing kernel M$
t+1 =

exp(m$
t+1) is conditionally log-normal, where lower case letters continue to denote logs:

m$
t+1 = −y$

t (1) −
1

2
L′

tLt − L′
tεt+1. (12)

The real pricing kernel is Mt+1 = exp(mt+1) = exp(m$
t+1 + πt+1).

14 Each element of the VAR

innovation εt+1 has a market price of risk associated with it. The N ×1 market price of risk vector

Lt is assumed to be an affine function of the state:

Lt = L0 + L1zt,

for an N ×1 vector L0 and a N ×N matrix L1. The real short yield yt(1), or risk-free rate, satisfies

Et[exp{mt+1 + yt(1)}] = 1. Solving out this Euler equation, we get:

yt(1) = y$
t (1) − Et[πt+1] −

1

2
e′πΣeπ + e′πΣ

1
2 Lt

= y0(1) +
[
e′yn − e′πΨ + e′πΣ

1
2 L1

]
zt (13)

The real short yield is the nominal short yield minus expected inflation minus a Jensen adjust-

ment minus the inflation risk premium. We do not impose the expectations hypothesis. The

unconditional average risk-free rate y0(1) is defined in (14):

y0(1) ≡ y$
0(1) − π0 −

1

2
e′πΣeπ + e′πΣ

1
2 L0 (14)

14It too is conditionally Gaussian. Note that the consumption-CAPM is a special case of this where mt+1 =
log β−γµc −γηt+1. Appendices A.5 and B.5 show that an (essentially) affine representation also exists for the LRR
and EH models.
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The Wealth-Consumption Ratio and Total Wealth Returns In a second step, we use

no-arbitrage conditions mostly on stock returns and bond yields to estimate the market price of

risk parameters L0 and L1 (Section 3.2). With the prices of risk in hand, we can evaluate any

claim and in particular a claim to aggregate consumption. In this exponential-Gaussian setting,

the log wealth-consumption ratio is an affine function of the state variables, just as in the two

leading asset pricing models:

Proposition 3. The log wealth-consumption ratio is a linear function of the state vector zt

wct = Ac
0 + Ac′

1 zt

where the mean log wealth-consumption ratio Ac
0 is a scalar and Ac

1 is the N×1 vector which jointly

solve:

0 = κc
0 + (1 − κc

1)A
c
0 + µc − y0(1) +

1

2
(ec + Ac

1)
′Σ(ec + Ac

1) − (ec + Ac
1)

′Σ
1
2

(
L0 − Σ

1
2
′eπ

)
(15)

0 = (ec + eπ + Ac
1)

′Ψ − κc
1A

c′
1 − e′yn − (ec + eπ + Ac

1)
′Σ

1
2 L1. (16)

The proof is in Appendix D. Once we have estimated the market prices of risk L0 and L1,

equations (15) and (16) allow us to solve for the mean log wealth-consumption ratio Ac
0 and its

dependence on the state Ac
1. They form a non-linear system of N +1 equations and N +1 unknowns

(recall equation 2), which can be solved numerically and turns out to have a unique solution.

This solution implies that the log real total wealth return equals:

rc
t+1 = ∆ct+1 + wct+1 + κc

0 − κc
1wct, (17)

= rc
0 + [(ec + Ac

1)
′Ψ − κc

1A
c′
1 ] zt + (e′c + Ac′

1 )Σ
1
2 εt+1,

with unconditional average total wealth return

rc
0 = κc

0 + (1 − κc
1)A

c
0 + µc. (18)

The Euler equation Et[exp{mt+1 + rc
t+1}] = 1 implies a consumption risk premium given by:

Et

[
rc,e
t+1

]
≡ Et

[
rc
t+1 − yt(1)

]
+

1

2
Vt[r

c
t+1] = −Et

[(
rc
t+1 − Et

[
rc
t+1

])
(mt+1 − Et [mt+1])

′] (19)

= Et

[(
(ec + Ac

1)
′Σ

1
2 εt+1

)(
(−Lt + e′πΣ

1
2 )εt+1

)′]

= (ec + Ac
1)

′Σ
1
2

(
L0 − Σ

1
2
′eπ

)
+ (ec + Ac

1)
′Σ

1
2 L1zt

where rc,e denotes the log expected return on total wealth in excess of the risk-free rate and
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corrected for a Jensen term. The first term on the last line is the average consumption risk

premium. This is a key object of interest; it measures how risky total wealth is. The second term,

which has mean-zero, governs time variation in the consumption risk premium.

The Price-Dividend Ratio on Human Wealth and Human Wealth Returns The same

way we priced a claim to aggregate consumption, we price a claim to aggregate labor income. We

impose that the conditional Euler equation for human wealth returns is satisfied. Given market

prices of risk L0 and L1, (20) and (21) pin down Ay
0 and Ay

1 in the log price-dividend ratio on

human wealth, pdy
t = Ay

0 + Ay
1zt:

0 = κy
0 + (1 − κy

1)A
y
0 + µy − y0(1) +

1

2
(e′2 + Ay′

1 )Σ(e2 + Ay
1) − (e′2 + Ay′

1 )Σ
1
2

(
L0 − Σ

1
2
′eπ

)
,(20)

0 = (e2 + eπ + Ay
1)

′ Ψ − κy
1A

y′
1 − e′yn − (e2 + eπ + Ay

1)
′Σ

1
2 L1. (21)

where µy is unconditional labor income growth. We set µy = µc to impose stationarity on the

labor income share.15 The constants κy
0 and κy

1 relate to Ay
0 the same way κc

0 and κc
1 relate to Ac

0.

We recall that labor income growth is the second element of the state. The derivation is parallel

to the proof of Proposition 3. The returns on human wealth are given by

ry
t+1 = κy

0 + ∆yt+1 + pdy
t+1 − κy

1pd
y
t

= ry
0 + [(e2 + Ay

1)
′Ψ − κy

1A
y′
1 ]zt + (e′2 + Ay′

1 )Σ
1
2 εt+1

ry
0 = κy

0 + (1 − κy
1)A

y
0 + µy

Finally, the conditional risk premium on the labor income claim is given by:

Et

[
ry,e
t+1

]
= (e2 + Ay

1)
′Σ

1
2

(
L0 − Σ

1
2
′eπ

)
+ (e2 + Ay

1)
′Σ

1
2 L1zt. (22)

3.2 Estimating Market Prices of Risk

The second step estimates the market price of risk parameters in L0 and L1. We identify them off

three sets of moments. The first set of moments prices the term structure of interest rates. The

second set of moments contains the price-dividend ratio and the expected excess return on the

overall stock market. The third set of moments prices two portfolios of stocks that are maximally

correlated with consumption and labor income growth. Finally, we impose on the estimation that

the human wealth share resides between zero and one.

15This is a cointegration assumption which prevents that human wealth becomes 0% or 100% of total wealth in
finite time with probability 1. We rescale the level of consumption to end up with the same average labor income
share (after imposing µy = µc) than in the data (before rescaling). As explained below, we also impose that the
human wealth share stays above 0% and below 97%.
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3.2.1 Step 1: The Term Structure of Interest Rates

The first four elements in the state, the Cochrane-Piazzesi factor, the nominal 3-month T-bill yield,

the inflation rate, and the yield spread (5-year T-bond minus the 3-month T-bill), govern the term

structure of interest rates. In the first four rows of the companion matrix Ψ, only the elements in

the first four columns are non-zero. Note that this delivers a three-factor term structure model,

with bond risk premia driven by the Cochrane-Piazzesi factor. All factors are observable.

Nominal Yield Curve The price of a τ -year nominal zero-coupon bond satisfies:

p$
t (τ) = Et

[
exp

{
m$

t+1 + p$
t+1(τ − 1)

}]
.

This defines a recursion with p$
t (0) = 1. The corresponding bond yield is y$

t (τ) = − log(p$
t (τ))/τ .

The following proposition shows that bond yields can be written as linear function of the state:

Proposition 4. Nominal bond yields are affine in the state vector:

y$
t (τ) = −

A$(τ)

τ
−

B$(τ)′

τ
zt,

where the coefficients A$(τ) and B$(τ) follow ODEs:

A$(τ + 1) = −y$
0(1) + A$(τ) +

1

2

(
B$(τ)

)′
Σ
(
B$(τ)

)
−
(
B$(τ)

)′
Σ

1
2 L0,

(
B$(τ + 1)

)′
=

(
B$(τ)

)′
Ψ − e′yn −

(
B$(τ)

)′
Σ

1
2 L1,

and are initialized at A$(0) = 0 and B$(0) = 0.

The proof is in Appendix D, and follows Ang and Piazzesi (2003). At the one-quarter horizon,

we have A$(1) = −y$
0(1) and B$(1) = −eyn. This guarantees that the one-quarter nominal yield is

priced correctly, on average and state-by-state. Because the state also contains the nominal yield

spread, the restrictions

y$
t (20) = y$

0(20) + (e′yn + e′spr)zt ⇔
−1

20
A$(20) = y$

0(20) (23)

−1

20

(
B$(20)

)′
= (eyn + espr)

′ (24)

impose that the model prices the 20-quarter nominal bond correctly. Equation (23) imposes that

the model matches the unconditional average 5-year nominal yield y$
0(20). This provides one restric-

tion on L0, more precisely it identifies the element L0[2]. The dynamics of the 5-year yield imply

restrictions on L1 as in equation (24). Given the block structure of Ψ, the latter implies four restric-
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tions on L1, one element in each column.16 We choose to estimate L1[4, 1], L1[2, 2], L1[2, 3], L1[2, 4].

We impose these restrictions by minimizing the squared distance

(
y$

t (20) + A$(20)
20

+
(B$(20))

′

20
zt

)2

.

Real Yield Curve There is a similar proposition for real bond yields, which turns out to be

useful for valuing real claims such as the claim to real dividends (equity) or the claim to real

consumption (total wealth). Real yields yt(τ), denoted without the $ superscript, are also affine

in the state, with coefficients following similar ODEs:

A(τ + 1) = −y0(1) + A(τ) +
1

2
(B(τ))′ Σ (B(τ)) − (B(τ))′ Σ

1
2

(
L0 − Σ

1
2
′eπ

)
,

(B(τ + 1))′ = (eπ + B(τ))′ Ψ − e′yn − (eπ + B(τ))′ Σ
1
2 L1,

The proof is omitted for brevity. Note that for τ = 1, we recover the expression for the risk-free

rate in (13)-(14). The difference between y$
t (τ) and yt(τ) is the sum of expected inflation averaged

over the next τ periods and the τ -period inflation risk premium.

Additional Nominal Yields We also minimize the squared distance between the observed and

model-implied yields on nominal bonds of maturities 1,2, 3, 7, 10, and 20 years. The data are

constant-maturity yields from the St.-Louis Federal Reserve Bank. Since the 5-year yield is the

only one that features in the state space, we give its squared-distance moment a weight that is

twice as high as the weight on the pricing error moments for other yields. These additional yields

are potentially helpful to identify the decomposition of the long-term nominal bond risk premium

into an inflation risk premium and a real rate risk premium component. They allow us to identify

two more elements in L0, L0[2] and L0[3]. To avoid over-fitting, we estimate no further elements

in L1. In sum, the term structure component of the model pins down three elements in L0 and

four elements in L1.
17

3.2.2 Step 2: The Stock Market

The fifth and sixth row of the state space are the log price-dividend ratio and the log dividend

growth on the CRSP value-weighted stock market portfolio. We match the expected excess stock

market return and the pdm ratio. The corresponding rows of Φ have non-zero elements in the first

six columns. This implies a rich model for expected stock return, which depends on the first six

elements of the state space.

16All four elements are strictly necessary to match the yield dynamics implied by the VAR.
17We have experimented with freeing up four additional elements of L1 in the term-structure block, but this did

not lead to a better overall fit of the model.

16



Stock Market Return We define the return on equity conform the literature as Rm
t+1 =

Pt+1+Dm
t+1

Pt
, where P m

t is the end-of-period price on the equity market. A log-linearization deliv-

ers:

rm
t+1 = κm

0 + ∆dm
t+1 + κm

1 pdm
t+1 − pdm

t . (25)

The unconditional mean stock return is rm
0 = κm

0 + (κm
1 − 1)Am

0 + µm, where Am
0 = E[pdm

t ] is the

unconditional average log price-dividend ratio on equity and µm = E[∆dm
t ] is the unconditional

mean dividend growth rate. The linearization constants κm
0 and κm

1 are different from the other

wealth concepts because the timing of the return is different:

κm
1 =

eAm
0

eAm
0 + 1

< 1 and κm
0 = log

(
eAm

0 + 1
)
−

eAm
0

eAm
0 + 1

Am
0 . (26)

Even though these constants arise from a linearization, we define log dividend growth so that the

return equation holds exactly, given the CRSP series for {rm
t , pdm

t }. Our state vector z contains

the (demeaned) dividend growth on the stock market, ∆dm
t+1 − µm, and the (demeaned) log price-

dividend ratio pdm − Am
0 . We impose that the model prices excess stock returns correctly; we

minimize the squared distance between VAR- and SDF-implied excess returns:

EV AR
t [rm,e

t+1] = rm
0 − y0(1) +

1

2
(ed + κm

1 epdm)Σ (ed + κm
1 epdm)

+
(
(ed + κm

1 epdm + eπ)′ Ψ − e′pdm − e′yn

)
zt (27)

ESDF
t [rm,e

t+1] = (ed + κm
1 epdm) Σ

1
2

(
L0 − Σ

1
2
′eπ

)
+ (ed + κm

1 epdm + eπ)′ Σ
1
2 L1zt, (28)

Matching the unconditional equity risk premium in model and data allows us to pin down L0[6].

Matching the risk premium dynamics pins down six elements in L1: L1[6, 1] through L1[6, 6].

Price-Dividend Ratio While we imposed that equity returns satisfy their Euler equation, we

have not yet imposed that the return on stocks reflects cash-flow risk in the equity market. We

insist that the SDF correctly prices the claim to dividends on equity. In other words, we require

that the price-dividend ratio in the model, which is the expected present discounted value of all

future dividends, matches the price dividend ratio in the data, period by period.

The price-dividend ratio on equity must equal the sum of the price-dividend ratios on dividend

strips of all horizons. A dividend strip of maturity τ pays 1 unit of consumption at period τ , and

nothing in the other periods.
P m

t

Dm
t

= exp{pdm
t } =

∞∑

τ=0

pd
t (τ) (29)

where pd
t (τ) denotes the price of a τ period dividend strip divided by the current dividend. The

17



dividend strip price satisfies the following recursion:

pd
t (τ) = Et

[
exp

{
mt+1 + ∆dt+1 + log

(
pd

t+1(τ − 1)
)}]

,

with pd
t (0) = 1. Appendix D proofs the following proposition:

Proposition 5. Log strip prices are affine in the state vector:

log pm
t (τ) = Am(τ) + Bm′(τ)zt,

where the coefficients Am(τ) and Bm(τ) follow ODEs:

Am(τ + 1) = Am(τ) + µm − y0(1) +
1

2
(e1 − κm

1 e3 + Bc(τ))′ Σ (e1 − κm
1 e3 + Bm(τ))

− (e1 − κm
1 e3 + Bm(τ))′ Σ

1
2

(
L0 − Σ

1
2 eπ

)
,

Bm(τ + 1)′ = (e1 − κm
1 e3 + eπ + Bm(τ))′ Ψ + e′3 − e′yn − (e1 − κm

1 e3 + eπ + Bm(τ))′ Σ
1
2 L1

and are initialized at Am(0) = 0 and Bm(0) = 0.

The proof is in Appendix D. Using (34) and the affine structure, we obtain the restriction that

the price-dividend ratio in the data equals the price-dividend ratio in the model:

0 =

(
pdm

t −
T∑

τ=0

exp{Am(τ) + (Bm(τ))′ zt}

)2

. (30)

Satisfying (30) implies equating (27) and (28) because dividend growth dynamics are fully

described by the VAR and because of the relationship (25). The reverse is not true.

It turns out to be important to jointly estimate the market price of risk parameters that govern

the term structure and the stock market blocks. The insight is that the observed price-dividend

ratio on stocks contains important information about the real term structure, once that information

is imposed in the form of a present-value model. That real term structure information is critical

in pricing the claim to any real asset, such as a claim to real dividend or consumption growth. In

other words, the price-dividend ratio on stocks is useful in separating out inflation and the real

term structure.

3.2.3 Step 3: Factor Mimicking Portfolios

Since our goal is to price a claim to aggregate consumption and labor income growth, and to use

information about traded assets to do so, it is very helpful to have an asset whose returns are highly

correlated with consumption growth and income growth, resp. The stock market portfolio only
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has a modest correlation with consumption growth (26%). Therefore, we use a broad cross-section

of stock and bond portfolio returns to construct a traded portfolio that has maximal correlation

with consumption and income growth, resp.18 This results in two factor mimicking portfolios

(fmp), whose returns we include in the state. The consumption (labor income) growth fmp has a

correlation with consumption (labor income) growth of 63% (66%). These two fmp have a mutual

correlation of 58%, suggesting non-trivial differences between the return to the consumption and

income claims. The fmp returns are much lower on average than the stock return (2.3% and 2.3%

versus 7.3% per annum) and are much less volatile (0.5% and 1.2% versus 16.7% volatility per

annum). This suggests that a claim to consumption or labor income may be substantially less

risky than a claim to equity dividends.

We include the fmp returns in the VAR as its seventh and eighth element and have non-zero

elements in the corresponding rows of Φ in columns one through six. The estimation imposes that

the risk premia on the fmp coincide between the VAR and the SDF model. In the same fashion as

above, this implies one additional restriction on L0 and N additional restrictions on L1:

EV AR
t [rfmp,e

t+1 ] = rfmp
0 − y0(1) +

1

2
e′fmpΣefmp +

(
(efmp + eπ)′Ψ − e′yn

)
zt (31)

ESDF
t [rfmp,e

t+1 ] = e′fmpΣ
1
2

(
L0 − Σ

1
2
′eπ

)
+ (efmp + eπ)′Σ

1
2 L1zt (32)

where rfmp
0 is the unconditional average fmp return. There are two sets of such restrictions, one

set for the consumption growth and one set for the labor income growth fmp. Again we minimize

squared distances to identify L0[7], L0[8], L1[7, 1] through L1[7, 6], and L1[8, 1] through L1[8, 6].

3.2.4 Adding-Up Constraint

Human Wealth Share We define the labor income share as the ratio of labor income to con-

sumption:

lis = E [list] = E

[
Yt

CT
t

]
.

Total (human) wealth W T
t (W y

t ) is the expected present discounted value of current and future

consumption (labor income). Therefore, the human wealth share is

hws = E [hwst] = E

[
W y

t

W T
t

]
.

18We use 25 size and value portfolios, 10 industry portfolios, 25 size and long-term reversal portfolios, and bond
returns of maturities 1, 2, 5, 7, 10, 20, and 30 years. The stock portfolio return data are from Kenneth French,
the bond return data from CRSP. We project consumption (labor income) growth on these 67 traded assets and a
constant to form factor mimicking portfolios.
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We impose on the estimation that the time series for the human wealth share lies between zero

and one.

Adding-Up Constraint Furthermore, the difference between total and human wealth, which we

call broad financial wealth, is the present discounted value of broad financial income Da
t . Indeed,

the resource constraint in the economy states that

CT
t = Yt + Da

t .

Imposing that broad financial and human wealth add up to total wealth on average amounts to

imposing that

exp{Ac
0} = lis exp{Ay

0(τ)} + (1 − lis) exp{Aa
0(τ)}, (33)

I.e., we impose that the mean price-dividend ratio on broad financial wealth, Aa
0, is consistent with

the mean price-dividend ratios on human and total wealth.

Starting Values In order to produce starting values for the estimation, we first estimate the

term structure step in isolation. Then, we estimate the market prices of risk identified by the stock

market block, taking as given the market prices of risk from the term structure block. Next, we

identify the fmp market prices of risk taking as given all previously estimated parameters. This

delivers a full set of starting values. We then add the human wealth share constraint and the

adding-up constraint to all previous constraints and re-estimate the 6 elements of L0 and the 22

elements of L1. In approximate the price-dividend ratio in the model, which is a sum over an

infinite number of strips, by a finite sum of 4,000 strips, or 1,000 years out.

3.3 Estimation Results

3.3.1 Bonds and Stocks

Before we study the estimation results for the wealth-consumption ratio, it is important to establish

that the model succeeds in pricing the nominal term structure of interest rates and that it matches

the stock return moments we discussed above. Starting with the term structure, recall that we

match the 3-month yield by construction. The first two panels of Figure 1 plot the observed and

model-implied average yield curve while Figure 2 plots the entire time-series for the 1-, 3-, 5-, 7-,

10-, and 20-year yields. The model provides a reasonably close fit. For the 5-year yield, which we

insist on matching more precisely because it also features in the state vector, the average pricing

error is -22 basis points (bp) per year. The standard deviation of the pricing error is 15 basis

points, and the root mean squared error (RMSE) is 26bp. For the other 6 yields, the mean annual

pricing errors range from -21bp to +83bp, the volatility of the pricing errors range from 32-59
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bp, and the RMSE from 39-97bp.19 While these pricing errors are higher than the ones obtained

by term-structure models with latent factors, the model does a good job capturing the level and

dynamics of long yields. For example, the annual volatility of the nominal yield on the 5-year bond

is 1.36% in the data and 1.34% in the model.

[Figure 1 about here.]

[Figure 2 about here.]

The model also manages the capture the dynamics of stock returns quite well. The top panel

of Figure 3 shows the dynamics of the price-dividend ratio on the stock market. This suggests

that the present value model is a good data generating process for stock prices. The bottom panel

shows that the model matches the equity risk premium that arises from the VAR structure. The

average equity risk premium is 6.53% per annum in the data, and 6.54% in the model. Its annual

volatility is 4.43% in the model and 4.42% in the model.

[Figure 3 about here.]

Including the price-dividend moment in the estimation turns out to be valuable for disentangling

real rate and inflation risk premia. The (long-run) nominal risk premium on a 5-year bond, defined

as the difference between the 5-year yield and the average expected future short term yield over

the next 5 years, is the sum of a real rate risk premium (defined the same way for real bonds) and

the inflation risk premium. We do not have good data for real bonds, but stocks are real assets

that contain information about the term structure of real rates. The third panel of Figure 1 shows

that our model implies real yields that range from 1.7% per year for 1-year real bonds to 2.6% per

year for 20-year real bonds. The left panel of Figure 4 decomposes the 5-year yield into the real

5-year yield (which itself consists of the expected real short rate plus the real rate risk premium),

expected inflation over the next 5-years, and the inflation risk premium. The inflationary period

in the late 1970s-early 1980s was accompanied by high inflation expectations and an increase in

the (long-run) inflation risk premium, but also by a substantial increase in the 5-year real yield.

Intuitively, higher long real yields lower the price-dividend ratio on stocks, which indeed was low

in that period. The right panel decomposes the average nominal bond risk premium into the

average real rate risk premium and inflation risk premium for maturities ranging from 1 to 120

quarters. The inflation risk premium hovers around 60 basis points for maturities around 5 years

and gradually goes down for longer bonds while the real rate risk premium become increasingly

important at longer horizons.

19Note that the 2-year yield data only start in 1976.II, the 7-year yield only in 1969.II, and that the 20-year yield
is unavailable between 1986.IV and 1993.II. The pricing errors are largest on these three bonds with missing data.

21



[Figure 4 about here.]

Finally, the model matches expected returns on the consumption and labor income growth

factor mimicking portfolios (fmp) very closely, as Figure 5 shows. The annual risk premium on

the consumption growth fmp is 0.71% in the data (VAR) and 0.78% in the model (SDF). Their

volatilities are 1.44 and 1.45%. Likewise, the risk premium on the labor income growth fmp is

0.67% in the data and 0.62% in the model with volatilities of 1.46 and 1.42%.

[Figure 5 about here.]

3.3.2 The Wealth-Consumption Ratio

With the estimates for L0 and L1 in hand, it is straightforward to solve for Ac
0 and Ac

1 from

equations (15)-(16). The third column of Table 1 summarizes the key moments of the log wealth-

consumption ratio. The log wealth-consumption ratio has a volatility of 18% in the data. This

number is in between the low volatility of the LRR model and the high volatility of the EH model.

Just like in the models, the wc ratio in the data is a persistent process. Its 1-quarter (4-quarter)

serial correlation is .96 (.88). The volatility of the change in the wealth consumption ratio is 4.57%,

again in between the two models. The same holds for the volatility of the total wealth return. The

volatility of the second asset pricing factor is ten times larger than the volatility of the first asset

pricing factor, consumption growth. The change in the wc ratio has weak autocorrelation (-.07

and +.09 at the 1 and 4 quarter horizons). The correlation between the total wealth return and

consumption growth is also mildly positive (.23), whereas in both models it is close to 1. How risky

is total wealth in the data? According to our estimation, the consumption risk premium (calculated

from equation 19) is 3.33% per year or 83 basis points per quarter. This results in a mean wealth-

consumption ratio of 5.21 in logs, or 45.8 in annual levels. Total wealth is riskier in the data than

in the LRR model, but much less risky than in the EH model. Also, the wealth-consumption ratio

is much higher than the price-dividend ratio on equity, suggesting an important difference between

the riskiness of stock market wealth and total wealth. Figure 6 plots the time-series for the annual

wealth-consumption ratio, exp{wct − log(4)}. The wealth consumption ratio dynamics are to a

large extent inversely related to the long real yield dynamics in the left panel of Figure 4.

[Figure 6 about here.]

Consumption Strips Total wealth is a claim on future consumption. Therefore, the wealth-

consumption ratio must equal the sum of the wealth-consumption ratios on consumption strips

of all horizons. A consumption strip of maturity τ pays 1 unit of consumption at period τ , and

nothing in the other periods.
W T

t

CT
t

= exp{wct} =
∞∑

τ=0

pc
t(τ) (34)

22



where pc
t(τ) denotes the price of a τ period consumption strip divided by the current consumption.

The consumption strip price satisfies the following recursion:

pc
t(τ) = Et

[
exp

{
mt+1 + ∆ct+1 + log

(
pc

t+1(τ − 1)
)}]

,

with pc
t(0) = 1. Appendix D proofs the following proposition:

Proposition 6. Log strip prices are affine in the state vector:

log pc
t(τ) = Ac(τ) + Bc′(τ)zt,

where the coefficients Ac(τ) and Bc(τ) follow ODEs:

Ac(τ + 1) = Ac(τ) + µc − y0(1) +
1

2
(ec + Bc(τ))′ Σ (ec + Bc(τ)) − (ec + Bc(τ))′ Σ

1
2

(
L0 − Σ

1
2 eπ

)
,

Bc(τ + 1)′ = (ec + eπ + Bc(τ))′ Ψ − e′yn − (ec + eπ + Bc(τ))′ Σ
1
2 L1.

and are initialized at Ac(0) = 0 and Bc(0) = 0.

Is the consumption claim like a stock or like a bond? Each of these consumption strip

prices p̃t(τ) can be decomposed into the price of a real bond pt(τ), a deterministic consumption

dividend τµc, and the price of a security that carries consumption cash-flow risk pccr
t (τ):

log p̃t(τ) = log pt(τ) + τ × µc + log pccr
t (τ)

Since the log prices of the strips and the real bonds are both affine, so is the log price of the

consumption cash-flow risk security: log pccr
t (τ) = Accr(τ)+Bccr(τ)zt.

20 The yield on a consumption

strip therefore equals the yield on a real bond of the same maturity minus consumption growth

plus the yield on the consumption cash-flow risk security

ỹτ
t = yt(τ) − µc +

(
−

Accr
t

τ
−

Bccr
t

τ
zt

)
= yt(τ) − µc + yccr

t ,

We find that the consumption cash-flow risk premium is the dominant ingredient at shorter hori-

zons, whereas the real yield component become more important ta longer horizons (Figure 7).

20Its coefficients follow ODEs:

Accr(τ + 1) = Accr(τ) +
1

2
(ec + Bccr(τ))

′
Σ (ec + Bccr(τ)) + (ec + Bccr(τ))

′
ΣB(τ) − (ec + Bccr(τ))

′
Σ

1
2

(
L0 − Σ

1
2 eπ

)
,

Bccr(τ + 1)′ = (ec + Bccr(τ))′ Ψ − (ec + Bccr(τ))′ Σ
1
2 L1
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Therefore, the long-run risk in a consumption claim seems to be mostly discount rate risk rather

than cash-flow risk. At longer horizons, the consumption claim looks like a real perpetuity (with

deterministically growing coupons).

[Figure 7 about here.]

3.3.3 Human Wealth Returns

With the estimates for L0 and L1 in hand, we can easily calculate human wealth returns according

to (22). Our estimates imply an equally low risk premium on human wealth of 3.29% per year.

The mean price-dividend ratio on human wealth is 48.7. The volatility of pdy is 17.2%. The price-

dividend ratios on human wealth and total wealth are almost perfectly correlated. Human wealth

looks similar to total wealth because our estimation implies that most wealth is human wealth;

the average human wealth share is 89.0%.21 Interestingly, Jorgenson and Fraumeni (1989) have

argued that the human wealth share is 90% of total wealth.

Connection with Literature The existing approaches to human wealth returns explicitly take

a stance on expected returns on human wealth. The model of Campbell (1996) assumes that

expected human wealth returns are equal to expected returns on financial assets (either equity or

non-human wealth). This is a natural benchmark when financial wealth is a claim to a constant

fraction of aggregate consumption. Shiller (1995) models a constant discount rate on human wealth:

Et[r
y
t+1−ry

0 ] = 0, ∀t. Jagannathan and Wang (1996) assume that expected returns on human wealth

equal the expected labor income growth rate. In this model, the price-dividend ratio on human

wealth is constant. The construction of cay in Lettau and Ludvigson (2001a) effectively makes

the same assumption. These models can be thought of as special case of ours, imposing additional

restrictions on the market prices of risk L0 and L1 which we do not impose. Our estimation results

indicate that expected excess human wealth returns have an annual volatility of 2.6%. This is

substantially higher than zero, higher than expected labor income growth (1.8%), but lower than

the expected excess returns on equity (4.4%). Lastly, average (real) human wealth returns (4.9%)

are much lower than (real) equity returns (8.1%), but higher than (real) labor income growth

(2.3%) and the (real) short rate (1.6%). Our findings therefore do not exactly fit any of these three

assumptions on human wealth returns.

21The mean labor income share is 83.6%. The reason that the average human wealth share is higher than the
average labor income share is because the mean price-dividend ratio on human wealth is higher than the mean
price-dividend ratio on non-human wealth.
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3.3.4 Predictability Properties

It is instructive to investigate the sources of variability in the wealth-consumption ratio using

the standard Campbell and Shiller (1988) methodology. By iterating forward on the total wealth

return equation (1), we can link the log wealth-consumption ratio at time t to expected future

total wealth returns and consumption growth rates:

wct =
κc

0

κc
1 − 1

+

H∑

j=1

(κc
1)

−j ∆ct+j −
H∑

j=1

(κc
1)

−j rc
t+j + (κc

1)
−H wct+H . (35)

Because this expression holds both ex-ante and ex-post, one is allowed to add the expectation

sign on the right-hand side. Imposing the transversality condition as H → ∞ drops the last

term, and delivers the familiar Campbell-Shiller decomposition of the “price-dividend” ratio for

the consumption claim, the wealth-consumption ratio:

wct =
κc

0

κc
1 − 1

+ Et

[
∞∑

j=1

(κc
1)

−j ∆ct+j

]
− Et

[
∞∑

j=1

(κc
1)

−j rt+j

]
≡

κc
0

κc
1 − 1

+ ∆cH
t − rH

t . (36)

We denote the cash-flow component by ∆cH
t and the discount rate component by rH

t . The wealth-

consumption ratio fluctuates because it predicts consumption growth rates (Cov
[
wct, ∆cH

t

]
) or

because it predicts future total wealth returns (Cov
[
wct,−rH

t

]
):

V [wct] = Cov
[
wct, ∆cH

t

]
+ Cov

[
wct,−rH

t

]
= V

[
∆cH

t

]
+ V

[
rH
t

]
− 2Cov

[
rH
t , ∆cH

t

]

The second equality suggests an alternative decomposition into the variance of expected future

consumption growth, expected future returns, and their covariance. Finally, it is straightforward

to break up Cov
[
wct, r

H
t

]
into a piece that measures the predictability of future excess returns,

and a piece that measures the covariance of wct with future risk-free rates.

Variance Decomposition in the Data Our methodology delivers analytical expressions for

all variance and covariance terms, spelled out in Appendix D equations (87-92). Our estimation

has three implications. First, the mild variability of the wc ratio implies only mild (total wealth)

return predictability. Second, 100.2% of the variability in wc is due to covariation with future

total wealth returns, and -0.2% is due to covariation with future consumption growth. Hence, the

wealth-consumption ratio predicts future returns (discount rates), not future consumption growth

rates (cash-flows). Using the second equality above, the variability of future returns is 100.6%, the

variability of future consumption growth is 0.2% and their covariance is -0.8% of the total variance

of wc. Third, 71.2% of the 100.2% covariance with returns is due to covariance with future risk-free
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rates, and only 29% is due to covariance with future excess returns. The wealth-consumption ratio

therefore not only predict future risk premia but mostly future variation in interest rates. What

makes these results interesting is that they are quite different from the predictions implied by the

leading asset pricing models.

Variance Decomposition in the LRR Model In the LRR model, the overall level of pre-

dictability is low because the wealth-consumption ratio is smooth. The (demeaned) log wealth-

consumption ratio can be decomposed into a discount rate and a cash-flow component:

wct =
1

κ1 − ρx

xt

︸ ︷︷ ︸
∆cH

t

−
ρ

κ1 − ρx

xt − ALRR
2

(
σ2

t − σ2
)

︸ ︷︷ ︸
rH
t

.

Appendix A.3 derives this decomposition as well as the decomposition of the variance of wc. The

discount rate component itself contains a risk-free rate component and a risk premium component.

The persistent component of consumption growth xt drives only the risk-free rate effect (first term

in rH
t ). It is governed by ρ, the inverse EIS. In the log case (ρ = 1), the cash flow loading on x and

the risk-free rate loading on x exactly offset each other. The risk premium component is driven

by the heteroscedastic component of consumption growth.22 The expressions for the theoretical

covariances of wct with ∆cH
t and −rH

t show that both cannot simultaneously be positive. When

ρ < 1, the sign on the regression coefficient of future consumption growth on the log wealth-

consumption ratio is positive, but the sign on the return predictability equation is negative (unless

the heteroscedasticity mechanism is very strong). The opposite is true for ρ > 1 (low EIS). In the

benchmark calibration of the LRR model, we are in the first case (high EIS). Most of the volatility

in the wealth-consumption ratio arises from covariation with future consumption growth (297.5%).

The other -197.5% is accounted for by the covariance with future returns. A calibration with an

EIS below 1 would generate the same covariance signs as in the data. Alternatively, a positive

(instead of zero) correlation between x and σ2
t − σ̄2 may also help to generate a CS decomposition

that is closer to the data. Finally, virtually all predictability in future total wealth returns arises

from predictability in future risk-free rates. This is similar to what we find in the data.

Variance Decomposition in the EH Model In contrast to the LRR model, the EH model

asserts that all variability in returns arises from variability in risk premia. The wealth-consumption

ratio only has a discount rate component, because aggregate consumption growth is assumed to

22The heteroscedasticity also affects the risk-free rate component, see equation (59) in the Appendix. But without
heteroscedasticity, there would be no time-variation in risk premia.
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be i.i.d.:

wct =
(1 − ρs)

κ1 − ρs

α (st − s) −
σ2S̄−2

κ1 − ρs

(st − s)
︸ ︷︷ ︸

rH
t

Since there is no cash flow predictability, 100% of the variability of wc is variability of the discount

rate component. The covariance between the wealth-consumption ratio and returns has the right

sign: it is positive by construction. This variance decomposition is very close to the data. However,

by overstating the variability of wc, the benchmark CC model overstates the predictability of

the total wealth return. Also, the EH model implies that almost all the covariance with future

returns comes from covariance with future excess returns, not future risk-free rates. This three-way

comparison makes clear that both models account for some of the predictability features that we

observed in the data.

3.4 Comparison with Equity

Compared to equity, total wealth is much less risky. The equity risk premium is 6.53% per year

in the data, compared to an annual consumption risk premium of 3.33%. Consequently, the mean

price-dividend ratio in levels is much lower than the mean wealth-consumption ratio (26.6 versus

45.8). The volatility of the log price-dividend ratio on equity, pdm is 26.7%, higher than the 17.9%

volatility of wc. The dynamics of the wealth-consumption ratio and the price-dividend ratio on

equity in Figure 3 are quite different; the two series have a correlation of only 0.53. Finally, the

Campbell-Shiller decomposition of the “price-dividend” ratio for the equity dividend claim is:

pdm
t =

κm
0

1 − κm
1

+ Et

[
∞∑

j=0

(κm
1 )j ∆dm

t+1+j

]
−Et

[
∞∑

j=0

(κm
1 )j rt+1+j

]
≡

κm
0

1 − κm
1

+ ∆dmH
t − rmH

t . (37)

The VAR immediately delivers analytical expressions for all six components in the variance de-

composition

V [pdm
t ] = Cov

[
pdm

t , ∆dmH
t

]
+ Cov

[
pdm

t ,−rmH
t

]
= V

[
∆dmH

t

]
+ V

[
rmH

t

]
− 2Cov

[
rmH

t , ∆dmH
t

]

The variance decomposition has the following features: (i) 79.1% of the variability in pdm comes

from its covariance with future returns and 20.9% from covariation with future dividend growth, (ii)

the variance can be broken into 10.4% dividend growth variability, 68.6% stock return variability,

and 21% covariation between the two, and (iii) the 79.1% covariance of pdm with future returns

can be broken out into 55.5% covariance with future excess returns and 23.5% covariance with

future risk-free rates. That is, 70% of the predictability of stock returns is predictability of excess
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stock returns.

Equity Returns in the LRR Model The equity risk premium is the expected excess return

on a claim to aggregate dividends in excess of the risk-free rate. We follow the specification and

the calibration of dividend growth in Bansal and Yaron (2004):

∆dt+1 = µm + φxt + ϕdσtut+1

The shock ut is orthogonal to the other cash-flow innovations in (3)-(5). Just like the log wealth-

consumption ratio, the log price-dividend ratio on stocks pdm is linear in the state vector zLRR
t .

Appendix A.6 proves the linearity, provides expressions for the coefficients, and describes the

parameter choices in detail.23 Dividend growth has the same mean as consumption growth in the

model, but is more volatile (6.25% per quarter versus 1.45%). This greater volatility comes from a

larger loading on the long-run risk component xt (φ = 3 > 1) as well as from a larger loading on the

heteroscedasticity component σ2
t − σ̄2. For these parameters, the equity risk premium is 139 basis

points per quarter or 5.6% per year. It is 4% per year (or 3.5 times) higher than the consumption

risk premium. More long-run risk translates into a higher risk premium on stocks. In the data, the

risk premium difference is similar, at 3.3%. The volatility of the log price-dividend ratio is 16%,

lower than the 25.7% in the data, but six times higher than that of the log wealth-consumption

ratio in the LRR model. In the data, that volatility ratio is 2.65. Thus, the LRR model is able

to drive a strong wedge between the riskiness of equity and total wealth. As was the case for

the wc ratio, the variance decomposition of the pdm ratio indicates mostly predictability of future

cash-flows; 128% of the long-run variance comes from its covariance with future dividend growth

and -28% from its covariance with future equity returns.

Equity Returns in the EH Model Finally, we look at the implications of the EH model for

the equity risk premium. In Campbell and Cochrane (1999), dividend growth is i.i.d., with the

same mean µ as consumption growth, and innovations that are correlated with the innovations

in consumption growth. To make the dividend growth process more directly comparable across

models, we write it as a function of innovations to consumption growth η and innovations u that

are orthogonal to η:

∆dt+1 = µd + ϕdσ̄ut+1 + ϕdσ̄χηt+1.

23We continue to use the benchmark calibration of Bansal and Yaron (2004). Their dividend growth specification
does not impose cointegration with consumption growth. Appendix F.2 derives stock returns in a world with
cointegration. For our purposes, the results are similar with and without cointegration. Therefore, we focus on the
case without cointegration. Bansal, Dittmar, and Lundblad (2005) deal with the case of cointegration. Bekaert,
Engstrom, and Grenadier (2005) and Bekaert, Engstrom, and Xing (2005) also consider a version of the LRR model
that imposes cointegration.
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We choose parameters ϕd and χ to match the volatility of dividend growth and its correlation with

consumption growth to those in the benchmark calibration of Campbell and Cochrane (1999). The

model’s volatility of quarterly dividend growth is 5.6%, compared to .75% for consumption growth.

We lose the linearity of the log price-dividend ratio in the state variables and solve for pdm using

the numerical algorithm developed by Wachter (2005). Appendix B.6 contains the details of the

dividend growth specification, the calibration, and the computation of the price-dividend ratio.24

The equity risk premium in the EH model is somewhat higher than the total wealth risk premium:

3.30% per quarter.25 The EH model’s predictions for stock return predictability are the same as

for total wealth return predictability: all variability in the pdm ratio comes from the discount rate

channel. Variability in expected future stock returns itself is driven by risk premia rather than by

risk-free rates. This characterization of stock return predictability is close to the one in the data.

4 Conclusion

The wealth-consumption ratio, the price-dividend ratio on total wealth, has different properties

from the price-dividend ratio on equity. This has important implications for consumption-based

asset pricing models financial economists work with. In particular, the same stochastic discount

factor needs to price both a claim to aggregate consumption, which is not that risky and carries a

low return, and a claim to equity dividends, which is much more risky and carries a high return.

The long-run risk model solves this problem by making a claim to aggregate dividends have more

long-run risky than a claim to aggregate consumption. Total wealth returns are less predictable

than equity returns and most of their predictability is concentrated is for future returns, not for

future consumption growth rates. The external habit model generates this feature by assuming

i.i.d. consumption growth.

We have developed a new methodology for estimating the wealth-consumption ratio in the data,

based on no-arbitrage conditions familiar from the term structure literature. This approach can

readily be extended to incorporate additional asset classes. Future work could think about real

exchange rate variation driven by differences in the wealth-consumption ratio across countries.

24The dividend growth specification in Campbell and Cochrane (1999) does not impose cointegration with con-
sumption growth. Wachter (2006) and others assume that dividends are a levered-up version of consumption:
∆dt+1 = φ∆ct+1, which also does not impose cointegration. In Appendix F.3, we develop a model with cointegra-
tion following Wachter (2005). Because the equity returns are similar in both cases, we focus on the case without
cointegration.

25We use the average excess return, corrected for the Jensen term, as a proxy because we do not have a closed
form expression for the expected excess return in the EH model.
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A The Long-Run Risk Model

A.1 The General Case

Let Vt(Ct) denote the utility derived from consuming Ct, then the value function of the representative agent takes

the following recursive form:

Vt(Ct) =
[
(1 − β)C1−ρ

t + β(RtVt+1)
1−ρ
] 1

1−ρ

, (38)

where the risk-adjusted expectation operator is defined as:

RtVt+1 =
(
EtV

1−α
t+1

) 1
1−α .

For these preferences, α governs risk aversion and ρ governs the willingness to substitute consumption inter-

temporally. It is the inverse of the inter-temporal elasticity of substitution. In the special case where ρ = α,

they collapse to the standard power utility preferences, used in Breeden (1979) and Lucas (1978). Epstein and Zin

(1989) show that the stochastic discount factor can be written as:

Mt+1 = β

(
Ct+1

Ct

)−ρ(
Vt+1

RtVt+1

)ρ−α

(39)

The next proposition shows that the ability to write the SDF in the long-run risk model as a function of consumption

growth and the consumption-wealth ratio is general. It does not depend on the linearization of returns, nor on the

assumptions on the stochastic process for consumption growth.

Proposition 7. The log SDF in the non-linear version of the long-run risk model can be stated as

mt+1 =
1 − α

1 − ρ
log β − α∆ct+1 +

ρ − α

1 − ρ
log

(
e−cwt+1

e−cwt − 1

)
(40)

Proof. We start from the value function definition in equation (38) and raise both sides to the power 1 − ρ, and

subsequently divide through by (1 − β)C−ρ
t to obtain:

V 1−ρ
t

(1 − β)C−ρ
t

= Ct + β

(
EtV

1−α
t+1

) 1−ρ
1−α

(1 − β)C−ρ
t

(41)

Some algebra and the definition of the risk-adjusted expectation operator imply that

Et(V
1−α
t+1 )

1−ρ
1−α = Et(V

1−α
t+1 )1−

ρ−α
1−α =

Et(V
1−α
t+1 )

Et(V
1−α
t+1 )

ρ−α
1−α

=
Et(V

1−α
t+1 )

(RtVt+1)ρ−α
= Et

[
V ρ−α

t+1 V 1−ρ
t+1

(RtVt+1)ρ−α

]

Substituting this expression into the previous one, and multiplying and dividing inside the expectation operator by

C−ρ
t+1, we get:

V 1−ρ
t

(1 − β)C−ρ
t

= Ct + Et

[
β

(
Ct+1

Ct

)−ρ (
Vt+1

RtVt+1

)ρ−α V 1−ρ
t+1

(1 − β)C−ρ
t+1

]

Note that the first three terms inside the expectation are equal to the stochastic discount factor in equation (39).

This is a no-arbitrage asset pricing equation of an asset with dividend equal to aggregate consumption. The price
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of this asset is Wt. Hence,

Wt = Ct + Et [Mt+1Wt+1] and Wt =
V 1−ρ

t

(1 − β)C−ρ
t

. (42)

This equation, together with E[Mt+1Rt+1] = 1 delivers the return on the total wealth portfolio:

Rt+1 =
Wt+1

(Wt − Ct)
=

V
1−ρ

t+1

(1−β)C−ρ
t+1

V
1−ρ

t

(1−β)C−ρ
t

− Ct

=

V
1−ρ

t+1

(1−β)C−ρ
t+1

β

(1−β)C−ρ
t

(RtVt+1)1−ρ
= β−1

(
Ct+1

Ct

)ρ(
Vt+1

RtVt+1

)1−ρ

, (43)

where the first equality is a definition, the second one follows from the homogeneity of the value function, the third

equality follows from equation (41), and the last one from algebraic manipulation.

Typically, one would rearrange this equation (after raising both sides to the power ρ−α
1−ρ

)

(
Vt+1

RtVt+1

)ρ−α

= β
ρ−α
1−ρ

(
Ct+1

Ct

)−ρ ρ−α
1−ρ

R
ρ−α
1−ρ

t+1 ,

and substitute it into the stochastic discount factor expression (39) to obtain an expression that depends only on

consumption growth and the return to the wealth portfolio:

Mt+1 = β
1−α
1−ρ

(
Ct+1

Ct

)−ρ 1−α
1−ρ

R
ρ−α
1−ρ

t+1 (44)

Instead, we rewrite the return on the wealth portfolio in terms of the wealth-consumption ratio WC

Rt+1 =
WCt+1

WCt − 1

Ct+1

Ct

,

and use equation (43) to obtain

(
Vt+1

RtVt+1

)ρ−α

= β
ρ−α
1−ρ

(
Ct+1

Ct

)ρ−α(
WCt+1

WCt − 1

) ρ−α
1−ρ

,

and substitute it into the stochastic discount factor expression (39) to obtain an expression that depends only on

consumption growth and the wealth-consumption ratio:

Mt+1 = β
1−α
1−ρ

(
Ct+1

Ct

)−α(
WCt+1

WCt − 1

) ρ−α
1−ρ

= β
1−α
1−ρ

(
Ct+1

Ct

)−α(
ewct+1

ewct − 1

) ρ−α
1−ρ

(45)

The log SDF expression in the Bansal and Yaron (2004) model is a first special case of this general, non-linear

formulation. Indeed, one recovers equation (6) by using a first-order Taylor approximation of wct in equation (40)

around A0. A second special case obtains by approximating the last term in (40) using a first-order Taylor expansion

of wct+1 around wct instead. In that case, we obtain a three-factor model:

mt+1 ≈
1 − α

1 − ρ
log β − α∆ct+1 +

ρ − α

1 − ρ
log

(
ewct

ewct − 1

)
−

ρ − α

1 − ρ
∆cwt+1. (46)
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Expressions (46) and (6) are functionally similar because κc
1 is close to 1 and κc

0 equals ewct

ewct−1 when wct is evaluated

at its long-run mean A0.

A.2 Proof of Proposition 1

Setting Up Some Notation The starting point of the analysis is the Euler equation Et[Mt+1R
i
t+1] = 1,

where Ri
t+1 denotes a gross return between dates t and t + 1 on some asset i and Mt+1 is the SDF. In logs:

Et [mt+1] + Et

[
ri
t+1

]
+

1

2
V art [mt+1] +

1

2
V art

[
ri
t+1

]
+ Covt

[
mt+1, r

i
t+1

]
= 0. (47)

The same equation holds for the real risk-free rate yt(1), so that

yt(1) = −Et [mt+1] −
1

2
V art [mt+1] . (48)

The expected excess return becomes:

Et

[
re,i
t+1

]
= Et

[
ri
t+1 − yt(1)

]
+

1

2
V art

[
ri
t+1

]
= −Covt

[
mt+1, r

i
t+1

]
= −Covt

[
mt+1, r

e,i
t+1

]
, (49)

where re,i
t+1 denotes the excess return on asset i corrected for the Jensen term.

We adopt the consumption growth specification of Bansal and Yaron (2004), repeated from the main text:

∆ct+1 = µc + xt + σtηt+1, (50)

xt+1 = ρxxt + ϕeσtet+1, (51)

σ2
t+1 = σ2 + ν1(σ

2
t − σ2) + σwwt+1, (52)

where (ηt, et, wt) are i.i.d. mean-zero, variance-one, normally distributed innovations.

Proof of Linearity The proof closely follows the proof in Bansal and Yaron (2004), henceforth BY, but

adjusts all expressions for our timing of returns.

Proof. In what follows we focus on the return on a claim to aggregate consumption, denoted r, where

rc
t+1 = κc

0 + ∆ct+1 + wct+1 − κc
1wct,

and derive the five terms in equation (47) for this asset.

Taking logs on both sides of the non-linear SDF expression in equation (44) of Appendix A.1 delivers an expression

of the log SDF as a function of log consumption changes and the log total wealth return

mt+1 =
1 − α

1 − ρ
log β −

1 − α

1 − ρ
ρ∆ct+1 +

(
1 − α

1 − ρ
− 1

)
rc
t+1. (53)

We conjecture that the log wealth-consumption ratio is linear in the two states xt and σ2
t − σ̄2,

wct = A0 + A1xt + A2

(
σ2

t − σ̄2
)
.

As BY, we assume joint conditional normality of consumption growth, x, and the variance of consumption growth.

We verify this conjecture from the Euler equation (47).
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Using the conjecture for the wealth-consumption ratio, we compute innovations in the total wealth return, and its

conditional mean and variance:

rc
t+1 − Et

[
rc
t+1

]
= σtηt+1 + A1ϕeσtet+1 + A2σwwt+1

Et

[
rc
t+1

]
= r0 + (1 − (κc

1 − ρx)A1)xt − A2(κ
c
1 − ν1)

(
σ2

t − σ̄2
)

Vt

[
rc
t+1

]
= (1 + (A1ϕe)

2)σ2
t + A2

2σ
2
w

r0 = κc
0 + A0(1 − κc

1) + µc

These equations correspond to (A.8) and (A.9) in the Appendix of BY.

Substituting in the expression for the log total wealth return rc into the log SDF, we compute innovations, and the

conditional mean and variance of the log SDF:

mt+1 − Et [mt+1] = −ασtηt+1 −
α − ρ

1 − ρ
A1ϕeσtet+1 −

α − ρ

1 − ρ
A2σwwt+1,

Et [mt+1] = m0 − ρxt +
α − ρ

1 − ρ
(κc

1 − ν1)A2

(
σ2

t − σ̄2
)

Vt [mt+1] =

(
α2 +

(
α − ρ

1 − ρ

)2

(A1ϕe)
2

)
σ2

t +

(
α − ρ

1 − ρ

)2

A2
2σ

2
w

m0 =
1 − α

1 − ρ
log β −

α − ρ

1 − ρ
[κc

0 + A0(1 − κc
1)] − αµc (54)

These expressions correspond to equations (A.10) and (A.27), and are only slightly different due to the different

timing in returns.

The conditional covariance between the log consumption return and the log SDF is given by the conditional expec-

tation of the product of their innovations

Covt

[
rc
t+1, mt+1

]
= Et

[
rc
t+1 − Et

[
rc
t+1

]
, mt+1 − Et [mt+1]

]
=

(
−α −

α − ρ

1 − ρ
(A1ϕe)

2

)
σ2

t −
α − ρ

1 − ρ
A2

2σ
2
w

Using the method of undetermined coefficients and the five components of equation (47), we can solve for the

constants A0, A1, and A2:

A1 =
1 − ρ

κc
1 − ρx

, (55)

A2 =
(1 − ρ)(1 − α)

2(κc
1 − ν1)

[
1 +

ϕ2
e

(κc
1 − ρx)2

]
, (56)

0 =
1 − α

1 − ρ
[log β + κc

0 + (1 − κc
1)A0] + (1 − α)µc +

1

2
(1 − α)2

[
1 +

ϕ2
e

(κc
1 − ρx)2

]
σ̄2 +

1

2

(
1 − α

1 − ρ

)2

A2
2σ

2
w(57)

The first two correspond to equations (A.5) and (A.7) in BY. The last equation implicitly solves A0 as a function of

all parameters of the model. Because κc
0 and κc

1 are non-linear functions of A0, this system of three equations needs

to be solved simultaneously and numerically. Our computations indicate that the system has a unique solution.

This verifies the conjecture that the log wealth-consumption ratio is linear in the two state variables.

It follows immediately from the above that the log SDF can be written as:

mt+1 =
1 − α

1 − ρ
[log β + κc

0] − κc
0 − α∆ct+1 −

α − ρ

1 − ρ
(wct+1 − κc

1wct)
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This is the expression that arises in the proposition.

According to (49), the risk premium on the consumption claim is given by

Et

[
re
t+1

]
= Et

[
rc
t+1 − yt(1)

]
+ .5Vt[r

c
t+1] = −λm,ησ2

t + λm,eBσ2
t + λm,wA2σ

2
w, (58)

This corresponds to equation (A.11) in BY, with λm,η = −α, λm,e = α−ρ
1−ρ

A1ϕe, and λm,w = α−ρ
1−ρ

A2.

According to equation (48), the expression for the risk-free rate is given by

yt(1) = h0 + ρxt + h1(σ
2
t − σ̄2) (59)

h0 = −m0 − .5λ2
m,wσ2

w − .5
(
λ2

m,η + λ2
m,e

)
σ̄2

h1 = −
α − ρ

1 − ρ
(κc

1 − ν1)A2 − .5
(
λ2

m,η + λ2
m,e

)

= .5(ρ − α)

(
1 +

ϕ2
e

(κc
1 − ρx)2

)
− .5

(
α2 + (α − ρ)2

ϕ2
e

(κc
1 − ρx)2

)

This corresponds to equation (A.25-A.27) in BY. Its unconditional mean is simply h0 (see A.28).

A.3 Campbell-Shiller Decomposition

Expected discounted future returns and consumption growth rates are given by:

rH
t ≡ Et




∞∑

j=1

(κc
1)

−j
rt+j


 =

r0

κc
1 − 1

+
ρ

κc
1 − ρx

xt − A2(σ
2
t − σ̄2) (60)

∆cH
t ≡ Et




∞∑

j=1

(κc
1)

−j
∆ct+j


 =

µ

κc
1 − 1

+
1

κc
1 − ρx

xt (61)

These expressions use the definitions of the total wealth return and consumption, as well as their dynamics.

These expressions enable us to go back and forth between the log wealth-consumption ratio expression in (7)

and the Campbell-Shiller equation in (86). Starting from (7)

wct = A0 + A1xt + A2(σ
2
t − σ̄2)

= A0 +
1

κc
1 − ρx

xt −

(
ρ

κc
1 − ρx

xt − A2(σ
2
t − σ̄2)

)

= A0 +

(
∆cH

t −
µ

κc
1 − 1

)
−

(
rH
t −

r0

κc
1 − 1

)

=
κc

0

κc
1 − 1

+ ∆cH
t − rH

t

we arrive at equation (86). The second equality uses the definition of A1. The third equality uses the definition of

rH
t and ∆cH

t . The fourth equality uses the definition of r0.

The variance of the log wealth-consumption ratio can be written in two equivalent ways:

V
[
∆cH

t

]
+ V

[
rH
t

]
− 2Cov

[
rH
t , ∆cH

t

]
= V [wct] = Cov

[
wct, ∆cH

t

]
+ Cov

[
wct,−rH

t

]
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In the LRR model, the terms in this expression are given by

V
[
∆cH

t

]
=

1

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 > 0

V
[
rH
t

]
=

ρ2

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 + A2
2

σ2
w

1 − ν2
1

> 0

Cov
[
rH
t , ∆cH

t

]
=

ρ

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 > 0

Cov
[
wct, ∆cH

t

]
=

1 − ρ

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 > 0 ⇔ ρ < 1

Cov
[
wct,−rH

t

]
=

ρ2 − ρ

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 + A2
2

σ2
w

1 − ν2
1

> 0 ⇐ ρ > 1

We can break up expected future returns into a risk-free rate component and a risk premium component. The

former is equal to

Et




∞∑

j=1

(κc
1)

−j
rf
t+j−1


 =

h0

κc
1 − 1

+
ρ

κc
1 − ρx

xt +
h1

κc
1 − ν1

(σ2
t − σ̄2), (62)

where the second equation uses the expression for the risk-free rate in equation (59) to compute future risk-free

rates and takes their time-t expectations. The risk premium component is simply the difference between rH
t and

the second expression.

A.4 Risk Factor Representation

We can further rewrite the log SDF in terms of our two demeaned risk factors (denoted with a tilde):

mt+1 = m0 − α∆̃ct+1 −
α − ρ

1 − ρ
∆̃wct+1 = m0 − bft+1,

where m0 is defined in (54), the factor loadings are b =
[
α, α−ρ

1−ρ

]
, and the demeaned risk factors are defined as

ft+1 =
[
∆̃ct+1, ∆̃wct+1

]′
= [∆ct+1 − µ, (wct+1 − A0) − κc

1(wct − A0)]
′
.

In the LRR model, the conditional and unconditional first and second moments of the two risk factors are

Et

[
∆̃ct+1

]
= xt E

[
∆̃ct+1

]
= 0

Vt

[
∆̃ct+1

]
= σ2

t V
[
∆̃ct+1

]
=

(
1 +

ϕ2
e

1 − ρ2
x

)
σ̄2

Et

[
∆̃wct+1

]
= (ρ − 1)xt + A2(ν1 − κc

1)(σ
2
t − σ̄2) E

[
∆̃wct+1

]
= 0

Vt

[
∆̃wct+1

]
= A2

1ϕ
2
eσ

2
t + A2

2σ
2
w V

[
∆̃wct+1

]
= A2

1ϕ
2
e

(
1 +

(ρx − κc
1)

2

1 − ρ2
x

)
σ̄2 + A2

2

(
1 +

(ν1 − κc
1)

2

1 − ν2
1

)
σ2

w

Covt

[
∆̃ct+1, ∆̃wct+1

]
= 0 Cov

[
∆̃ct+1, ∆̃wct+1

]
= (ρ − 1)

ϕ2
e

1 − ρ2
x

σ̄2

The two risk factors are conditionally uncorrelated and have a positive unconditional correlation only if ρ > 1.

The expected excess return on the consumption claim can be written as the sum of the market prices of risk on
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the two risk factors.

Et

[
re
t+1

]
= ℓLRR

1t +ℓLRR
2t =

{
b1Vt

[
∆̃ct+1

]
+ b2Covt

[
∆̃ct+1, ∆̃wct+1

]}
+
{
b1Covt

[
∆̃ct+1, ∆̃wct+1

]
+ b2Vt

[
∆̃wct+1

]}
.

After some algebra, we obtain expressions for the conditional market prices of risk that are only a function of the

structural parameters of the LRR model:

ℓLRR
1t = ασ2

t (63)

ℓLRR
2t = (α − ρ)(1 − ρ)

{
ϕ2

e

(κc
1 − ρx)2

σ2
t +

(α − 1)2

4(κc
1 − ν1)2

[
1 +

ϕ2
e

(κc
1 − ρx)2

]2
σ2

w

}
(64)

The unconditional market prices of risk are the unconditional means of the conditional market prices of risk:

ℓLRR
i = E[ℓLRR

it ], for i = 1, 2. This amounts to setting σ2
t = σ̄2 in the above equations.

A.5 Link to Affine SDF Representation

The log SDF in the LRR model has an affine representation

mt+1 = −yt(1) −
1

2
L′

tLt − L′
tεt+1,

where yt(1) is the risk-free rate, the real market prices of risk are

Lt = [−λm,ησt, λm,eσt, λm,wσw] ,

and εt+1 = [ηt+1, et+1, wt+1] are the Gaussian innovations that drive consumption growth. We recall that λm,η =

−α, λm,e = α−ρ
1−ρ

A1ϕe, λm,w = α−ρ
1−ρ

A2, and wct = A0 + A1xt + A2(σ
2
t − σ̄2). The market prices of risk in the

long-run risk model vary because of heteroscedasticity in consumption growth (σt). They are affine in σt, not in

the second state variable (σ2
t − σ̄2).

Proof. Start from the canonical log SDF in the long-run risk model:

mt+1 =
1 − α

1 − ρ
log β −

1 − α

1 − ρ
ρ∆ct+1 +

(
1 − α

1 − ρ
− 1

)
rc
t+1.

Recall the unconditional mean, the conditional mean, and the innovations in the total wealth return

rc
t+1 − Et

[
rc
t+1

]
= σtηt+1 + Bσtet+1 + A2σwwt+1

Et

[
rc
t+1

]
= r0 + ρxt − A2(κ

c
1 − ν1)

(
σ2

t − σ̄2
)

r0 = κc
0 + A0(1 − κc

1) + µc

Also recall the unconditional mean SDF

m0 =
1 − α

1 − ρ
log β −

α − ρ

1 − ρ
[κc

0 + A0(1 − κc
1)] − αµc
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Substituting in for ∆ct+1 and rc
t+1 into the log SDF, we obtain

mt+1 =
1 − α

1 − ρ
log β −

1 − α

1 − ρ
ρ(µc + xt + σtηt+1) +

(
1 − α

1 − ρ
− 1

)
(σtηt+1 + Bσtet+1 + A2σwwt+1) +

(
1 − α

1 − ρ
− 1

)
(r0 + ρxt − A2(κ

c
1 − ν1)

(
σ2

t − σ̄2
)
).

=
1 − α

1 − ρ
(log β − ρµc) − ρxt +

(
1 − α

1 − ρ
− 1

)
(r0 − A2(κ

c
1 − ν1)

(
σ2

t − σ̄2
)
)

−ασtηt+1 +

(
1 − α

1 − ρ
− 1

)
(Bσtet+1 + A2σwwt+1).

=
1 − α

1 − ρ
(log β − ρµc) − ρxt +

(
1 − α

1 − ρ
− 1

)
(r0 − A2(κ

c
1 − ν1)

(
σ2

t − σ̄2
)
)

−(−λm,ησtηt+1 + λm,eσtet+1 + λm,wσwwt+1),

where λm,η = −α, λm,e = α−ρ
1−ρ

B, λm,w = α−ρ
1−ρ

A2, and B = A1ϕe.

Recall that the risk-free rate is given by equation 59. Add and subtract the risk-free rate to the log SDF in a first

step, and substitute in for the expressions for y0(1), m0, and r0 in a second step:

mt+1 = −yt(1) + y0(1) +
1 − α

1 − ρ
(log β − ρµc) +

(
1 − α

1 − ρ
− 1

)
r0

−.5
(
λ2

m,η + λ2
m,e

)
(σ2

t − σ̄2) − (−λm,ησtηt+1 + λm,eσtet+1 + λm,wσwwt+1).

= −yt(1) − .5
[(

λ2
m,η + λ2

m,e

)
σ2

t + λ2
m,wσ2

w

]

− [−λm,ησtηt+1 + λm,eσtet+1 + λm,wσwwt+1] .

This proofs the affine SDF representation with market prices of risk Lt = [−λm,ησt, λm,eσt, λm,wσw] and εt+1 =

[ηt+1, et+1, wt+1].

A.6 Pricing Stocks in the LRR Model

We discuss the case where dividends on equity and aggregate consumption are not cointegrated. Section F.2 discusses

the case where cointegration is imposed.

Dividend Growth Process We start by pricing a claim to aggregate dividends, where the dividend process

follows the specification in Bansal and Yaron (2004):

∆dt+1 = µd + φxt + ϕdσtut+1 (65)

The shock ut is orthogonal to (η, e, w). This specification does not impose cointegration between consumption and

dividends.

Defining returns ex-dividend and using the Campbell (1991) linearization, the log return on a claim to the aggregate

dividend can be written as:

rm
t+1 = ∆dt+1 + pdt+1 + κm

0 − κm
1 pdt,

with coefficients

κm
1 =

eAm
0

eAm
0 − 1

> 1, and κm
0 = − log

(
eAm

0 − 1
)

+
eAm

0

eAm
0 − 1

Am
0
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which depend on the long-run log price-dividend ratio Am
0 . We denote the return on financial wealth by a superscript

m.

Proof of Linearity We conjecture, as we did for the wealth-consumption ratio, that the log price dividend

ratio is linear in the two state variables:

pdm
t = Am

0 + Am
1 xt + Am

2 (σ2
t − σ̄2).

As we did for the return on the consumption claim, we compute innovations in the dividend claim return, and its

conditional mean and variance:

rm
t+1 − Et

[
rm
t+1

]
= ϕdσtut+1 + βm,eσtet+1 + βm,wσwwt+1

Et

[
rm
t+1

]
= rm

0 + [φ + Am
1 (ρx − κm

1 )]xt − Am
2 (κm

1 − ν1)
(
σ2

t − σ̄2
)

Vt

[
rm
t+1

]
= (ϕ2

d + β2
m,e)σ

2
t + β2

m,wσ2
w,

rm
0 = κm

0 + Am
0 (1 − κm

1 ) + µd

where βm,e = Am
1 ϕe and βm,w = Am

2 . These equations correspond to (A.12) and (A.13) in the Appendix of Bansal

and Yaron (2004). Finally, the conditional covariance between the log SDF and the log dividend claim return is

Covt

[
mt+1, r

m
t+1

]
= −λm,eβm,eσ

2
t − λm,wβm,wσ2

w

From the Euler equation for this return Et [mt+1] + Et

[
rm
t+1

]
+ 1

2Vt [mt+1] +
1
2Vt

[
rm
t+1

]
+ Covt[mt+1, r

m
t+1] = 0 and

the method of undetermined coefficients, we can use the same procedure as described in A.2, and solve for the

constants Am
0 , Am

1 , and Am
2 :

Am
1 =

φ − ρ

κm
1 − ρx

,

Am
2 =

[
α−ρ
1−ρ

A2(κ1 − ν1) + .5Hm

]

κm
1 − ν1

,

0 = m0 + κm
0 + (1 − κm

1 )Am
0 + µd +

1

2
Hmσ̄2 +

1

2

(
Am

2 − A2
α − ρ

1 − ρ

)2

σ2
w

where

Hm = λ2
m,η + (βm,e − λm,e)

2
+ ϕ2

d

= α2 + (φ − α)2
ϕ2

e

(κ1 − ρx)2
+ ϕ2

d

Again, this is a non-linear system in three equations and three unknowns, which we solve numerically. The first two

equations correspond to (A.16) and (A.20) in BY.

Equity Risk premium and CS Decomposition The equity risk premium on the dividend claim

(adjusted for a Jensen term) becomes:

Et

[
re,m
t+1

]
≡ Et

[
rm
t+1 − yt(1)

]
+ .5Vt[r

m
t+1] = λm,eβm,eσ

2
t + λm,wβm,wσ2

w (66)
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This corresponds to equation (A.14) in BY.

Expected discounted future equity returns and dividend growth rates are given by:

rm,H
t ≡ Et




∞∑

j=1

(κm
1 )−j rm

t+j


 =

rm
0

κm
1 − 1

+
ρ

κm
1 − ρx

xt − Am
2 (σ2

t − σ̄2) (67)

∆dH
t ≡ Et




∞∑

j=1

(κm
1 )−j ∆dt+j


 =

µd

κm
1 − 1

+
φ

κm
1 − ρx

xt (68)

From these expressions, it is easy to see that

pdt =
κm

0

κm
1 − 1

+ ∆dH
t − rm,H

t ,

and to compute the elements of the variance-decomposition:

V [pdm
t ] = Cov[pdm

t , ∆dH
t ] + Cov[pdm

t ,−rm,H
t ] = V [∆dH

t ] + V [rm,H
t ] − 2Cov[∆dH

t , rm,H
t ].

A.7 Quarterly Calibration LRR Model

The Bansal-Yaron model is calibrated and parameterized to monthly data. Since we want to use data on quarterly

consumption and dividend growth, and a quarterly series for the wealth-consumption ratio, we recast the model

at quarterly frequencies. We assume that the quarterly process for consumption growth, dividend growth, the low

frequency component and the variance has the exact same structure than at the monthly frequency, with mean

zero, standard deviation 1 innovations, but with different parameters. This appendix explains how the monthly

parameters map into quarterly parameters. We denote all variables, shocks, and all parameters of the quarterly

system with a tilde superscript.

Preference Parameters Obviously, the preference parameters do not depend on the horizon (α̃ = α and

ρ̃ = ρ), except for the time discount factor β̃ = β3. Also, the long-run average log wealth-consumption ratio at

the quarterly frequency is lower than at the monthly frequency by approximately log(3), because log of quarterly

consumption is the log of three times monthly consumption. When we simulate the quarterly model, we solve for

the corresponding A0, A1, and A2 from the system (55)-(57), but with the quarterly parameter values described in

this appendix.

Cash-flow Parameters We accomplish this by matching the conditional and unconditional mean and vari-

ance of log consumption and dividend growth. Log quarterly consumption growth is the sum of log consumption

growth of three consecutive months. We obtain ∆c̃t+1 ≡ ∆ct+3 + ∆ct+2 + ∆ct+1

∆c̃t+1 = 3µc + (1 + ρx + ρ2
x)xt + σtηt+1 + σt+1ηt+2 + σt+2ηt+3 + (1 + ρx)ϕeσtet+1 + ϕeσt+1et+2 (69)

Log quarterly dividend growth looks similar:

∆d̃t+1 = 3µd + φ(1 + ρx + ρ2
x)xt + ϕdσtut+1 + ϕdσt+1ut+2 + ϕdσt+2ut+3 + φ(1 + ρx)ϕeσtet+1 + φϕeσt+1et+2 (70)
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First, we rescale the long-run component in the quarterly system, so that the coefficient on it in the consumption

growth equation is still 1:

x̃t = (1 + ρx + ρ2
x)xt.

Second, we equate the unconditional mean of consumption and dividend growth :

µ̃ = 3µ, µ̃d = 3µd.

These imply that we also match the the conditional mean of consumption growth:

Et[∆ct+3 + ∆ct+2 + ∆ct+1] = 3µ + (1 + ρx + ρ2
x)xt = µ̃ + x̃t = Et[∆c̃t+1]

Third, we also match the conditional mean of dividend growth by setting the quarterly leverage parameter φ̃ = φ.

Fourth, we match the unconditional variance of quarterly consumption growth:

V [∆c̃t+1] = (1 + ρx + ρ2
x)2V [xt] + σ2

[
3 + (1 + ρx)2ϕ2

e + ϕ2
e

]

= (1 + ρx + ρ2
x)2

ϕ2
eσ

2

1 − ρ2
x

+ σ2
[
3 + (1 + ρx)2ϕ2

e + ϕ2
e

]

=
ϕ̃2

eσ̃
2

1 − ρ̃2
x

+ σ̃2

The first and second equalities use the law of iterated expectations to show that

V [σt+jηt+j+1] ≡ E
[
Et+j

{
σ2

t+jη
2
t+j+1

}]
− (E [Et+j {σt+jηt+j+1}])

2 = E
[
σ2

t+j

]
− 0 = σ2

and the same argument applies to terms of type V [σt+jet+j+1]. Coefficient matching on the variance of consumption

expression delivers expressions for σ̃2 and ϕ̃e:

σ̃2 = σ2
[
3 + (1 + ρx)2ϕ2

e + ϕ2
e

]

ϕ̃2
e = ϕ2

e

(1 − ρ̃2
x)(1 + ρx + ρ2

x)2

1 − ρ2
x

σ2

σ̃2

=
(1 − ρ6

x)(1 + ρx + ρ2
x)2

1 − ρ2
x

ϕ2
e

3 + (1 + ρx)2ϕ2
e + ϕ2

e

,

where the third equality uses the first equality. Note that we imposed ρ̃x = ρ3
x, which follows from a desire to match

the persistence of the long-run cash-flow component. Recursively substituting, we find that the three-month ahead

x process has the following relationship to the current value:

xt+3 = ρ3
xxt + ϕeσt+2et+3 + ρxϕeσt+1et+2 + ρ2

xϕeσtet+1

which compares to the quarterly equation

x̃t+1 = ρ̃xx̃t + ϕ̃2
eσ̃tẽt+1

The two processes now have the same auto-correlation and unconditional variance.

Fifth, we match the unconditional variance of dividend growth. Given the assumptions we have made sofar, this
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pins down ϕd:

ϕ̃2
d =

3ϕ2
d + φ2(1 + ρx)2ϕ2

e + φ2ϕ2
e

3 + (1 + ρx)2ϕ2
e + ϕ2

e

Sixth, we match the autocorrelation and the unconditional variance of economic uncertainty σ2
t . Iterating forward,

we obtain an expression that relates variance in month t to the one in month t + 3:

σ2
t+3 − σ2 = ν3

1(σ2
t − σ2) + σwν2

1wt+1 + σwν1wt+2 + σwwt+3

By setting ν̃1 = ν3
1 and σ̃2

w = σ2
w(1 + ν2

1 + ν4
1 ), we match the autocorrelation and variance of the quarterly equation

σ̃2
t+1 − σ̃2 = ν̃1(σ̃

2
t − σ̃2) + σ̃ww̃t+1

A simulation of the quarterly model recovered the annualized cash-flow and asset return moments of the monthly

simulation.

B The External Habit Model

The organization of this EH model appendix exactly parallels the treatment of the LRR model in Appendix (A.2).

B.1 Proof of Proposition 2

Proof. We conjecture that the log wealth-consumption ratio is linear in the sole state variable (st − s̄),

wct = A0 + A1 (st − s̄) .

As Campbell and Cochrane (1999), henceforth CC, we assume joint conditional normality of consumption growth

and the surplus consumption ratio. We verify this conjecture from the Euler equation (??).

We start from the canonical log SDF in the external habit model:

mt+1 = log β − α∆ct+1 − α∆st+1.

Substituting in the expression for returns into the log SDF, we compute innovations, and the conditional mean and

variance of the log SDF:

mt+1 − Et [mt+1] = −α(1 + λt)σ̄ηt+1

Et [mt+1] = m0 + α(1 − ρs) (st − s̄)

Vt [mt+1] = α2 (1 + λt)
2 σ̄2

m0 = log β − αµc (71)
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Likewise, we compute innovations in the consumption claim return, and its conditional mean and variance:

rc
t+1 − Et

[
rc
t+1

]
= (1 + A1λt)σ̄ηt+1

Et

[
rc
t+1

]
= r0 − A1(κ

c
1 − ρs) (st − s̄) (72)

Vt

[
rc
t+1

]
= (1 + A1λt)

2σ̄2

r0 = κc
0 + A0(1 − κc

1) + µc

The conditional covariance between the log consumption return and the log SDF is given by the conditional expec-

tation of the product of their innovations

Covt

[
mt+1, r

c
t+1

]
= −α (1 + λt) (1 + A1λt) σ̄2

We assume that the sensitivity function takes the following form

λt =
S̄−1

√
1 − 2(st − s̄) + 1 − α

α − A1

Using the method of undetermined coefficients and the five components of equation (??), we can solve for the

constants A0 and A1:

A1 =
(1 − ρs)α − σ̄2S̄−2

κc
1 − ρs

, (73)

0 = log β + κc
0 + (1 − κc

1)A0 + (1 − α)µc + .5σ̄2S̄−2 (74)

This verifies that our conjecture was correct. It follows immediately that the log SDF can be written as

mt+1 = log β − α∆ct+1 −
α

A1
(wct+1 − wct) ,

which is the expression in the main text.

The risk premium on the consumption claim is given by Covt[r
c
t+1,−mt+1]:

Et

[
re
t+1

]
≡ Et

[
rc
t+1 − yt(1)

]
+ .5Vt[r

c
t+1] = α (1 + λt) (1 + A1λt) σ̄2, (75)

where the second term on the left is a Jensen adjustment. The expression for the risk-free rate appears in the next

section B.2.

B.2 The Steady-State Habit Level

Campbell and Cochrane (1999) engineer their sensitivity function λt to deliver a risk-free rate that is linear in the

state st − s̄. (They mostly study a special case with a constant risk-free rate.) The linearity of the risk-free rate is

accomplished by choosing

λCC
t = S̄−1

√
1 − 2 (st − s̄) − 1 (76)

Note that if the risk aversion parameter α = 2 and A1 = 1, our sensitivity function exactly coincides with CC’s.

Instead, we engineer our sensitivity function to deliver a log wealth-consumption ratio that is linear in st − s̄.

As a result of our choice, the risk-free rate, yt(1) = −Et [mt+1] − .5Vt [mt+1], is no longer linear in the state, but
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contains an additional square-root term:

yt(1) = h0 +

[
σ̄2α2S̄−2

(α − A1)2
− α(1 − ρs)

]
(st − s̄) − σ̄2α2 (1 − A1)S̄

−1

(α − A1)2

(√
1 − 2 (st − s̄) − 1

)
(77)

h0 = − log β + αµc − .5σ̄2α2(1 + λ(s̄))2, where λ(s̄) =

(
S̄−1 + 1 − α

α − A1

)
(78)

where λ(s̄) is obtained from evaluating our sensitivity function at st = s̄.

CC obtain a similar expression, but without the last term. If α = 2 and A1 = 1, the expression collapses to the one

in CC. A constant risk-free rate obtains in the CC model when S̄−1 = σ̄−1
√

1−ρs

α
because this choice makes the

linear term vanish. While there is no S̄ that guarantees a constant risk-less interest rate under our assumptions, we

choose S̄ to match the steady-state risk-free rate in CC, r̄ = − log β + αµ − .5α(1 − ρs). That is, we set st = s̄ in

the above equation, which then collapses to h0. Setting r̄ = h0 allows us to solve for S̄−1 as a function of A1 and

the structural parameters α, ρs, and σ̄:

S̄−1 = (α − A1)

(
σ̄−1

√
1 − ρs

α

)
− 1 + A1. (79)

Substituting this expression back into the sensitivity function (11), we find that the steady-state sensitivity level

λ(s̄) = σ̄−1
√

1−ρs

α
− 1. This implies that we generate the same steady-state conditional covariance between the

surplus consumption ratio and consumption growth as in CC.

As in CC, we define a maximum value for the log surplus consumption ratio smax, as the value at which λt runs

into zero:

smax = s̄ +
1

2

(
1 − (α − 1)2S̄2

)

Note that if α = 2, this coincides with equation (11) in CC. It is understood that λt = 0 for st ≥ smax.

B.3 Campbell-Shiller Decomposition

Using (72) and the law of motion for st and consumption growth, expected discounted future returns and consump-

tion growth rates are given by:

rH
t ≡ Et




∞∑

j=1

rt+j


 =

r0

κc
1 − 1

− A1(st − s̄) (80)

∆cH
t ≡ Et




∞∑

j=1

∆ct+j


 =

µ

κc
1 − 1

(81)

These expressions enable us to go back and forth between the log wealth-consumption ratio expression in (10) and

the Campbell-Shiller equation in (86). Starting from (10)

wct = A0 + A1(st − s̄)

= A0 +

(
∆cH

t −
µ

κc
1 − 1

)
−

(
rH
t −

r0

κc
1 − 1

)

=
κc

0

κc
1 − 1

+ ∆cH
t − rH

t ,
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we arrive at equation (86). The second equality uses the definitions of rH
t and ∆cH

t . The third equality uses the

definition of r0.

The variance of the log wealth-consumption ratio can be written in two equivalent ways:

V
[
∆cH

t

]
+ V

[
rH
t

]
− 2Cov

[
rH
t , ∆cH

t

]
= V [wct] = Cov

[
wct, ∆cH

t

]
+ Cov

[
wct,−rH

t

]

In the EH model, the terms in this expression are given by

V
[
∆cH

t

]
= 0, Cov

[
rH
t , ∆cH

t

]
= 0, Cov

[
wct, ∆cH

t

]
= 0

V
[
rH
t

]
= A2

1

(
S̄−1 + 1 − α

α − A1

)2
1

1 − ρ2
s

σ̄2 > 0

Cov
[
wct,−rH

t

]
= A2

1

(
S̄−1 + 1 − α

α − A1

)2
1

1 − ρ2
s

σ̄2 > 0

Likewise, there is no predictability in dividend growth (see equation 84). Therefore, V [pdt] = V
[
rH,m
t

]
, where the

latter is the unconditional variance of the expected return on the dividend claim.

B.4 Risk Factor Representation

We can further rewrite the log SDF in terms of our two demeaned risk factors (denoted with a tilde):

mt+1 = m0 − α∆̃ct+1 −
α

A1
∆̃wct+1 = m0 − bft+1,

where m0 is defined in (71), the factor loadings are b =
[
α, α

A1

]
, and the demeaned risk factors are defined as

ft+1 =
[
∆̃ct+1, ∆̃wct+1

]′
= [∆ct+1 − µ, (wct+1 − A0) − (wct − A0)]

′
.

In the EH model, the conditional and unconditional first and second moments of the two risk factors are

Et

[
∆̃ct+1

]
= 0 E

[
∆̃ct+1

]
= 0

Vt

[
∆̃ct+1

]
= σ̄2 V

[
∆̃ct+1

]
= σ̄2

Et

[
∆̃wct+1

]
= −A1(1 − ρs)(st − s̄) E

[
∆̃wct+1

]
= 0

Vt

[
∆̃wct+1

]
= A2

1σ̄
2λ2

t V
[
∆̃wct+1

]
= A2

1σ̄
2

(
1 +

(1 − ρs)(κ
c
1 − ρs)

1 − ρ2
s

)(
S̄−1 + 1 − α

α − A1

)2

Covt

[
∆̃ct+1, ∆̃wct+1

]
= A1σ̄

2λt Cov
[
∆̃ct+1, ∆̃wct+1

]
= A1σ̄

2

(
S̄−1 + 1 − α

α − A1

)

The two risk factors are conditionally and unconditionally positively correlated as long as λt > 0 (which is true for

our calibrations).

The expected excess return on the consumption claim can be written as the sum of the market prices of risk on the

two risk factors.

Et

[
re
t+1

]
= ℓEH

1t +ℓEH
2t =

{
b1Vt

[
∆̃ct+1

]
+ b2Covt

[
∆̃ct+1, ∆̃wct+1

]}
+
{
b1Covt

[
∆̃ct+1, ∆̃wct+1

]
+ b2Vt

[
∆̃wct+1

]}
.

After some algebra, we obtain expressions for these market prices of risk that are only a function of the structural
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parameters of the EH model:

ℓEH
1t = α(1 + λt)σ̄

2 (82)

ℓEH
2t = αA1λt(1 + λt)σ̄

2 (83)

The unconditional market prices of risk are the unconditional means of the conditional market prices of risk:

ℓLRR
i = E[ℓLRR

it ], for i = 1, 2. This amounts to setting λt = E[λt] = λ(s̄) =
(

S̄−1+1−α
α−A1

)
in the above equations.

B.5 Link to Affine SDF Representation

The log SDF in the EH model has an affine representation

mt+1 = −yt(1) −
1

2
L′

tLt − L′
tηt+1,

where yt(1) is the risk-free rate, ηt+1 ∼ N (0, 1) is the innovation to consumption growth, and the real market price

of (consumption) risk Lt is given by

Lt = ασ̄(1 + λt)

The market price of risk in the external habit model varies because the surplus-consumption ratio varies. It is affine

in the square root of the state variable:

Lt =
ασ̄

α − A1

(
S̄−1 + 1 − A1

)
+

ασ̄

α − A1
S̄−1

(√
1 − 2(st − s̄) − 1

)

To recover the expression for Lt under the Campbell and Cochrane (1999) sensitivity function specification, simply

set α = 2 and A1 = 1.

Proof. Start from the canonical log SDF in the external habit model:

mt+1 = log β − α∆ct+1 − α∆st+1.

Use the law of motion of st:

st+1 − s̄ = ρs(st − s̄) + λt(∆ct+1 − µc)

to obtain:

mt+1 = log β − αµc + α(1 − ρs)(st − s̄) − ασ̄(1 + λt)ηt+1.

Recall that the risk-free rate equals:

yt(1) = y0(1) +

[
σ̄2α2S̄−2

(α − A1)2
− α(1 − ρs)

]
(st − s̄) − σ̄2α2 (1 − A1)S̄

−1

(α − A1)2

(√
1 − 2 (st − s̄) − 1

)

y0(1) = − logβ + αµc − .5σ̄2α2(1 + λ(s̄))2, where λ(s̄) =

(
S̄−1 + 1 − α

α − A1

)

Add and subtract the risk-free rate to the log SDF:

mt+1 = −yt(1) + log β − αµc + y0(1) +
σ̄2α2S̄−2

(α − A1)2
(st − s̄)

− σ̄2α2 (1 − A1)S̄
−1

(α − A1)2

(√
1 − 2 (st − s̄) − 1

)
− ασ(1 + λt)ut+1.

48



We can write out y0(1) as:

y0(1) = − log β + αµc −
σ̄2α2

2S̄2(α − A1)2
−

σ2α2

2
(
1 − A1

α − A1
)2 −

σ2α2

S̄

1 − A1

(α − A1)2
.

Substituting the last expression for y0(1) the log SDF:

mt+1 = −yt(1) −
σ̄2α2

2(α − A1)2
(1 − A1)

2 −
σ̄2α2

2S̄2(α − A1)2
+

σ̄2α2

S̄2(α − A1)2
(st − s̄)

−
σ̄2α2

S̄(α − A1)2
(1 − A1)

√
1 − 2 (st − s̄) − ασ̄(1 + λt)ηt+1.

Now define Lt ≡ ασ̄(1 + λt) and recall the sensitivity function:

λt =
S̄−1

√
1 − 2(st − s̄) + 1 − α

α − A1

This implies that − 1
2L2

t equals:

−
1

2
L2

t = −
σ2α2

2(α − A1)2
(1 − A1)

2 −
σ2α2

2S̄2(α − A1)2
+

σ2α2

S̄2(α − A1)2
(st − s̄)

−
σ2α2

S̄(α − A1)2
(1 − A1)

√
1 − 2 (st − s̄).

The affine representation follows immediately.

B.6 Pricing Stocks in EH Model

The main difference with the analysis in the long-run risk model, and the analysis for the total wealth return in

the EH model is that the return to the aggregate dividend claim cannot be written as a linear function of the

state variables. Our choice of the sensitivity function makes the log wealth-consumption ratio linear in the surplus

consumption ratio. But, for that same sensitivity function, the log price-dividend ratio is not linear in the surplus-

consumption ratio. As a result, we need to resort to a non-linear computation of the price-dividend ratio on the

aggregate dividend claim. We focus here on the case where no cointegration is imposed between consumption and

dividends on equity. Section F.3 discusses the case with cointegration.

Dividend Growth Process In Campbell and Cochrane (1999), dividend growth is i.i.d., with the same

mean µ as consumption growth, and innovations that are correlated with the innovations in consumption growth. To

make the dividend growth process more directly comparable across models, we write it as a function of innovations

to consumption growth η and innovations u that are orthogonal to η:

∆dt+1 = µd + ϕdσ̄ut+1 + ϕdσ̄χηt+1. (84)

It follows immediately that its (un)conditional variance equals ϕ2
dσ̄

2(1 + χ2) and its (un)conditional covariance

with consumption growth is ϕdσ̄
2χ. If correlation between consumption and dividend growth is corr, then χ =√

corr2/(1 − corr2). We set ϕd and χ to replicate the unconditional variance of dividend growth and the correlation

of dividend growth and consumption growth corr in Campbell and Cochrane (1999). We set µd = µ, ϕd = 7.32,

and χ = 0.20.
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Computation of Price-Dividend Ratio Wachter (2005) shows that the price-dividend ratio on a claim

to aggregate dividends can be written as the sum of the price-dividend ratios on strips to the period-n dividend,

for n = 1, · · · ,∞:

Pt

Dt

=
∞∑

n=1

P d
nt

Dt

(85)

We adopt her methodology and show it continues to hold for our slightly different dividend growth process in

equation (84).

The Euler equation for the period-n strip delivers the following expression for the price-dividend ratio

P d
nt

Dt

= Et

[
Mt+1

P d
n−1,t+1

Dt+1

Dt+1

Dt

]

We conjecture that the price-dividend ratio on the period-n strip equals a function Fn(st), which follows the recursion

Fn(st) = βeµd−αµc+α(1−ρs)(st−s̄)+ 1
2

ϕ2
dσ̄2

Et

[
e[ϕdχ−α(1+λt)]σ̄ηt+1Fn−1(st+1)

]
,

starting at F0(st) = 1. We now verify this conjecture.

Proof. Substituting in the conjecture
P d

nt

Dt
= Fn(st) into the Euler equation for the period-n strip, we get

Fn(st) = Et

[
Mt+1Fn−1(st+1)

Dt+1

Dt

]
.

Substituting in for the stochastic discount factor M and the dividend growth process (84), this becomes

Fn(st) = βeµd−αµc+α(1−ρs)(st−s̄)Et

[
e−α(1+λt)σ̄ηt+1Fn−1(st+1)e

ϕdσ̄ut+1+ϕdχσ̄ηt+1

]
.

Because u and η are independent, we can write the expectation as a product of expectations. Because u is standard

normal, the expectation in the previous expression can be written as

e
1
2
ϕ2

dσ̄2

Et

[
e[ϕdχ−α(1+λt)]σ̄ηt+1Fn−1(st+1)

]
.

This then verifies the conjecture for Fn(st).

Finally, let g(η) be the standard normal pdf, then we can compute this function through numerical integration

Fn(st) = βeµd−αµc+α(1−ρs)(st−s̄)+ 1
2

ϕ2
dσ̄2

∫ +∞

−∞

e[ϕdχ−α(1+λ(st))]σ̄ηt+1Fn−1(st+1)g(ηt+1)dηt+1,

starting at F0(st) = 1. The grid for st includes 14 very low values for st (-300, -250, -200, -150, -100, -50, -40,

-30, -20, -15, -10, -9, -8, -7), 100 linearly spaced points between -6.5 and s̄ ∗ 1.001 = −2.85, and the log of 100

linearly spaced points between S̄ and exp(1.0000001smax). The function evaluation Fn−1(st+1) is done using linear

interpolation (and extrapolation) on the grid for the log surplus-consumption ratio s. The integral is computed in

matlab using quad.m. The price dividend ratio is computed as the sum of the price-dividend ratios for the first 500

strips.
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B.7 Alternative Way of Pinning Down S̄

To conclude the discussion of the EH model, we investigate an alternative way to pin down S̄. In our benchmark

method, outlined in Appendix B.2, we chose it to match the steady state risk-free rate in Campbell and Cochrane

(1999). Here, the alternative is to pin down S̄ to match the average wealth-consumption ratio of 26.75 in Campbell

and Cochrane (1999).

As before, we solve a system of three equations in (A0, A1, S̄), only the third of which is different and simply

imposes that eA0−log(4) = 26.75. We obtain the following solution: A0 = 4.673, A1 = 0.447, and S̄ = 0.0339. The

wealth-consumption ratio is higher and less sensitive to the surplus-consumption ratio than in the benchmark case.

The volatility of the surplus-consumption ratio is 41.6%, similar to the benchmark model. Because A1 is lower, so is

the volatility of the wc ratio. It is 18.6% in the model, still much higher than the 8.4% in the data. The volatilities

of the change in the wc ratio and of the total wealth return are also lowered, but remain too high. Since, we are no

longer pinning S̄ down to match the steady-state risk-free rate, the risk-free rate turns negative: -33 basis points

per quarter or -1.2% per year. It is also more volatile: .59% versus .03 in the main text and .55 in the data. The

consumption risk premium is down from 2.67% per quarter to 1.97% per quarter and the equity premium is down

from 3.30% per quarter to 2.23%. The main cost of this calibration is a price-dividend ratio that is too low. The

volatility of pdm is now only 12.5% per quarter compared to 27% in the data.

B.8 Quarterly Calibration EH Model

Preference Parameters Again, the preference parameter does not depend on the horizon (α̃ = α, except

for the time discount factor β̃ = β3). The surplus consumption ratio has the same law of motion as in the monthly

model, but we set its persistence equal to ρ̃s = ρ3
s. When we simulate the quarterly model, we solve for the

corresponding A0, A1, and S̄ from the system (101), (102), and (79), but with the quarterly parameter values

described in this appendix.

Cash-flow Parameters Following a similar logic, we can match mean and variance of quarterly consumption

and dividend growth in the CC model. From matching the means we get:

µ̃ = 3µ, µ̃d = 3µd.

From matching the variances we get

σ̃2 = 3σ2, ϕ̃d = ϕd, χ̃ = χ.

A simulation of the quarterly model recovered the annualized cash-flow and asset return moments of the monthly

simulation.

C Data Appendix

C.1 Macroeconomic Series

Labor income Our data are quarterly and span the period 1952.I-2006.IV. They are compiled from the most

recent data available. Labor income is computed from NIPA Table 2.1 as wage and salary disbursements (line

3) + employer contributions for employee pension and insurance funds (line 7) + government social benefits to

persons (line 17) - contributions for government social insurance (line 24) + employer contributions for government
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social insurance (line 8) - labor taxes. As in Lettau and Ludvigson (2001a), labor taxes are defined by imputing

a share of personal current taxes (line 25) to labor income, with the share calculated as the ratio of wage and

salary disbursements to the sum of wage and salary disbursements, proprietors’ income (line 9), and rental income

of persons with capital consumption adjustment (line 12), personal interest income (line 14) and personal dividend

income (line 15). The series is seasonally-adjusted at annual rates (SAAR), and we divide it by 4. Because net

worth of non-corporate business and owners’ equity in farm business is part of financial wealth, it cannot also be

part of human wealth. Consequently, labor income excludes proprietors’ income.

Consumption Non-housing consumption consists of non-housing, non-durable consumption and non-housing

durable consumption. Consumption data are taken from Table 2.3.5. from the Bureau of Economic Analysis’

National Income and Product Accounts (BEA, NIPA). Non-housing, non-durable consumption is measured as the

sum of non-durable goods (line 6) + services (line 13) - housing services (line14).

Non-housing durable consumption is unobserved and must be constructed. From the BEA, we observe durable

expenditures. The value of the durables (Flow of Funds, see below) at the end of two consecutive quarters and

the durable expenditures allows us to measure the implicit depreciation rate that entered in the Flow of Fund’s

calculation. We average that depreciation rate over the sample; it is δ=5.293% per quarter. We apply that

depreciation rate to the value of the durable stock at the beginning of the current period (= measured as the end

of the previous quarter) to get a time-series of this period’s durable consumption.

We use housing services consumption (BEA, NIPA, Table 2.3.5, line 14) as the dividend stream from housing

wealth. The BEA measures rent for renters and imputes a rent for owners. These series are SAAR, so we divide

them by 4 to get quarterly values.

Total consumption is the sum of non-housing non-durable, non-housing durable, and housing consumption.

Population and deflation Throughout, we use the disposable personal income deflator from the BEA

(Table 2.1, implied by lines 36 and 37) as well as the BEA’s population series (line 38).

C.2 Financial Series

Stock market return We use value-weighted quarterly returns (NYSE, AMEX, and NASDAQ) from CRSP

as our measure of the stock market return. In constructing the dividend-price ratio, we use the repurchase-yield

adjustment advocated by Boudoukh, Michaely, Richardson, and Roberts (2004). We also add the dividends over the

current and past three quarters, so as to obtain a price-dividend ratio that is comparable with an annual number.

Bond yields We use the nominal yield on a 3-month Treasury bill from Fama (CRSP file) as our measure of

the risk-free rate. We also use the yield spread between a 5-year Treasury note and a 3-month Treasury bill as a

return predictor. The 5-year yield is obtained from the Fama-Bliss data (CRSP file).

We also use monthly yield data for the period 1953.4-2006.12 from FRED II on bonds with maturities of 7,

10, 20, and 30 years. We only use the average yield over the sample. Since the 7-year yield data are missing from

1953.4-1969.6, we use spline interpolation (using the 1-, 2-, 5-, 10-, and 20-year yields) to fill in the missing data.

The 30-year bond yield data are missing from 1953.4-1977.1 and from 2002.3-2006.1. We use the 20-year yield in

those periods as a proxy. The 20-year yield data are missing in 1987.1-1993.9; we use the 30-year yield data in that

period as a proxy. Once we formed the average yields, we calculate the yield difference of the of 7-, 10-, 20-, and

30-year yields with the 5-year yield from the FRED II file. We add this yield difference to the average 5-year yield

from the Fama-Bliss file, to form our final numbers for the average yield. The average 5-year yield is 6.12% (from
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Fama-Bliss), the average 7-year yield is 6.25%, 10-year yield is 6.32%, 20-year is 6.49%, and the average 30-year

yield is 6.45%.

Additional cross-sectional stock and bond returns We also use the 25 size and value equity

portfolio returns from Kenneth French and bond portfolios returns from CRSP, sorted by maturity (1-, 2-, 5-, 7-,

10-, 20-, and 30-year maturities). We form log real quarterly returns. The small value spread, which enters in our

state vector is the log return difference between the S1B5 and S1B1 portfolios.

D No Arbitrage Proofs

Proof of Proposition 3

Proof. Now, to derive Ac
0 and Ac

1, we need to solve the Euler equation for a claim to aggregate consumption. This

Euler equation can either be thought of as the Euler equation that uses the nominal log SDF m$
t+1 to price the

nominal total wealth return πt+1 + rc
t+1 or the real log SDF m$

t+1 + πt+1 to price the real return rc
t+1:

1 = Et[exp{m$
t+1 + πt+1 + rc

t+1}]

= Et[exp{−y$
t (1) −

1

2
L′

tLt − L′
tεt+1 + π0 + e′8zt+1 + rc

t+1}]

= Et[exp{−y$
t (1) −

1

2
L′

tLt − L′
tεt+1 + π0 + e′8zt+1 + µc + e′7zt+1 + Ac

0 + Ac′
1 zt+1 + κc

0 − κc
1 (Ac

0 + Ac′
1 zt)}]

= exp{−y$
0(1) + π0 − e′4zt −

1

2
L′

tLt + e′8Ψzt + κc
0 + (1 − κc

1)A
c
0 + µc − κc

1A
c′
1 zt + (e′7 + Ac′

1 )Ψzt} ×

Et

[
exp{−L′

tεt+1 + (e7 + e8 + Ac
1)

′Σ
1
2 εt+1}

]

First, note that because of log-normality of εt+1, the last line equals:

exp

{
1

2

(
L′

tLt + (e7 + e8 + Ac
1)

′Σ(e7 + e8 + Ac
1)

′ − 2(e7 + e8 + Ac
1)

′Σ
1
2 Lt

)}

Substituting in for the expectation, as well as for the affine expression for Lt, we get

1 = exp{−y$
0(1) + π0 − e′4zt + κc

0 + (1 − κc
1)A

c
0 + µc − κc

1A
c′
1 zt + (e7 + e8 + Ac

1)
′Ψzt} ×

exp{
1

2
(e7 + e8 + Ac

1)
′Σ(e7 + e8 + Ac

1) − (e7 + e8 + Ac
1)

′Σ
1
2 (L0 + L1zt)}

Taking logs on both sides, an collecting the constant terms and the terms in z, we obtain the following:

0 = {−y$
0(1) + π0 + κc

0 + (1 − κc
1)A

c
0 + µc +

1

2
(e7 + e8 + Ac

1)
′Σ(e7 + e8 + Ac

1) − (e7 + e8 + Ac
1)

′Σ
1
2 L0} +

{−e′4 − κc
1A

c′
1 + (e7 + e8 + Ac

1)
′Ψ − (e7 + e8 + Ac

1)
′Σ

1
2 L1}zt

This equality needs to hold for all zt. This is a system of N + 1 equations in N + 1 unknowns:

0 = −y$
0(1) + π0 + κc

0 + (1 − κc
1)A

c
0 + µc +

1

2
(e7 + e8 + Ac

1)
′Σ(e7 + e8 + Ac

1) − (e7 + e8 + Ac
1)

′Σ
1
2 L0,

0 = (e7 + e8 + Ac
1)

′Ψ − κc
1A

c′
1 − e′4 − (e7 + e8 + Ac

1)
′Σ

1
2 L1
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Proof of Proposition 4

Proof. We conjecture that the t + 1-price of a τ -period bond is exponentially affine in the state

log(p$
t+1(τ)) = A$(τ) +

(
B$(τ)

)′
zt+1

and solve for the coefficients A$(τ + 1) and B$(τ + 1) in the process of verifying this conjecture using the Euler

equation:

p$
t (τ + 1) = Et[exp{m$

t+1 + log
(
p$

t+1(τ)
)
}]

= Et[exp{−y$
t (1) −

1

2
L′

tLt − L′
tεt+1 + A$(τ) +

(
B$(τ)

)′
zt+1}]

= exp{−y$
0(1) − e′4zt −

1

2
L′

tLt + A$(τ) +
(
B$(τ)

)′
Ψzt} ×

Et

[
exp{−L′

tεt+1 +
(
B$(τ)

)′
Σ

1
2 εt+1}

]

We use the log-normality of εt+1 and substitute for the affine expression for Lt to get:

p$
t (τ + 1) = exp{−y$

0(1) − e′4zt + A$(τ) +
(
B$(τ)

)′
Ψzt +

1

2

(
B$(τ)

)′
Σ
(
B$(τ)

)
−
(
B$(τ)

)′
Σ

1
2 (L0 + L1zt)}

Taking logs and collecting terms, we obtain a linear equation for log(pt(τ + 1)):

log
(
p$

t (τ + 1)
)

= A$(τ + 1) +
(
B$(τ + 1)

)′
zt,

where

A$(τ + 1) = −y$
0(1) + A$(τ) +

1

2

(
B$(τ)

)′
Σ
(
B$(τ)

)
−
(
B$(τ)

)′
Σ

1
2 L0,

(
B$(τ + 1)

)′
=

(
B$(τ)

)′
Ψ − e′4 −

(
B$(τ)

)′
Σ

1
2 L1

Proof of Proposition 6

Proof. Let consumption growth be the seventh element in the state vector. We conjecture that the t + 1-price of a

τ -period strip is exponentially affine in the state

log(pc
t+1(τ)) = Ac(τ) + Bc(τ)′zt+1

and solve for the coefficients Ac(τ + 1) and Bc(τ + 1) in the process of verifying this conjecture using the Euler
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equation:

pc
t(τ + 1) = Et[exp{m$

t+1 + πt+1 + ∆ct+1 + log
(
pc

t+1(τ)
)
}]

= Et[exp{−y$
t (1) −

1

2
L′

tLt − L′
tεt+1 + π0 + e′8zt+1 + ∆ct+1 + Ac(τ) + Bc(τ)′zt+1}]

= exp{−y$
0(1) − e′4zt −

1

2
L′

tLt + π0 + e′8Ψzt + µc + e′7Ψzt + Ac(τ) + Bc(τ)′Ψzt} ×

Et

[
exp{−L′

tεt+1 + (e7 + e8 + Bc(τ))′Σ
1
2 εt+1

]

We use the log-normality of εt+1 and substitute for the affine expression for Lt to get:

pc
t(τ + 1) = exp{−y$

0(1) − e′4zt + π0 + µc + Ac(τ) + (e7 + e8 + Bc(τ))
′
Ψzt +

1

2
(e7 + e8 + Bc(τ))

′
Σ (e7 + e8 + Bc(τ))

− (e7 + e8 + Bc(τ))
′
Σ

1
2 (L0 + L1zt)}

Taking logs and collecting terms, we obtain a log-linear expression for pc
t(τ + 1):

log (pc
t(τ + 1)) = Ac(τ + 1) + Bc(τ + 1)′zt,

where

Ac(τ + 1) = Ac(τ) + µc − y$
0(1) + π0 +

1

2
(e7 + e8 + Bc(τ))

′
Σ (e7 + e8 + Bc(τ)) − (e7 + e8 + Bc(τ))

′
Σ

1
2 L0,

Bc(τ + 1)′ = (e7 + e8 + Bc(τ))′ Ψ − e′4 − (e7 + e8 + Bc(τ))′ Σ
1
2 L1

Proof of Proposition 5 Recall that the definition of log equity returns allows us to back out dividend growth

from the first and third elements of the state:

∆dm
t+1 = µm + [(e1 − κm

1 e3)
′Ψ + e′3] zt + (e1 − κm

1 e3)
′
Σ

1
2 εt+1

Proof. We conjecture that the t + 1-price of a τ -period strip is exponentially affine in the state

log(pm
t+1(τ)) = Am(τ) + Bm(τ)′zt+1

and solve for the coefficients Am(τ + 1) and Bm(τ + 1) in the process of verifying this conjecture using the Euler

equation:

pm
t (τ + 1) = Et[exp{m$

t+1 + πt+1 + ∆dm
t+1 + log

(
pm

t+1(τ)
)
}]

= Et[exp{−y$
t (1) −

1

2
L′

tLt − L′
tεt+1 + π0 + e′8zt+1 + ∆dm

t+1 + Am(τ) + Bm(τ)′zt+1}]

= exp{−y$
0(1) − e′4zt −

1

2
L′

tLt + π0 + e′8Ψzt + µm + [(e1 − κm
1 e3)

′Ψ + e′3] zt + Am(τ) + Bm(τ)′Ψzt} ×

Et

[
exp{−L′

tεt+1 + (e1 − κm
1 e3 + e8 + Bm(τ))

′
Σ

1
2 εt+1

]
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We use the log-normality of εt+1 and substitute for the affine expression for Lt to get:

pm
t (τ + 1) = exp{−y$

0(1) − e′4zt + π0 + µm + Am(τ) +
[
(e1 − κm

1 e3 + e8 + Bm(τ))′ Ψ + e′3
]
zt +

1

2
(e1 − κm

1 e3 + e8 + Bm(τ))
′
Σ (e1 − κm

1 e3 + e8 + Bm(τ)) − (e1 − κm
1 e3 + e8 + Bm(τ))

′
Σ

1
2 (L0 + L1zt)}

Taking logs and collecting terms, we obtain a log-linear expression for pm
t (τ + 1):

log (pm
t (τ + 1)) = Am(τ + 1) + Bm(τ + 1)′zt,

where

Am(τ + 1) = Am(τ) + µm − y$
0(1) + π0 +

1

2
(e1 − κm

1 e3 + e8 + Bc(τ))
′
Σ (e1 − κm

1 e3 + e8 + Bm(τ))

− (e1 − κm
1 e3 + e8 + Bm(τ))′ Σ

1
2 L0,

Bm(τ + 1)′ = (e1 − κm
1 e3 + e8 + Bm(τ))

′
Ψ + e′3 − e′4 − (e1 − κm

1 e3 + e8 + Bm(τ))
′
Σ

1
2 L1

Variance Decomposition in the Data The familiar Campbell-Shiller decomposition of the wealth-

consumption ratio reads:

wct =
κc

0

κc
1 − 1

+ Et




∞∑

j=1

(κc
1)

−j
∆ct+j


− Et




∞∑

j=1

(κc
1)

−j
rt+j


 ≡

κc
0

κc
1 − 1

+ ∆cH
t − rH

t . (86)

We denote the cash-flow component by ∆cH
t and the discount rate component by rH

t . The wealth-consumption

ratio fluctuates because it predicts consumption growth rates (Cov
[
wct, ∆cH

t

]
) or because it predicts future total

wealth returns (Cov
[
wct,−rH

t

]
):

V [wct] = Cov
[
wct, ∆cH

t

]
+ Cov

[
wct,−rH

t

]
= V

[
∆cH

t

]
+ V

[
rH
t

]
− 2Cov

[
rH
t , ∆cH

t

]

The second equality suggests an alternative decomposition into the variance of expected future consumption growth,

expected future returns, and their covariance.

Our methodology delivers analytical expressions for all variance and covariance terms:

V [wct] = Ac′
1 ΩAc

1 (87)

Cov
[
wct, ∆cH

t

]
= Ac′

1 Ω(κc
1I − Ψ′)−1Ψ′ec (88)

Cov
[
wct,−rH

t

]
= Ac′

1 Ω
[
Ac

1 − (κc
1I − Ψ)−1Ψ′e′c

]
(89)

V
[
∆cH

t

]
= e′cΨ(κc

1I − Ψ)−1Ω(κc
1I − Ψ′)−1Ψ′ec (90)

V
[
rH
t

]
= [(e′c + Ac′

1 )Ψ − κc
1A

c′
1 ] (κc

1I − Ψ)−1Ω(κc
1I − Ψ′)−1 [Ψ′(ec + Ac

1) − κc
1A

c
1] (91)

Cov
[
rH
t , ∆cH

t

]
= [(e′c + Ac′

1 )Ψ − κc
1A

c′
1 ] (κc

1I − Ψ)−1Ω(κc
1I − Ψ′)−1Ψ′ec (92)

where Ω = E[z′tzt] is the second moment matrix of the state zt.
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E Human Wealth Pricing

This appendix proves that our results carry over to a world where heterogeneous agents face labor income risk, which

they cannot trade away because market incompleteness. We can allow for the fact that many of these households

do not participate in the stock market, but only have a cash account. As long as there is a subset of agents of

non-zero measure who can trade in the stock market, the claim to aggregate labor income, human wealth, is priced

off the same stochastic discount factor that prices stocks and bonds.

Environment Let zt be the aggregate state vector. We use zt to denote the history of aggregate state real-

izations. Section 3.1 describes the dynamics of the aggregate state zt of this economy, including the dynamics of

aggregate consumption Ct(z
t) and aggregate labor income Yt(z

t).

Suppose the economy is populated by a continuum of heterogeneous agents, whose labor income is subject to

idiosyncratic shocks. The idiosyncratic shocks are denoted by yt, and we use yt to denote the history of these

shocks. The household labor income process is given by:

ηt(y
t, zt) = η̂t(y

t, zt)Yt(z
t).

Let Φt(z
t) denote the distribution of household histories yt conditional on being in aggregate node zt. The labor

income shares η̂ aggregate to one: ∫
η̂t(y

t, zt)dΦt(z
t) = 1.

Each period, households collect labor income, in addition to dividend income from stocks and bond payments (for

those households who participate in financial markets).

Trading in securities markets A non-zero measure of these households can trade bonds and stocks in

securities markets that open every period. These households are in partition 1. We assume the returns of these

securities span zt. Other households (in partition 2 for bonds) can only trade one-period risk-less one period discount

bonds (a cash account). We use Ai to denote the menu of traded assets for households in segment i. However, none

of these households can insure directly against idiosyncratic shocks yt to their labor income by selling a claim to

their labor income or by trading contingent claims on these idiosyncratic shocks.

No Arbitrage Condition Since there is a set of non-zero measure households that trade assets that span

zt, the absence of arbitrage opportunities implies the existence of the pricing kernel. We let Pt be the arbitrage-free

price of an asset with payoffs {Di
t}:

P i
t = Et

∞∑

τ=t

Mτ

Mt

Di
τ . (93)

for any non-negative stochastic dividend process Di
t that is measurable w.r.t zt. The pricing kernel satisfies {Mt =

exp
(∑

s≤t ms

)
}. The log SDF mt satisfies the affine expression in (12).

Household Problem After collecting their labor income and their payoffs from the contingent bond market,

households buy consumption in spot markets and take Arrow positions at+1(y
t+1, zt+1) in the securities markets

subject to a standard budget constraint:

ct + Et

[
Mt+1

Mt

at(y
t+1, zt+1)

]
+

N∑

i∈Ai

P i
t s

i
t+1 ≤ θt
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where s denotes the shares in a security i that is in the trading set of that agent. In the second term on the left-hand

side, the expectations operator arises because we sum across all states of nature tomorrow and weight the price of

each of the corresponding Arrow securities by the probability of that state arising.

Wealth evolves according to:

θt+1 = at(y
t+1, zt+1) + ηt+1 +

N∑

i∈Ai

[
P i

t+1 + Di
t+1

]
si

t

subject to a measurability constraint:

at(y
t+1, zt+1) is measurable w.r.t. Aj

t (y
t+1, zt+1), j ∈ {1, 2}

and subject to a solvency constraint:

at(y
t+1, zt+1) ≥ Bt(y

t, zt)

These measurability constraints limit the dependence of total household financial wealth on (zt+1, yt+1). For

example, for those households in partition b that only trade a risk-free bond, A2
t (y

t, zt) = (yt−1, zt−1), because their

net wealth can only depend on the history of aggregate and idiosyncratic states up until t− 1. The households that

do trade in stock and bond markets can have net wealth depend on the state until time t: A1
t (y

t, zt) = (yt−1, zt).

Pricing of Household Human wealth In the absence of arbitrage opportunities, we can eliminate trade

in actual securities, and the budget constraint reduces to:

ct + Et

[
Mt+1

Mt

at(y
t+1, zt+1)

]
≤ at−1(y

t, zt) + ηt

By forward substitution of at(y
t+1, zt+1) in the budget constraint, and by imposing the transversality condition on

household net wealth:

lim
t→∞

Mtat(y
t, zt) = 0,

it becomes apparent that the expression for financial wealth is :

at−1(y
t, zt) = Et

[
∞∑

τ=t

Mτ

Mt

(cτ (yτ , zτ) − ητ (yτ , zτ ))

]

= Et

[
∞∑

τ=t

Mτ

Mt

cτ (yτ , zτ)

]
− Et

[
∞∑

τ=t

Mτ

Mt

ητ (yτ , zτ )

]

The second equation states that non-human wealth (on the left) equals the present discounted value of consumption

minus human wealth. Put differently, the households current and future consumption is restricted by total wealth,

the sum of human and non-human (financial) wealth. It is clear that an individual’s human wealth, the price of a

claim to her individual-specific labor income, is given by:

Et

[
∞∑

τ=t

Mτ

Mt

ητ (yτ , zτ)

]

In other words, each household’s human wealth is priced off the pricing kernel that prices tradeable securities, such

as stocks. This is despite the fact that this household cannot trade away its idiosyncratic human wealth risk, and

neither can the other households. This result holds in the presence of generic borrowing constraints B. This result
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holds in the presence of generic borrowing constraints B. This is true for both kinds of households. Even for the

non-participants in the stock market, the human wealth that enters the budget constraint at time 0 (or later) is

priced off the pricing kernel Mt.

Pricing of Aggregate Human Wealth Let Φ0 denote the measure at time 0 over the history of idiosyn-

cratic shocks. The (shadow) price of a claim to aggregate labor income is priced at time 0 is given by:

∫
E0

[
∞∑

t=0

Mt

M0
η̂t(y

t, zt)Yt(z
t)

]
dΦ0 = E0

[
∞∑

t=0

Mt

M0

∫
η̂t(y

t, zt)dΦt(z
t)Yt(z

t)

]

= E0

[
∞∑

t=0

Mt

M0
Yt(z

t),

]

where we have used
∫

η̂t(y
t, zt)dΦt(z

t) = 1, and where Φt(z
t) is the distribution of household histories yt conditional

on being in aggregate node zt. In the first equality, the integral and sum can be exchanged under regularity

conditions. Aggregate human wealth, which is the sum of all individual households’ human wealth is the present

discounted value of aggregate labor income. The discount factor is the same one that prices tradeable securities,

such as stocks and bonds. This is true despite the fact that human wealth is non-tradeable in this model. This

result follows directly from the household budget constraint.

F Supplementary Material

This section contains additional material that illustrates further details on the theory-side and robustness exercise

on the empirical side.

F.1 LRR Model: ρ → 1

In this appendix we study the LRR model as the inverse intertemporal elasticity of substitution, ρ goes to one.

Holding κc
1 fixed, it is easy to see that

A1 =
1 − ρ

κc
1 − ρx

→ 0 as ρ → 1

and

A2 =
(1 − ρ)(1 − α)

2(κc
1 − ν1)

[
1 +

ϕ2
e

(κc
1 − ρx)2

]
→ 0 as ρ → 1

Note however that κc
1 depends on A0 which in turn depends on ρ. We have solved the system of three non-linear

equations (described in appendix A.2) for a sequence of values of ρ approaching 1 (from above and from below)

and verified that A1 → 0 and A2 → 0. Furthermore, we found that A0 → log
(

1
1−β

)
, so that κc

1 → β−1 and

κc
0 → − log

(
β

1−β

)
+ 1

β
log
(

1
1−β

)
.

As rho goes to one, the consumption risk premium converges to the one in the standard Lucas-Breeden economy:

Et

[
rc
t+1 − yt(1)

]
+ .5Vt[r

c
t+1] → ασ2

t as ρ → 1.

This happens because the other two consumption risk premium components converge to zero. Holding κc
1 fixed,
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this can be seen in the expressions for these two components:

λm,eB = (1 − ρ)(α − ρ)
ϕ2

e

(κc
1 − ρx)2

→ 0 as ρ → 1

λm,wA2 = (1 − ρ)(α − ρ)
(1 − α)2

4(κc
1 − ν1)2

[
1 +

ϕ2
e

(κc
1 − ρx)2

]2
→ 0 as ρ → 1

We have confirmed numerically that the two consumption risk premium components λm,eB and λm,wA2 go to zero

as ρ goes to one (from above or from below), when solving the system of equations. Explained differently the

conditional market price of wc risk in equation (64) goes to zero, while the market price of standard consumption

growth in equation (63) has a well-defined, non-zero limit ασ2
t . So, the only risk with a positive compensation

associated to it that remains when ρ → 1 is the standard high-frequency aggregate consumption growth risk.

The same is not true for the risk premium on the claim to the stream of aggregate dividends. We focus on the case

without cointegration in Appendix A.6.

Et

[
rm
t+1 − yt(1)

]
+ .5Vt[r

m
t+1] → ξm,eσ

2
t + ξm,wσ2

w

where

ξm,e ≡ lim
ρ→1

λm,eβm,e =
(α − 1)(φ − 1)ϕ2

e

(κc
1 − ρx)(κm

1 − ρx)

ξm,w ≡ lim
ρ→1

λm,wβm,w =
(α − 1)2

2(κc
1 − ν1)

(
1 +

ϕ2
e

(κc
1 − ρx)2

)[
(α − 1)2

2(κm
1 − ν1)

(
1 +

ϕ2
e

(κc
1 − ρx)2

)
− .5

Hm

(κm
1 − ν1)

]

As the second expression for Hm in Appendix A.6 shows, Hm does not depend on ρ. Clearly, for φ 6= 1 and

α 6= 1, there are positive equity risk premia (on the dividend claim) over and above the ones that would arise in a

Lucas-Breeden economy.

F.2 LRR Model: Asset Pricing with Cointegration

Dividend Growth Process In the previous specification, consumption and dividends can drift arbitrarily

away from each other. In this section, we follow Bansal, Dittmar, and Lundblad (2005) and modify the dividend

growth process to impose cointegration between consumption and dividends. Log dividends are stochastically

cointegrated with log consumption, and may have a deterministic trend:

dt+1 = ̟ + δ(t + 1) + φct+1 + qt+1

∆dt+1 = δ + φ∆ct+1 + ∆qt+1, (94)

where the second equation is obtained by taking first differences of the first equation. The process {q} denotes the

dividend-consumption ratio, which we specify as a mean-zero, autoregressive process with heteroscedasticity:

qt+1 = ρqqt + ϕqσtut+1 (95)

This is a generalization from the process in Bansal, Dittmar, and Lundblad (2005), who work with a homoscedastic

model (σ2
t = σ̄2, ∀t). Equations (94) and (95) completely specify the dividend growth process in the cointegration

case and replace equation (65) in the no cointegration case. The rest of the technology process is unaffected: the

processes for ∆ct+1, xt+1, and σ2
t+1 remain unchanged from the main text. As a result, the stochastic discount
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factor, and the consumption-wealth ratio process all remain unaltered.

To facilitate comparison with the no-cointegration case, we use the same values for φ and ϕd as in the no cointegration

case. We match the unconditional mean and variance of dividend growth in the cases with and without cointegration.

I.e., we choose the parameter δ to match the mean:

δ = µd − φµ,

with µd = µ, and we choose ϕq to match the variance:

ϕ2
d =

2

1 + ρq

ϕ2
q + φ2 ⇒ ϕq =

√
.5(1 + ρq)(ϕ2

d − φ2).

We keep the parameter φ the same in both cases. Following Bansal and Yaron (2004), we choose µd = µ, φ = 3 and

ϕd = 4.5. The only other parameter is the persistence of the quarterly log dividend-consumption ratio ρq, which

we set equal to 0.83. This follows Lettau and Ludvigson (2005), who document a persistence of .475 at annual

frequency (or .83 at quarterly frequency) for the cointegration vector between log consumption, log stock dividends,

and log labor income.

Proof of Linearity The only difference with the no-cointegration case is that qt becomes an additional state

variable for the price-dividend ratio. That is, we conjecture:

pdm
t = Am

0 + Am
1 xt + Am

2 (σ2
t − σ̄2) + Am

3 qt.

This leads to different expressions for the innovations in the dividend claim return, and the conditional mean and

variance of the dividend claim return:

rm
t+1 − Et

[
rm
t+1

]
= φσtηt+1 + (1 + Am

3 )ϕqσtut+1 + βm,eσtet+1 + βm,wσwwt+1

Et

[
rm
t+1

]
= rm

0 + [φ + Am
1 (ρx − κm

1 )]xt − Am
2 (κm

1 − ν1)
(
σ2

t − σ̄2
)

+ (ρq − 1 − Am
3 (κm

1 − ρq))qt

Vt

[
rm
t+1

]
=

(
(1 + Am

3 )2ϕ2
q + β2

m,e + φ2
)
σ2

t + β2
m,wσ2

w

rm
0 = κm

0 + Am
0 (1 − κm

1 ) + δ + φµc

Finally, the conditional covariance between the log SDF and the log dividend claim return is

Covt

[
mt+1, r

m
t+1

]
= (λm,ηφ − λm,eβm,e)σ2

t − λm,wβm,wσ2
w.

Using the method of undetermined coefficients, we obtain expressions for Am
0 , Am

1 , Am
2 , and Am

3 :

Am
1 =

φ − ρ

κm
1 − ρx

,

Am
2 =

[
(1 − θ)A2(κ

c
1 − ν1) + .5Ĥm

]

κm
1 − ν1

,

Am
3 =

ρq − 1

κm
1 − ρq

,

0 = m0 + κm
0 + (1 − κm

1 )Am
0 + δ + φµc +

1

2
Ĥmσ̄2 +

1

2

(
Am

2 −
α − ρ

1 − ρ
A2

)2

σ2
w
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where

Ĥm = (λm,η + φ)2 + (βm,e − λm,e)
2 + (1 + Am

3 )2ϕ2
q

The expressions for Am
1 and Am

2 are functionally identical to the ones in the no cointegration case, except that

the definition of Ĥm is slightly different from that of Hm. This is a non-linear system in four equations and four

unknowns, which we solve numerically.

Equity Risk premium and CS Decomposition The equity risk premium on the dividend claim

(adjusted for a Jensen term) becomes:

Et

[
re,m
t+1

]
≡ Et

[
rm
t+1 − yt(1)

]
+ .5Vt[r

m
t+1] = (−λm,ηφ + λm,eβm,e) σ2

t + λm,wβm,wσ2
w. (96)

Note that qt does not affect the equity risk premium. Its only driver is the conditional variance of consumption

growth σ2
t − σ̄2.

Expected discounted future equity returns and dividend growth rates are given by:

rm,H
t ≡ Et




∞∑

j=1

(κm
1 )

−j
rm
t+j


 =

rm
0

κm
1 − 1

+
ρ

κm
1 − ρx

xt − Am
2 (σ2

t − σ̄2) (97)

∆dH
t ≡ Et




∞∑

j=1

(κm
1 )

−j
∆dt+j


 =

δ + φµ

κm
1 − 1

+
φ

κm
1 − ρx

xt +
ρq − 1

κm
1 − ρq

qt (98)

The only difference with the no-cointegration case is that expected future dividend growth rates now also depend

on the current dividend-consumption ratio qt. Discount rates remain unchanged. As before,

pdm
t =

κm
0

κm
1 − 1

+ ∆dH
t − rm,H

t ,

which allows us to compute the elements of the variance-decomposition:

V [pdm
t ] = Cov[pdm

t , ∆dH
t ] + Cov[pdm

t ,−rm,H
t ] = V [∆dH

t ] + V [rm,H
t ] − 2Cov[∆dH

t , rm,H
t ].

F.3 EH Model: Asset Pricing with Cointegration

Dividend Growth under Cointegration Just as in the LRR model, we impose cointegration and use

the dividend growth specification

∆dt+1 = δ + φ∆ct+1 + ∆qt+1 (99)

instead of equation (84) in the case without cointegration. The process {q} again denotes the log consumption-

dividend ratio. We specify q as an autoregressive process with homoscedastic innovations that are correlated with

consumption growth innovations η. Relative to the LRR specification, we loose heteroscedasticity, but we gain

correlation between consumption growth innovations and innovations to the dividend-consumption process. Since

we prefer to work with independent innovations, we write:

qt+1 = ρqqt + ϕqσ̄ut+1 + ϕqσ̄χηt+1, (100)

where, as usual, ηt ⊥ ut.
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The parameter choices for δ, φ, and ϕq are the same as in the LRR model. The choice for χ is the same as in the

no-cointegration case.

Computation of Price-Dividend Ratio Under the assumption of cointegration, the dividend growth

process is given by equations (94) and (100). Closely following Appendix A in Wachter (2005), we conjecture that the

price-dividend ratio can be written as the product of a function that only depends on the log surplus-consumption

ratio and another function that only depends on the log dividend-consumption ratio:

P d
nt

Dt

= F d
n (st)e

An+Bnqt

The function that depends on st follows a recursion

F d
n (st) = Et

[
Mt+1F

d
n−1(st+1)e

φµc+Xσ̄ηt+1
]

= βeφµ−αµ+α(1−ρs)(st−s̄)Et

[
e{X−α(1+λt)}σ̄ηt+1F d

n−1(st+1)
]
.

The verification of this conjecture delivers expressions for the constants X , An, and Bn.

Proof. The Euler equation for the period-n strip delivers the following expression for the price-dividend ratio

P d
nt

Dt

= Et

[
Mt+1

P d
n−1,t+1

Dt+1

Dt+1

Dt

]
= Et

[
Mt+1F

d
n−1(st+1)e

An−1+Bn−1qt+1eδ+φ∆ct+1+∆qt+1
]
,

where the second equality substituted in the expression for dividend growth, and the conjecture for the price-

dividend ratio. Next we substitute in for the expressions for consumption growth, the log dividend-consumption

ratio q, and ∆q:

P d
nt

Dt

= eAn−1+δ+[Bn−1ρq+ρq−1]qtEt

[
Mt+1F

d
n−1(st+1)e

(Bn−1+1)ϕqσ̄ut+1e[(Bn−1+1)ϕqχ+φ]σ̄ηt+1+φµc

]
.

Because u is independent of η and standard normally distributed, we have

P d
nt

Dt

= eAn−1+δ+ 1
2
(Bn−1+1)2ϕ2

qσ̄2+[Bn−1ρq+ρq−1]qtEt

[
Mt+1F

d
n−1(st+1)e

[(Bn−1+1)ϕqχ+φ]σ̄ηt+1+φµc

]
.

Recursively define the coefficients An and Bn as

An = An−1 + δ +
1

2
(Bn−1 + 1)2ϕ2

q σ̄
2

Bn = Bn−1ρq + ρq − 1,

starting at A0 = B0 = 0, and define the constant X as X = (Bn−1 + 1)ϕqχ + φ, then we obtain

P d
nt

Dt

= eAn+BnqtEt

[
Mt+1F

d
n−1(st+1)e

Xσ̄ηt+1+φµc
]
,

which verifies the conjecture.

We use numerical integration to compute the sequence {F d(st)}:

F d
n(st) = elog(β)+(φ−α)µc−α(1−ρs)(s̄−st)

∫ +∞

−∞

e[X−α(1+λ(st))]σ̄ηt+1F d
n−1(st+1)g(ηt+1)dηt+1,
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where g(η) is the standard normal pdf, and start from F d
0 (st) = 1.

F.4 EH Model: Improving on the Campbell-Shiller Approximation

We start from the definition of the log total wealth return rc
t+1 = ∆ct+1 + wct+1 − log (ewct − 1). Instead of a first-

order Taylor approximation around the mean log wealth-consumption ratio A0, we do a second-order approximation:

log (ewct − 1) ≈ log
(
eA0 − 1

)
+ κc

1(wct − A0) + .5κc
1(1 − κc

1)(wct − A0)
2

= −κc
0 + [κc

1 − A0κ
c
1(1 − κc

1)] wct + .5κc
1(1 − κc

1)wc2
t

where

κc
1 =

eA0

eA0 − 1
and κc

0 = − log
(
eA0 − 1

)
+ κc

1A0 − .5κc
1(1 − κc

1)A
2
0

This leads to the return approximation

rc
t+1 ≈ ∆ct+1 + wct+1 + κc

0 − κc
1wct +

{
A0κ

c
1(1 − κc

1)wct − .5κc
1(1 − κc

1)wc2
t

}

The term in accolades comes from adding second-order terms.

We conjecture that the log wealth-consumption ratio is linear in the sole state variable (st − s̄),

wct = A0 + A1 (st − s̄) .

As CC, we assume joint conditional normality of consumption growth and the surplus consumption ratio. We verify

this conjecture from the Euler equation.

We slightly modify the preferences:

mt+1 = log β − α∆ct+1 − α∆st+1 + K (st − s̄)
2
.

The term K (st − s̄)
2

is a linearity-inducing term, similar in spirit to Gabaix (2007), whose role will become clear

below. As before, we compute innovations, and the conditional mean and variance of the log SDF:

mt+1 − Et [mt+1] = −α(1 + λt)σ̄ηt+1,

Et [mt+1] = m0 + α(1 − ρs) (st − s̄) + K (st − s̄)
2

Vt [mt+1] = α2 (1 + λt)
2
σ̄2

m0 = log β − αµc

Likewise, we compute innovations in the consumption claim return, and its conditional mean and variance:

rc
t+1 − Et

[
rc
t+1

]
= (1 + A1λt)σ̄ηt+1

Et

[
rc
t+1

]
=

[
κc

0 + A0(1 − κc
1) + .5A2

0κ
c
1(1 − κc

1)
]
+ µc − A1(κ

c
1 − ρs) (st − s̄) − .5κc

1(1 − κc
1)A

2
1 (st − s̄)

2

Vt

[
rc
t+1

]
= (1 + A1λt)

2σ̄2

Again, the only difference with the previous version is the extra term is in Et[r
c
t+1]; its intercept has an additional

term, and it has an additional quadratic term in (st − s̄)2.

The conditional covariance between the log consumption return and the log SDF is given by the conditional expec-
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tation of the product of their innovations

Covt

[
mt+1, r

c
t+1

]
= −α (1 + λt) (1 + A1λt) σ̄2

We assume that the sensitivity function takes the following form

λt =
S̄−1

√
1 − 2(st − s̄) + 1 − α

α − A1

Using the method of undetermined coefficients and the five components of equation (??), we can solve for the

constants A0 and A1:

A1 =
(1 − ρs)α − σ̄2S̄−2

κc
1 − ρs

, (101)

0 = log β + κc
0 + (1 − κc

1)A0 + .5A2
0κ

c
1(1 − κc

1) + (1 − α)µc + .5σ̄2S̄−2 (102)

When we choose the constant K = .5κc
1(1 − κc

1)A
2
1, the terms in (st − s̄)2 cancel. This verifies that our conjecture

was correct. Note that because κc
1 is close to 1, K is close to zero.

Note also that the steady-state risk-free rate is unchanged. Even though yt(1) = −Et[mt+1] − .5Vt[mt+1] will have

the additional term −.5κc
1(1 − κc

1)A
2
1(st − s̄)2, this term is zero when evaluated at st = s̄. That implies that the

third equation of the system of three equations in three unknowns is the same as before.

The solution to this system is virtually identical to that of the linear system. I.e., A0, A1, s̄, smax, and κc
1 are

identical up to the 9th decimal. Only κc
0 is different, as it should be, because of its changed definition. We conclude

that the Campbell-Shiller approximation does an excellent job at approximating the log total wealth return.
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Table 1: Moments of the Wealth-Consumption Ratio

This table displays unconditional moments of the log wealth-consumption ratio wc, its first difference ∆wc, and the log total wealth
return rc. The last but one row reports the time-series average of the conditional consumption risk premium, E[Et[r

c,e
t ]], where rc,e

denotes the expected log return on total wealth in excess of the risk-free rate and corrected for a Jensen term. The first column reports
moments from the long-run risk (LRR) model, simulated at quarterly frequency. Each simulation is ran for 236 quarters and repeated
5,000 times. In each simulation, we discard the first 16 observations. All reported moments are averages of the quarterly statistics
across the 5,000 simulations. The second column reports the same moments for the external habit (EH) model. The last column is for
the data.

Moments LRR Model EH model data

Std[wc] 2.35% 29.33% 17.94%

(s.e.) (.43) (12.75)

AC(1)[wc] .91 .93 .96

(s.e.) (.03) (.03)

AC(4)[wc] .70 .74 .88

(s.e.) (.10) (.11)

Std[∆wc] 0.90% 9.46% 4.57%

(s.e.) (.05) (2.17)

Std[∆c] 1.43% .75% .44%

(s.e.) (.08) (.04)

Corr[∆c,∆wc] -.06 .90 .14

(s.e.) (.06) (.03)

Std[rc] 1.64% 10.26% 4.66%

(s.e.) (.09) (2.21)

Corr[rc, ∆c] .84 .91 .23

(s.e.) (.02) (.03)

E[Et[r
c,e
t ]] 0.40% 2.67% 0.83%

(s.e.) (.01) (1.16)

E[wc] 5.85 3.86 5.21

(s.e.) (.01) (.17)
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Figure 1: Average Term Structure of Interest Rates

The figure plots the observed and model-implied nominal bond yields for bonds of maturities 1-120 quarters. The data are obtained by
using a spline-fitting function through the observed maturities. The third panel plots the model-implied real yields.
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Figure 2: Dynamics of the Nominal Term Structure of Interest Rates

The figure plots the observed and model-implied 1-, 3-, 5-, 7-, 10-, and 20-year nominal bond yields.
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Figure 3: The Stock Market

The figure plots the observed and model-implied price-dividend ratio and expected excess return on the overall stock market.
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Figure 4: Decomposing the 5-Year Nominal Yield

The left panel decomposes the 5-year yield into the real 5-year yield, expected inflation over the next 5-years, and the inflation risk
premium. The right panel decomposes the average nominal bond risk premium into the average real rate risk premium and inflation
risk premium for maturities ranging from 1 to 120 quarters.
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Figure 5: Factor Mimicking Portfolios

The left panel plots the expected excess return on the consumption growth factor mimicking portfolio. The right panel plots the expected
excess return on the labor income growth factor mimicking portfolio
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Figure 6: The Log Wealth-Consumption Ratio in the Data

The figure plots exp{wct − log(4)}, where wct is the quarterly log total wealth to total consumption ratio. The log wealth consumption
ratio is given by wct = Ac

0 + (Ac
1)

′zt. The coefficients Ac
0 and Ac

1 satisfy equations (15)-(16).
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Figure 7: Decomposing the Yield on A Consumption Strip

The figure decomposes the yield on a consumption strip of maturity τ , which goes from 1 to 120 quarters, into a real bond yield minus

deterministic consumption growth and a cash-flow risk component: ỹτ
t = yt(τ) − µc +

(
−

Accr
t

τ
−

Bccr
t

τ
zt

)
= yt(τ) − µc + yccr

t .
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