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Abstract

We propose a direct and convenient reduced-bias estimator of predictive regression coef-

ficients, assuming that the regressors are Gaussian first-order autoregressive with errors

that are correlated with the error series of the dependent variable. For the single-regressor

model, Stambaugh (1999) shows that the ordinary least squares estimator of the predic-

tive regression coefficient is biased in small samples. Our estimation method employs

an augmented regression which uses a proxy for the errors in the autoregressive model.

We also develop a heuristic estimator of the standard error of the estimated predictive

coefficient which performs well in simulations, and show that the estimated coefficient of

the errors and its squared standard error are unbiased. We analyze the case of multiple

predictors that are first-order autoregressive and derive bias expressions for both the or-

dinary least squares and our reduced-bias estimated coefficients. The effectiveness of our

estimation method is demonstrated by simulations.

Keywords : Stock Returns; Dividend Yields; Autoregressive Models.



1 Introduction

In a recent paper, Stambaugh (1999) shows that there is a bias in the parameter esti-

mation of a standard model that is used in finance and economics. Consider first the

following model where a scalar time series {yt}n
t=1 is to be predicted from a scalar first-

order autoregressive (AR(1)) time series {xt}n−1
t=0 . The overall model for t = 1, . . . , n

is

yt = α + βxt−1 + ut , (1)

xt = θ + ρxt−1 + vt , (2)

where the errors (ut, vt) are serially independent and identically distributed as bivariate

normal, with contemporaneous correlation, that is, ut

vt

 ∼iid N(0, Σ) , Σ =

 σ2
u σuv

σuv σ2
v

 ,

and the lag-1 autocorrelation ρ of {xt} satisfies the constraint |ρ| < 1, thereby ensuring

that {xt} is stationary. (The initial value x0 can be taken to be random or non-random.)

Then, Stambaugh (1999) shows that if σuv 6= 0, the ordinary least squares (OLS)

estimator of β based on a finite sample will be biased.

Stambaugh (1999) provides an expression for the bias of the OLS estimator of β in

the single-predictor model given by (1) and (2),

E[β̂ − β] = φE[ρ̂− ρ] , (3)

where φ = σuv/σ
2
v , and β̂ and ρ̂ are the OLS estimators of β and ρ. Subsequent research

employs a ”plug-in” version of this expression by using sample estimators of the two
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parameters, φ and ρ. Specifically, Stambaugh notes, following Kendall (1954), that

E[ρ̂ − ρ] = −(1 + 3ρ)/n + O(n−2). Applying Stambaugh’s result (3), researchers use a

bias-corrected estimator of β, which we denote by β̂s as

β̂s = β̂ + φ̂s(1 + 3ρ̂)/n , (4)

where φ̂s =
∑

ûtv̂t/
∑

v̂2
t , and ût, v̂t are the residuals from OLS regressions in (1) and

(2), respectively.1

However, there is as yet no theoretical justification for this method of estimation.

There is no obvious reason why the sample estimators φ̂s and ρ̂, which are random vari-

ables, should be independent of each other, so it is not clear how to obtain the expected

value of the bias correction.2

Furthermore, Stambaugh’s (1999) analysis is for a single-predictor model, while the

problem of bias in estimating β also arises in the case of multiple predictive variables. For

the multiple-predictor case, there is no available expression for the bias in the OLS esti-

mator of the predictive regression coefficients, nor is there a direct method of estimation

to reduce the bias in this case.

In this paper, we propose and derive the properties of reduced-bias estimators, based

on augmented regressions, for the vector β in a multiple-predictor generalization of the

model (1) and (2). The added variables in the regression are proxies for the error series

in a Gaussian AR(1) model for the predictors. The proxies are residual series based on

1Kothari and Shanken (1997) define β̂KS = β̂ + φ̂s(1 + 3pA)/n, where pA = (nρ̂ + 1)/(n− 3).
2Although no one has heretofore explored the theoretical properties of β̂s, it turns out that this

estimator is closely related to ours and under some specification exactly equal to ours. We are indebted
to Gary Simon for producing a proof of this claim. The proof is available on request.
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a reduced-bias estimator of the AR parameter. Our method can be used in multiple-

predictor models to reduce the bias of the OLS estimator of β. Naturally, our method

applies as well in the single-predictor model as a special case. Our proposed estimation

method is straightforward and easily implemented. In fact, it is the only direct reduced-

bias method available in the literature for the case of multiple predictive variables.

In the single-predictor case, one specification of our approach is equivalent to β̂s,

although this equivalence is far from obvious. Thus, our theoretical results yield, among

other things, a formula for the bias in β̂s. These same theoretical results justify the use of a

different version of our approach, which has a smaller bias than β̂s, based on a second-order

generalization of Kendall’s (1954) formula. We also propose a formula to directly obtain

an estimator of the standard error of the bias-corrected estimator of β, which enables us to

easily construct confidence intervals and do hypothesis testing. This formula is applicable

in the single-predictor case and under one specification of the multi-predictor case. No

such direct method to estimate the standard error of the bias-corrected estimator of β is

available in the literature; instead, it is done by the bootstrapping method.3

In addition, our estimation method provides an unbiased estimate of φ, which may be

useful in the following context. When variable xt is generated by an AR(1) process as in

(2), the anticipated component of xt based on past values of the series is E(xt|xt−1) =

θ + ρxt−1. Then, the error vt is the unanticipated component of xt. A researcher may

want to estimate separately the effects of the anticipated and unanticipated components

3See Kothari and Shanken (1997).
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of xt on yt in the model

yt = α + βxt−1 + φvt + et . (5)

The coefficient β measures4 the effect of the anticipated component of xt while the co-

efficient φ measures the effect of the unexpected component of xt on yt. We prove that

our method provides a reduced-bias estimator of β and an unbiased estimator of φ, and

that the latter estimator’s squared standard error, obtained directly from the regression

output, is also unbiased.

The case of multiple predictive variables is presented by a general model in which

the predictive variables form a Gaussian multivariate AR(1) series. The analysis is based

on a natural generalization of our univariate reduced-bias estimation method, employing

a regression which is augmented by the estimated error series in the multivariate AR(1)

model. We derive a general expression for the bias of our proposed reduced-bias estimators

of β (in this case, a vector) and show that as in the univariate case, this bias is proportional

to the bias in the corresponding estimator of the AR(1) parameter matrix. The importance

of this result is in showing that any existing or future methodology that can reduce the

bias in estimation of this matrix can be used to produce corresponding improvements

in the bias of the coefficients of the predictive variables. We also provide a theoretical

expression for the bias in the OLS estimator of β, generalizing Stambaugh’s formula (3)

to the multiple-predictor case.

The usefulness of our estimation method is demonstrated by simulations for both the

single-predictor and the multiple-predictor cases. In implementing our estimators in the

4Suppose that the model to be estimated is yt = δ0+δ1x
a
t +φxu

t +et, where xa
t and xu

t are, respectively,
the anticipated and unanticipated components of xt. Then, α = δ0 + δ1θ and β = δ1ρ.
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case of multiple predictive variables, we first focus on a special case of our general model

in which the AR(1) parameter matrix is known to be diagonal, so that each predictive

variable itself follows a univariate AR(1) model. However, the predictive variables can be

correlated through the covariance matrix of the errors. In this case, the implementation

of our method is simple, and it performs just as well as in the univariate case. In contrast,

there is no direct application of Stambaugh’s formula in the case of multiple predictors.

Finally, we consider the general case where the AR(1) parameter matrix is not constrained

to be diagonal. In this case, we construct an estimate of a bias expression for multivariate

AR(1) models due to Nicholls and Pope (1988). This indeed reduces the bias, but since

the expressions are more complex and more parameters need to be estimated (we use a

small sample size), there is some degradation in performance compared to the diagonal

case.

Our paper proceeds as follows. In section 2 we show the basic single-predictor model,

following Stambaugh (1999), outline our proposal to estimate the predictive regression

coefficient, and present the theoretical properties of the reduced-bias estimator. Section 3

describes a heuristic method for estimating the standard error of the estimated predictive

regression coefficient. Section 4 presents the multiple-predictor model, proposes an aug-

mented regression estimator of the coefficients of the predictive variables and considers

the properties of this estimator. We present simulation results on our method in section 5,

and in section 6 we demonstrate the use of our method in estimating a common predictive

model in finance: dividend yield as predictor of expected stock return. Our conclusions

are in section 7.
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2 Reduced-Bias Estimation of the Regression Coef-

ficient

Stambaugh (1999) shows that given models (1) and (2), the ordinary least squares (OLS)

estimator β̂ has bias E[β̂−β] = φE[ρ̂−ρ], where φ = σuv/σ
2
v , and ρ̂ is the OLS estimator

of ρ based on x1, . . . , xn. This expression is exact, for any given sample size n. The

expression states that the bias in the OLS estimator of β is proportional to the bias in

the OLS estimator of ρ. Thus, if φ is large or ρ̂ is appreciably biased, β̂ will be strongly

biased as well.

To motivate our proposed reduced-bias estimator of β, we consider first an infeasible

estimator, β̃, which is the coefficient of xt−1 in an OLS regression (with intercept) of yt

on xt−1 and vt, for t = 1, . . . , n. It is shown in the appendix that we can write

yt = α + βxt−1 + φvt + et , (6)

where {et}n
t=1 are independent and identically distributed normal random variables with

mean zero, and {et} is independent of both {vt} and {xt}. The estimator β̃ is exactly

unbiased, as stated in the following theorem.

Theorem 1 The infeasible estimator β̃,is exactly unbiased,

E[β̃] = β .

Proof: See appendix.

In practice, the errors {vt} are unobservable. But the result above suggests that it

may be worthwhile to construct a proxy {vc
t} for the errors, on the basis of the available
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data {xt}n
t=0. Define a feasible bias-corrected estimator β̂c to be the coefficient of xt−1 in

an OLS regression of yt on xt−1 and vc
t , with intercept.

The proxy vc
t takes the form

vc
t = xt − (θ̂c + ρ̂cxt−1) , (7)

where θ̂c and ρ̂c are any estimators of θ and ρ constructed on the basis of x0, x1, . . . , xn.

As will be seen, the particular choice of the estimator θ̂c has no effect on the bias of β̂c. On

the other hand, the estimator ρ̂c should be selected to be as nearly unbiased as possible

for ρ, as the bias of β̂c is proportional to the bias of ρ̂c. We have the following theorem,

which, like Theorem 1, holds exactly for all values of n.

Theorem 2 The bias of the feasible estimator β̂c is given by

E[β̂c − β] = φE[ρ̂c − ρ] ,

where φ = σuv/σ
2
v.

Proof: See appendix.

There is a large literature on reduced-bias estimation of the lag-1 autocorrelation

parameter ρ of AR(1) models, and in view of Theorem 2, this literature is of direct

relevance to the construction of reduced-bias estimators of β. Some easily-computable and

low-bias choices of ρ̂c include the Burg estimator (see Fuller 1996 p. 418), the weighted

symmetric estimator (see Fuller 1996 p. 414), and the tapered Yule-Walker estimator (see

Dahlhaus, 1988). Both the Burg estimator and the tapered Yule-Walker estimator have

the additional advantage that they are guaranteed to be strictly between −1 and 1.
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In this paper, we will focus on two estimators based on Kendall’s (1954) expression

for the bias of the OLS estimator, ρ̂, that is, E[ρ̂ − ρ] = −(1 + 3ρ)/n + O(n−2). This

leads to a first-order bias-corrected estimator ρ̂c,1 = ρ̂ + (1 + 3ρ̂)/n and a ”second-order”

bias-corrected estimator

ρ̂c,2 = ρ̂ + (1 + 3ρ̂)/n + 3(1 + 3ρ̂)/n2. (8)

The estimator ρ̂c,1 was studied by Sawa (1978), and has bias which is O(n−2). We

note here the non-obvious fact that if ρ̂c,1 is used in constructing the proxy for vt in the

augmented regression, the resulting bias-corrected estimator β̂c is identical to the plug-in

estimator β̂s derived from Stambaugh (1999).5

The estimator ρ̂c,2 is obtained by an iterative correction, ρ̂c,2 = ρ̂ + (1 + 3ρ̂c,1)/n. The

bias of ρ̂c,2 is O(n−2) as well, but our simulations indicate that the bias of ρ̂c,2 is in fact

smaller than that of ρ̂c,1. We will therefore restrict attention henceforth to ρ̂c,2, which we

denote by ρ̂c, and we will henceforth denote the corresponding bias-corrected estimator

of β by β̂c.

In summary, the procedure we propose for estimating β has two steps:6

(I) Estimate model (2) by OLS and obtain ρ̂. Construct the corrected estimator

ρ̂c = ρ̂ + (1 + 3ρ̂)/n + 3(1 + 3ρ̂)/n2 and obtain the corrected residuals vc
t as in (7) above.

5Indeed, if (1+3ρ̂)/n is replaced in (4) by an arbitrary estimator of the negative bias in ρ̂, the resulting
β̂s can be shown to be equal to the version of our β̂c that uses the corresponding bias-corrected ρ̂ in
constructing the proxy for vt in the augmented regression.

6See an application of this procedure in Amihud (2002).
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(II) Obtain β̂c as the coefficient of xt−1 in an OLS regression of yt on xt−1 and vc
t , with

intercept. This regression also produces φ̂c as the estimator of the coefficient of vc
t . The

coefficient φ̂c is an unbiased estimator of φ, as stated in the following lemma.

Lemma 1 E[φ̂c] = φ.

Proof: See appendix.

3 Estimation of Standard Errors

3.1 Standard Errors for β̂c

For the construction of valid confidence intervals and hypothesis tests for β, it follows

from Simonoff (1993) that a low-bias finite-sample approximation to the standard error

of β̂c is needed. While the estimated standard error for β̂c that we develop here is only

heuristically motivated, we find that it performs well in simulations. Let σ̂2 denote the

estimator of the error variance from a regression (with intercept) of yt on xt−1 and vc
t .

Thus, σ̂2, which is readily available from standard linear regression programs, is simply

the residual sum of squares from this regression, divided by n−3. It follows from the proof

of Lemma 2 below that σ̂2 is a biased estimator of σ2
u. Therefore, ŜE(β̂c), the estimated

standard error from the OLS output in a regression of yt on xt−1 and vc
t , cannot be used

for testing hypotheses about β. However, feasible and reasonably accurate confidence

intervals for β can be constructed, as we show here. The following lemma gives a useful

result.
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Lemma 2

E[β̂c − β]2 = φ2E[ρ̂c − ρ]2 + E[ŜE(β̂c)]2 , (9)

where ŜE(β̂c) is the estimated standard error for β̂c, based on an OLS regression of yt on

xt−1 and vc
t , with intercept (provided by standard regression packages).

Proof: See appendix.

Since from Theorem 2

E[β̂c − β] = φE[ρ̂c − ρ] = O(1/n2) ,

we conclude from (9) that

var[β̂c] = E[β̂c − β]2 + O(1/n4) , (10)

so a low-bias estimate of the righthand side of (9) should provide a low-bias estimate of

var[β̂c]. Clearly, [ŜE(β̂c)]2 provides an unbiased estimator of E[ŜE(β̂c)]2. We now need

to accurately estimate φ2E[ρ̂c−ρ]2. First, we note that the coefficient φ̂c of vc
t in the OLS

regression of yt on xt−1 and vc
t is unbiased (see Lemma 1 above).

Next, we need to construct an estimator of E[ρ̂c − ρ]2 with low bias. We will treat ρ̂c

as if it were unbiased. Then we simply need an expression for V ar(ρ̂c), where

ρ̂c = ρ̂ +
1 + 3ρ̂

n
+ 3

1 + 3ρ̂

n2
=

1

n
+

3

n2
+ (1 + 3/n + 9/n2)ρ̂ .

Thus,

V ar(ρ̂c) = (1 + 3/n + 9/n2)2V ar(ρ̂) .
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For the OLS estimator ρ̂, our simulations indicate that an accurate estimator of V ar(ρ̂)

is given by V̂ ar(ρ̂), the square of the standard error (as given by standard regression

packages), based on an OLS regression of {xt}n
t=1 on {xt−1}n

t=1, with intercept.7 Thus, a

feasible estimator for V ar(ρ̂c) is given by

V̂ ar(ρ̂c) = (1 + 3/n + 9/n2)2V̂ ar(ρ̂) .

Finally, our estimator for the standard error of β̂c is given by

ŜE
c
(β̂c) =

√
{φ̂c}2V̂ ar(ρ̂c) + {ŜE(β̂c)}2 . (11)

3.2 Standard Errors for φ̂c

Let φ̂c be the coefficient of vc
t in an OLS regression of yt on xt−1 and vc

t . It was shown

in Lemma 1 that E[φ̂c] = φ. We now consider the problem of estimating the standard

error of φ̂c. The following Lemma shows that the estimated squared standard error is

unbiased.

Lemma 3

V ar[φ̂c] = E[ŜE(φ̂c)]2 ,

where ŜE(φ̂c) is the estimated standard error for φ̂c as provided by standard regression

packages, based on an OLS regression of yt on xt−1 and vc
t , with intercept.

Proof: See appendix.

7Indeed, this readily-available estimator strongly outperforms the asymptotic approximation suggested
in Fuller (1966) equation (6.2.9).
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4 Predictive Regressions with Multiple Predictors

We consider here a more general model for predictive regressions with several predictor

variables, and develop a reduced-bias estimator of the predictive regression coefficients in

this model. No direct methodology is currently available in this case for either evaluating

or reducing the bias in the OLS estimators of the predictive regression coefficients.

We assume that the predictor variables are collected in a p-dimensional vector time

series {xt} which evolves according to a Gaussian vector autoregressive V AR(1) model.

The overall model is given for t = 1, . . . , n by

yt = α + β′xt−1 + ut , (12)

xt = Θ + Φxt−1 + vt , (13)

where {yt} is a scalar response variable, α is a scalar intercept, β is a p × 1 vector of

regression coefficients, {ut} is a scalar noise term, {xt}, is a p × 1 series of predictor

variables, Θ is a p × 1 intercept, {vt} is a p × 1 series of shocks such that the vectors

(ut, v
′
t)
′ are i.i.d. multivariate normal with mean zero, and Φ is a p× p matrix satisfying

the determinantal equation to ensure stationarity (see, e.g., Fuller, 1996). It follows from

our assumptions that there exists a p× 1 vector φ such that

ut = φ′vt + et , (14)

where {et} are i.i.d. normal random variables with mean zero, and {et} is independent of

both {vt} and {xt}.
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We first give the bias of β̂, the OLS estimator of β in the model given by (12), (13),

and (14), thereby generalizing (3) to the multiple-predictor case.

Theorem 3

E[β̂ − β] = E[Φ̂− Φ]′φ , (15)

where Φ̂ is the OLS estimator of Φ.

Proof: See appendix.

The remainder of our analysis of the multi-predictor case proceeds as follows. First,

we develop a class of reduced-bias estimators of β that is based on augmented regres-

sions, where the additional regressors are proxies for the entries of vt corresponding to

an estimate of Φ. Thus, our single-predictor methodology generalizes in a very natural

way to the setting of multiple predictors. Second, we develop a bias expression for our

estimator of β and show that the bias in it is proportional to the bias in a corresponding

estimator of Φ. Thus, bias reduction in estimating β can be achieved through the use of

any reduced-bias estimator of Φ, e.g., the one due to Nicholls and Pope (1988), suggested

by Stambaugh (1999).

Specifically, suppose that Θ̂c and Φ̂c are any estimators of Θ and Φ constructed from

{xt}n
t=0. Define a proxy {vc

t} for the error series {vt} by

vc
t = xt − (Θ̂c + Φ̂cxt−1) , t = 1, . . . , n . (16)

To estimate β, we propose to run an OLS regression of yt on all entries of the vectors xt−1

and vc
t , together with a constant. Our proposed estimator β̂c of β consists of the estimated

coefficients of the entries of xt−1 in this augmented OLS regression. The following theorem,
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which is a direct generalization of Theorem 2, shows that the bias in β̂c is proportional

to the bias in Φ̂c, with proportionality constant φ.

Theorem 4

E[β̂c − β] = E[Φ̂c − Φ]′φ . (17)

Proof: See appendix.

If we define φ̂c to be the vector of OLS regression coefficients of the entries of vc
t

obtained in the augmented regression described above, then we have the following gener-

alization of Lemma 1, which shows that φ̂c is unbiased for φ.

Lemma 4 If {yt} is given by the multiple-predictor model (12) and (13) and φ̂c is as

defined above, then

E[φ̂c] = φ . (18)

Proof: See appendix.

To give a specific form for our proposed estimator β̂c in the case of multiple predictive

variables, we need to construct a reduced-bias estimator Φ̂c. The theory of this section on

the estimator β̂c will hold for an estimator Φ̂c that is an arbitrary function of the series

of predictor variables {xt}n
t=0. But as Theorem 4 shows, the bias of β̂c is proportional to

the bias of Φ̂c, so we now focus on the choice of Φ̂c. We give here two proposals for Φ̂c,

the first of which is applicable only in the case where it is known that the true AR(1)

parameter matrix Φ is diagonal, and the second of which is applicable in general. The

first performs much better than the second when Φ is in fact diagonal. Although the
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assumption that Φ is diagonal entails a considerable loss of generality, it should be noted

that if the individual entries of {xt} are given by univariate AR(1) models, as would

often be assumed in practice, then Φ must be diagonal. Notably, entries of {xt} can still

be contemporaneously correlated even under the assumption that Φ is diagonal if the

covariance matrix Σv = Cov(vt) is non-diagonal.

If Φ is known to be diagonal, then each entry of {xt} is a univariate AR(1) process,

and therefore we can treat each series separately, estimating its autoregressive coefficient

by univariate OLS and then correcting this estimator as we have proposed for the single-

predictor case. Then Φ̂c is constructed as a diagonal matrix, with diagonal entries given

by the corrected univariate AR(1) parameter estimates. The simulations in the following

section indicate that the corresponding reduced-bias estimator β̂c performs quite well

compared to the OLS estimator β̂.

For the general case where Φ may be non-diagonal, reduced-bias estimation of Φ is

a more difficult problem. We follow the suggestion of Stambaugh (1999) to estimate Φ

using the expression of Nicholls and Pope (1988) for the bias in the OLS estimator Φ̂,

that is, E[Φ̂−Φ]. This expression, which has a remainder term of O(n−3/2), can be found

in Stambaugh (1999), Equation (54), and in Nicholls and Pope (1988), Theorem 2.8 The

expression for the bias in Φ̂ depends on the unknown Φ and Σv. We therefore estimate

this bias expression by plugging in preliminary estimates of Φ and Σv. The bias-corrected

estimator Φ̂c is then obtained by subtracting the estimated bias expression from the OLS

estimator Φ̂.

8Stambaugh’s expression contains a typographical error, and should be multiplied by −1/n.
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The preliminary estimator of Σv is obtained as the sample covariance matrix of the

residuals xt − Θ̂ − Φ̂xt−1, where Θ̂ is the OLS estimator of Θ. It is important that the

preliminary estimator of Φ have all eigenvalues less than one, i.e., that it correspond to

a stationary multivariate AR(1) model. Therefore, for this preliminary estimator we use

Φ̂ if it satisfies this condition, and otherwise we use the Yule-Walker estimator of Φ (see

Fuller 1996, p. 78), which is guaranteed to satisfy this condition. Iterative versions of our

estimation scheme could be tried, but we will not pursue this here.

5 Simulations

5.1 Single-predictor model

We report on the performance of our proposed estimators in a simulation study. First,

we study the case of a single-predictor model. We simulate a total of 1500 replications

from the model (1) and (2), with a sample size n = 30 and the following parameter values:

θ = 0.2, ρ = 0.8, α = 0, β = 1, φ = −10. This value for φ is achieved by constructing

ut = φvt +et with φ = −10, where {vt} and {et} are mutually independent i.i.d. standard

normal random variables. The results are reported in Table 1. Standard errors estimated

directly from linear regression output are denoted by ŜE. Thus, for example, ŜE(ρ̂) is

the standard error, as given by the OLS regression output, for the estimate of ρ in model

(2). Similarly, we obtain ŜE(β̂), ŜE(β̂c), and ŜE(φ̂c). The corrected standard error for

β̂c is denoted by ŜE
c
(β̂c), as given by (11). We now summarize our findings from Table

1.
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INSERT TABLE 1 HERE

It can be seen that ρ̂ is strongly negatively biased, but that the corrected estimator

ρ̂c is very nearly unbiased, at the cost of a slight inflation in its standard deviation.

The estimated standard error ŜE(ρ̂) has an average which is very nearly identical to

the true standard deviation of ρ̂. We have found, in these simulations and others, that

ŜE(ρ̂) is much more accurate in small sample sizes than what would be obtained from

using asymptotic expressions for the standard error, such as that given in Fuller (1996,

page 318, equation 6.2.9). It follows that the estimated standard error for ρ̂c (not shown),

obtained as (1+3/n+9/n2)ŜE(ρ̂) is a very nearly unbiased estimate for the true standard

deviation of ρ̂c.

Next, we observe that β̂ is strongly positively biased: the average β̂ is 2.1646 while

β = 1.0. This is predicted by Stambaugh’s (1999) formula E[β̂ − β] = φE[ρ̂ − ρ], given

that both φ and the bias in ρ̂ are negative.9 The estimated standard error for β̂ is within

10% of the true standard deviation.

Our corrected estimator β̂c has a very small bias: the bias is only .046. The actual and

theoretical biases match exactly: the bias predicted by our Theorem 2, using simulation

means as if they were population means, is −10.0023(0.7954− 0.8) = 0.046. There is no

reason in principle for an exact match, however, and indeed the match was not exact in

other simulations not shown here.

9In fact, using the simulation results we estimate the bias of ρ̂ to be 0.68354 − 0.8 = −0.11646, and
plugging this into Stambaugh’s formula (3) we should get a corresponding bias in β̂ of 1.1646. The actual
bias in β̂ from the simulations is 2.1646− 1 = 1.1646, an exact match with Stambaugh’s equation.
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The standard error ŜE(β̂c) obtained from the regression output greatly underestimates

the true standard deviation. This is because ŜE(β̂c) estimates only the square root of the

second term of (9), but ignores the first term, which is much larger than the second term

for the parameter configuration and sample size studied here. The corrected estimator

ŜE
c
(β̂c) obtained from (11), which takes into account both terms of (9), is much more

accurate, having a mean which is within 8% of the true standard deviation.

The estimator φ̂c is very nearly unbiased, consistent with Lemma 1, which says that

in theory it is exactly unbiased. The standard error of ŜE(φ̂c), obtained directly from the

regression output, is very nearly unbiased for the true standard deviation of φ̂c, consistent

with Lemma 3, which says that the square of ŜE(φ̂c) is exactly unbiased for the true

variance of φ̂c.

5.1 multiple-predictor model

Simulations of multiple-predictor models given by (12), (13), and (14) are presented

in Table 2. We first study the case where the autoregressive matrix Φ is assumed to

be diagonal but the errors of the two variables are correlated. We again generate 1500

replications with sample size n = 30. We use two predictive variables xi,t, i = 1, 2, with

parameter values similar to those used in the simulations for the single-predictor case.

In the simulations, the values of the parameters and the construction of the variables

are as follows. α = 0, β = (1, 1)′, Θ = (0, 0)′, ut = φ′vt + et, the et are independent

standard normal, φ = (φ1, φ2)
′ = (−10,−10)′, the vt are independent bivariate normal

random variables with mean zero and covariance matrix Σv, and the sequences {et} and
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{vt} are independent of each other.

Panel A in Table 2 presents estimation results for a model with a diagonal AR(1)

parameter matrix

Φ =

 ρ 0

0 ρ

 ,

with ρ = .8. We employ two covariance matrices for the errors of the predictive variables.

The first is

Σ1v =

 2 1

1 2

 ,

and the second is

Σ2v =

 10 9

9 10

 .

The estimation procedure for the models in Panel A is as follows:

(I) For each component x1,t and x2,t, estimate the univariate AR(1) model (2) by OLS

and obtain ρ̂1 and ρ̂2. Construct the corrected estimators

ρ̂c
1 = ρ̂1 + (1 + 3ρ̂1)/n + 3(1 + 3ρ̂1)/n

2 and ρ̂c
2 = ρ̂2 + (1 + 3ρ̂2)/n + 3(1 + 3ρ̂2)/n

2 and

obtain the corrected residuals vc
1,t = x1,t − θ̂c

1 − ρ̂c
1x1,t−1 and vc

2,t = x2,t − θ̂c
2 − ρ̂c

2x2,t−1,

where θ̂c
1 and θ̂c

2 are the adjusted intercepts.

(II) Obtain β̂c
1 and β̂c

2 as the coefficients of x1,t−1 and x2,t−1 in an OLS regression of yt on

x1,t−1, x2,t−1, vc
1,t and vc

2,t, with intercept. This regression also produces φ̂c
1 and φ̂c

2 as the

estimators of the coefficients of vc
1,t and vc

2,t.
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We estimate the corrected standard error for β̂c
1 and β̂c

2, denoted by ŜE
c
(β̂c

i ), using

(11) and employing the respective parameter estimates.

INSERT TABLE 2 HERE

The estimation results for the diagonal-Φ two-predictor model are presented in Table

2, Panel A. Consider first the results for Σ1v. Notably, the correlation between the two

predictive variables is quite high, Corr(x1,t, x2,t) = 0.48. Thus, although we assume a

diagonal matrix Φ, our specification generates a high correlation between the two predic-

tors.

We focus on the estimates of the coefficients β1 and β2. The OLS estimates are highly

biased. Whereas β1 = β2 = 1, we find that the average values of β̂1 and β̂2 are 2.53 and

2.48, respectively. This is quite a large bias, and larger than that in the simulations of the

single-predictor model in Table 1. By contrast, the average values of β̂c
1 and β̂c

2 are 1.07

and 1.07, quite close to the true values. In keeping with Lemma 4 on the unbiasedness of

φ̂c, we find that the averages of the estimates of φ1 and φ2 are both almost exactly equal

to −10.

Not only do the estimates β̂c
i for i= 1 and 2 have very small bias, they also have

far smaller standard errors than the OLS estimates β̂i. Specifically, the standard errors

of β̂c
i are less than half the standard error of the OLS estimates. Thus, not only are our

estimates almost unbiased compared to the highly biased OLS estimators, they are also far

more efficient. Our approximation method for the estimation of the standard errors works

quite well. We obtain ŜE
c
(β̂c

1) =1.49 and ŜE
c
(β̂c

2) =1.48 compared to actual standard

errors of 1.57 and 1.62, respectively. That is, our estimates are 5% to 9% smaller than
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the actual standard errors.

Under the covariance matrix Σ2v there is a much greater correlation between the two

predictors: Corr(x1,t, x2,t) = 0.89. The bias in the OLS predictive coefficients β̂1 and β̂2

is similar to that under Σ1v, but the increase in the variance and covariance terms in Σ2v

greatly increases the standard errors of the OLS estimates of β. However, the standard

errors of both our reduced-biased estimates of the entries of β remain similar to those

under Σ1v. The notable effect of the change in the covariance matrix is on the efficiency

of the OLS estimation versus ours. The standard error of our reduced-bias estimates is

one fifth (!) of the standard error of the OLS estimates. This shows that our reduced-bias

estimates are quite efficient.

Panel B presents results for a non-diagonal AR(1) parameter matrix

Φ =

 .7 .1

.1 .7

 ,

and

Σv =

 2 0

0 2

 .

The closer the largest eigenvalue of Φ is to 1, the more nearly nonstationary the multivari-

ate AR(1) model is. The matrix Φ given above has its largest eigenvalue equal to .8, in

keeping with all of the other simulations we have done. The structure of Φ accommodates

contemporaneous correlation between the predictive variables even when Σv is diagonal.

Our estimation procedure for the results in Panel B is as follows:

(I) Construct the bias-corrected AR(1) parameter matrix estimate Φ̂c using the method
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of Nicholls and Pope (1988), suggested in Stambaugh (1999). (See the end of the

previous section for more details on the implementation of Φ̂c.) Next, construct the

bivariate corrected residual series vc
t = xt − Θ̂c − Φ̂cxt−1 where Θ̂c is the adjusted

intercept. Write vc
t = (vc

1,t, v
c
2,t)

′ and write xt = (x1,t, x2,t)
′.

(II) Obtain β̂c
1 and β̂c

2 as the coefficients of x1,t−1 and x2,t−1 in an OLS regression of yt on

x1,t−1, x2,t−1, vc
1,t and vc

2,t, with intercept. This regression also produces φ̂c
1 and φ̂c

2 as the

estimators of the coefficients of vc
1,t and vc

2,t.

We obtain that the OLS estimates β̂1 and β̂2 are strongly biased, in agreement with

Theorem 3. The average values for β̂1 and β̂2 are 2.37 and 2.34, respectively. The corrected

estimators β̂c
1 and β̂c

2 are less biased, averaging to 1.31 and 1.29, respectively. This is in

agreement with Theorem 4. It should be noted that the bias reduction here is not as great

as in the case where Φ is known to be diagonal. The problem is that the Nicholls-Pope

bias-corrected estimator Φ̂c still yields an appreciably biased estimator. For example,

for the (1,1) entry of Φ, which is 0.7, the OLS estimator Φ̂11 averages to 0.567, while the

corrected estimator Φ̂c
11 averages to 0.667, indicating that the bias has not been completely

removed. In this regard, it should be noted that the implementation of the Nicholls-Pope

bias-corrected estimator of Φ requires the estimation of several additional parameters in

comparison to the Kendall method (8). This is a particularly severe problem when the

sample size is as small as that considered here (n = 30). However, the Kendall method is

not applicable in the present case where Φ is not diagonal.

The standard errors of the corrected estimators β̂c
1 and β̂c

2 are approximately 30 percent
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larger than those of the OLS estimators β̂1 and β̂2. This may be attributed to the fact that

the standard errors of the entries of Φ̂c are larger than those of Φ̂. In further simulations

not shown here, we tried increasing the off-diagonal entries of Σv. The effect of this is to

further increase the standard error of both Φ̂c and β̂c relative to those of Φ̂ and β̂.

The estimators φ̂c
1 and φ̂c

2 average to values very close to the true value of −10, in

agreement with Lemma 4.

Overall, in the case of non-diagonal Φ, we find that our method provides bias reduction

in estimation of β compared to OLS, but at the cost of a potentially substantial increase

in the standard error. Future improvements on our implementation of the Nicholls-Pope

bias-correction methodology for estimating Φ could lead to improved performance of the

corresponding corrected estimator β̂c, in terms of both bias and standard error.

6 Empirical Illustration

In this section, we illustrate our estimation method using a common model of predic-

tive regression that was studied by Stambaugh (1999). Following Kothari and Shanken

(1997)10, we estimate a model where annual stock market return is predicted by the

market’s dividend yield at the beginning of the year:

(E1) RMt = α + βDIV Yt−1 + ut.

RMt is the real (inflation-adjusted) value-weighted annual market return for year t

10We thank these authors for kindly providing us their data.
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(from April of year t− 1 to March of year t), and DIV Yt−1 is the corresponding

value-weighted dividend yield for the preceding year (the dividend paid over year t− 1

divided by the price level at the end of that year). The dividend yield DIV Yt is

assumed to be an AR(1) process

(E2) DIV Yt = θ + ρDIV Yt−1 + vt.

Estimates are conducted over three short subperiods of 30 years each to highlight the

problem of estimation from a small sample. The series over the period11 1934-1991 are

split into two equal and (almost) nonoverlapping periods of 30 years each, 1934-1963 and

1962-1991. In addition, we pick a middle period of 30 years, 1953-1982. We follow the

procedure in Section 2. The estimation results are presented in Table 3.

INSERT TABLE 3 HERE

(a) We estimate model (E2) by OLS and obtain ρ̂, its standard error ŜE(ρ̂) and

t -statistic. These are presented in Table 3, line 1.

(b) We do a bias-correction of ρ̂

(E3.1) ρ̂c = ρ̂ + (1 + 3ρ̂)/n + 3(1 + 3ρ̂)/n2,

where n =30 is the sample size. This is reported in Table 3, line 2.

(c) Using these parameters, we calculate the corrected intercept θ̂c and corrected

residual vc
t for model (E2):

11We start in 1934 because Kothari and Shanken (1997) indicate a problem with extreme observations
in 1933.
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(E3.2) θ̂c = (1− ρ̂c)
∑n

t=1 DIV Yt/n.

(E3.3) vc
t = DIV Yt − (θ̂c + ρ̂cDIV Yt−1) .

(d) Model (E1) is estimated to obtain the estimated coefficient β̂ and its standard error

ŜE(β̂). These estimates are reported in Table 3, line 3.

(e) Using vc
t from (E3.3), we estimate the augmented model:

(E4) RMt = α + βDIV Yt−1 + φvc
t + et.

From this estimation we obtain the parameters β̂c (Table 3, line 4) and φ̂c (line 6), their

respective standard errors from this regression, ŜE(β̂c) and ŜE(φ̂c) and t -statistics.

(f) The corrected standard error of β̂c, ŜE
c
(β̂c), is calculated according to (11) as

follows:

(E6) ŜE
c
(β̂c) =

√
(φ̂c)2{ŜE(ρ̂)}2(1 + 3/n + 9/n2)2 + {ŜE(β̂c)}2 .

This is reported in line 5. The corresponding t -statistic is calculated as β̂c/ŜE
c
(β̂c).

The estimation results in Table 3 show that β̂ is biased upward because φ < 0 (line

5) and ρ̂ < ρ̂c (lines 1 and 2). Indeed, we obtain that β̂c < β̂ (lines 3 and 4). Next,

consider the bias in the standard error of β̂. Lines 4 and 5 show that ŜE
c
(β̂c) > ŜE(β̂c).

Therefore, in line 5, the null hypothesis β = 0 is not rejected nearly as strongly as it is in

line 4 where the biased standard error is used.
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7 Concluding Remarks

This paper provides a convenient way to estimate a predictive regression model where

a time series of one variable is regressed on lagged variables which have a first order

autoregressive structure and whose disturbance terms are contemporaneously correlated

with that of the predicted variable. Stambaugh (1999) shows that for the case of a single

predictor, the OLS-estimated coefficient of the lagged variable is biased when computed

from a small sample. There is no available estimation method for this model, except

for a ”plug in” version where, in the case of a single regressor, the sample estimated

parameters are plugged into Stambaugh’s bias expression. In the multi-predictor case,

there heretofore exists neither an expression for the bias of the OLS estimators of the

coefficients of the predictive variables, nor is there any direct reduced-bias estimation

method.

This paper develops an estimation method for both the single-predictor and multi-

predictor situations that produces a reduced-bias estimator of the coefficients of the lagged

variables. For the single-predictor case, we also develop a straightforward estimation

method for a reduced-bias standard error. Our method is particularly useful in the multi-

predictor case for which there is no direct reduced-bias estimation method available, even

in a ”plug in” version.
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8 Appendix

Proof of Theorem 1: As in Stambaugh (1999), we define the error process {et} by

ut = φvt + et = E[ut|vt] + et. Since (et, vt)
′ is bivariate normal and E[et|vt] = 0, et and

vt must be independent for all t. Since the vectors (ut, vt)
′ are independent, et must be

independent of v1, . . . , vn, and x0. Thus, for all t, et is independent of x0, . . . , xn.

Let 1n be an n× 1 vector of ones, and define the matrix X̃ = [1n, {xt−1}n
t=1, {vt}n

t=1].

Let y = (y1, . . . , yn)′. Since yt = α + βxt−1 + φvt + et, we have

y = X̃


α

β

φ

 + e ,

where e = (e1, . . . , en)′, and the vector (α̃, β̃, φ̃) of least squares estimators is given by
α̃

β̃

φ̃

 = (X̃ ′X̃)−1X̃ ′y =


α

β

φ

 + (X̃ ′X̃)−1X̃ ′e .

Since e has zero mean and is independent of X, we obtain

E[β̃] = β ,

thereby completing the proof �

Proof of Theorem 2: As in the proof of Theorem 1, we use the representation

yt = α + βxt−1 + φvt + et ,
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where the error terms et are i.i.d. normal with mean zero, and for all t, et is independent

of x0, . . . , xn.

Let α̂c, β̂c, φ̂c be the coefficients of the constant term, xt−1 and vc
t , respectively, in

an OLS regression (with intercept) of yt on xt−1 and vc
t for t = 1, . . . , n. If {rt}n

t=1 is the

sequence of residuals obtained in an OLS regression of xt−1 on vc
t (with intercept), then

we have

β̂c =

∑n
t=1 rtyt∑n
t=1 r2

t

. (19)

Since the residual vector is orthogonal to the vectors of explanatory variables, we have

n∑
t=1

rt = 0 ,
n∑

t=1

rtv
c
t = 0 . (20)

Writing xt−1 = a0 + a1v
c
t + rt, we obtain from (20) that

n∑
t=1

rtxt−1 =
n∑

t=1

r2
t . (21)

Therefore, from (19), we have

β̂c =
1∑n

t=1 r2
t

n∑
t=1

rt(α + βxt−1 + φvt + et)

=
1∑n

t=1 r2
t

n∑
t=1

rt[βxt−1 + φvc
t + φ(vt − vc

t ) + et] .

Since the {rt} are functions of {xt}, and since for all t, et is independent of {xt}n
t=0, it

follows that for all t, et is independent of r1, . . . , rn, and therefore

E

[
1∑n

t=1 r2
t

n∑
t=1

rtet

]
= 0 . (22)

From (20) and (21), we have

1∑n
t=1 r2

t

n∑
t=1

rt(βxt−1 + φvc
t ) = β .
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Thus,

E[β̂c − β] = φE

[
1∑n

t=1 r2
t

n∑
t=1

rt(vt − vc
t )

]
.

Since vt − vc
t = (θ̂c − θ) + (ρ̂c − ρ)xt−1, we find from (20) and (21) that

E[β̂c − β] = φE[ρ̂c − ρ] ,

thereby completing the proof �

Proof of Lemma 1: Let q be the residual vector in an OLS regression of vc
t on xt−1.

Note that q is independent of the error vector, e = u− φv. Using the representation

yt = α + φ(θ̂c − θ) + βxt−1 + φvc
t + φ(ρ̂c − ρ)xt−1 + et ,

together with the properties
∑

qtv
c
t =

∑
q2
t and

∑
qtxt−1 =

∑
qt = 0, we obtain

φ̂c =

∑n
t=1 qtyt∑n
t=1 q2

t

= φ +

∑n
t=1 qtet∑n
t=1 q2

t

. (23)

Since {et} is independent of {rt} and E[et] = 0, the expectation of the second term on

the righthand side of the above equation is zero, so we obtain E[φ̂c] = φ �

Proof of Lemma 2: Note first that

[ŜE(β̂c)]2 =
σ̂2∑n
t=1 r2

t

,

where {rt}n
t=1 is the sequence of residuals obtained in a simple OLS regression of xt−1 on

vc
t (with intercept). We use the error et = ut − φvt as in the previous proofs. Note that

the variance of et is σ2
e = V ar(et) = σ2

u − σ2
uv/σ

2
v . From the proof of Theorem 2, it can be

seen that

β̂c − β = φ(ρ̂c − ρ) +

∑n
t=1 rtet∑n
t=1 r2

t

. (24)
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The two terms on the righthand side of (24) are uncorrelated, and the second term has

mean zero. It follows that

E[β̂c − β]2 = φ2E[ρ̂c − ρ]2 + σ2
eE

[
1∑n

t=1 r2
t

]
.

It remains to be shown that

σ2
eE

[
1∑n

t=1 r2
t

]
= E

[
σ̂2∑n
t=1 r2

t

]
. (25)

Let H denote the hat matrix corresponding to X = [1n, xt−1, v
c
t ] for the regression of yt

on xt−1, vc
t . That is, H = X(X ′X)−1X ′. Let r0 denote the residual vector from this

regression, so that r0 = (I −H)y = (I −H)e, where I denotes an n× n identity matrix.

Conditionally on X, we have

n∑
t=1

r2
0t = e′(I −H)e ∼ σ2

eχ
2
n−3 ,

and since the random variable on the righthand side does not depend on X, the result is

true unconditionally as well. Thus,

σ̂2 =
1

n− 3

n∑
t=1

r2
0t

is an unbiased estimator of σ2
e , that is, E[σ̂2] = σ2

e . Now, we have

E

[
σ̂2∑n
t=1 r2

t

| X
]

= E

[
1

n− 3

e′(I −H)e∑n
t=1 r2

t

| X
]

=
1∑n

t=1 r2
t

1

n− 3
E[σ2

eχ
2
n−3] = σ2

e

1∑n
t=1 r2

t

.

Taking expectations of both sides and using the double expectation theorem yields (25) �

Proof of Lemma 3: Note first that

[ŜE(φ̂c)]2 =
σ̂2∑n
t=1 q2

t

.
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From (23), we obtain

V ar[φ̂c] = σ2
eE

[
1∑n

t=1 q2
t

]
. (26)

Proceeding as in the proof of Lemma 2, we have

E

[
σ̂2∑n
t=1 q2

t

| X
]

= E

[
1

n− 3

e′(I −H)e∑n
t=1 q2

t

| X
]

=
1∑n

t=1 q2
t

1

n− 3
E[σ2

eχ
2
n−3] = σ2

e

1∑n
t=1 q2

t

.

Taking expectations of both sides and using the double expectation theorem yields

E

[
σ̂2∑n
t=1 q2

t

]
= σ2

eE

[
1∑n

t=1 q2
t

]
.

The Lemma now follows from (26) �

Proof of Theorem 3: Using (12) and (14) we can write

yt = α + β′xt−1 + φ′vt + et , (27)

where {et} has zero mean and is independent of both {vt} and {xt}. The OLS estimators

of α and β are given by  α̂

β̂

 = (X ′X)−1X ′y ,

where

X = [1n, (x0, x1, . . . xn−1)
′]

is an n× (p + 1) matrix of predictor variables, and y = (y1, . . . , yn)′. The OLS estimators

of Θ and Φ are given by  Θ̂′

Φ̂′

 = (X ′X)−1X ′x ,
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a (p+1)×p matrix, where x = (x1, . . . , xn)′ is n×p. In vector form, we can write (27) as

y = X

 α

β

 + vφ + e ,

where v = (v1, . . . , vn)′ is n× p, and e = (e1, . . . , en)′ is n× 1. Thus, α̂

β̂

−

 α

β

 = (X ′X)−1X ′vφ + (X ′X)−1X ′e . (28)

Similarly, since

x = X

 Θ′

Φ′

 + v ,

we have  Θ̂′

Φ̂′

−

 Θ′

Φ′

 = (X ′X)−1X ′v . (29)

Taking the expectation of (28) gives

E


 α̂

β̂

−

 α

β


 = E[(X ′X)−1X ′v]φ .

Taking the expectation of (29) gives

E


 Θ̂′

Φ̂′

−

 Θ′

Φ′


 = E[(X ′X)−1X ′v] .

Thus,

E


 α̂

β̂

−

 α

β


 = E


 Θ̂′

Φ̂′

−

 Θ′

Φ′


φ .

In particular, considering the final p entries of this equation, we obtain

E[β̂ − β] = E[Φ̂− Φ]′φ �
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Proof of Theorem 4: Using (12), (13), (14) and (16), we can write

yt = α̃ + {β′ + φ′(Φ̂c − Φ)}xt−1 + φ′vc
t + et , (30)

where α̃ = α + φ′(Θ̂c − Θ) is a constant with respect to t. Next, define the p × 1

vectors {rt}n
t=1 by rt = (r1t, . . . , rpt)

′ where for j = 1, . . . n, {rjt}n
t=1 is the (row) vector of

residuals from a 2p−1-variable OLS regression of the j’th entry of xt−1 on all other entries

of xt−1 as well as all p entries of vc
t and an intercept. Correspondingly, define {r̃t}n

t=1 by

r̃t = (r1t/Σ r2
1t, . . . , rpt/Σ r2

pt )′ and write xt = (x1t, . . . , xpt)
′, and vc

t = (vc
1t, . . . , v

c
pt)

′. It

follows that

β̂c =
n∑

t=1

r̃tyt , (31)

and for all j, k ∈ {1, . . . , p} with j 6= k,

n∑
t=1

r̃jt =
n∑

t=1

r̃jt xk,t−1 =
n∑

t=1

r̃jt v
c
jt =

n∑
t=1

r̃jt v
c
kt = 0 , (32)

and
n∑

t=1

r̃jt xj,t−1 =
n∑

t=1

r̃jt rjt = 1 . (33)

Substituting yt from (30) in (31) and using (32) and (33) yields

β̂c = β + (Φ̂c − Φ)′φ +
n∑

t=1

r̃tet . (34)

Since et has mean 0 and is independent of r̃t, the expectation of the final term in (34) is

zero, and after taking expectations of both sides of (34), we obtain

E[β̂c − β] = E[Φ̂c − Φ]′φ � (35)
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Proof of Lemma 4: Define the p × 1 vectors {qt}n
t=1 by qt = (q1t, . . . , qpt)

′ where for

j = 1, . . . n, {qjt}n
t=1 is the (row) vector of residuals from a 2p−1-variable OLS regression

of the j’th entry of vc
t on all other entries of vc

t as well as all p entries of xt−1 and an

intercept. Correspondingly, define {q̃t}n
t=1 by q̃t = (q1t/Σ q2

1t, . . . , qpt/Σ q2
pt )′ and write

xt = (x1t, . . . , xpt)
′, and vc

t = (vc
1t, . . . , v

c
pt)

′. It follows that

φ̂c =
n∑

t=1

q̃tyt , (36)

and for all j, k ∈ {1, . . . , p} with j 6= k,

n∑
t=1

q̃jt =
n∑

t=1

q̃jt v
c
kt =

n∑
t=1

q̃jt xj,t−1 =
n∑

t=1

q̃jt xk,t−1 = 0 , (37)

and
n∑

t=1

q̃jt v
c
jt =

n∑
t=1

q̃jt qjt = 1 . (38)

Substituting yt from (30) in (36) and using (37) and (38) yields

φ̂c = φ +
n∑

t=1

q̃tet . (39)

Since et has mean 0 and is independent of q̃t, the expectation of the final term in (39) is

zero, and after taking expectations of both sides of (39), we obtain

E[φ̂c] = φ � (40)
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Table 1: Simulation results for regression model (1) and (2) with one

predictive variable

1500 replications from the single-predictor models

yt = α + βxt−1 + ut , (1)

xt = θ + ρxt−1 + vt . (2)

The sample size is n = 30. The values of the parameters and the construction of the

variables are as follows: θ = 0.2, ρ = 0.8, α = 0, β = 1, ut = φvt + et with φ = −10 and

{vt} and {et} are mutually independent i.i.d. standard normal random variables. The

table presents estimation results of the single-predictor model by OLS as well as by our

estimation procedure.

Our estimation procedure is as follows:

(I) Estimate model (2) by OLS and obtain ρ̂. Construct the corrected estimator

ρ̂c = ρ̂ + (1 + 3ρ̂)/n + 3(1 + 3ρ̂)/n2 and obtain the corrected residuals

vc
t = xt − θ̂c − ρ̂cxt−1, where θ̂c is the adjusted intercept.

(II) For model (1), obtain β̂c as the coefficient of xt−1 in an OLS regression of yt on xt−1

and vc
t , with intercept. This regression also produces φ̂c as the estimator of the

coefficient of vc
t .

The parameters β̂ and ρ̂ are obtained from OLS estimation of models (1) and (2),

respectively. Standard errors that are estimated directly from linear regression output

are denoted by ŜE. The corrected standard error for β̂c is denoted by ŜE
c
(β̂c), as given

by (11).
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Table 1: Results for the single-predictor model (1) and (2)

Mean Std Dev

ρ̂ 0.68354 0.144900

ŜE(ρ̂) 0.14938 0.027022

ρ̂c 0.79539 0.160840

β̂ 2.16466 1.457300

ŜE(β̂) 1.35350 0.247760

β̂c 1.04597 1.615370

ŜE(β̂c) 0.14091 0.037945

ŜE
c
(β̂c) 1.50131 0.274680

φ̂c -10.00231 0.198450

ŜE(φ̂c) 0.19491 0.037140
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Table 2: Simulation results for a model with multiple predictive variables

1500 replications from the models

yt = α + β′xt−1 + ut , (12)

xt = Θ + Φxt−1 + vt . (13)

The sample size is n = 30. There are two predictors. The values of the parameters and
the construction of the variables are as follows: α = 0, β = (1, 1)′, Θ = (0, 0)′,
ut = φ′vt + et, the et are independent standard normal, φ = (φ1, φ2)

′ = (−10,−10)′, the
vt are independent bivariate normal random variables with mean zero and covariance
matrix Σv, and the sequences {et} and {vt} are independent of each other.

Panel A presents estimation results of a model with a diagonal AR(1) parameter matrix

Φ =

(
ρ 0
0 ρ

)
,

with ρ = .8. Results are presented for two covariance matrices:

Σ1v =

(
2 1
1 2

)
.

and

Σ2v =

(
10 9
9 10

)
.

Panel B presents results for a non-diagonal AR(1) parameter matrix

Φ =

(
.7 .1
.1 .7

)
,

and

Σv =

(
2 0
0 2

)
.

Our estimation procedure for the results in Panel A is as follows:

(I) For each component x1,t and x2,t, estimate the univariate AR(1) model (2) by OLS
and obtain ρ̂1 and ρ̂2. Construct the corrected estimators
ρ̂c

i = ρ̂i + (1 + 3ρ̂i)/n + 3(1 + 3ρ̂i)/n
2, i =1 and 2, and obtain the corrected residuals

vc
i,t = xi,t − θ̂c

i − ρ̂c
ixi,t−1, where θ̂c

i is the adjusted intercept.
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(II) Obtain β̂c
1 and β̂c

2 as the coefficients of x1,t−1 and x2,t−1 in an OLS regression of yt on

x1,t−1, x2,t−1, vc
1,t and vc

2,t, with intercept. This regression also produces φ̂c
1 and φ̂c

2 as the
estimators of the coefficients of vc

1,t and vc
2,t.

Standard errors are shown for the two autoregressive coefficients and for the two β
coefficients. Standard errors that are estimated directly from OLS regression output are

denoted by ŜE. The corrected standard errors for β̂c
i are denoted by ŜE

c
(β̂c

i ), as given
by (11).

Panel A: Results with diagonal autoregressive matrix Φ

Results for Σ1v Results for Σ2v

Mean Std Dev Mean Std Dev

Corr(x1, x2) 0.47812 0.26081 0.88823 0.080110

ρ̂1 0.68093 0.14159 0.68131 0.15099

ŜE(ρ̂1) 0.13380 0.024649 0.13336 0.025155

ρ̂c
1 0.79249 0.15716 0.79292 0.16759

ρ̂2 0.68137 0.14550 0.68584 0.14463

ŜE(ρ̂2) 0.13324 0.024493 0.13285 0.024479

ρ̂c
2 0.79299 0.16150 0.79794 0.16054

β̂1 2.53264 3.45941 2.35615 7.90746

ŜE(β̂1) 2.87538 0.76788 6.43206 1.81446

β̂c
1 1.07288 1.57362 1.07419 1.68432

ŜE(β̂c
1) 0.12675 0.037893 0.11451 0.035915

ŜE
c
(β̂c

1) 1.49123 0.27377 1.48545 0.28011

β̂2 2.48274 3.50385 2.60638 7.82477

ŜE(β̂2) 2.85577 0.73630 6.39806 1.83349

β̂c
2 1.06690 1.62275 1.01614 1.60598

ŜE(β̂c
2) 0.12596 0.037133 0.11391 0.036226

ŜE
c
(β̂c

2) 1.48368 0.27232 1.47940 0.27149

φ̂c
1 -10.00283 0.16404 -9.99990 0.15134

φ̂c
2 -9.99360 0.16182 -9.99833 0.14949
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Our estimation procedure for the results in Panel B is as follows:

(I) Construct the bias-corrected AR(1) parameter matrix estimate Φ̂c using the method

of Nicholls and Pope (1988) as described in the text. Next, construct the bivariate

corrected residual series vc
t = yt − Θ̂c − Φ̂cxt−1 where Θ̂c is the adjusted intercept. Write

vc
t = (vc

1,t, v
c
2,t)

′ and write xt = (x1,t, x2,t)
′.

(II) Obtain β̂c
1 and β̂c

2 as the coefficients of x1,t−1 and x2,t−1 in an OLS regression of yt on

x1,t−1, x2,t−1, vc
1,t and vc

2,t, with intercept. This regression also produces φ̂c
1 and φ̂c

2 as the

estimators of the coefficients of vc
1,t and vc

2,t.
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Panel B: Results with non-diagonal autoregressive matrix Φ

Mean Std Dev

Φ̂11 0.567259 0.168382

Φ̂c
11 0.666770 0.195825

Φ̂12 0.097958 0.175846

Φ̂c
12 0.104370 0.227690

Φ̂21 0.095680 0.177392

Φ̂c
21 0.102141 0.227899

Φ̂22 0.567612 0.166191

Φ̂c
22 0.666601 0.194369

β̂1 2.369189 2.471143

β̂c
1 1.308748 3.201779

β̂2 2.340689 2.489899

β̂c
2 1.287487 3.239454

φ̂c
1 -10.00009 0.147507

φ̂c
2 -9.997331 0.145990
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Table 3 Small-sample estimates of a regression of stock return on lagged dividend

yield

The table presents results of the following models:

(E1) RMt = α + βDIV Yt−1 + ut.

(E2) DIV Yt = θ + ρDIV Yt−1 + vt.

(E3.1) ρ̂c = ρ̂ + (1 + 3ρ̂)/n + 3(1 + 3ρ̂)/n2

(E3.2) θ̂c = (1− ρ̂c)
∑n

t=1 DIV Yt/n.

(E3.3) vc
t = DIV Yt − (θ̂c + ρ̂cDIV Yt−1) .

(E4) RMt = α + βDIV Yt−1 + φvc
t + et.

(E5) ŜE
c
(β̂c) =

√
(φ̂c)2{ŜE(ρ̂)}2(1 + 3/n + 9/n2)2 + {ŜE(β̂c)}2 .

RMt is the value weighted market real return for year t and DIV Yt−1 is the value

weighted dividend yield for the preceding year. Estimators θ̂, ρ̂, α̂ and β̂ are obtained

from OLS regressions. Estimators θ̂c, ρ̂c, α̂c and β̂c are obtained under our estimation

procedure described in the text. [t] is the t-statistic.
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Coefficient From model Case 1: 1934-1963 Case 2: 1962-1991 Case 3: 1953-1982

1 ρ̂ (E2) 0.448 0.7845 0.7184

(ŜEρ̂) [t] (OLS) (0.1711) [2.62] (0.1904) [4.12] (0.1207) [5.95]

2 ρ̂c (E3.1) 0.534 0.9075 0.8341

3 β̂ (E1) 5.4062 7.7607 8.7435

(ŜEβ̂) [t] (OLS) (2.99) [1.81] (3.0428) [2.55] (3.0916) [2.83]

4 β̂c (E4) 4.1705 6.4835 5.9497

(ŜEβ̂c) [t] (1.7463) [2.39] (2.3727) [2.73] (1.0684) [5.57]

5 (ŜE
c
β̂c) [t] (E5) (3.1256) [1.33] (3.1675) [2.05] (3.2508) [1.83]

6 φ̂c -14.3771 -10.3867 -24.1489

(ŜEφ̂c) [t] (E4) (1.9197) [2.39] (2.3380) [4.44] (1.6465) [14.67]
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