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Abstract

We consider semiparametric estimation of the memory parameter in a model which in-
cludes as special cases both the long-memory stochastic volatility (LMSV) and fractionally
integrated exponential GARCH (FIEGARCH) models. Under our general model the log-
arithms of the squared returns can be decomposed into the sum of a long-memory signal
and a white noise. We consider periodogram-based estimators which explicitly account for
the noise term in a local Whittle criterion function. We allow the optional inclusion of an
additional term to allow for a correlation between the signal and noise processes, as would
occur in the FIEGARCH model. We also allow for potential nonstationarity in volatility,
by allowing the signal process to have a memory parameter d� � 1=2. We show that the
local Whittle estimator is consistent for d� 2 (0; 1). We also show that a modi�ed version
of the local Whittle estimator is asymptotically normal for d� 2 (0; 3=4), and essentially
recovers the optimal semiparametric rate of convergence for this problem. In particular if
the spectral density of the short memory component of the signal is suÆciently smooth, a
convergence rate of n2=5�Æ for d� 2 (0; 3=4) can be attained, where n is the sample size
and Æ > 0 is arbitrarily small. This represents a strong improvement over the performance
of existing semiparametric estimators of persistence in volatility. We also prove that the
standard Gaussian semiparametric estimator is asymptotically normal if d� = 0. This yields
a test for long memory in volatility.

1 Introduction

There has been considerable recent interest in the semiparametric estimation of long memory
in volatility. Perhaps the most widely used method for this purpose is the estimator (GPH)
of Geweke and Porter-Hudak (1983). The GPH estimator of persistence in volatility is based
on an ordinary linear regression of the log periodogram of a series that serves as a proxy for
volatility, such as absolute returns, squared returns, or log squared returns of a �nancial time
series. The single explanatory variable in the regression is log frequency, for Fourier frequencies
in a neighborhood which degenerates towards zero frequency as the sample size n increases.
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Applications of GPH in the context of volatility have been presented in Andersen and Bollerslev
(1997a,b), Ray and Tsay (2000), and Wright (2000), among others.

To derive theoretical results for semiparametric estimates of long memory in volatility, such
as GPH, it is necessary to have a model for the series which incorporates some form of stochastic
volatility. One particular such model is the long-memory stochastic volatility (LMSV) model of
Harvey (1998) and Breidt, Crato and de Lima (1998). The LMSV model for a weakly stationary
series of returns frtg takes the form rt = exp(Yt=2)et where fetg is a series of i.i.d. shocks with
zero mean, and fYtg is a weakly stationary linear long-memory process, independent of fetg,
with memory parameter d� 2 (0; 1=2). Under the LMSV model, the logarithms of the squared
returns, fXtg = flog r2t g, may be expressed as

Xt = �+ Yt + �t; (1.1)

where � = E [log e2t ] and f�tg = flog e2t � E [log e2t ]g is an i.i.d. process, independent of fYtg.
Another model for long memory in volatility is the fractionally integrated exponential

GARCH (FIEGARCH) model of Bollerslev and Mikkelsen (1996). This model builds on the
exponential GARCH (EGARCH) model of Nelson (1991). The weakly stationary FIEGARCH
model takes the form rt = �tet, where the fetg are i.i.d. with zero mean and a symmetric
distribution, and

log �2t = ! +

1X
j=1

ajg(et�j) (1.2)

with g(x) = �x+(jxj� E jet j), ! > 0, � 2 R,  2 R, and real constants aj such that the process
log �2t has long memory with memory parameter d� 2 (0; 1=2). If � is nonzero, the model allows
for a so-called leverage e�ect, whereby the sign of the current return may have some bearing on
the future volatility. As was the case for the LMSV model, here we can once again express the
log squared returns as in (1.1) with � = E [log e2t ]+!, �t = log e2t �E [log e2t ], and Yt = log �2t �!.
Here, however, the processes fYtg and f�tg are not independent of each other. In view of our goal
of semiparametric estimation of d�, we allow more generality in our speci�cation of the weights
aj than Bollerslev and Mikkelsen (1996), who used weights corresponding to a fractional ARIMA
model. As far as we are aware, no theoretical justi�cation of any semiparametric estimator of
d� has heretofore been presented for the FIEGARCH model.

Assuming that the volatility series fYtg is Gaussian, Deo and Hurvich (2001) derived asymp-
totic theory for the GPH estimator based on log squared returns in the LMSV model. This
provides some justi�cation for the use of GPH for estimating long memory in volatility. Nev-
ertheless, it can also be seen from Theorem 1 of Deo and Hurvich (2001) that the presence of
the noise term f�tg induces a negative bias in the GPH estimator, which in turn limits the
number m of Fourier frequencies which can be used in the estimator while still guaranteeingp
m-consistency and asymptotic normality. This upper bound, m = o[n4d

�=(4d�+1)], becomes
increasingly stringent as d� approaches zero.

Recently, Hurvich and Ray (2001) have proposed a local Whittle estimator of d�, once again
based on log squared returns in the LMSV model. This estimator explicitly accounts for the
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noise term f�tg in (1.1). It was found in the simulation study of Hurvich and Ray (2001) that
the local Whittle estimator can strongly outperform GPH, especially in terms of bias when m
is large.

The local Whittle estimator, de�ned precisely in Section 1.1, may be viewed as a generalized
version of the Gaussian semiparametric estimator (GSE) of K�unsch (1987), which was studied
by Robinson (1995b) under the assumption that the series of observations is linear in Martingale
di�erences. We assume instead that we observe log squared returns fXtg which are the sum of
a long-memory signal and a white noise. Our signal plus noise model, made precise in Section
1.1 below, includes both the LMSV and FIEGARCH models as special cases.

In the local Whittle estimator as originally proposed by Hurvich and Ray (2001), an addi-
tional term was included in the Whittle criterion function to account for the contribution of the
noise term to the low frequency behavior of the spectral density of fXtg. We will generalize this
idea further by allowing the inclusion of one more term, as described below. The estimator is
obtained from numerical optimization of the criterion function.

Many empirical studies have found estimates of the memory parameter in volatility, d�,
which are close to or even greater than 1=2, indicating possible nonstationarity of volatility. For
example, Hurvich and Ray (2001) obtained a value of the local Whittle estimator d̂n = 0:556 for
the log squared returns of a series of Deutsche Mark / US Dollar exchange rates with n = 3485
and m = n0:8. In view of these empirical �ndings, we allow in this paper for the possibility that
d� exceeds 1=2. Speci�cally, we assume here that d� 2 (0; 1).

As mentioned above, in the case of the FIEGARCH model the signal and noise processes will
not be independent of each other. We allow (optionally) the addition of a term to the Whittle
criterion to account for a contemporaneous correlation between the shocks in the signal and
noise processes. This allows the FIEGARCH model to �t within our general framework.

In the context of our general signal plus noise model, allowing all of the generalizations de-
scribed above, we will show that our local Whittle estimator d̂n based on the �rst m Fourier
frequencies is log5(m)-consistent. Using this result together with a modi�cation to semipara-
metric Whittle-type estimators originally suggested for linear long-memory processes by An-
drews and Sun (2001), we will establish the

p
m-consistency and asymptotic normality of a

correspondingly-modi�ed local Whittle estimator, d̂�n, for d
� 2 (0; 3=4).

As long as the spectral density of the volatility (signal) process is suÆciently regular, our
asymptotic results are free of upper restrictions on m arising from the presence of the noise term.
In particular, if the spectral density of the short memory component of the signal is C2, then
we obtain asymptotic normality of

p
m(d̂�n � d�) if m = [n� ] with 0 < � < 4=5. This represents

a strong improvement over the GPH estimator of persistence in volatility.

Since we use the Whittle likelihood function we are able to avoid the assumption that the
signal is Gaussian. This assumption was required by Deo and Hurvich (2001), but many prac-
tioners working with stochastic volatility models �nd the assumption to be overly restrictive.

The remainder of this paper is organized as follows. In Section 1.1, we de�ne the local
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Whittle estimator d̂n. Section 2 presents a theorem on the log5(m) consistency of d̂n. Section
3 gives a central limit theorem for the modi�ed estimator, d̂�n. The estimates of the parameters
(d�; ��) converge at di�erent rates, and in the case of the estimates of �� the rates may depend
on d�. Fortunately, however, the limiting covariance matrix of a suitably normalized vector of
parameter estimates does not depend on ��. We present an expression, in terms of d�, for the
variance of the asymptotic distribution of

p
m(d̂�n � d�). This expression takes a simple form

when the signal and noise processes are known to be uncorrelated with each other. In Section
3.1, we prove that the standard GSE, without any of the additional terms considered in our
local Whittle estimator, is asymptotically normal if d� = 0. This yields a test for long memory
in volatility.

1.1 The Local Whittle Estimator

Let X be a process with spectral density fX that can be expressed as

fX(x) = j1� eixj�2d�f�X(x);

d� 2 (0; 1=2), where f�X is a positive function, which is moreover smooth in a neighborhood of
the origin. The GSE estimator of d� consists in locally �tting a parametric model for f�X by
minimizing the Whittle contrast function. Originally, the parametric model �tted replaces f�X
by a constant. This method yields a consistent and asymptotically normal estimator of d�, under
mild assumptions both on f�X and the process X. Its rate of convergence is also known to be
optimal under certain assumptions. In some situations however, this parameterization might be
ineÆcient. An example is the situation of a long-memory process observed in an additive noise,
in which case the rate of convergence of the GSE depends on d� and is not optimal. In order to
improve this rate of convergence, one can try to �t a more complex parametric model. Instead
of replacing f�X by a constant in a neighborhood of 0, it is replaced by G(1 + h(d; �; x)), where
(d; �) belongs to the set of admissible parameters Dn ��n which might depend on the sample
size n. To be more precise, we introduce some notation. The discrete Fourier transform and
the periodogram ordinates of any process U evaluated at the Fourier frequencies xj = 2j�=n,
j = 1; : : : ; n, are respectively denoted by

dU;j = (2�n)�1=2
nX
t=1

Ute
�itxj ; and IU;j = jdU;j j2:

The local Whittle contrast function is de�ned as

Wm(d;G; �) =
mX
k=1

(
log
�
Gx�2d

k (1 + h(d; �; xk)
�
+

IX;k

Gx�2d
k (1 + h(d; �; xk))

)
(1.3)

where m < n=2 is a bandwidth parameter (the dependence on n is implicit). Concentrating G
out of Wm yields the pro�le likelihood

Ĵm(d; �) = log

 
1

m

mX
k=1

x2dk IX;k

1 + h(d; �; xk)

!
+m�1

mX
k=1

logfx�2d
k (1 + h(d; �; xk))g: (1.4)
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The local Whittle estimates of d� and �� are any minimand of the empirical contrast function
Ĵm over a compact set:

(d̂n; �̂n) = arg min
(d;�)2Dn��n

Ĵm(d; �):

We generalize the model (1.1) to a signal plus noise situation, where the signal process Y exhibits
long memory with memory parameter dY 2 (�1=2; 1=2), but the observed process X is either

Xt = �+ Yt + �t; (1.5)

or Xt = �+
tX

s=1

Ys + �t; (1.6)

according to whether X is stationary or nonstationary, where (�t)t2Z is a zero mean white
noise with variance �2� . We assume moreover that Y admits an in�nite order moving average
representation with respect to a zero mean, unit variance white noise Z:

Yt =
X
j2Z

ajZt�j ; (1.7)

with
P

j2Za
2
j < 1, and for each t, �t is independent of fZs; s 6= tg. We lose no generality in

assuming that Y has zero mean, since the estimators considered in this paper are all functions
of the periodogram at nonzero Fourier frequencies. In the nonstationary case, the assumption
that Y has mean zero ensures that X is free of linear trends.

De�ne a(x) =
P

j2Zaje
ijx. Having fractional di�erentiation in mind, we assume that a can

be expressed for x > 0 as
a(x) = (1� eix)�dY a�(x);

with dY 2 (�1=2; 1=2) and for some function a�, smooth in a neighborhood of 0. The spectral
density of the process Y is then fY = jaj2=(2�), and it can be expressed as

fY (x) = j1� eixj�2dY f�Y (x); (1.8)

with f�Y = ja�j2=(2�). De�ne Ut =
Pt

s=1 Ys and fU(x) = j1 � eixj�2fY (x). The function fU is
referred to as a pseudo spectral density of U . See, e.g., Solo (1992), Hurvich and Ray (1995),
Velasco (1999).

We do not rule out the possibility that for each t, Zt and �t are correlated. More precisely
we de�ne

�� = E [�tZt]=�� ; (1.9)

the correlation of Z and � and we assume that it is constant. One such example is the FIE-
GARCH model with standard Normal multiplying shocks, for which �t = log(e2t ) � E [log(e2t )],
Zt = �et + (jetj �

p
2=�), and (et)t2Z is i.i.d. N (0; 1). Since we assume E [Z2

t ] = 1, � and 
are linked by the relation �2 + 2(1� 2=�) = 1. In that case, �� = cov(je0j; log(e20))=�� , where
�2� = �2=2.
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In general, the spectral density or pseudo spectral density of the process X de�ned in (1.5)
or (1.6) is then

fX(x) =

(
fY (x) +

2����
2� Re(a(x)) +

�2�
2� ; (stationary case),

fU(x) +
2����
2� Re((1 � eix)�1a(x)) +

�2�
2� ; (non stationary case).

(1.10)

In both cases, fX admits the following expansion at 0:

fX(x) � x�2d�f�Y (0) + Re
�
(1� eix)�d

�
� 2 ����pf�Y (0)p

2�
+
�2�
2�

;

with d� = dY in the stationary case and d� = dY + 1 in the non stationary case.

In order to guarantee that the returns are a Martingale di�erence sequence, it is helpful to
assume that aj = 0 (j � 0) in the case where �� is assumed to be nonzero. We do not make
such an assumption here, in order to consider the problem in its fullest generality.

The local Whittle estimator, including a term accounting for �� is obtained by taking Dn =
[�n; 1], where �n is a sequence that tends to zero as n tends to in�nity and � = [�2T; 2T ]� [0; T 2]
and

h(d; �; x) = �1x
2dRe

�
(1� eix)�d

�
+ �2x

2d: (1.11)

The \true values" of the parameters are then

d� = dY (stationary case); d� = dY + 1 (non stationary case)

and �� = (�1; �2) with ��1 =
2����p
2�f�Y (0)

and ��2 =
�2�

2�f�Y (0)
:

Note that d� 2 (0; 1) implies that dY 2 (0; 1=2) in the stationary case and dY 2 (�1=2; 0) in the
non stationary case. In the case where �� is known to be zero, we would use simply

h(d; �; x) = �x2d; (1.12)

where the \true" values of the parameters are d�, �� = ��2 as given above, and � = [0; T ].

2 Consistency of the local Whittle estimator

Our results will be derived under regularity conditions on the function a(x) =
P

j2Zaje
ijx. We

introduce the following functional class:

De�nition 1. For � 2 (0; �], � > 0 and 0 < � <1, F(�; �; �) is the set of functions g de�ned
on [��; �] satisfying R �

�� jg(x)jdx � � and for all x 2 [��; �],

jg(x)j � �jxj� : (2.1)
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We now introduce our assumptions.

(A1) Z = (Zt)t2Z is a zero mean unit variance white noise such that

1

n

nX
t=1

(Z2
t � 1)

P�! 0 (2.2)

and for any (s; t; u; v) 2 N
4 such that s < t and u < v, ZuZvZsZt is integrable and

E [ZuZvZsZt] =

�
1 if u = s and t = v
0 otherwise.

(2.3)

Remark 2.1. This assumption is implied by assumption A3 of Robinson (1995b) which states
that Z is a martingale di�erence sequence satisfying moreover E [Z2

t j�(Zs; s < t)] = 1 a.s. (which
implies (2.3)) and strongly uniformly integrable (which implies (2.2)).

(A2) There exists a real number & > 0 such that

1

n

nX
t=1

(Z2
t � 1) = OP (n

�&);

For reference, we recall the assumption on �.

(A3) � = (�t)t2Z is a white noise with variance �� such that for each t, �t is independent of
fZs; s 6= tg and for each t, we de�ne �� = E [�tZt]=��.

(A4) Y admits the linear representation (1.7) and the function a(x) =
P

j2Zaje
ijx can be

expressed for x > 0 as a(x) = (1� eix)�dY a�(x) (x > 0), where
�
a�(0)�1a� � 1

� 2 F(�; �; �) for
some � 2 (0; �], � 2 (0; 2] and � > 0.

Theorem 2.1. Assume (A1), (A3) and (A4). Let m be a non decreasing sequence such that

lim
n!1

�
m�1 +m=n

�
= 0: (2.4)

De�ne �n = (log(n=m))�1=2. Then d̂n is a consistent estimate of d�. If moreover (A2) holds
and the sequence m satis�es

lim
n!1

log2s(m)e�
p

log(n=m) = 0; (2.5)

for some positive integer s, then d̂n � d� = oP (log
�s(m)).

Remark 2.2. It must be noted that we only prove consistency for d̂n but not of �̂n. In order to
prove asymptotic normality of d̂n, we will need to modify the de�nition of the estimator of d�.

Remark 2.3. Assumption (2.5) holds as long as m � nÆ for some Æ < 1.
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Proof of Theorem 2.1. De�ne D1 = (�1; d��1=2+�)\Dn and D2 = [d��1=2+�;+1)\Dn, for
some small positive real � to be set later. As originally done in Robinson (1995b), we separately
prove that limn!1 P(d̂n 2 D1) = 0 and that (d̂n � d�)1D2(d̂n) tend to zero in probability. Note
that D1 is empty if it is assumed that d� 2 (0; 1=2) and � is chosen small enough. In case D1

is not empty, the proof of limn!1 P(d̂n 2 D1) = 0 is a straightforward adaptation of the proof
of Robinson (1995b, pp. 1638-1639). For the sake of completeness, we provide a proof in the
Appendix. We now prove that limn!1 P(d̂n ! d�; d̂n 2 D2) = 1. Denote

�k(d; �) =
1 + h(d�; ��; xk)

1 + h(d; �; xk)
; Km(s) = log

 
1

m

mX
k=1

k2s

!
� 2s

m

mX
k=1

log(k);

Jm(d; �) = log

 
1

m

mX
k=1

x2d�2d�

k �k(d; �)

!
� 1

m

mX
k=1

log
�
x�2d
k f1 + h(d; �; xk)g

�
;

Rm(d; �) = Jm(d; �)� Jm(d
�; ��)�Km(d� d�) and

En(d; �) =

Pm
k=1 k

2d�2d��k(d; �)fx2d�k IX;k=(f
�
X(0)(1 + h(d�; ��; xk))� 1gPm

j=1 j
2d�2d��j(d; �)

:

With this notation, we get

Ĵm(d; �) = log(1 +En(d; �)) + Jm(d; �) + log(f�X(0)): (2.6)

Due to the strict concavity of the log function, (d�; ��) minimizes Jm and, by de�nition, (d̂n; �̂n)
minimizes Ĵm. Hence we have

0 � Jm(d̂n; �̂n)� Jm(d
�; ��)

= Jm(d̂n; �̂n)� Ĵm(d̂n; �̂n) + Ĵm(d̂n; �̂n)� Ĵm(d
�; ��) + Ĵm(d

�; ��)� Jm(d
�; ��)

= log(1 +En(d
�; ��))� log(1 +En(d̂n; �̂n)) + Ĵm(d̂n; �̂n)� Ĵm(d

�; ��)

� log(1 +En(d
�; ��))� log(1 +En(d̂n; �̂n))

� 2 sup
(d;�)2D2��

j log(1 +En(d; �))j:

Proposition 2.1 below states that En converges in probability to zero, uniformly with respect
to (d; �) 2 D2 � �. Thus we obtain that Jm(d̂n; �̂n) � Jm(d

�; ��) converges in probability
to 0. Note now that Km converges uniformly on compact sets of (�1;+1) to the function
K(s) = 2s � log(1 + 2s). Hence it can be bounded below uniformly with respect to m: there
exists a constant c > 0 which depends only on D such that for all m � 2 and d 2 D,

Km(d� d�) � c(d� d�)2: (2.7)

Hence
0 � c(d̂n � d�)2 � Km(d̂n � d�) � Jm(d̂n; �̂n)� Jm(d

�; ��)�Rm(d̂n; �̂n):

To conclude the proof of the consistency of d̂n, we need only prove that Rm(d; �) converges to
zero in probability uniformly with respect to (d; �) 2 D � �). By de�nition of h and Dn, we
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�rst obtain a bound for �k(d; �)� 1:

sup
d2Dn;�2�

j�k(d; �)� 1j � Ce�
p

log(n=m):

To bound Rm, note that it can be expressed as

Rm(d; �) = log

 Pm
k=1 k

2d�2d��k(d; �)Pm
j=1 j

2d�2d�

!
� 1

m

mX
k=1

log (�k(d; �)) :

Hence we obtain
sup

(d;�)2Dn��
jRm(d; �)j � Ce�

p
log(n=m): (2.8)

We now prove the second part of Theorem 2.1. For any positive real A and any positive
integer m, de�ne DA;m = fd 2 D : 2 log5(m)jd� d�j > Ag. We want to prove that

lim sup
n!1

P(d̂n 2 DA;m) = 0:

Since for large enough m, D1 � DA;m, and since we already know that limP(d̂n 2 D1) = 0, we
can restrict our attention to ~DA;m = DA;m \ D2.

Since (d̂n; �̂n) minimizes Ĵm, it holds that

P(d̂n 2 ~DA;m) � P( inf
�2�

inf
d2 ~DA;m;s

fĴm(d; �)� Ĵm(d
�; ��)g � 0)

= P( inf
�2�

inf
d2 ~DA;m

fJm(d; �)� Jm(d
�; ��) + log(1 +En(d; �))� log(1 +En(d

�; ��))g � 0)

� P( inf
�2�

inf
d2 ~DA;m

fKm(d� d�) +Rm(d; �) + log(1 +En(d; �))� log(1 +En(d
�; ��))g � 0):

Since x! Km(x) is strictly convex, applying (2.7), for large enough m, yields

inf
d2DA;m

Km(2(d � d�)) = Km(A log�s(m)) ^Km(�A log�s(m)) � cA2 log�10(m):

Hence

P(d̂n 2 ~DA;m) � P(sup
�2�

sup
d2 ~DA;m

(j log(1 +En(d; �))j + jRm(d; �)j) � cA2 log�10(m)):

The proof of Theorem 2.1 is concluded by applying (2.5), (2.8) and Proposition 2.1.

Proposition 2.1. Assume (A1), (A3) and (A4). Then sup(d;�)2D2�� jEn(d; �)j = oP (1). If
moreover (A2) holds, then, there exists a positive real number � such that

sup
(d;�)2D2��

jEn(d; �)j = OP

�
(m=n)� +m��

�
;

9



Proof. Denote

k(d; �) =
�k(d; �)k

2d�2d�Pm
j=1 �j(d; �)j

2d�2d�
;

rk =
IX;k

x�2d�

k f�Y (0)(1 + h(d�; ��; xk))
� 2�IZ;k:

Then

En(d; �) =

mX
k=1

k(d; �)rk +

mX
k=1

k(d; �)(2�IZ;k � 1) =: E1;n(d; �) +E2;n(d; �):

Since h is uniformly bounded on (0; 1) ��� [0; 2�m=n], we obtain

jE1;n(d; �)j � C
Pm

k=1 k
2d�2d� jrkjPm

j=1 j
2d�2d�

:

Applying (4.21) in Theorem 4.1, we obtain, for some  > 0 and C > 0:

E [jrk j] � C(k� + (k=n)):

If d 2 D2, there exists a constant c(�) such that

mX
j=1

j2d�2d� � c(�)m2d�2d�+1:

Without loss of generality, we assume that 2� < . Thus, we obtain:

E

"
sup

(d;�)2D2��
jE1;n(d; �)j

#
� c

m�1X
k=1

sup
d2D2

jk2d�2d� � (k + 1)2d�2d� j
m2d�2d�+1

kX
j=1

E [jrj j] + cm�1
mX
j=1

E [jrj j]

� c
m�1X
k=1

sup
d2D2

k2d�2d��1

m2d�2d�+1

kX
j=1

E [jrj j] + cm�1
mX
j=1

E [jrj j]

� c

m�1X
k=1

(k=m)2�k�2
kX

j=1

(j� + (j=n)) + cm�1
mX
j=1

(j� + (j=n))

� cm�2�
m�1X
k=1

k�2+2�
�
k1� + n�k+1

�
+ cm� + c(m=n)

� c
�
m�2� + (m=n)2�

�
:

Write now 2�IZ;k � 1 = n�1
Pn

t=1(Z
2
t � 1) + 2n�1

P
1�s<t�n cosf(s� t)xkgZsZt and

E2;n(d; �) = n�1
nX
t=1

(Z2
t � 1) + 2n�1

m�1X
k=1

k(d; �)
X

1�s<t�n

cosf(s� t)xkgZsZt

=: E2;1;n +E2;2;n(d; �):
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Under assumption (A1), E2;1;n = oP (1) and under (A2), E2;1;n = Op(n
�&) = oP (m

�&). Con-
sider now E2;2;n. Applying Robinson (1995b) Eq. (3.20), we have

E

2
4
0
@n�1

X
1�s<t�n

kX
j=1

cosf(s� t)xjgZsZt

1
A

23
5 � k:

Hence, applying again summation by parts, we get

E [ sup
d2D2��

jE2;2;nj] � c

m�1X
k=1

sup
(d;�)2D2��

��(k + 1)2d�2d��k+1(d; �)� k2d�2d��k(d; �)
��

m2d�2d�+1

p
k

� c

m�1X
k=1

sup
d2D2�

k2d�2d��1

m2d�2d�+1

p
k � cm�2�:

Hence Proposition 2.1 holds with � = & ^ (2�).

3 Asymptotic normality of the modi�ed local Whittle estimator

The usual method for proving asymptotic normality of a consistent minimum contrast estimate
is to make a second order Taylor expansion of the contrast function and to say that the gradient
of the contrast function evaluated at the estimates vanishes, since it is consistent and the true
value is assumed to be an interior point of the parameter set. In the present context, we have
only proved the consistency of d̂n, but not that of �̂n. Hence we cannot use this argument.
Instead we will modify the de�nition of the estimator, following Andrews and Sun (2001).

De�ne (d̂�n; �̂
�
n) as a solution in Dn�� of rĴm(d; �) = 0, (where r denotes the di�erentiation

with respect to d and �), if there exists one, and if there are multiple solutions, choose the one
closest (in the sense of any norm) to (d̂n; �̂n). If there are no solutions, set (d̂�n; �̂

�
n) = (d̂n; �̂n).

The �rst step in establishing the consistency and asymptotic normality of (d̂�n; �̂
�
n) remains

as usual to study the behavior of the gradient and Hessian of the contrast function Ĵm. For this
we must strengthen the assumptions on the noise sequences Z and �.

(A5) (Zt)t2Z is a martingale di�erence sequence such that for all t, E [Z4
t ] := �4 < 1 and

E [Z2
t j Zs; s < t] = 1 a.s. (i.e. Z2

t � 1 is a square integrable martingale sequence).

Remark 3.1. (A5) implies (A1) and (A2) with & = 1=2.

(A6) (�t)t2N is a zero mean white noise such that supt2N E [�
4
t ] <1, a.s. and for all (s; t; u; v) 2

N
4 such that s < t and u < v,

E [�u�v�s�t] =

�
�2� if u = s and t = v

0 otherwise.
(3.1)

cum(Zt1 ; Zt2 ; �t3 ; �t4) =

�
� if t1 = t2 = t3 = t4;
0 otherwise

(3.2)
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Denote Ĵ�m = Ĵm(d
�; ��) and Hn(d; �) =

R 1
0 r2Ĵm(d

� + s(d� d�); �� + s(� � ��))ds.

Proposition 3.1. Assume (A3), (A4), (A5) and (A6). If d� 2 (0; 3=4), � > 2d� and m is a
non decreasing sequence of integers such that

lim
n!1

�
m�4d��1n4d

�

+ n�2�m2�+1 log2(m)
�
= 0; (3.3)

then mD�
n
�1rĴ�m converges to the Gaussian distribution with zero mean and variance �� with

(i) D�
n = m1=2Diag

�
1; (m=n)2d

��
and

�� =

0
@ 4 �4d�(2�)2d

�

(1+2d�)2

�4d�(2�)2d
�

(1+2d�)2
4d�2(2�)4d

�

(1+2d�)2(1+4d�)

1
A

if �� is known to be 0;
(ii) D�

n = m1=2Diag
�
1; (m=n)d

�
; (m=n)2d

��
and

�� =

0
BBB@

4 �2d�(2�)d
�

(1+d�)2
�4d�(2�)2d

�

(1+2d�)2

�2d�(2�)d
�

(1+d�)2
2d�2(2�)2d

�

(1+d�)2(1+2d�)
2d�2(2�)3d

�

(1+d�)(1+2d�)(1+3d�)

�4d�(2�)2d
�

(1+2d�)2
2d�2(2�)3d

�

(1+d�)(1+2d�)(1+3d�)
4d�2(2�)4d

�

(1+2d�)2(1+4d�)

1
CCCA

if �� is not known.

Proposition 3.2. Assume (A3), (A4) and (A5). If d� 2 (0; 3=4), � > 2d� and m is a
non decreasing sequence of integers that satis�es (3.3), then mD�1

n
�
Hn(d; �)D

�1
n

�
converges in

probability to ��, uniformly with respect to (d; �) 2 fd; jd � d�j � C log�5(m)g � �, with D�
n

and �� de�ned as in Proposition 3.1.

Remark 3.2. The �rst term in (3.3) imposes a lower bound on the allowable value of m, requiring
that m tend to 1 faster than n4d

�=(4d�+1). This lower bound is necessary to ensure that all the
elements of the matrix D�

n tend to in�nity. This condition can be ful�lled since by assumption
� > 2d�. In the case � � 2d�, the standard GSE will achieve the optimal rate of convergence and
the present construction is then useless. Note that � > 2d� holds for � = 2, which is the most
commonly accepted value for �. It is interesting that Deo and Hurvich (2001), assuming � = 2,
found that for m1=2(d̂GPH � d�) to be asymptotically normal with mean zero, where d̂GPH is
the GPH estimator, the bandwidth m must tend to 1 at a rate slower than n4d

�=(4d�+1).

Remark 3.3. Note that Proposition 3.2 holds under a weaker assumption on the noise � than
Proposition 3.1: it is only assumed that the second moment of � is �nite.

Remark 3.4. The assumption a�(0)�1a��1 2 F(�; �; �) is used to validate the Bartlett approx-
imation. In the related literature (Robinson (1995b), Velasco (1999), Andrews and Sun (2001)),
it is usually assumed moreoover that a(x) = x�da�(x) is di�erentiable in a neighborhood of zero,
except at zero, with xa0(x) bounded. Hence our assumptions are weaker than those of the above
references.
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Remark 3.5. An important feature is that �� does not depend on the true value of the parameter
��. This was already noticed by Andrews and Sun (2001) in the context of local polynomial
approximation.

Let now ( ~dn; ~�n) be a sequence of solutions of rĴm(d; �) = 0. A �rst order Taylor expansion
yields

0 = D�
n
�1rĴm( ~dn; ~�n) = D�

n
�1rĴm(d�; ��) +D�

n
�1Hn( ~dn; ~�n)D

�
n
�1D�

n

�
( ~dn; ~�n)� (d�; ��)

�
:

As a consequence of Propositions 3.1 and 3.2, we trivially obtain the following corollary.

Corollary 3.1. Under the assumptions of Proposition 3.1, if ( ~dn; ~�n) is a sequence of solutions of

rĴm(d; �) = 0 such that ~dn is log5(m) consistent, then D�
n

�
( ~dn; ~�n)� (d�; ��)

�
is asymptotically

Gaussian with zero mean and covariance matrix ���1.

We give explicit expressions of ���1. If �� is assumed to be zero, we obtain

���1 =
(1 + 2d�)2

16d�2

 
1 1+4d�

d�(2�)2d�

1+4d�

d�(2�)2d�
(1+2d�)2(1+4d�)

d�2(2�)4d�

!
:

If �� is not assumed to be zero, we obtain

�
�1

=
1

16d�4

0
BBB@

�1 0 0

0
2(1+d�)

d�(2�)d
�

0

0 0 1+2d�

2d�(2�)2d
�

1
CCCA

�

0
@

(1 + d�)2(1 + 2d�)2 �2(1 + d�)(1 + 2d�)2(1 + 3d�) (1 + d�)(1 + 2d�)(1 + 3d�)(1 + 4d�)

�2(1 + d�)(1 + 2d�)2(1 + 3d�) 4(1 + d�)2(1 + 2d�)(1 + 3d�)2 �2(1 + d�)(1 + 2d�)2(1 + 3d�)(1 + 4d�)

(1 + d�)(1 + 2d�)(1 + 3d�)(1 + 4d�) �2(1 + d�)(1 + 2d�)2(1 + 3d�)(1 + 4d�) (1 + 2d�)2(1 + 3d�)2(1 + 4d�)

1
A

�

0
BBB@

�1 0 0

0
2(1+d�)

d�(2�)d
�

0

0 0 1+2d�

2d�(2�)2d
�

1
CCCA :

We are now in a position to prove that rĴm(d̂�n; �̂�n) = 0, and d̂�n is log5(m) consistent.

Proposition 3.3. Under the assumptions of Proposition 3.1, rĴm(d̂�n; �̂�n) = 0 with probability
tending to one and d̂�n is log5(m) consistent.

Proof. Applying Lemma 1 of Andrews and Sun (2001), (with, in their notation, Ln = mĴm,
Bn = D�

n and Kn = m1=2 log5(m)) we know that there exists a sequence ( ~dn; ~�n) such that

P

�
rĴm( ~dn; ~�n) = 0

�
! 1 and ~dn is log5(m) consistent. This implies that (d̂�n; �̂

�
n) also shares

these properties. Indeed, by de�nition, since there exists a solution of rĴm(d; �) = 0, with
probability tending to one, rĴm(d̂�n; �̂�n) = 0. Since we know from section 2 that d̂n is log5(m)
consistent, and since by de�nition (d̂�n; �̂

�
n) is the closest solution to (d̂n; �̂n) of rĴm(d; �) = 0,

then d̂�n must also be log5(m) consistent.

Proposition 3.3 and Corollary 3.1 yield the asymptotic normality of d̂�n.
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Theorem 3.1. Assume (A3), (A4), (A5) and (A6). If d� 2 (0; 3=4), � > 2d� and m is
a non decreasing sequence of integers that satis�es (3.3), then m1=2(d̂�n � d�) is asymptotically
Gaussian with zero mean and variance

(1 + d�)2(1 + 2d�)2

16d�4
:

If �� is known to be 0, then m1=2(d̂�n�d�) is asymptotically Gaussian with zero mean and variance
(1 + 2d�)2=(16d�2).

Remark 3.6. The rate of convergence o(n2�=(2�+1)) of the standard GSE in the case of no noise
has been recovered. This rate of convergence is obviously optimal since the case of no noise is
included in the noisy case. The asymptotic variance of d̂n dramatically increases when d� is
small. Hence the gain in the rate of convergence with respect to the standard GSE is balanced
by the loss in the asymptotic variance. Nevertheless, the simulations in Hurvich and Ray (2001)
indicate that it is better to estimate the variance of the noise.

Remark 3.7. If d = 3=4, then it can be shown that m1=2(d̂�n � d) converges to a non Gaussian
distribution and if d 2 (3=4; 1) then the rate of convergence and the asymptotic distribution of
d̂�n � d both depend on d�. See Velasco (1999) in the standard case.

3.1 Asymptotic normality of the standard GSE when d
� = 0

The modi�ed local Whittle estimator d̂�n is consistent in the case d� = 0, but it would be diÆcult
to obtain an asymptotic distribution for it. Instead, it is possible to test the hypothesis d� = 0
using the standard GSE. By standard GSE, we mean

d̂stn = arg min
d2[��;�]

(
log

 
mX
k=1

k2dIX;k

!
� 2d

m

mX
k=1

log(k)

)
;

for some arbitrary � 2 (0; 1=2). The theory of Robinson (1995b) cannot be directly applied in the
present context to prove consistency and asymptotic normality of d̂stn , since the processX = Y +�
is not necessarily linear with respect to a martingale di�erence sequence. Nevertheless, if Z and �
satisfy assumptions (A3) and (A5), we can de�ne a martingale di�erence sequence �, which also
satis�es (A5). Note that in the present context, the spectral density of X has the same degree of
smoothness at zero as fY . More precisely, we have f�X(0) = f�Y (0)+2

p
f�Y (0)=(2�)����+�

2
�=(2�).

De�ne then:

�k =

p
2�f�Y (0)Zk + �kp

2�f�X(0)
:

X does not admit a linear representation with respect to �, but we can adapt Lemmas 4.1, 4.2
and 4.3 to the present context.

Proposition 3.4. Assume (A3), (A4), (A5), (A6) and

cum(Zu; Zv ; Zs; �t) =  if s = t = u = v and 0 otherwise: (3.4)
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Assume moreover that � is a martinglale di�erence sequence. If m is a non decreasing sequence
of integers that satis�es limn!1(m

�1+n�2�m2�+1 log2(m)) = 0, then m1=2d̂stn is asymptotically
Gaussian with zero mean and variance 1/4.

This result yields a test for long memory in volatility based on the standard GSE estimator.
Another test for long memory in volatility, based on the ordinary GPH estimator, was justi�ed
by Hurvich and Soulier (2000). Since the ratio of the asymptotic variances of the GPH and GSE
estimators is �2=6, the test based on the GSE estimator should have higher local power than
the one based on GPH.

3.2 Proof of Propositions 3.1, 3.2 and 3.4

Proof of Proposition 3.1. De�ne

Ek = x2d
�

k IX;k

f�X(0)(1 + h(d�; ��; xk))

Sm(d; �) =
1

m

mX
k=1

�k(d; �)k
2d�2d�Ek;

Um(d; �) = mSm(d; �)rĴm(d; �);

Æ0;k(d; �) = 2 log(k)� 2m�1
mX
j=1

log(j)� @dh(d; �; xk)

1 + h(d; �; xk)
+m�1

mX
j=1

@dh(d; �; xj)

1 + h(d; �; xj)
;

Æi;k(d; �) =
@�ih(d; �; xk)

1 + h(d; �; xk)
�m�1

mX
`=1

@�ih(d; �; x`)

1 + h(d; �; x`)
; i = 1; 2;

Nk(d; �) = (Æ0;k; Æ1;k; Æ2;k);

N�
k = Nk(d

�; ��); S�m = Sm(d
�; ��); U�m = Um(d

�; ��):

With these notations, mD�
n
�1rĴm(d�; ��) = (S�m)

�1D�
n
�1U�m and U�m =

Pm
k=1N

�
kEk. We will

prove that S�m tends to 1 in probability and that D�
n
�1U�m is asymptotically Gaussian with

covariance matrix ��.

The proof of the asymptotic normality of D�1
n U�m is classically based on the so-called Wold

device. We must prove that for any x 2 R
3 , xTD�

n
�1U�m converges in distribution to a Gaussian

random variable with mean zero and variance xT��x. De�ne

t2n(x) =
mX
k=1

(xTD�
n
�1N�

k )
2; cn;k(x) = t�1

n (x)xTD�
n
�1N�

k ; and Tn =
mX
k=1

cn;k(x)Ek:

Using this notation, we have xTD�
n
�1U�m = tn(x)Tn and it suÆces to prove that Tn is asymptot-

ically Gaussian with zero mean and unit variance and that limn!1 tn(x)
2 = xT��x. This last

property is obtained by elementary calculus (approximating sums by integrals) and its proof is
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omitted. To prove the asymptotic normality of Tn, observe that

max
1�k�m

jcn;k(x)j = O(log(m)m�1=2) and jcn;k(x)� cn;k+1(x)j = O(k�1m�1=2):

Hence (4.3) holds and we can apply Theorem 4.1.

We conclude the proof by checking that S�m tends to 1 in probability. In view of the proof
of Proposition 3.2, we will actually prove that Sm(d; �) converges to 1 in probability uniformly
with respect to (d; �) 2 Dm �� where Dm := fd; jd � d�j � C log�s(m)g. Using the notations
of section 2, we can write

Sm(d; �) =
1

m

mX
j=1

�j(d; �)j
2d�2d� f1 +En(d; �)g:

By proposition 2.1, En(d; �) converges in probability to 0 uniformly with respect to (d; �) 2
Dm��g. Moreover, on this set, it is easily seen that 1

m

Pm
j=1 �j(d; �)j

2d�2d� converges uniformly
to 1, and this concludes the proof.

Proof of Proposition 3.2. We must prove that mD�
n
�1r2Ĵm(d; �)D

�
n
�1 converges to �� uni-

formly with respect to (d; �) 2 Dm ��. Using the notations introduced above, we have

mrĴm(d; �) = S�1
m

mX
k=1

Nk(d; �)�k(d; �)k
2d�2d�Ek:

Hence

mr2Ĵm(d; �) = S�1
m (d; �)

mX
k=1

Nk(d; �)fr(�k(d; �)k2d�2d�)gT Ek

+ S�1
m (d; �)

mX
k=1

rNk(d; �)�k(d; �)k
2d�2d�Ek

� S�2
m (d; �)

mX
k=1

Nk(d; �)�k(d; �)k
2d�2d�Ek(rSm(d; �))T

=: S�1
m (d; �)M1;n(d; �) + S�1

m (d; �)M2;n(d; �) + S�2
m (d; �)M3;n(d; �):

Since we already know that S�1
m (d; �) converges uniformly to 1, we only need to prove that

D�
n
�1M1;nD

�
n
�1 converges in probability to �� uniformly with respect to (d; �) 2 Dm � � and

that D�
n
�1M2;nD

�
n
�1 and D�

n
�1M3;nD

�
n
�1 converge to 0. We will prove only the �rst fact, the

other being routine applications of the same techniques.

DenoteM1;n(d; �) = (M
(i;j)
1;n (d; �))0�i;j�2. For i = 0; 1; 2, let D�

i;n be the i-th diagonal element
of the matrix D�

n. For j = 1; 2, we have:

@�j�k(d; �) = � @�jh(d; �; xk)

1 + h(d; �; xk)
�k(d; �):
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Hence for i = 0; : : : ; u and j = 1; : : : ; u, we have

M
(i;j)
1;n (d; �) = �

mX
k=1

Æi;k(d; �)
@�jh(d; �; xk)

1 + h(d; �; xk)
�k(d; �)k

2d�2d�Ek:

Since
Pm

k=1 Æi;k = 0, we obtain:

D�1
i;nD

�1
j;nM

(i;j)
1;n (d; �) = �D�1

i;nD
�1
j;n

mX
k=1

Æi;k(d; �)Æj;k(d; �) (3.5)

�D�1
i;nD

�1
j;n

mX
k=1

Æi;k(d; �)
@�jh(d; �; xk)

1 + h(d; �; xk)

�
k2d�2d��k(d; �)� 1

�
(3.6)

�D�1
i;nD

�1
j;n

mX
k=1

Æi;k(d; �)
@�jh(d; �; xk)

1 + h(d; �; xk)
(d; �)k2d�2d��k(d; �)(Ek � 1): (3.7)

It is easily seen that the term on the right hand side of (3.5) converges to the expected limit. Since
d 2 Dm and jD�1

i;nÆi;kj � C log(n)m�1=2, we easily obtain that the term (3.6) is O(log2�s(n)).
The term (3.7) can be expressed as

mX
k=1

c
(i;j)
n;k (d; �) (Ek � 2�IZ;k) +

mX
k=1

cn;k(d; �) (2�IZ;k � 1) ;

where the coeÆcients c
(i;j)
n;k (d; �) satisfy

sup
(d;�)2Dm��

max
1�k�m

jc(i;j)n;k (d; �)j = O(log2(m)m�1):

Applying this bound and (4.21) in Theorem 4.1, we obtain, for some  > 0:

mX
k=1

sup
(d;�)2Dm��

jcn;k(d; �)jE [jEk � 2�IZ;kj] � log2(m)
�
m� + (m=n)

�
:

To prove that sup(d;�)2Dm�� j
Pm

k=1 cn;k(d; �) (2�IZ;k � 1)j converges in probability to 0, we use
summation by parts as in the last part of the proof of Proposition 2.1. It can be shown that

sup(d;�)2Dm�� jc(i;j)n;k � c
(i;j)
n;k+1j � C log2(m)m�1k�1, and this suÆces to prove the required result.

We now consider the derivatives with respect to d: @d(�k(d; �)k
2d�2d�) = �k�k(d; �)k

2d�2d�

with �k = 2 log(k)� @dh(d;�;xk)
1+h(d;�;xk)

. Hence,

D�1
i;nD

�1
0;nM

(i;0)
1;n (d; �) = D�1

i;nD
�1
0;n

mX
k=1

Æi;k(d; �)Æ0;k(d; �) (3.8)

+D�1
i;nD

�1
0;n

mX
k=1

Æi;k(d; �)�k

�
k2d�2d��k(d; �)� 1

�

+D�1
i;nD

�1
0;n

mX
k=1

Æi;k(d; �)�k�k(d; �)k
2d�2d��k(d; �)(Ek � 1):
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As previously, the �rst term on the right hand side of (3.8) converges to the desired limit and
the other terms tend to 0, uniformly with respect to (d; �) 2 Dm ��.

Proof of Proposition 3.4. To prove the consistency of the estimator, in view of Proposition 2.1,
we only need to check that there exists a positive real � such that E [jIX;k= ~fX;k � 2�I�;kj] �
C(k�� + (k=n)�). Here, we have de�ned ~fX;k = fX(0) for all k. With this notation, we obtain:

IX;k = jdY;k + d�;kj2

=

����dY;k �
q
2�f�Y (0)dZ;k +

q
2�f�X(0)d�;k

����
2

=

����dY;k �
q
2�f�Y (0)dZ;k

����
2

+ 2
q
2�f�X(0)Re

�
�d�;k

�
dY;k �

q
2�f�Y (0)dZ;k

��
+ 2�f�X(0)I�;k: (3.9)

Applying (4.1) and the Cauchy-Schwarz inequality, we obtain

E

"����dY;k=
q
f�Y (0)�

p
2�dZ;k

����
2
#
� C(log(k)k�1 + (k=n)�);

E

����� �d�;k
�
dY;k=

q
f�Y (0)�

p
2�dZ;k

�����
�
� C(log1=2(k)k�1=2 + (k=n)�=2):

Hence we obtain E [jIX;k= ~fX;k � 2�I�;kj] � C(k�� + (k=n)�) for any � < (1 ^ �)=2.
To prove the central limit theorem, note that � satis�es (A3), with cov(Zk; �k) = 1 +

����=(2�f
�
Y (0)) and (3.4) implies that (3.2) holds with

cum(Zu; Zv; �s; �t) = cum(Z0; Z0; Z0; Z0) + 2=
q
2�f�Y (0) + �=(2�f�Y (0));

if s = t = u = v and 0 otherwise. Hence we can apply Lemma 4.1 and we obtain thatPm
k=1 cn;kIX;k= ~fX;k � 2�I�;k = oP (1) and 2�

Pm
k=1 cn;kI�;k is asymptotically standard Gaussian.

4 Technical results

We start by stating the results we use on the DFT and periodogram ordinates of a stationary long
memory process Y satisfying assumption (A4). Such results can be found in many references,
starting with Robinson (1995b). We prefer to refer to Soulier (2002) which better suits our
purpose. We �rst introduce some more notation. De�ne ~ak =

p
2�f�Y (0)(1 � eixk)�dY and

~fY;k = x�2dY
k f�Y (0). With these de�nitions, we have, for some numerical constant C,�����

~fY;k � j~akj2=(2�)
~fY;k

����� � Cx2k:

The following Lemma gathers Lemmas 6.1, 6.2 and Theorem 6.1 of Soulier (2002), in the par-
ticular case of the non tapered periodogram (i.e. with q = 0 in the notations of that paper).
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Lemma 4.1. Assume (A1) and (A4). Then

E [jdY;k=~ak � dZ;kj2] � C(log(k)k�1 + (k=n)�); (4.1)

E [jIY;k= ~fY;k � 2�IZ;kj] � C
�
log1=2(k)(k)�1=2 + (k=n)�=2

�
: (4.2)

Assume moreover (A5) and (A6). Let m be a non decreasing sequence of integers that satis�es
(3.3) and let (cn;k)1�k�m be a triangular array of real numbers such that

mX
k=1

cn;k = 0;
mX
k=1

c2n;k = 1 (4.3)

lim
n!1

n mX
k=1

jcn;k � cn;k+1j+ jcn;~nj
o2

log(n) = 0; (4.4)

Then

lim
n!1

E

"�����
mX
k=1

cn;k

 
IY;k
~fY;k

� 2�IZ;k

!�����
#
= 0; (4.5)

lim
n!1

E

"�����
mX
k=1

cn;k �d�;k(dY;k=~ak � dZ;k)

�����
#
= 0; (4.6)

and 2�
Pm

k=1 cn;kIZ;k and
Pm

k=1 cn;k
IY;k
~fY;k

are asymptotically standard Gaussian.

We now deal with the approximation of the periodogram of the signal plus noise by the
periodogram of the signal. De�ne ~fX;k = x�2d�

k f�Y (0)(1 + h(d�; ��; xk)).

Lemma 4.2. Assume (A1), (A3) and (A4). If d� 2 (0; 1), then there exist � > 0 and C > 0
such that

E

"����� IX;k

~fX;k

� IY;k
~fY;k

�����
#
� C

�
k� + (k=n)

�
: (4.7)

Proof. We �rst prove (4.7) in the stationary case d� = dY 2 (0; 1=2). Write:

IX;k

~fX;k

� IY;k
~fY;k

=
IY;k
~fX;k

� IY;k
~fY;k

+
2Re

�
dY;k �d�;k

�
~fX;k

+
I�;k
~fX;k

=
~fY;k � ~fX;k

~fX;k

IY;k
~fY;k

+
2
q

~fY;k

~fX;k

Re

0
@ dY;kq

~fYk

�d�;k

1
A+

I�;k
~fX;k

:

Since E [IY;k= ~fY;k] is uniformly bounded over the class F(�; �; �) and

~fY;k � ~fX;k

~fX;k

+

q
~fY;k

~fX;k

� C
�
(k=n)dY + (k=n)�

�
;
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we obtain (4.7) with  = dY ^ � in the stationary case. In the non stationary case, extra terms
appear. Recall that Ut =

Pt
s=1 Ys. Then

dU;k =
1p
2�n

nX
t=1

tX
s=1

Yse
itxk =

1p
2�n

nX
s=1

Ys

nX
t=s

eitxk =
dY;k

1� eixk
� eixk

Pn
s=1 Ysp

2�n(1� eixk)
;

IU;k =
IY;k

j1� eixk j2 �
2Re(eixkdY;k)

Pn
s=1 Ysp

2�nj1� eixk j2 +
(
Pn

s=1 Ys)
2

2�nj1� eixk j2 ;

IX;k = IU;k + 2Re(dU;k �d�;k) + I�;k

=
IY;k

j1� eixk j2 �
2Re(eixkdY;k)

Pn
s=1 Ysp

2�nj1� eixk j2 +
(
Pn

s=1 Ys)
2

2�nj1� eixk j2

+ 2Re

�
dY;k

1� eixk
�d�;k

�
� 2Re

�
eixk

Pn
s=1 Ysp

2�n(1� eixk)
�d�;k

�
+ I�;k

Hence,

IX;k

~fX;k

� IY;k
~fY;k

=
IY;k
~fY;k

 
~fY;k

j1� eixk j2 ~fX;k

� 1

!
� 2Re(eixkdY;k)

Pn
s=1 Ysp

2�nj1� eixk j2 ~fX;k

+
(
Pn

s=1 Ys)
2

2�nj1� eixk j2 ~fX;k

+Re

 
2dY;k

(1� eixk) ~fX;k

�d�;k

!
�Re

 
2eixk

Pn
s=1 Ysp

2�n(1� eixk) ~fX;k

�d�;k

!
+

I�;k
~fX;k

: (4.8)

Straightforward variance computations yield, for dY 2 (�1=2; 0), that

E

2
4
 

nX
s=1

Ys

!2
3
5 � Cn2dY +1: (4.9)

Thus

E

"����� IX;k

~fX;k

� IY;k
~fY;k

�����
#
� C

�
(k=n)� + (k=n)2+2dY + kdY + k2dY + (k=n)2+dY

+ndY (k=n)1+2dY + (k=n)2+2dY
�
� C

�
kdY + (k=n)� + (k=n)2+2dY

�
:

This proves (4.7) in the non stationary case with  = (�dY ) ^ �.
Lemma 4.3. Assume (A3), (A4), (A5) and (A6). Let m be a sequence of integers such that

lim
n!1

(m�1 +m2�+1n�2�) = 0: (4.10)

Let (cn;k)1�k�m be a triangular array of real numbers that satisfy (4.3). If d� 2 (0; 3=4), then

mX
k=1

cn;k

(
IX;k

~fX;k

� IY;k
~fY;k

)
= oP (1): (4.11)

20



Proof. We �rst prove (4.11) in the stationary case.

IX;k

~fX;k

� IY;k
~fY;k

=
~fY;k � ~fX;k

~fX;k

 
IY;k
~fY;k

� 2�IZ;k

!
+

2
~fX;k

Re

�
~ak

�
dY;k
~ak

� dZ;k

�
�d�;k

�
(4.12)

+
~fY;k � ~fX;k

~fX;k

(2�IZ;k � 1) +
I�k � �2�=(2�)

~fX;k

+
2
~fX;k

Re
�
~ak

n
dZ;k �d�;k � ����

2�

o�
: (4.13)

The terms in (4.13) can be easily bounded. Since Z and � satisfy assumptions (A3), (A5) and
(3.2), straightforward computations yield:

E

h� mX
k=1

cn;k
~fX;k

n
I�;k � �2�=(2�) +

�
~fY;k � ~fX;k

�
(2�IZ;k � 1)

+ 2Re
�
~ak

n
dZ;k �d�;k � ����

2�

o�o�2i
= O((m=n)2d

�

): (4.14)

The terms in (4.12) are bounded by (4.5) and (4.6).

We now consider the non stationary case. Starting from (4.8), we write:

IX;k

~fX;k

� IY;k
~fY;k

=

 
~fY;k

j1� eixk j2 ~fX;k

� 1

! 
IY;k
~fY;k

� 2�IZ;k

!
(4.15)

+ Re

0
@2~ak

�
dY;k
~ak

� dZ;k

�
�d�;k

(1� eixk) ~fX;k

1
A+Re

 
2~ak

�
dZ;k �d�;k � ����

2�

	
(1� eixk) ~fX;k

!
(4.16)

+

 
~fY;k

j1� eixk j2 ~fX;k

� 1

!
(2�IZ;k � 1) +

I�;k � �2�=(2�)

~fX;k

(4.17)

� 2Re(eixkdY;k)
Pn

s=1 Ysp
2�nj1� eixk j2 ~fX;k

(4.18)

+
(
Pn

s=1 Ys)
2

2�nj1� eixk j2 ~fX;k

�Re

 
2eixk

Pn
s=1 Ysp

2�n(1� eixk) ~fX;k

�d�;k

!
(4.19)

+
2����Re

�
~ak(1� eixk)�1

�
+ �2�

2� ~fX;k

+
~fY;k

j1� eixk j2 ~fX;k

� 1: (4.20)

The terms in (4.15), (4.16) and (4.17) are similar to the terms that appear in the stationary
case. We only consider the terms appearing in (4.18), (4.19) and (4.20). To deal with (4.20),
note that

~fX;k = x�2
k

~fY;k + f2����Re(~ak(1� eixk)�1) + �2�g=(2�):
Hence, denoting rn;k the sum of the terms in (4.20), we have

rn;k =
~fXk

� x�2
k

~fY;k
~fX;k

+
~fY;k

j1� eixk j2 ~fX;k

� 1 =
~fY;k

x2k
~fX;k

�
x2k

j1� eixk j2 � 1

�
:

21



Since
~fY;k

x2k
~fX;k

is bounded and x2kj1� eixk j�2 � 1 = O(x2k) (uniformly with respect to k and n), we

obtain
Pm

k=1 cn;krn;k = O(m5=2n�2) = o(1) under condition (4.10).

Consider now the term (4.18), say Rn. De�ne ~cn;k = ndY cn;ke
ixk~ak=(2�j1 � eixk j2 ~fX;k),

Rn;1 =
Pm

k=1 ~cn;k
�p

2�dY;k=~ak �
p
2�dZ;k

�
and Rn;2 =

Pm
k=1 ~cn;k

p
2�dZ;k. Then

Rn = n�1=2�dY

nX
s=1

Ys (Rn;1 +Rn;2) :

Applying (4.9) and the H�older inequality, we obtain

E [jRn j] � C
�
E
1=2 [R2

n;1] + E
1=2 [R2

n;2]
�
:

Since Z satis�es assumption (A5) and j~cn;kj � C jcn;kjkdY , it is easily seen that:

E [R2
n;2 ] � C

mX
k=1

c2n;kk
2dY = o(1):

The last equality follows straightforwardly from (4.10) and the assumption d� 2 [1=2; 3=4) which
implies that dY 2 [�1=2;�1=4). Applying (4.1) and twice the Cauchy-Schwarz inequality, we
now bound R1;n:

E [R2
n;1 ] � C

 
mX
k=1

jcn;kjk2dY
!1=2 mX

k=1

jcn;kj
n
k�1 + (k=n)�

o!1=2

If (tk)k�1 is a square summable sequence, then under condition (4.3),
Pm

k=1 jcn;ktkj = o(1). For
our purpose, we can even restrict ourselves to non increasing sequences. Split the sum at some
` � m to be �xed later and apply the H�older inequality to the sum over k � `:

mX
k=1

jcn;kjtk � `t1 max
1�k�`

jcn;kj+
0
@X

k�`

t2k

1
A

1=2

:

These last two terms are simultaneously o(1) as soon as the sequence ` = `(m) tends to in�nity
not too fast, that is in such a way that lim(`max1�k�m jcn;kj) = 0, which is possible under (4.3).
Hence, if dY < �1=4, then Pm

k=1 jcn;kjk2dY = o(1). Similarly,
Pm

k=1 jcn;kjk�1 = o(1). Moreover,Pm
k=1 jcn;kj(k=n)� = O(m�+1=2n��) = o(1) under (4.10). Finally, E [R2

n;1 ] = o(1).

Both terms in (4.19) can be dealt with straightforwardly. Applying the bound (4.9), we get

mX
k=1

jcn;kjE
"

(
Pn

s=1 Ys)
2

2�nj1� eixk j2 ~fX;k

#
� C

mX
k=1

jcn;kjk2dY = o(1)
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by the same arguments as above. Since � satis�es (A5), applying (4.9) and the H�older inequality,
we bound the last term:

E

2
4
�����
mX
k=1

cn;kRe

 
2eixk

Pn
s=1 Ysp

2�n(1� eixk) ~fX;k

�d�;k

!�����
2
3
5

� Cn2dY E

2
4
�����
mX
k=1

cn;ke
ixk

(1� eixk) ~fX;k

�d�;k

�����
2
3
5 � Cn2dY (m=n)2+4dY = o(1):

Gathering the previous Lemmas, we obtain the needed results for the periodogram of the
signal plus noise.

Theorem 4.1. Assume (A1), (A3) and (A4). Then there exist  > 0 and C > 0 such that

E [jIX;k= ~fX;k � 2�IZ;kj] � C
�
k� + (k=n)

�
: (4.21)

Assume moreover (A5) and (A6). Let m be a non decreasing sequence of integers that satis�es
(3.3) and let (cn;k)1�k�m be a triangular array of real numbers that satis�es (4.3) Then

lim
n!1

E

"�����
mX
k=1

cn;k

 
IX;k

~fX;k

� 2�IZ;k

!�����
#
= 0: (4.22)

If moreover
Pm

k=1 cn;k = 0 and (4.4) holds, then
Pm

k=1 cn;k
IX;k

~fX;k
is asymptotically standard Gaus-

sian.

Appendix

By de�nition, P(d̂n 2 D1) � P(inf(d;�)2D1��n Ĵm(d; �) � Ĵm(d
�; ��) � 0). De�ne pm = (m!)1=m.

For d 2 D1, if 1 � j � pm, then (j=pm)
2d�2d� � (j=pm)

�1+2� and if pm < j � m, then
(j=pm)

2d�2d� � (j=pm)
2�n�2d� . De�ne then aj = (j=pm)

�1+2� if 1 � j � pm and aj =
(j=pm)

2�n�2d� otherwise. As shown in Robinson (1995b, Eq. 3.22), if � < 1=(4e), then for
large enough n,

Pm
j=1 aj � 2. Moreover, if d � �n, then, for large enough n, �k(d; �) �

1� Ce��n log(n=m) � 0 for some constant C depending on d� and �. De�ne �n = Ce��n log(n=m).
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We obtain:

Ĵm(d; �)� Ĵm(d
�; ��)

= log
n 1

m

mX
j=1

� j

pm

�2d�2d�

�k(d; �)Ej
o
� log

n 1

m

mX
j=1

Ej
o
+m�1

mX
k=1

log(�k(d; �))

� log
n 1

m

mX
j=1

ajEj
o
� log

n 1

m

mX
j=1

Ej
o
+ 2 log(1� �n)

= log
n 1

m

mX
j=1

aj +
1

m

mX
j=1

aj(Ej � 1)
o
� log

n
1 +

1

m

mX
j=1

(Ej � 1)
o
+ 2 log(1� �n)

� log
n
2 +

1

m

mX
j=1

aj(Ej � 1)
o
� log

n
1 +

1

m

mX
j=1

(Ej � 1)
o
+ 2 log(1� �n):

Hence

P(d̂n 2 D1) � P

0
@log

n
2 +

1

m

mX
j=1

aj(Ej � 1)
o
� log

n
1 +

1

m

mX
j=1

(Ej � 1)
o
+ 2 log(1� �n) � 0

1
A :

This last probability tends to zero as soon as m�1
Pm

j=1(Ej � 1) = oP (1) and m�1
Pm

j=1 aj(Ej �
1) = oP (1). SinceEn(d

�; ��) = m�1
Pm

j=1(Ej�1), Proposition 2.1 implies that this term is oP (1).

As in Robinson (1995b, p. 1639), it is easily checked that
Pm

j=1 aj = O(m),
P

1�j�pm
a2j =

O(m2�4�) and
P

pm<j�m a2j = O(m). Thus we can apply Theorem 4.1, Eq. (4.22), to obtain

that m�1
Pm

j=1 aj(Ej � 2�IZ;j) = oP (1). There only remains to check that under assumption

(A1), m�1
Pm

j=1 aj(2�IZ;j � 1) = oP (1). Expanding this sum as the term E2;n in the proof of
Proposition 2.1, we obtain:

1

m

mX
j=1

aj(2�In;Z � 1) =
1

m

mX
j=1

aj � 1

n

nX
t=1

(Z2
t � 1) +

2

n

X
1�s<t�n

1

m

mX
j=1

aj cos((t� s)xj)ZsZt

Since
Pm

j=1 aj = O(m) and
P

1�j�pm
a2j = O(m2�4�), under assumption (A1), both these terms

are oP (1). The proof is concluded.
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