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Abstract

Building models for high dimensional portfolios is important in risk management and asset
allocation. Here we propose a novel way of estimating models of time-varying covariances that
overcome some of the computational problems which have troubled existing methods when
applied to 1,000s of assets. The theory of this new strategy is developed in some detail, allowing
formal hypothesis testing to be carried out on these models. Simulations are used to explore
the performance of this inference strategy while empirical examples are reported which show
the strength of this method.
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1 Introduction

The estimation of time-varying covariances between the returns on thousands of assets is a key input

in modern risk management. Typically this is carried out by calculating the sample covariance

matrix based on the last 100 days of data or through the RiskMetrics exponential smoother. When

these covariances are allowed to vary through time using ARCH-type models the computational

burden of likelihood based fitting is overwhelming in very large dimensions, even for very simple

models. In this paper we introduce novel econometric methods which sidestep this issue allowing

richly parameterised ARCH models to be fit in vast dimensions.

Early work on time-varying covariances in large dimensions was carried out by Bollerslev (1990)

in his constant correlation model, where the volatilities of each asset were allowed to vary through

time but the correlations were time invariant. This has been shown to be empirically problematic

by, for example, Tse (2000) and Tsui and Yu (1999).

The only econometric work that we know of which allows correlations to change through time

in vast dimensions is that on the DECO model of Engle and Kelly (2007) and the MacGyver

estimation method of Engle (2007). Engle and Kelly (2007) assume that the correlation amongst

assets changes through time but is constant amongst N assets. This cross-sectional invariance

means they can compute the log-likelihood for their models in O(N) calculations, which is highly

convenient. However, this equicorrelation model is quite restrictive since the diversity of correlations

is often the key to risk management. Our estimation methods an be implemented in O(N) but

allow a much richer model structure.

An alternative method was suggested by Engle (2007) where he fit many pairs of bivariate

estimators, governed by simple dynamics, and then took a median of these estimators. This method

is known as the MyGyver estimation strategy strategy, but it requires O(N2) calculations and

formalising this method in order to conduct inference is difficult.

The structure of the paper is as follows. In Section 2 we outline the model we use and discuss

various general ways of fitting time-varying covariance models. In Section 3 we discuss the core

of the paper, where we average in different ways the results from many small dimensional models

in order to carry out inference on a large dimensional model. This section has both theoretical

and Monte Carlo comparisons of our methods with full Maximum Likelihood estimation and the

MacGyver strategy. In Section 4 we discuss in particular the fitting of the dynamic conditional cor-

relation (DCC) models introduced by Engle (2002) and studied in detailed by Engle and Sheppard

(2001), and the cDCC model suggested by Aielli (2006). In Section 5 we provide some empirical

illustrations of the methods and Section 6 concludes.
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2 The model and existing approaches

2.1 The model

We assume we have a database r of log-returns

rjt, j = 1, 2, ..., N, t = 1, 2, ..., T,

where we think of t as time and j as referring to the j-th asset return. In our analysis we will think

of the number of assets available N as being very large, as will the time series dimension T . It is

helpful to sometimes refer to the cross section

rt = (r1t, r2t, ..., rNt)
′ ,

and the time series

r(j) = (rj1, rj2, ..., rjT )′ .

A typical risk management model of rt given the information available at time t is to assume:

Assumption 1

E(rt|Ft−1) = 0 (1)

Cov(rt|Ft−1) = Ht, (2)

where Ft−1 is the information available at time t− 1 to predict rt.

Thus rt is a martingale difference sequence with a time-varying covariance matrix. As econome-

tricians we will model how Ht depends upon the past data allowing it to be indexed by some

parameters θ ∈ Θ. We intend to estimate θ. For simplicity in our examples we have always used

single lags in the dynamics, the extension to multiple lags is trivial but hardly used in multivariate

empirical work.

Example 1 Covariance tracking and scalar dynamics. This puts

Ht = (1 − α− β) Σ + αrt−1r
′

t−1 + βHt−1, α ≥ 0, β ≥ 0, α+ β < 1,

which is a special case of Engle and Kroner (1995). Typically this model is completed by setting

H1 = Σ. Hence in this model θ =
(
ψ′, vech(Σ)′

)
′

, where ψ = (α, β)′.

Example 2 Nonstationary covariances with scalar dynamics:

Ht = (1 − β) rt−1r
′

t−1 + βHt−1, β ∈ [0, 1) .

A simple case of this is Riskmetrics, which puts β = 0.94. Inference is usually made conditional

on Hj for j ≤ 0 where these matrices are set to some values determined by presample data.
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Example 3 NOT FINISHED YET, DONT READ. Variance Targeting BEKK.

Ht = CC ′ +Art−1r
′

t−1A
′ +BHt−1B

′ (3)

where A and B are diagonal matrices. Since the BEKK family of models are closed to rotations,

it is possible to rotate the returns by the long-run covariance, which is estimated using the usual

moment estimator, H̄ to produce a modified equation that can be estimated on the rotated returns,

H̄−
1
2HtH̄

−
1
2 =H̄−

1
2CC ′H̄−

1
2 + H̄−

1
2AH̄

1
2 H̄−

1
2 rt−1r

′

t−1H̄
−

1
2 H̄

1
2A′H̄−

1
2 (4)

+ H̄−
1
2BH̄

1
2 H̄−

1
2Ht−1H̄

−
1
2 H̄

1
2B′H̄

1
2 (5)

H̃t = C̃C̃ ′ + Ãut−1u
′

t−1Ã
′ + B̃H̃t−1B̃

′ (6)

Because E[H̃t] = IN by construction, this model can be variance targeted,

H̃t =
(
IN − ÃÃ′ − B̃B̃′

)
+ Ãut−1u

′

t−1Ã
′ + B̃H̃t−1B̃

′

Finally it can be noted that the complete log-likelihood is not needed for identification of the param-

eters, and thus a subset pseudo-likelihood using some pairs can be used to estimate the values of Ã

and B̃.

A standard inference method is to construct a series of martingale difference based moment

constraints using the score of a standard Gaussian quasi-likelihood

logLQ(θ; r) =

T∑

t=1

lQt (θ), (7)

where

lQt (θ) = −1

2
log |Ht| −

1

2
rt

′H−1
t rt.

Maximising this quasi-likelihood (7) directly is challanging as

• the parameter space is typically large;

• non-linear constraints on the parameters have to be imposed to ensure conditional covariances

remain positive definite during estimation;

• the inversion of Ht takes O(N3) computations.

2.2 Covariance tracking and two-stage estimation

Many modern models of time-varying covariances employ covariance tracking, such as the model

highlighted in Example 1. For such classes of problems it is easy to simplify the optimisation

problem using a two-stage estimation strategy. Within the context of Example 1 we can estimate

θ =
(
ξ′, ψ′

)
′

, ξ = vech(Σ),
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by:

1. Using the moment estimator

Σ̂ =
1

n

T∑

t=1

rtr
′

t.

We write ξ̂ = vech(Σ̂).

2. Compute

ψ̂ = argmax
ψ

T∑

t=1

logLQt (ξ̂, ψ; r),

where we call

T∑

t=1

logLQt (ξ̂, ψ; r)

the mofile likelihood1 .

The above strategy is O(N3) — the appropriate econometric theory for this estimator will be

discussed in Section 3.2.2. For now we move on to proposing methods which overcome this O(N3)

problem.

3 The main idea: averaging likelihoods

3.1 Many small dimensional models

For all j ∈ {1, 2, ..., N}, k ∈ {j + 1, 2, ..., N}

E(rjt|Ft−1) = 0, Cov(rjt, rkt|Ft−1) = hjkt. (8)

Then a valid pseudo-likelihood can be constructed for θ can be constructed off this pair:

logLjk(θ) =
T∑

t=1

ljkt(θ),

where

ljkt(θ) = −1

2
log

∣∣∣∣
hjjt hjkt
hjkt hkkt

∣∣∣∣ −
1

2

(
rjt
rkt

)
′
(
hjjt hjkt
hjkt hkkt

)
−1 (

rjt
rkt

)
.

1Although at first sight
PT

t=1 logLQ
t (bξ, ψ; r) looks like a profile (or concentrated) likelihood, it is not as bξ is not

a ML estimator but an attractive moment estimator. Hence we call it a moment based profile likelihood, or mofile
likelihood for short. This means bψ is a two-step estimator which is typically less efficient than the maximum likelihood
estimator.
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This psuedo-likelihood will have information about θ but more information can be obtained by

carrying out the same operation on all available pairs

logLBt (θ) =

N∑

j>k

logLjkt(θ).

Again this is a valid pseudo-likelihood and yields our prefered estimator of θ: the maximum paired

psuedo-likelihood (MPLE) estimator

θ̃ = argmax
θ

T∑

t=1

N∑

j>k

logLjkt(θ).

Remark. This method never requires the inversion of the full N by N covariance matrices Ht.

Remark. Many databases of returns have significant holes, where the asset was not traded or

not recorded, and this is problematic for likelihood methods based on lQt (θ). Here the solution is

trivial, as we through time we only count contributions to the psuedo-likelihood from pairs which

were actively traded at that time. This also deals with the problem of assets entering and leaving

indexes, for we can estimate θ based solely on data covering periods when the asset was inside the

index.

This type of marginal analysis has appeared before in the non-time series statistics literature.

An early example is Besag (1974) in his analysis of spatial processes, more recently it was used

by Fearnhead (2003) in bioinformatics, deLeon (2005) on grouped data, Kuk and Nott (2000) and

LeCessie and van Houwelingen (1994) for correlated binary data. This type of objective function is

sometimes call composite likelihood methods, following the term introduced by Lindsay (1988) and

“subsetting methods”. See Varin and Vidoni (2005). Cox and Reid (2003) discusses the asymptotics

of this problem in the non-time series case. Section 7.3 will discuss the parallels this work brings

to our problem.

3.2 Covariance tracking and MPLE

3.2.1 Estimation strategy

The use of covariance tracking means that we can again use a two-stage estimation procedure. All

that changes is

2’ Compute

ψ̂ = argmax
ψ

T∑

t=1

logLBt (ξ̂, ψ; r).

The above strategy is O(N2), rather than the usual O(N3) which would have resulted if we had

used the Gaussian log-likelihood.
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3.2.2 Econometric theory

The following subsection discusses the econometric theory of this estimator and can be skipped on

first reading if desired.

From an econometric theory viewpoint, this two-stage estimator is a Pearson (1894) method of

moments estimator — stacking the scores for this problem

T∑

t=1

(
ξ − 1

T vech(rtr
′

t)
∂ logLBt (ξ, ψ; r)/∂ψ

)
=

T∑

t=1

m(θ; yt|Ft−1).

The asymptotic behaviour of this estimator can be derived using standard two-stage GMM theory

(Newey and McFadden (1994)). The result is that

√
T

(
θ̂ − θ0

)
d→ N(0,I−1JI−1′),

where

I = p lim
T→∞

1

T

T∑

t=1

∂m(θ0; yt|Ft−1)

∂θ′
, J = lim

T→∞

Cov

{
√
T

1

T

T∑

t=1

m(θ0; yt|Ft−1)

}
.

Particular interest is in

√
T

(
ψ̂ − ψ0

)
d→ N(0,I−1J I−1′)

I has a block structure that is relatively sparse. We write

1

T

∑

t=1

T
∂m (θ0; yt|Ft−1)

∂θ′
=

1

T

T∑

t=1

(
I 0

∂2LBt (ξ, ψ)/
(
∂ψ∂ξ′

)
∂2LBt (ξ, ψ)/

(
∂ψ∂ψ′

)
)

(9)

p→
(

I 0
Iψξ Iψψ

)
= I. (10)

This means that

I−1 =

(
I 0

−I−1
ψψIψξ I−1

ψψ

)
=

(
I 0

Iψξ Iψψ
)
.

Particular interest is in making inference on ψ. A special case of the above analysis is

√
T

(
ψ̂ − ψ0

)
d→ N

(
0,IψξJξψIψψ + IψψJψψIψψ

)
.

The term IψψJψψIψψ is relatively easy to calculate due to its small dimension. The matrix Jξψ is

harder, but actually it is not needed for we actually have to work with IψξJξψIψψ. If we write

m(θ0; yt|Ft−1) =

{
mξ(θ0; yt|Ft−1)
mψ(θ0; yt|Ft−1)

}
,

then the required matrix is the expected covariance between

Iψξmξ(θ0; yt|Ft−1) and mψ(θ0; yt|Ft−1)Iψψ,

which are small dimensional. Of course computing this will be cumbersome however.
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3.2.3 Simulation based inference: warp-speed bootstrap

An alternative is to use a bootstrap. Because the returns are generally dependant a moving block

bootstrap or the stationary bootstrap (Künsch (1989) and Politis, Romano, and Wolf (1999)) must

be used.

1. Using a vector time-series appropriate with the lag length chosen correctly (see Politis and

White??), conduct a nonparametric bootstrap of the vector return series. It is crucial at the

stage that the returns be sampled using time-series blocks of vectors to avoid breaking the

cross-sectional dependance.

2. Using the re-sampled data, reestimate ψ as ψ̂
(b)

, where (b) tracks the bootstrap iteration.

Confidence intervals and inference for parameters can be directly constructed from
{
ψ̂

(b)
}
.

3.3 Not every pair

Each ljkt(λ, φ) is a valid contribution to the pseudo-likelihood and can contribute to learning about

φ. So far we have calculated the “total pseudo-likelihood” over all possible pairs of observations

logLBt =

N∑

j>k

logLjkt,

but it also attractive to sum over just a subset to form the “subset pseudo-likelihood”

logL
eB
t =

N∗∑

j=1

logLJj ,Kj,t.

Here, without replacement,

{Jj ,Kj} ∈ {j = 1, 2, ..., N ; k = j + 1, k + 2, ..., N} .

By taking only O(N) pairs this method potentially has the advantage of being computationally

fast, indeed the entire estimation method would be simply O(N). It is tempting to randomly select

N∗ pairs and make inference conditional on the selected pairs as the selection is strongly exogenous.

A theoretical analysis of this setup is provided in Appendix 8, while the Monte Carlo performance

of this estimator is given in Table 5 with this estimator being denoted MSLE. It shows the efficiency

loss compared to computing all possible pairs is extremely modest when N is moderate.

The idea of creating psuedo-likelihoods based on pairs obviously generalises to many triples or

even higher dimensional log-likelihoods. We have not explored this here, but clearly there should

be some efficiency gains in carrying this out.
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4 The method applied to dynamic correlations

4.1 Model structures

We will have a particular interest in so called dynamic conditional correlation models — for these

models allow for richer volatility dynamics than the models given in Examples 1 and 2. Here we

will discuss them in some detail.

Without any loss we can always write

Ht = DtRtDt,

where

Dt = diag(
√
h1t, ...,

√
hNt), Rt =

{
ρjkt

}
,

and

hjt = Var(rjt|Ft−1), ρjkt = Cor(rjt, rkt|Ft−1).

The dynamic conditional correlation models are based on the following crucial assumption. The

parameters

θ =
(
λ′, φ′

)
′ ∈ Θ, λ =

(
λ′(1), λ

′

(2), ..., λ
′

(N)

)
′

,

have the property

Θ =




n⋃

j=1

Λ(j)


 ∪ Φ,

and

λ(j) ∈ Λ(j), j = 1, 2..., N ; φ ∈ Φ.

The λ(j) solely influences the conditional variances hjt of the j-th asset and φ solely influences the

time-varying correlations Rt.

Example 4 Dynamic conditional correlation (DCC) model (Engle (2002) and Engle and Sheppard

(2001)). For j = 1, 2, ..., N let

hjt = π2
j(1 − αj − βj) + αjr

2
jt−1 + βjhjt−1, π2

j ≥ 0, αj ≥ 0, βj ≥ 0, αj + βj < 1.

The parameters are, for each asset, λ(j) =
(
π2
j , αj, βj

)
′

. Calculate the “devolatilised returns”

st = (s1t, ..., sNt)
′ where

sjt =
rjt√
hjt

.
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Define another set of parameters ω = (γ, δ). Then we have

Qt = Ψ (1 − γ − δ) + γst−1s
′

t−1 + δQt−1, γ ≥ 0, δ ≥ 0, γ + δ < 1

ρjkt =
qjkt√
qjjtqkkt

. (11)

Typically we assume Ψ is positive semidefinite with ones on its leading diagonal.

Remark. The assumption that hjt depends solely on its past squared returns can be relaxed to

allow for leverage effects (e.g. through the threshold or GJR ARCH models Glosten, Jagannathan,

and Runkle (1993)) without changing the principle. In general this structure is quite restrictive

since it has assumed that the conditional volatility of asset j is not effected by the past of other

assets. It maybe useful to include effects such as the past average volatility of other series or the

squared market return to generalise this structure and then test for the significance of these effects.

Example 5 cDCC model (Aielli (2006)). This is the same as the DCC except that the “devolatil-

isation” is carried out as

s∗jt =
rjt

√
qjjt√
hjt

,

while the structure of

Qt = Ψ (1 − γ − δ) + γs∗t−1s
∗′

t−1 + δQt−1,

remains the same. The virtue of this setup is that E (s∗t s
∗′

t |Ft−1) = Qjkt, which means the recursion

in Q has a martingale difference representation

Qt = Ψ (1 − γ − δ) + γ
{
s∗t−1s

∗′

t−1 − E
(
s∗t−1s

∗′

t−1|Ft−2

)}
+ (γ + δ)Qt−1,

which implies 1
T

∑T
t=1 s

∗

t s
∗′

t
p→ Ψ.

Remark. Changing the devolatilisation in this way is rather minor as we would expect qjjt to be

very close to one, however it makes the theoretical analysis and computational implementation of

the model much easier.

4.2 Existing two-stage approach

Writing the devolatilised returns

st(λ) = D−1
t rt,

H−1
t = D−1

t R−1
t D−1

t = D−2
t +D−1

t

(
R−1
t − I

)
D−1
t ,
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we can express

lQt =

{
−1

2
log

∣∣D2
t

∣∣ − 1

2
r′tD

−2
t rt

}
+

{
−1

2
log |Rt| −

1

2
st(λ)′R−1

t st(λ)

}
+ st(λ)′st(λ)

=





N∑

j=1

l
Aj

t (λ(j))



 + l

eQ
t (λ, φ) + Ct(λ).

Here

l
Aj

t (λ(j)) = −1

2
log hjt −

1

2
r2jt/hjt

l
eQ
t (λ, φ) = −1

2
log |Rt| −

1

2
st(λ)′R−1

t st(λ) (12)

Ct(λ) = st(λ)′st(λ).

We can think of l
Aj

t (λ(j)) as a Gaussian quasi-likelihood (e.g. Bollerslev and Wooldridge (1992)).

Likewise l
eQ
t (λ, φ) is the Gaussian quasi-likelihood from running a multivariate time-varying corre-

lation model on some vector of returns which we have tried to devolatilise.

The last term Ct(λ) does not depend upon φ. It reflects the fact that the ARCH models for

individual assets are not independent of one another in this multivariate setting and so exploiting

this information could improve the efficiency of the estimation procedure compared to an asset by

asset estimation method. This is exactly like running individual regressions rather than a joint

regression in a seemingly unrelated regression model (see Zellner (1962)).

Engle and Sheppard (2001) develop a two stage quasi-likelihood estimation strategy to avoid

the task of maximising (7). Their approach is to ignore the information in Ct(λ) and maximise

instead

N∑

j=1

{
l
Aj

t (λ(j)) + l
eQ
t (λ, φ)

}
. (13)

This is inefficient but still yields valid martingale difference based moment constraints and so

typically consistent estimators. It has the virtue that the optimisation can be carried out in two

steps.

1. Compute

λ̂(j) = argmax
λ(j)

logLAj
(λ(j); r),

where

logLAj
(λ(j); r) =

T∑

t=1

l
Aj

t (λ(j)).

11



2. Compute

φ̂ = argmax
φ

logL eQ(λ̂, φ; r),

where

logL eQ(λ, φ; r) =

T∑

t=1

l
eQ
t (λ, φ).

The first stage separately fits an ARCH-type model to each univariate return sequence. The

second stage treats λ as known at λ̂ and solely maximises over φ. Of course it yields estimators

which differ from those resulting in the maximisation of (12) but taken together it does maximise

(13).

5 Fitting dynamic conditional correlation models

5.1 Block structure

Recall from Example 4 the cDCC model. Engle (2002) and Engle and Sheppard (2001) advocate

the use of a blocking strategy to estimate these types of model and here we slightly adapt it to the

use of likelihood or pseudo-likelihood methods. It also draws on the insights of Aielli (2006) on his

cDCC model. It will be convenient to write

τ j =
(
α′

j , β
′

j

)
′

, ψ = vecl(Ψ), and ξ = (γ, δ)′ .

Here vecl(X) takes the lower triangular elements of the matrix X, ignoring the leading diagonal.

The two blocks are as follows:

1. For j = 1, 2, ..., N compute

π̂2
j =

1

T

T∑

t=1

r2jt,

τ j = argmax
τj

logLAj
(π̂2
j , τ j; r).

2. Use a flip-flop algorithm to simulatenously solve the moment constraints

T−1
T∑

t=1

(
ψ − vecl

(
sts

′

t

))
= 0,

and maximising the mofile objective function

W (ψ̂, ξ; r),

where W could be the log-likelihood, a total pseudo-likelihood or a subset pseudo-likelihood.

This flip-flop algorithm has three steps.
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(a) Given ξ compute

qj,j,t = (1 − γ − δ) + γs∗2j,t−1 + δqj,j,t−1,

where s∗jt = rjt
√
qj,j,t/

√
hjt with qj,j,0 = 1.

(b) Calculate a moment based estimator (note only a subset of them is need if the pseudo-

likelihood is being used)

Ψ̂ =
1

T

T∑

t=1

s∗t s
∗′

t .

(c) Optimise

ξ̂ = argmax
ξ

W (ψ̂, ξ; s).

(d) Return to 2a until ξ̂ has converged.

In the DCC model Engle (2002) and Engle and Sheppard (2001) advocate using the same

blocking structure but without step 2a and using sjt = rjt/
√
hjt rather than s∗jt. This means stage

2 does not need to be iterated, which saves considerably computationally. However, it is hard to

formally establish that the estimator of this model has good statistical properties.

Remark. The use of moment estimators to estimate π2
j is often called variance tracking in the

literature and is discussed by Engle and Mezrich (1996). It can be thought of as replacing one

element of the score vector for the quasi-likelihood by a moment based estimator

1

T

T∑

t=1

E
(
π2
j − r2jt

)
= 0.

The use of the same type of estimator on the correlation matrix was advocated by Engle and

Sheppard (2001), but this is somewhat problematic for it is easy to see that

1

T

T∑

t=1

E
{
vecl(Ψ) − vecl(sts

′

t)
}
6= 0,

due to the presence of the transform (11). This leads to an inconsistent estimator. It is known

though that the impact of this is very small (see Engle and Sheppard (2001)). In the cDCC

approach this problem disappears for then

1

T

T∑

t=1

E
{
vecl(Ψ) − vecl(s∗t s

∗′

t )
}

= 0.

This point was made well by Aielli (2006) as his motivation for the cDCC adjustment.

Remark. The calculation of R∗

t is an O(N2) operation, but inference on its dynamics can be

carried out in O(N), O(N2) or O(N3) calculations.

The asymptotic theory for this type of estimator is derived in Appendix 9.
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5.2 Engle’s MacGyver method

Engle (2007) proposed a new method for estimating large dimensional models. He called it the

MacGyver strategy. Again this is based on pairs. But instead of averaging the log-likelihoods of

pairs of observations, the log-likelihoods were seperately maximised and then the resulting estima-

tors were robustly averaged using medians. This overcomes the difficulty of inverting H, but has

the difficulty that it is not clear that the pooled estimators should have equal weight nor what are

the asymptotic properties of the resulting robust average.

Engle’s MacGyver method has some similarities, but is distinct, with the Ledoit, Santa-Clara,

and Wolf (2003) flexible multivariate GARCH estimation procedure which also fits models to many

pairs of observations. The distinctive feature is that Engle’s approach is based on the devolatilised

series, rather than the original returns, and is focused entirely on estimating a small number of

DCC parameters.

5.3 Monte Carlo based inference: warp-speed bootstrap

An alternative is to use a bootstrap. Because the returns are generally dependant in their squares

and cross-products a moving block bootstrap (CITATION) or the stationary bootstrap must be

used.

1. Using a vector time-series appropriate with the lag length chosen correctly (see Politis and

White??), conduct a nonparametric bootstrap of the return series and estimate univariate

volatility models for each asset. It is crucial at the stage that the returns be sampled using

time-series blocks of vectors to avoid breaking the cross-sectional dependance.

2. Using the re-sampled data and the initial estimates of λ̂
(b)
j , where (b) tracks the bootstrap

iteration, estimate the MSLE or MPLE.

Confidence intervals and inference for parameters can be directly constructed from
{

ˆ
ξ(b)

}
.

6 Monte Carlo

6.1 Simulation design

Here we explore the effectiveness of the following:

• likelihood based estimator;

• pseudo-likelihood based estimator;

• subset pseudo-likelihood estimators;

14



• Engle’s MacGyver estimator;

A small Monte Carlo study based on 1,000 replications has been conducted assuming away

the ARCH effects by setting throughout σ2
jt = 1 and not estimating them. Throughout we used

T = 2, 000 and the returns were was simulated according to a DCC model given in Example 4 three

choices of temporal dependence in the Q process

(
α
β

)
=

(
0.02
0.97

)
,

(
0.05
0.93

)
, or

(
0.10
0.87

)
.

The intercept Ψ was chosen to be the unconditional correlations of a set of N observations from a

cross-sectional AR(2) of the form

yj = 1.2yj−1 + .7yj−2 + νj, νj
i.i.d.∼ N(0, 1). (14)

Example 6 When N = 5

Ψ =




1.00 0.71 0.15 −0.32 −0.48
0.71 1.00 0.71 0.15 −0.32
0.15 0.71 1.00 0.71 0.15

−0.32 0.15 0.71 1.00 0.71
−0.48 −0.32 0.15 0.71 1.00



.

6.2 DCC Estimation

The DCC estimation differs in just Step 2c where we use a variety of objective functions W to

maximise. They all have the structure

W =

T∑

t=1

Wt,

where

likelihood Wt = −1
2 log |Rt| − 1

2s
′

tR
−1
t st

pseudo-likelihood Wt =
∑N

j>k logLj,k,t
subset pseudo-likelihood Wt =

∑N−1
j=1 logLj,j+1,t

where

lj,k,t(λ, φ) = −1

2
log

(
1 − ρ2

jkt

)
−
s2j,t + s2k,t − 2ρjktsj,tsk,t

2
(
1 − ρ2

jkt

) .

Engle’s MacGyver estimator for these models performs N(N − 1)/2 ML estimations of the

bivariate DCC model and then computes the median of the resulting estimators.
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6.3 Particulars to this run

• The intercept parameters were not estimated. Instead population values were used

• The regular DCC was used, not the cDCC. Note: Need more on the cDCC probably and it

can be used with any of these estimation methods. Replicate the results for cDCC to be placed

in an appendix.

• T = 1000 in all runs, N is one of {3, 5, 10, 25, 50, 75}

• A parameters were estimated using a constraint that 0 ≤ α ≤ .9998, 0 ≤ β ≤ .9998, α+ β <

.9998.

Tables 1, 2 and 3 contains the bias, standard deviation and root mean square error of the

estimates over the 1, 000 runs. In all runs the bias is negligible relative to the standard deviation;

as a result, the RMSE is essentially equal to the standard deviation of the parameters. Finally,

Table 4 contains the average run times for each of the four methods across all runs of that method

(3 × 1, 000 each) for a fixed N .

• The N2-pseudolikelihood estimator has better RMSE for all cross-section sizes and parameter

configurations.

• The FFMLE appears to be approximately N -consistent, as the standard deviations of the

N = 75 case is about 10 times smaller those of the N = 3 case. This is likely due to the

O(N2) correlations.

• The gains from increasing the cross section in the other estimators appear to be approximately
√
N , although calling them

√
N -consistent doesn’t seem wise.

• The run time for the N2-pseudo-likelihood estimator is probably about 4× higher than it

could be.

Remark. The maximum mofile likelihood (MMLE) method seems to develop a significant bias in

estimating α as N increases and increases as α increases.

Remark. An interesting feature is that our subset pseudo-likelihood based inference procedure is

both much faster to compute and, in our Monte Carlo analysis, more precise than the conventional

flip-flop method at estimating α and less precise at estimating β. The improvement for estimating

α, because of the fall in the bias, is likely to be due to the approximations used in the flip-flop,

which are removed by the pair based procedures.
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Bias
MMLE MSLE MPLE Engle MMLE MSLE MPLE Engle

N γ δ γ δ γ δ γ δ δ + γ δ + γ δ + γ δ + γ

γ = .02, δ = .97

3 .000 -.004 .001 -.009 .001 -.009 .001 -.011 -.004 -.008 -.008 -.010
10 -.000 -.003 -.000 -.004 -.000 -.005 .000 -.008 -.003 -.004 -.005 -.008
50 -.002 -.003 -.000 -.003 -.000 -.005 .000 -.008 -.005 -.003 -.005 -.008
100 -.004 -.004 -.000 -.003 -.000 -.005 .000 -.008 -.008 -.003 -.005 -.008

γ = .05, δ = .93

3 -.001 -.002 -.001 -.004 -.001 -.004 -.001 -.006 -.002 -.005 -.005 -.007
10 -.002 -.000 -.001 -.002 -.001 -.003 -.001 -.005 -.002 -.003 -.004 -.006
50 -.007 .002 -.001 -.002 -.001 -.003 -.001 -.006 -.005 -.002 -.004 -.006
100 -.010 -.002 -.000 -.002 -.001 -.003 -.001 -.006 -.012 -.002 -.004 -.007

γ = .10, δ = .87

3 -.003 .001 -.002 -.003 -.002 -.003 -.001 -.004 -.002 -.004 -.004 -.006
10 -.007 .005 -.003 .001 -.003 .000 -.003 -.003 -.002 -.002 -.003 -.005
50 -.017 .007 -.004 .002 -.004 .000 -.003 -.003 -.010 -.002 -.003 -.006
100 -.019 -.003 -.002 .000 -.003 -.001 -.002 -.004 -.022 -.002 -.003 -.006

Table 1: Root-mean-square error results from a simulation study for the dynamic correlation esti-
mators of the DCC model. We only report the estimates of γ and δ and their sum. The estimators
include the subset psuedo-likelihood (MSLE), the full pseudo-likelihood (MPLE), Engle’s MacGyver
strategy (Engle) and the mofile likelihood (MMLE) estimator. All results based on 1 , 000 replica-
tions and T = 2 , 000 .
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Standard Deviation
MMLE MSLE MPLE Engle MMLE MSLE MPLE Engle

N γ δ γ δ γ δ γ δ δ + γ δ + γ δ + γ δ + γ

γ = .02, δ = .97

3 .004 .009 .007 .021 .007 .021 .008 .024 .006 .018 .018 .020
10 .001 .002 .003 .005 .003 .005 .003 .006 .002 .004 .004 .005
50 .000 .001 .001 .002 .001 .002 .001 .002 .001 .002 .001 .002
100 .000 .000 .001 .002 .001 .001 .001 .001 .000 .001 .001 .001

γ = .05, δ = .93

3 .006 .010 .009 .020 .009 .020 .011 .019 .006 .015 .015 .013
10 .002 .003 .004 .007 .005 .007 .005 .008 .002 .004 .004 .005
50 .001 .001 .002 .003 .002 .003 .002 .003 .001 .002 .002 .002
100 .000 .001 .002 .002 .002 .002 .002 .003 .001 .002 .001 .002

γ = .10, δ = .87

3 .008 .012 .013 .019 .013 .019 .015 .022 .007 .011 .011 .013
10 .003 .005 .007 .009 .007 .009 .007 .010 .003 .005 .005 .006
50 .002 .002 .003 .005 .004 .005 .004 .005 .001 .003 .003 .003
100 .001 .002 .003 .004 .003 .004 .003 .004 .001 .002 .002 .003

Table 2: Root-mean-square error results from a simulation study for the dynamic correlation esti-
mators of the DCC model. We only report the estimates of γ and δ and their sum. The estimators
include the subset psuedo-likelihood (MSLE), the full pseudo-likelihood (MPLE), Engle’s MacGyver
strategy (Engle) and the mofile likelihood (MMLE) estimator. All results based on 1 , 000 replica-
tions and T = 2 , 000 .
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RSME
MMLE MSLE MPLE Engle MMLE MSLE MPLE Engle

N γ δ γ δ γ δ γ δ δ + γ δ + γ δ + γ δ + γ

γ = .02, δ = .97

3 .004 .010 .007 .023 .007 .023 .008 .026 .007 .020 .020 .023
10 .001 .004 .003 .007 .003 .007 .003 .010 .004 .006 .006 .009
50 .002 .003 .001 .004 .001 .005 .001 .008 .005 .004 .005 .008
100 .004 .004 .001 .004 .001 .005 .001 .008 .008 .004 .005 .008

γ = .05, δ = .93

3 .006 .010 .009 .021 .009 .021 .011 .020 .007 .016 .016 .015
10 .003 .003 .005 .007 .005 .008 .005 .010 .003 .005 .006 .008
50 .007 .002 .002 .004 .002 .004 .002 .006 .005 .003 .004 .007
100 .010 .002 .002 .003 .002 .004 .002 .006 .012 .003 .004 .007

γ = .10, δ = .87

3 .009 .012 .013 .019 .013 .019 .015 .022 .007 .011 .011 .014
10 .008 .007 .008 .009 .008 .009 .008 .010 .003 .006 .006 .008
50 .017 .007 .005 .005 .005 .005 .005 .006 .010 .004 .004 .007
100 .019 .003 .004 .004 .004 .004 .004 .006 .022 .003 .004 .007

Table 3: Root-mean-square error results from a simulation study for the dynamic correlation esti-
mators of the DCC model. We only report the estimates of γ and δ and their sum. The estimators
include the subset psuedo-likelihood (MSLE), the full pseudo-likelihood (MPLE), Engle’s MacGyver
strategy (Engle) and the mofile likelihood (MMLE) estimator. All results based on 1 , 000 replica-
tions and T = 2 , 000 .
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7 Additional remarks

7.1 Imposing structure on Ψ

The unconditional mean of the Qt process, denoted Ψ, is assumed to be positive semidefinite and

have unity on its leading diagonal. It may make sense to impose some more structure on it. A

leading candidate would be that Ψ obeys a factor structure, which would mean that in the long run

the correlations in the model obey a factor structure but in the short run their can be departures

from it. This is simple to carry out for DCC or cDCC for it involves replacing the estimation of Ψ

by the average outer product of the st or s∗t , respectively, with a ML estimation step on a factor

model.

7.2 Parametric modelling on the innovations

The model is incomplete without a assumption on the distribution of rt|Ft−1, for so far we have

just assumed a zero conditional mean and time-varying covariance matrix Ht. A simple assumption

is that

εt = R
−1/2
t D−1

t rt|Ft−1 ∼ N(0, I),

which is obviously parameter free. An alternative would be to estimate the marginal distributions

of the εt using their empirical distribution functions and then estimating their copula using a

parametric form such as a Gaussian or student-t copula. Again it is possible to estimate these

parametric structures using the pseudo-likelihood approach based on pairs of observations.

One non-parametric approach is to employ a bootstrap off the multivariate empirical distribu-

tion of the

ε1, ε2, ..., εT ,

simply sampling from these sample points with replacement. This is certainly the easiest viable

approach.

N MMLE MSLE MPLE Engle

3 1.68 .02 .02 .04
10 2.46 .06 .25 .63
50 17.6 .35 7.51 17.4
100 70.8 .76 35.7 67.8
250 2.12 268 409 6928

Table 4: Mean run time in seconds for the 4 estimation strategies for the DCC model. Throughout
T = 2 , 000 . All based on 1, 000 replications except the N = 250 case which was based on 20.

20



Throughout all these methods need the researcher to compute

R
−1/2
t xt,

where

xt = D−1
t rt.

This is computationally demanding, although it is not as hard as computing the entire inverse of

Rt and only has to be carried out once rather than many times in a ML calculation.

7.3 Composite likelihoods

To show both the usefulness and the limitations of this approach, suppose that V ar(rjt) = 1,

Cor(rjt, rkt) = ρ and our sole task is to estimate ρ from the cross-sectional and time-series dimen-

sion. For this extreme model the cross-sectional theoretical properties of some of these estimators

are easy to find when the rt are serially independent, as discussed in some detail in Appendix 8.

Simulation results, under this assumption, for the estimators are given in Table 5. The MPLE

performs well in the highly and weakly correlated case and less well in the moderate case. MLE

can estimate ρ solely off the cross-section so works even when T = 1. When T = 2 and the rt are

multivariate but temporally independent, the poor moderately correlated MPLE cases are much

improved and the bias and efficiency losses are very small for weakly and highly correlated data

and the bias in the moderately correlated data is modest.

This Example shows that the psuedo-likelihood approach is not without costs, but that it is

able to extract useful information from the cross-section. Its biases will be averaged away when T

is moderately large an so we are left with an expectation that it will perform well in practice for

more interesting problems such as estimating the memory parameters in dynamic models.

8 Conclusions
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Appendix A: equicorrelation case

8.1 All pairs

Theoretical analsysis of the equicorrelation case is interesting. This follows the discussion given in

Section 7.3, where

Cor(rjt, rkt) = ρ, R = ριι′ + (1 − ρ) I.

Focus on the T = 1 case and ignore the t subscript.

Noting that 2
∑N

j>k rjrk =
(∑N

j=1 rj

)2
− ∑N

j=1 r
2
j we have

S =
1

N

N∑

j=1

r2j
p→ 1 + ρ

∗
(f2 − 1), U =

2

N(N − 1)

N∑

j>k

rjrk
p→ ρ

∗
f2.

Then we have

2

N(N − 1)
logLB1 (ρ) = −1

2
log

(
1 − ρ2

)
− S − ρU

(1 − ρ2)
,

2

N(N − 1)

∂ logLB1 (ρ)

∂ρ
=

ρ+ U

(1 − ρ2)
− 2ρ (S − ρU)

(1 − ρ2)2
, so

U + ρ̂ (1 − 2S) + ρ̂2U − ρ̂3 = 0, so

(
ρ
∗
f2 − p lim ρ̂

)
(1 + p lim ρ̂2) + 2ρ

∗
p lim ρ̂ = 0.

Figure 1 plots the true value ρ
∗

against p lim ρ̂ for a variety of values of f . This shows inconsistency

and is due to the fact that the score equation has a zero expectation when averaged over repeated

samples of f and εi, but when T = 1 we only have a single draw from f . This method can be

compared to the ML estimator. Now (e.g. Engle and Kelly (2007))

R−1 =
1

1 − ρ

{
I − ρ

1 + (N − 1)ρ
ιι′

}
, |R| = (1 − ρ)N−1 {1 + (N − 1)ρ} ,

so

logL(ρ) = −1

2
[(N − 1) log (1 − ρ) + log {1 + (N − 1)ρ}]

− 1

2 (1 − ρ)




N∑

j=1

r2j −
ρ

1 + (N − 1)ρ




N∑

j=1

rj




2


= −1

2
[(N − 1) log (1 − ρ) + log {1 + (N − 1)ρ}]

− 1

2 (1 − ρ) {1 + (N − 1)ρ}



{1 + (N − 2)ρ}

N∑

j=1

r2j − 2ρ

N∑

j>k

rjrk



 .

When N is large

1

N
logL(ρ)

p→ −1

2
log (1 − ρ) − 1

2 (1 − ρ)
(p limU − p limS) = −1

2
log (1 − ρ) − 1

2 (1 − ρ)
(1 − ρ

∗
) ,
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Figure 1: In the equicorrelation model we can consistently estimate ρ even in the T = 1 case
using the cross-sectional information and ML estimation. How does the pseudo-likelihood do when
T = 1? It is inconsistent and this figure shows the resulting pseudo-true value. It demonstrates
the necessity of time series information for the pseudo-likelihood approach.

1

N

∂ logL(ρ)

∂ρ

p→ 1

2 (1 − ρ)
− 1

2 (1 − ρ)2
(1 − ρ

∗
),

so p lim ρ̂ = ρ
∗
. Simulation results are given in Table 5 and discussed in the main test.

8.2 Subset estimator

Suppose N∗ = N − 1 and

Jj = Kj − 1 = j,

then the most basic subset pseudo-likelihood estimator is

logLBt (λ, φ) =
N−1∑

j=1

logLj,j+1,t(λ, φ),

S =
1

N − 1

N−1∑

j=1

r2j
p→ 1 + ρ

∗
(f2 − 1), U =

1

N − 1

N−1∑

j=1

rjrj+1
p→ ρ

∗
f2

1

(N − 1)
logLB1 (ρ) = −1

2
log

(
1 − ρ2

)
− S − ρU

(1 − ρ2)
,

which means the resulting estimator has the same limit as the paired pseudo-likelihood. The Monte

Carlo performance of this estimator is given in Table 5 with this estimator being denoted MSLE.
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It shows the efficiency loss compared to computing all possible pairs is extremely modest when N

is moderate.

9 Appendix B: asymptotic theory for DCC

The asymptotic theory behind this is a special case of the GMM estimator. In particular the

moment conditions

1

T

T∑

t=1

mt(θ; yt|Ft−1) = 0

are based around

mt(θ; yt|Ft−1) =




1
T

(
π2

1 − r21t
)

∂lA1
t (λ(1))/∂τ 1

...
1
T

(
π2
N − r2Nt

)

∂lAN
t (λ(N))/∂τN

1
T {vecl(Ψ) − vecl(sts

′

t)}′
∂Wt(Ψ, ξ)/∂ξ




,

where Wt is the contribution from the t-th observation from the log-likelihood, a total pseudo-

likelihood or a subset pseudo-likelihood.

The usual way to perform asymptotics is via a Taylor expansion:

T∑

t=1

m(θ̂; yt|Ft−1) = 0 ≃
T∑

t=1

m(θ0; yt|Ft−1) +

T∑

t=1

∂m(θ0; yt|Ft−1)

∂θ′

(
θ̂ − θ0

)
,

so

√
T

(
θ̂ − θ0

)
≃

{
− 1

T

T∑

t=1

∂m(θ0; yt|Ft−1)

∂θ′

}−1 {
√
T

1

T

T∑

t=1

m(θ0; yt|Ft−1)

}

d→ N(0,I−1JI−1),

where

I = p lim
T→∞

1

T

T∑

t=1

∂m(θ0; yt|Ft−1)

∂θ′

J = lim
T→∞

Cov

{
√
T

1

T

T∑

t=1

m(θ0; yt|Ft−1)

}
.

Partition θ = (λ1, . . . , λN , ψ, ξ) where ψ = vecl (Ψ) are the intercept parameters and ξ contains

the parameters that determine the DCC dynamics.
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I has a block structure that is realtively sparse. We write

1

T

∑

t=1

T
∂m (θ0; yt|Ft−1)

∂θ′
=

1

T

T∑

t=1




diag (It (λ1, λ1) , . . . ,It (λ1, λN )) 0 0
It (ψ, λ1) , . . . ,It (ψ, λ1N ) It (ψ,ψ) It (ψ, ξ)
It (ξ, λ1) , . . . ,It (ξ, λ1N ) It (ξ, ψ) It (ξ, ξ)




(15)

p→




Iλλ 0 0
Iψλ Iψψ Iψξ
Iξλ Iξψ Iξξ


 (16)

= I, (17)

where

It(λjλj) =

(
1 0

∂2lAjt (λ(j))/∂τ j∂πj ∂2lAjt (λ(j))/∂τ j∂τ
′

j

)
,

It(ψ, λj) = − 1

T
∂vecl(s∗t s

∗′

t )/∂λ′(j)

It(ψ,ψ) = IN(N−1)/2

It(ψ, ξ) = − 1

T
∂vecl(s∗t s

∗′

t )/∂ξ′

It(ξ, λ(j)) = ∂2Wt(Ψ, ξ)/
(
∂ξ∂λ′(j)

)

It(ξ, ψ) = ∂2Wt(Ψ, ξ)/
(
∂ξ∂ψ′

)
S′

It(ξ, ξ) = ∂2Wt(Ψ, ξ)/
(
∂ξ∂ξ′

)

and where S an M by N(N − 1)/2 selection matrix which will select the M elements of vecl(s∗t s
∗′

t )

that are used in the subset estimator. Typically Aj = Bj = C = D = 1 which would mean the

dimensions of these matrices are:
I

(
3N + 2 + N(N−1)

2

)
×

(
3N + 2 + N(N−1)

2

)

Iλλ 3N × 3N
Iψλ N(N − 1)/2 × 3N
Iξλ 2 × 3N
Iψψ N(N − 1)/2 ×N(N − 1)/2
Iψξ N(N − 1)/2 × 2
Iξψ 2 ×N(N − 1)/2
Iξξ 2 × 2

Remark: In the complete DCC or cDCC model, or when using all N(N − 1)/2 pairs in the

pseudo-likelihood estimator, the Jacobian between the correlation intercepts and the parameters of

the correlation dynamics, It(ξ, ψ) is dense and S is simply an identity matrix. However, if using a

subset pseudo-likelihood estimator this block will generally be sparse and it is often substantially

faster to only compute the columns of It(ξ, φ) that correspond to the pairs used in estimation of

the parameters of the correlation dynamics.

Following the usual method of moments approach, in practice one estimates I by

Î =
1

T

T∑

t=1

∂m(θ̂; yt|Ft−1)

∂θ′

26



and J by

Ĵ=
1

T

T∑

t=1

m(θ̂; yt|Ft−1)m(θ̂; yt|Ft−1)
′.

However, the moment conditions corresponding to both the variance intercepts, π2
j , j = 1, . . . , N

and the the correlation intercepts, φij , i = 1, . . . , N , j = i+ 1, . . . , N are not martingales when the

data are conditionally heteroskedastic. As a result a HAC estimator such that of Newey and West

(1987) or Andrews (1991) must be used.
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N ρ = 0.2 ρ = 0.5 ρ = 0.9
MLE MPLE MSLE Engle MLE MPLE MSLE Engle MLE MPLE MSLE Engle

T=1

2 0.099 0.099 0.099 0.099 0.271 0.271 0.271 0.269 0.650 0.650 0.650 0.650

0.783 0.783 0.783 0.783 0.771 0.771 0.771 0.772 0.660 0.660 0.660 0.660
10 0.198 0.180 0.230 0.120 0.450 0.431 0.445 0.351 0.900 0.899 0.898 0.898

0.273 0.266 0.299 0.430 0.288 0.297 0.318 0.514 0.055 0.049 0.064 0.064
50 0.187 0.148 0.175 0.210 0.496 0.416 0.415 0.472 0.900 0.899 0.899 0.899

0.151 0.151 0.168 0.238 0.110 0.198 0.220 0.315 0.020 0.022 0.026 0.026
100 0.191 0.146 0.163 0.218 0.500 0.410 0.408 0.480 0.900 0.899 0.899 0.899

0.118 0.137 0.146 0.215 0.071 0.182 0.202 0.291 0.014 0.016 0.019 0.019
1000 0.200 0.145 0.149 0.225 0.500 0.406 0.402 0.494 0.900 0.899 0.899 0.899

0.036 0.129 0.129 0.198 0.022 0.162 0.175 0.272 0.004 0.007 0.008 0.008

T=2

2 0.123 0.123 0.123 0.123 0.351 0.351 0.351 0.351 0.814 0.814 0.814 0.814

0.649 0.649 0.649 0.649 0.618 0.618 0.618 0.618 0.404 0.404 0.404 0.404
10 0.196 0.177 0.203 0.187 0.476 0.449 0.449 0.468 0.900 0.899 0.899 0.899

0.209 0.203 0.238 0.292 0.202 0.224 0.256 0.323 0.033 0.034 0.042 0.042
50 0.193 0.167 0.178 0.222 0.499 0.454 0.452 0.525 0.900 0.900 0.900 0.900

0.111 0.121 0.137 0.165 0.072 0.139 0.160 0.193 0.014 0.015 0.018 0.018
100 0.196 0.167 0.173 0.224 0.500 0.450 0.448 0.526 0.900 0.900 0.900 0.900

0.083 0.113 0.122 0.152 0.050 0.128 0.146 0.180 0.010 0.011 0.013 0.013
1000 0.200 0.166 0.167 0.226 0.500 0.451 0.450 0.531 0.900 0.900 0.900 0.900

0.025 0.105 0.106 0.140 0.016 0.115 0.120 0.168 0.003 0.005 0.006 0.006

T=10

2 0.189 0.189 0.189 0.189 0.486 0.486 0.486 0.486 0.900 0.900 0.900 0.900

0.329 0.329 0.329 0.329 0.252 0.252 0.252 0.252 0.045 0.045 0.045 0.045
10 0.198 0.192 0.192 0.208 0.501 0.493 0.492 0.516 0.900 0.900 0.900 0.900

0.097 0.095 0.125 0.110 0.072 0.083 0.102 0.086 0.015 0.015 0.018 0.018
50 0.199 0.192 0.193 0.212 0.500 0.491 0.491 0.519 0.900 0.900 0.900 0.900

0.047 0.061 0.072 0.066 0.031 0.055 0.060 0.052 0.006 0.007 0.008 0.008
100 0.200 0.192 0.192 0.212 0.500 0.490 0.491 0.519 0.900 0.900 0.900 0.900

0.034 0.057 0.063 0.061 0.022 0.050 0.053 0.047 0.004 0.005 0.006 0.006
1000 0.200 0.191 0.191 0.212 0.500 0.489 0.489 0.518 0.900 0.900 0.900 0.900

0.011 0.054 0.054 0.057 0.007 0.047 0.048 0.044 0.001 0.003 0.003 0.003

Table 5: How efficiently do these methods use the cross-sectional information? Simulation study
for the equicorrelation model based on multivariate temporally independent data where we are solely
estimating ρ. Estimators studied: MLE, psuedo-likelihood, the single pair method and Engle’s
MacGyver method. Data is based on T = 1, 2, 10 and a variety of values of N . Figures in normal
font are the standard deviation, the bold font are the mean of the estimator. All results based on
10,000 replications.

28


