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Euler Equation Errors

Abstract
The standard, representative agent, consumption-based asset pricing theory based on

CRRA utility fails to explain the average returns of risky assets. When evaluated on cross-

sections of stock returns, the model generates economically large unconditional Euler equa-

tion errors. Unlike the equity premium puzzle, these large Euler equation errors cannot be

resolved with high values of risk aversion. To explain why the standard model fails, we

need to develop alternative models that can rationalize its large pricing errors. We evaluate

whether four newer theories at the vanguard of consumption-based asset pricing can explain

the large Euler equation errors of the standard consumption-based model. In each case, we

�nd that the alternative theory counterfactually implies that the standard model has negli-

gible Euler equation errors. We show that a simple model in which aggregate consumption

growth and stockholder consumption growth are highly correlated most of the time, but have

low or negative correlation in severe recessions, produces violations of the standard model�s

Euler equations and departures from joint lognormality that are remarkably similar to those

found in the data.

JEL: G12, G10.



1 Introduction

Previous research shows that the standard, representative agent, consumption-based asset

pricing theory based on constant relative risk aversion utility fails to explain the average

returns of risky assets.1 This is evident from the large unconditional Euler equation errors

that the model generates when evaluated on cross-sections of stock returns. Unconditional

Euler equation errors can be interpreted economically as pricing errors, thus we use the terms

�Euler equation error� and �pricing error� interchangeably. We present further evidence

on the size of these errors here and show that they remain economically large even when

preference parameters are freely chosen to maximize the model�s chances of �tting the data.

Thus, unlike the equity premium puzzle of Mehra and Prescott (1985), the large Euler

equation errors cannot be resolved with high values of risk aversion.

To explain why the standard model fails, we need to develop alternative models that can

rationalize its large pricing errors. Yet surprisingly little research has been devoted to as-

sessing the extent to which newer consumption-based asset pricing theories�those speci�cally

developed to address empirical limitations of the standard consumption-based model�can ex-

plain its large Euler equation errors.

This paper makes two contributions. First, we show that leading consumption-based asset

pricing theories resoundingly fail to explain the mispricing of the standard consumption-

based model. Speci�cally, we investigate four models at the vanguard of consumption-

based asset pricing and show that the benchmark speci�cation of each of these theories

counterfactually implies that the standard model has negligible Euler equation errors when

its parameters are freely chosen to �t the data. This anomaly is striking because early

empirical evidence that the standard model�s Euler equations were violated provided much

of the original impetus for developing the newer models we investigate here.2

Our second contribution is to suggest one speci�c direction along which the current mod-

els can be improved, based on a time-varying, state-dependent correlation between stock-

holder and aggregate consumption growth. Speci�cally, we show that a simple model in

which aggregate consumption growth and stockholder consumption growth are highly corre-

lated most of the time, but have low or negative correlation in recessions, produces violations

of the standard model�s Euler equations and departures from joint lognormality of aggregate

consumption growth and asset returns that are remarkably similar to those found in the

data.

To motivate the importance of these �ndings for consumption-based asset pricing theory,

1For example, Hansen and Singleton (1982); Ferson and Constantinides (1991); Hansen and Jagannathan

(1991); Cochrane (1996); Kocherlakota (1996).
2For example, see the discussion in Chapter 8 of Campbell, Lo, and MacKinlay (1997).
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it is helpful to consider, by way of analogy, the literature on the value premium puzzle in

�nancial economics. In this literature, the classic Capital Asset Pricing Model (CAPM)

resoundingly fails to explain the high average excess returns of value stocks, resulting in

a value premium puzzle (Fama and French 1992, 1993). It is well accepted that a fully

successful theoretical resolution to this puzzle must accomplish two things: (i) must provide

an alternative theory to the CAPM that explains the high average returns of value stocks,

and (ii) it must explain the failure of the CAPM to rationalize those high returns.

Analogously, the large empirical Euler equation errors of the standard consumption-based

model place additional restrictions on new consumption-based models: not only must such

models have zero pricing errors when the Euler equation is correctly speci�ed according to

the model, they must also produce large pricing errors when the Euler equation is incorrectly

speci�ed using power utility and aggregate consumption. This point was made by Kocher-

lakota (1996), who emphasizes the importance of Euler equation errors for theoretical work

seeking to explain the central empirical puzzles of the standard consumption-based model.

To understand why the classic consumption-based model is wrong, alternative theories must

generate the same large Euler equation errors that we observe in the data for this model.

Our analysis employs simulated data from several contemporary consumption-based as-

set pricing theories expressly developed to address empirical limitations of the standard

consumption-based model. Clearly, it is not possible to study an exhaustive list of all mod-

els that �t this description; thus we limit our analysis to four that both represent a range

of approaches to consumption-based asset pricing, and have received signi�cant attention in

the literature. These are: the representative agent external habit-persistence paradigms of

(i) Campbell and Cochrane (1999) and (ii) Menzly, Santos, and Veronesi (2004), (iii) the

representative agent long-run risk model based on recursive preferences of Bansal and Yaron

(2004), and (iv) the limited participation model of Guvenen (2003). Each is an explicitly

parameterized economic model calibrated to accord with the data, and each has proven

remarkably successful in explaining a range of asset pricing phenomena that the standard

model struggles to explain.3

3The asset pricing literature has already demonstrated a set of theoretical propositions showing that any

observed joint process of aggregate consumption and returns can be an equilibrium outcome if the second

moments of the cross-sectional distribution of consumption growth and asset returns covary in the right

way (Constantinides and Du¢ e (1996)). Such existence proofs, important in their own right, are not the

subject of this paper. Instead, we ask whether particular calibrated economies of leading consumption-based

asset pricing models are quantitatively capable of matching the large pricing equation errors generated by

the standard consumption-based model when �tted to historical data. This is important because it remains

unclear whether fully speci�ed models built on primitives of tastes, technology, and underlying shocks, and

calibrated to accord with the data in plausible ways, can in practice generate the joint behavior of aggregate

consumption and asset returns that we observe in the data.
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The rest of this paper is organized as follows. The next section lays out the empirical facts

on the Euler equation errors of the standard model and shows that they are especially large

for cross-sections that include a broad stock market index return, a short term Treasury bill

rate, and the size and book-market sorted portfolio returns emphasized by Fama and French

(1992,1993). One natural hypothesis for these �ndings is that the consumption measures

employed in empirical work are incorrect, perhaps because aggregation theorems fail and

per capita aggregate consumption is a poor measure of individual assetholder consumption

or the consumption of stockholders. Thus Section 3 of the paper begins by considering a

simple lognormal model in which the consumption data used in Euler equation estimation

is mismeasured because it fails to correctly measure the consumption of actual stockholders

(referred to hereafter as the limited participation hypothesis). Although empirical evidence

(presented below) indicates that per capita aggregate consumption and asset returns are

not jointly lognormal, this example is nevertheless useful for building intuition and for un-

derstanding the properties of more complicated models that may be only approximately

lognormal. We show that if the true pricing kernel based on stockholder consumption is

jointly lognormally distributed with aggregate consumption and returns, then estimation of

Euler equations using per capita aggregate consumption produces biased estimates of the

stockholder�s subjective discount factor and risk aversion parameters, but does not rational-

ize the magnitude of the pricing errors generated by the standard model.

We then move on in Section 3 to investigate the extent to which the leading asset pricing

models mentioned above explain the mispricing of the standard model. We show that some of

these models can explain why we obtain implausibly high estimates of risk aversion and the

subjective rate of time-preference when freely �tting aggregate data to the Euler equations of

the standard consumption-based model. But, none can explain the large unconditional Euler

equation errors associated with such estimates for plausibly calibrated sets of asset returns.4

Indeed, the asset pricing models we consider counterfactually imply that parameter values

can be found for which the unconditional Euler equations of the standard consumption-based

model are exactly satis�ed.

We close Section 3 by turning our attention back to stylized models in which the con-

sumption used in our empirical tests is mismeasured (e.g., due to limited stock market

participation), but we relax the assumption of joint lognormality. We �nd that many mod-

els with highly non-normal distributional speci�cations do not explain mispricing of the

standard model, since�as for the lognormal speci�cation�the use of mismeasured aggregate

4Campbell and Cochrane (2000) evaluate the pricing errors of the standard consumption-based model

implied by the habit model of Campbell and Cochrane (1999), by looking at the pricing errors for the most

mispriced portfolio. Their results suggest that there is scope for mispricing, but do not necessarily imply

signi�cant mispricing for the sets of stock portfolios we calibrate our models to match.
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consumption merely distorts the estimated preference parameters but not the pricing errors.

While these �ndings show that limited participation per se is insu¢ cient to explain the large

pricing errors of the standard model, the last part of Section 3 shows that when limited par-

ticipation is combined with speci�c departures from joint lognormality, such as those based

on a time-varying, state-dependent correlation between stockholder and aggregate consump-

tion, consumption-based asset pricing theories come much closer to rationalizing the large

Euler equation errors of the standard paradigm that in large part motivated the search for

newer models in the �rst place. Section 4 concludes.

2 Euler Equation Errors: Empirical Facts

In this section we consider the empirical properties of the standard consumption-based model.

We begin by showing, using U.S. aggregate data, that there are no values of the risk-aversion

parameter and subjective time discount factor for which violations of the standard model�s

unconditional Euler equations are not economically large.

Consider the intertemporal choice problem of a representative agent with constant relative

risk-aversion (CRRA) utility over aggregate consumption, who maximizes the expectation

of a time separable utility function:

Max
Ct

Et

( 1X
k=0

�k
C1�t+k � 1
1� 

)
;  > 0; (1)

subject to an accumulation equation for wealth. Ct+1 is per capita aggregate consumption,

 is the coe¢ cient of relative risk-aversion and � is a subjective time-discount factor. Agents

have unrestricted access to �nancial markets and face no borrowing or short-sales constraints.

The asset pricing model comes from the �rst-order conditions for optimal consumption

and portfolio choice, which, by the law of iterated expectations, can be expressed as as set

of unconditional moment restrictions, or Euler equations, taking the form

E
�
Mt+1R

j
t+1

�
� 1 = 0; Mt+1 = � (Ct+1=Ct)

� ; (2)

where Rjt+1 denotes the gross raw return on any tradable asset. Mt+1 is the intertemporal

marginal rate of substitution (MRS) in consumption, which is the stochastic discount factor

(SDF), or pricing kernel. Euler equations may also be expressed as a function of excess

returns:

E
h
Mt+1

�
Rjt+1 �Rft+1

�i
= 0; (3)

where Rft+1 is the return on any reference asset, here speci�ed as the return on a one-period

riskless bond. We refer to (2) and (3) as the standard consumption-based model.
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Deviations from these two equations represent Euler equation errors. De�ne

ejR � E
�
Mt+1R

j
t+1

�
� 1; ejR;t+1 �Mt+1R

j
t+1 � 1 (4)

ejX � E
h
Mt+1

�
Rjt+1 �Rft+1

�i
; ejX;t+1 �Mt+1

�
Rjt+1 �Rft+1

�
: (5)

We refer to either ejR or e
j
X as the unconditional Euler equation error for the jth asset return.

Euler equation errors can be interpreted economically as pricing errors, also commonly

referred to as �alphas� in the language of �nancial economics. The pricing error of asset j

is de�ned as the di¤erence between its historical mean excess return over the risk-free rate

and the risk-premium implied by the model with pricing kernel Mt+1. The risk premium

implied by the model may be written as the product of the asset�s beta times the price

of systematic risk.5 Thus the pricing error of the jth return is that part of the average

excess return that cannot be explained by the asset�s beta risk. Let �j denote the pricing

error of the jth asset. It is straightforward to show that �j = ejX
E(Mt+1)

: Pricing errors are

therefore proportional to Euler equation errors. Moreover, because the term E (Mt+1)
�1 is

close to unity for most models, pricing errors and Euler equation errors are almost identical

quantities. If the standard model is true, both errors should be zero for any traded asset,

for preference parameters � and  of the representative agent.

Given a set of test assets and data on aggregate consumption, (2) and (3) can be estimated

using Generalized Method of Moments (GMM, Hansen (1982)). The parameters � and  are

chosen to minimize a weighted sum of squared Euler equation errors:

min
�;

gT (; �) � w0
T (; �)WwT (; �) ; (6)

where W is a positive semi-de�nite weighting matrix and wT (; �) is the vector of Euler

equation errors for each asset, with jth element wjT (; �) given either by

wjT () =
1

T

TX
t=1

ejX;t;

in the case of excess returns, or

wjT (; �) =
1

T

TX
t=1

ejR;t;

in the case of raw returns. Let b� and b denote the argmin gT (; �).
5The beta for jth asset associated with the systematic risk factor Mt+1 is given by �j �

�Cov(Mt+1;R
j
t+1�R

f
t+1)

Var(Mt+1)
, while the price of risk associated with Mt+1 is given by � �Var(Mt+1) nE (Mt+1).

Cochrane (2005) provides an exposition.
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For most of the results below, we use the identity matrix, W = I, to weight the GMM

criterion function. We do so because this approach preserves the structure of the test assets,

which were speci�cally chosen for their economically interesting characteristics and because

they deliver a wide spread in cross-sectional average returns. Other matrices re-weight the

Euler equations, so that the GMM procedure amounts to minimizing the pricing errors of re-

weighted portfolios of the original test assets, destroying this structure. It should be noted,

however, that other weighting matrixes such as the optimal weighting matrix of Hansen

(1982) and the second moment matrix of Hansen and Jagannathan (1997) produce results

very similar to those reported below and do not alter our main conclusions.

We focus our attention on the unconditional Euler equation errors for cross-sections of

asset returns that include a broad stock market index return (measured as the CRSP value-

weighted price index return and denoted Rst ), a short term Treasury bill rate (measured as

the three-month Treasury bill rate and denoted Rft ), and six size and book-market sorted

portfolio returns available from Kenneth French�s Dartmouth web site. (A detailed descrip-

tion of the data is provided in the Appendix.) These returns are value-weighted portfolio

returns of common stock sorted into two size (market equity) quantiles and three book value-

market value quantiles. We use equity returns on size and book-to-market sorted portfolios

because Fama and French (1992) show that these two characteristics provide a �simple and

powerful characterization�of the cross-section of average stock returns, and absorb the roles

of leverage, earnings-to-price ratio and many other factors governing cross-sectional varia-

tion in average stock returns. These returns are denoted as a vector RFF
t � (R1t ; :::R

6
t )
0.

We analyze the pricing errors for the eight assets Rst ; R
f
t ;R

FF
t as a group, as well as for

the set of two assets comprised of only Rst and R
f
t . The latter is of interest because the

standard model�s inability to explain properties of these two returns has been central to the

development of a consensus that the model is �awed. In addition, almost all asset pricing

models seek to match the empirical properties of these two returns, whereas fewer generate

implications for larger cross-sections of securities.

To measure consumption, we use quarterly United States data on per capita expenditures

on nondurables and services, in 2000 dollars. The data span the period from the fourth

quarter of 1951 to the fourth quarter of 2002. Returns are de�ated by the implicit price

de�ator corresponding to this measure of consumption, Ct.

Table 1 and Figures 1 and 2 that follow present summary statistics from the GMM

estimation of the Euler equations above. The square root of the average squared Euler

equation errors (RMSE) is reported as a measure of the magnitude of mispricing. To give a

sense of how the large pricing errors are relative to the returns being priced, the RMSE is

often reported relative to RMSR, the square root of the average squared (mean) returns of
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the assets under consideration.6

Estimating the empirical counterpart of (2) and (3) by GMM demonstrates the dramatic

failure of the standard model along several dimensions. Table 1 shows that when � and 

are chosen to minimize (6) for Rst+1 and R
f
t+1 alone (using raw returns), the RMSE is 2.7%

per annum, a magnitude that is 48% of the square root of the average squared returns on

these two assets. Since there are just two moments in this case, this means that there are

no values of � and  that set the two pricing errors to zero.7 When � and  are chosen to

minimize (2) for the eight asset returns, the RMSE is 3.05% per annum, a magnitude that is

33% of the square root of the average squared returns on the eight assets. The estimates b�
and b (which are left unrestricted) are close to 1.4 and 90, respectively, regardless of which
set of test assets are used. The �nal two columns of Table 1 report the results of statistical

tests of the model, discussed below.

The same patterns are visible when estimation is conducted on the Euler equations using

excess returns. Figure 1 displays the RMSE for the Euler equations in (3) over a range of

values of . The solid line plots the case where the single excess return on the aggregate stock

market, Rst+1 � Rft+1, is priced; the dotted line plots the case for the seven excess returns

Rst+1 �R
f
t+1 and R

FF
t �Rft+1. In the case of the single excess return for the aggregate stock

market, the RMSE is just the Euler equation error itself. The �gure shows that the pricing

error for the excess return on the aggregate stock market cannot be driven to zero, for any

value of . Moreover, the minimized pricing error is large. The lowest pricing error is 5.2%

per annum, almost 60% of the average annual CRSP excess return. This result occurs at

a value for risk aversion of  = 117. At other values of ; the error rises precipitously and

reaches several times the average annual stock market return when  is outside the ranges

displayed in Figure 1.

Similar results hold when Euler equation errors are computed for the seven excess returns

Rst+1 �Rft+1;R
FF
t �Rft+1. The minimum RMSE is about 60% of the square root of average

squared returns being priced, which occurs at  = 118: These results show that the degree

6For the Euler equations of raw returns, RMSE and RMSR are equal to

RMSE �

vuut 1

N

NX
j=1

�
ejR

�2

RMSR =

vuut 1

N

NX
j=1

E
�
Rjt

�2
;

where N is the number of asset returns, and E
�
Rjt

�
is the (time-series) mean of the jth raw return. RMSE

and RMSR are de�ned in an analogous fashion for excess returns.
7Note that the Euler equations are nonlinear functions of  and �: Thus, there is not necessarily a solution

to the pair of equations.
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of mispricing in the standard model is about the same regardless of whether we consider the

single excess return on the market or a larger cross-section of excess stock market returns.8

What drives the large Euler equation errors in the data? The lower panel of Table 1

provides an important clue: a signi�cant part of the unconditional Euler equation errors

generated by the standard model is associated with recessions, periods in which per capita

aggregate consumption growth is steeply negative. For example, when data points coinciding

with the smallest six observations on consumption growth are removed from the sample, the

root mean squared pricing errors are substantially reduced. The RMSE is just 0.73% per

annum or 13% of the root mean squared returns for Rst+1 and R
f
t+1; and 1.94% per annum or

21 percent of the root mean squared returns on the eight asset returns Rst+1; R
f
t+1;R

FF
t . This

result echoes the �ndings in Ferson and Merrick (1987) who report less evidence against the

standard consumption-based model in non-recession periods.

Table 2 identi�es these six observations as they are located throughout the sample. Each

occur in the depths of recessions, as identi�ed by the National Bureau of Economic Research.

In these periods, aggregate per capita consumption growth is steeply negative but the ag-

gregate stock return and Treasury-bill rate is, more often than not, steeply positive. Since

the product of the marginal rate of substitution and the gross asset return must be unity

on average, such negative comovement (positive comovement between Mt+1 and returns)

contributes to large pricing errors.9 One can also reduce the pricing errors by using annual

returns and year-over-year consumption growth.10 This procedure averages out the worst

quarters for consumption growth instead of removing them. Either way, a substantial pro-

portion of the cyclical variation in consumption is eliminated. For example, on a quarterly

basis the largest declines in consumption are about six times as large at an annual rate as

those on a year-over-year basis. This explains why Kocherlakota (1996), who focuses on

annual data, is able to locate parameter values for � and  that exactly satisfy the Euler

8In computing the pricing errors above, we use the standard timing convention that end-of-period returns

dated in quarter t should be paired with consumption growth measured from t� 1 to t. If, instead, returns
at t are paired with consumption growth from t to t + 1; a value for  can be found that sets the pricing

error to zero for the single excess return Rs � Rf . By contrast, the choice of timing convention has very
little a¤ect on the RMSE for the set of seven excess returns Rs�Rf ;RFF

t �Rf . We use the former timing
convention as it is standard empirical practice in estimation of Euler equations. We stress, however, that

the timing convention itself is not important for the comparisons with theoretical models that follow, since

those models always produce pricing errors that are close to zero regardless of which timing convention is

used.
9Eliminating the recession periods, however, results in preference parameter estimates that are even more

extreme than they are in the full sample; for example b > 300: Therefore, if one�s criterion for success is

reasonable preference parameter estimates, then the standard model does worse when recession periods are

removed than when they are included.
10For a recent example along these lines, see Jagannathan and Wang (2005).
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equations of a stock return and Treasury-bill rate.

Of course, these quarterly recession episodes are not outliers to be ignored, but signi�cant

economic events to be explained. Indeed, we argue that such Euler equation errors, driven

by periods of important economic change, are among the most damning pieces of evidence

against the standard model. An important question is why the standard model performs so

poorly in recessions relative to other times.

Although not reported above, we note that the pricing error of the Euler equation associ-

ated with the CRSP stock market return is always positive, implying a positive alpha in the

expected return-beta representation of the model. This says that unconditional risk premia

are too high to be explained by the stock market�s covariance with the marginal rate of

substitution of aggregate consumption, a result familiar from the equity premium literature

(Mehra and Prescott (1985), Kocherlakota (1996)). Still, it is important to remember that

unlike the equity premium puzzle, the large Euler equation errors cannot be resolved by high

values of .

2.1 Sampling Error and Tests for Joint Normality

We use GMM distribution theory to ask whether the estimated pricing errors wT (; �)

are jointly more di¤erent from zero than what would be implied by sampling error alone.

When there are more moments than parameters to be estimated, this amounts to a test

of overidentifying restrictions. The last two columns of Table 1 report p�values from chi-

squared tests of the model�s overidentifying restrictions for estimation of the eight Euler

equations for the raw returns Rst ; R
f
t ; and R

FF
t . Although the results presented so far have

used the identity weighting matrix, the last column in Table 1 presents the p�values from
the same statistical test using an estimate of the optimal GMM weighting matrix (Hansen

(1982)). The results from either weighting matrix are the same: we may strongly reject the

hypothesis that the Euler equation errors are jointly statistically indistinguishable from zero;

the p�values for this test are less than 0.0001.11

For the two-asset case, the model is just-identi�ed, so the overidentifying tests above are

not applicable. But note that the expectation in (3) is estimated using the sample means

ejX;t+1. Fixing � and , it is possible to compute the sampling variation in the sample mean

of ejX;t+1, given as �
2 = �2X=T; where �X is the sample standard deviation of e

j
X;t+1 and T is

the sample size.12

11Cochrane (2005), Chapter 11, explains how to apply Hansen�s (1982) GMM results to compute p-values

using an arbitrary �xed weighting matrix.
12We also calculated standard errors for the mean of ejX;t+1 using a nonparameteric correction for serial

correlation. Since ejX;t+1 is close to serially uncorrelated, this correction has little a¤ect on the error bands.
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The sampling error of the mean of ejX;t+1 is large when evaluated at the estimated valuesb� = 1:4 and b = 117. When Rjt+1 = Rst+1, a con�dence interval formed by plus and minus two

standard errors is (�0:55%; 11%), in percent per annum. This large range is not surprising
and arises partly for the same reason that it is di¢ cult to estimate the equity premium

accurately: excess returns are highly volatile. But the large error bands also arise because

the data require a very high value for  in an attempt to �t the equity premium. Such a

high value of  generates extreme volatility in the pricing kernel, making discounted returns

even harder to estimate precisely than nondiscounted returns. Unless one views  = 117

as plausible, however, such wide standard error bands for mean discounted returns serve

only to provide further evidence of the model�s empirical limitations, which even at  = 117

leaves a pricing error that is more than half of the average annual stock return. If instead we

restrict the value of risk aversion to lie in the range 0 �  � 89, the pricing errors are always
statistically di¤erent from zero at the �ve percent level of signi�cance. Accordingly, the

sample mean of ejX;t+1 is statistically insigni�cant, not because the pricing errors are small�

indeed they are economically large�but rather because discounted returns are so extremely

noisy when  = 117. Clearly the overidentifying restrictions deliver a much more power test

of the model.

The results above are important for what they imply about the joint distribution of aggre-

gate consumption and asset returns. If consumption and asset returns are jointly lognormally

distributed, then GMM estimation of (2) on any two asset returns should produce estimates

of � and  for which the population Euler equations are exactly satis�ed. The results above

therefore suggest that consumption and asset returns are not jointly lognormal. For this

reason, it is natural to assess whether joint lognormality is a plausible description of our con-

sumption and return data, once we account for sampling error. Although previous statistical

studies suggest that stock returns are not lognormally distributed (see, for example, the stud-

ies discussed in Campbell, Lo, and MacKinlay (1997)), it is commonly held that consumption

and stock returns may be approximately jointly lognormally distributed, especially in lower

frequency data. We perform formal statistical tests of normality based on multivariate skew-

ness and kurtosis13 for the vector Yt �
h
log (Ct+1=Ct) ; log

�
Rst+1

�
; log

�
Rft

�i0
, as well as for

13Multivariate skewness and kurtosis statistics are computed following Mardia (1970). Let xt be a p-

dimensional random variable with mean � and variance-covariance matrix V of sample size T . Multivariate

skewness S and (excess) kurtosis K and asymptotic distributions are given by

S =

 
1

T 2

TX
t=1

TX
s=1

g3ts

!1=2
TS2

6
� �2p(p+1)(p+2)=6

K =
1

T

TX
t=1

g2tt � p (p+ 2)
p
TKp

8p (p+ 2)
� N (0; 1) ;
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the larger set of variables Xt �
h
log (Ct+1=Ct) ; log

�
Rst+1

�
; log

�
Rft+1

�
; log

�
RFF
t

�i
:

Statistical tests based on multivariate skewness and kurtosis provide strong evidence

against joint normality. ForYt multivariate skewness is estimated to be 1.54 and multivariate

excess kurtosis is 4.64, with p�values for the null hypothesis that these statistics are equal to
those of a multivariate normal distribution less than 0.0001. Similarly for Xt, multivariate

skewness is 4.65 and multivariate kurtosis is 35.93, and the statistical rejections of normality

are even stronger. The same conclusion arises from examining quantile-quantile plots (QQ

plots) for the vector time-series Yt and Xt, given in Figure 3. This �gure plots the sample

quantiles for the data against those that would arise under the null of joint lognormality,

along with pointwise standard errors bands.14 The QQ plots show substantial departures

from normality: a large number of quantiles lie far outside the standard error bands for joint

normality. We come back to these results below.

3 Euler Equation Errors in Asset Pricing Models

This section of the paper investigates the extent to which newer consumption-based asset

pricing theories�those speci�cally developed to address empirical limitations of the standard

consumption-based model�can explain its large Euler equation errors. If leading asset pricing

models are true, then in these models using (2) to price assets should generate large uncon-

ditional asset pricing errors, as in the data. But before presenting the results from speci�c

models, it is instructive to study a highly stylized model in which the Euler equations of the

standard model are not satis�ed merely because consumption, Ct, in (2) is mismeasured, per-

haps because per capita aggregate consumption is a poor measure of individual assetholder

consumption, or the consumption of stockholders. To obtain analytical results, we assume

that the true pricing kernel based on stockholder consumption is jointly lognormally distrib-

uted with aggregate consumption and returns. Although the empirical results reported above

suggest that any model with such distributional assumptions will be unable to match the

data, studying a lognormal model is nevertheless instructive for building intuition that can

later be applied to more complicated models. We then move on to evaluate the properties

of the leading asset pricing models discussed above, revisit the role of limited participation

without joint lognormality, and �nally suggest one speci�c direction along which the current

models can be improved.

where gts = (xt � �̂)0V̂�1(xs � �̂) and �̂ and V̂ are sample estimates of � and V. S and K are zero if x is

jointly normally distributed. If x is univariate S and K are equivalent to the standard univariate de�nitions

of skewness and kurtosis.
14Pointwise standard error bands are computed by simulating from the multivariate normal distribution

with length equal to the size of our data set.
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3.1 A Limited Participation/IncompleteMarkets ModelWith Joint

Lognormality

We investigate the a¤ect on parameter estimates and pricing errors of estimating (2) on

aggregate consumption data when the return data were generated from a model with limited

stock market participation or incomplete markets. For this purpose, a model of limited stock

market participation is isomorphic to a model of incomplete markets, since what matters

is the common implication that the consumption of the marginal assetholder may behave

di¤erently from per capita aggregate consumption.15

As a benchmark case, we assume aggregate consumption, stockholder or individual con-

sumption, and asset returns are jointly lognormally distributed. We use lowercase letters to

denote log variables, e.g., �ct+1 � log (Ct+1=Ct) :
Denote the MRS of an individual stockholder as

M i
t+1 � �i

�
Cit+1
Cit

��i
; (7)

where Cit is the consumption of stockholder i, �i is the subjective time discount factor of this

stockholder, and i is the stockholder�s coe¢ cient of relative risk aversion. If agents have

unrestricted access to �nancial markets, then M i
t+1 correctly prices any traded asset return

held by the stockholder, implying that E
�
M i
t+1R

j
t+1

�
= 1 for any traded asset return. The

risk-free rate is de�ned as a one-period riskless bond, Rft+1 = 1=Et
�
M i
t+1

�
:

We can interpret the MRS,M i
t+1; either as that of a representative stockholder in a limited

participation setting (in which case Cit is the consumption of a representative stockholder),

or as that of an individual assetholder in an incomplete markets setting (in which case Cit is

the consumption of any marginal assetholder, e.g., Constantinides and Du¢ e (1996)). For

brevity, we hereafter refer to Cit+1 simply as stockholder or assetholder consumption, and to

(7) simply as the limited participation model.

An econometrician who maintained the assumption of power utility but erroneously es-

timated Euler equations using data on per capita aggregate consumption, Ct+1 in place of

Cit+1, would use the misspeci�ed �MRS:�

M c
t+1 � �c

�
Ct+1
Ct

��c
; (8)

where �c and c are generic parameter values that do not necessarily correspond to the true

preference parameters of stockholder i. Notice that while the Euler equation error associated
15With limited stock market participation, the set of Euler equations of stockholder consumption imply that

a representative stockholder�s marginal rate of substitution is a valid stochastic discount factor. Similarly,

with incomplete consumption insurance the set of Euler equations of household consumption imply that any

household�s marginal rate of substitution is a valid stochastic discount factor.
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with the true MRS, M i
t+1, is zero by construction, the Euler equation error associated with

the erroneous MRS,M c
t+1, need not be zero. As above, we denote this error, when computed

for raw returns as ejR = E
�
M c
t+1R

j
t+1

�
� 1, and when computed for excess returns as ejX =

E
h
M c
t+1

�
Rjt+1 �Rft+1

�i
:

Assuming that all asset returns and consumption growth are jointly lognormally distrib-

uted, it is possible to derive explicit expressions for preference parameters that minimize

the pricing errors if an econometrician uses the misspeci�ed SDF. To do so, �rst note that,

under joint lognormality, the pricing error may be written

ejR = E
�
Rj
�
E [M c] exp

�
Cov

�
mc; rj

�	
� 1: (9)

Noting that the Euler equation error is identically zero under M i, implying

E
�
Rj
�
E
�
M i
�
exp

�
Cov

�
mi; rj

�	
= 1;

and using m = log (�)� �c, we may write

ejR =
E [M c]

E [M i]
exp

�
�cCov

�
�c; rj

�
+ iCov

�
�ci; rj

�	
� 1: (10)

We are now in a position to investigate how the parameters and pricing errors are

distorted by using M c
t+1 to price assets in place of the true pricing kernel M

i
t+1. For N > 2

asset returns, it is not possible to give a intuitively appealing analytical expression for this

distortion, although values can be obtained numerically. It is, however, possible to illustrate

analytically the distortion in c to a very close approximation, by focusing on log pricing

errors and assuming that the risk-free rate is constant. In this case we can choose �c so that

E [M i] = E [M c] ; which insures that the pricing error for the risk-free rate is zero.16 While

this is an approximation, it turns out to be well satis�ed in the data, since the Treasury-bill

rate is extremely stable.17 We maintain this approximation purely for expositional purposes;

the reader should be aware that exact results are very close.18

16Note that this does not imply that the risk-free rate puzzle is trivial, since �c is unrestricted and in

particular can be chosen to be greater than unity if required to set the pricing error to zero.
17If M i

t is the true pricing kernel, then E
�
M i
t

�
= E

h
1=Rft

i
: Since we assume E

�
M i
t

�
= E [M c

t ], our

assumption implies E [M c
t ] = E

h
1=Rft

i
, which prices the risk-free rate exactly if Rft is constant. It follows

that the approximation error in pricing the risk-free rate is E
h
1=Rft

i
� 1=E

h
Rft

i
, which is -0.01 percent per

annum.
18The calculations below are similar in spirit to those in Vissing-Jorgensen (1999), who shows how limited

stock market participation biases estimates of relative risk aversion based on aggregate consumption. Vissing-

Jorgensen�s calculations presume heterogenous households rather than a representative-stockholder, as below.
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With this approximation in hand, the value of c that minimizes the sum of squared log

errors, log
�
1 + ejR

�
, is given by

bc = i

 P
j �cj�ijP
j �

2
cj

!
; (11)

where �cj �Cov(�c; rj) ; �ij �Cov(�ci; rj) ; and �
P

j� indicates summation over all asset

returns j being priced. �Hats�indicate parameter values estimated by minimizing the sum

of squared Euler equation errors (using GMM with the identity weighting matrix), as above.

A more complicated expression (see footnote below) can be obtained for b�c. Note that the
estimates of �c and c are biased, and do not correspond to any marginal investor�s true risk

aversion parameter.

In the two-asset case, (11) collapses to

bc = i

�
�is
�cs

�
; (12)

but a more intuitively appealing expression for the bias in  can be obtained by considering

an orthogonal decomposition of aggregate consumption growth into a part that is correlated

with asset-holder consumption and a part, "it, orthogonal to asset-holder consumption, �ct =

��cit + "it;where � =
Cov(�ct;�cit)
Var(�cit)

= �ci�c
�i

: Here �ci denotes the correlation between �ct and

�cit. Using this decomposition, (12) can be re-written as

bc = i
� +

�"is
�is

; (13)

where �"is =Cov
�
"it; R

s
t+1

�
. For assets that are uncorrelated with "it, (e.g., any risky asset

that is on the log mean-variance e¢ cient frontier), �"is = 0 and this collapses to

bc = i
�
= i

�i
�ci�c

: (14)

The above expression tells us that limited participation can in principal account for high

estimated values of c (and �c) obtained when �tting data to (8), if assetholder consumption

is more volatile than aggregate consumption and/or very weakly correlated correlated with

it.

It is important to emphasize, however, that, in the two asset case, the values of c, and �c
obtained when the model is estimated using the misspeci�ed MRS based on aggregate con-

sumption growth still insure that the log pricing errors for Rst+1 and R
f
t+1 are identically zero,

ejR = 0. This follows because, under lognormality, the log model is linear and the problem
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collapses to solving two linear equations in two unknowns.19 Thus, the only consequence of

using aggregate per capita consumption in this setting is a bias in the estimated parametersbc and b�c; there is no consequence for the Euler equation errors themselves, which remain
zero. It follows that any lognormal model of limited participation cannot explain the large

empirical Euler equation errors of the standard model found in the data.

In the case of multiple risky assets, lognormality does not necessarily imply that such

Euler equation errors will each be identically zero, since in this case there are more moment

conditions than free parameters. Nevertheless, a lognormal model is unlikely to match the

magnitude of the Euler equation errors found in the data. This is demonstrated in Figure

2, for both the two- and eight-asset cases using actual historical return data. The �data�

line plots RMSE/RMSR over a range of values for c, after choosing �c so as to minimize

the sum of squared Euler equation errors ejR;t, which do not impose lognormality. The

line labeled �lognormality� plots the RMSE/RMSR over a range of values for c, after

choosing �c to minimize the sum of squared pricing errors in (9), under the assumption that

returns and consumption growth are jointly lognormal. One way to interpret the �lognormal�

line is to note that, under joint lognormality, we can always �nd a pricing kernel M i
t+1 =

expflog (�) � �cit+1g that generates a set of log returns taking the form rjt = �j�cit + �jt ,

for some constant �j and i.i.d. innovation �jt , that have the same means, variances and

covariances with �ct as those in the historical data, and prices those asset exactly.20 The

dashed line labeled �lognormality�then gives the pricing errors that would arise from �tting

M c
t+1 to data generated from this lognormal model.

Figure 2 shows that no lognormal model can explain the magnitude of the pricing errors

19When there are only two asset returns, simple analytical expressions for the values of �c and c that

insure the pricing errors are identically zero can be obtained without assuming that the risk-free rate is

constant. For a single risky asset return Rst+1and the risk-free return R
f
t+1, these values are given by

bc = i

�
�is � �if
�cs � �cf

�
;

b�c = � exp

�
c�c �

2c�
2
c

2
� i�i +

2i�
2
i

2
+ c�cs � i�is

�
;

where �if �Cov
�
�ci; rf

�
; �cf �Cov

�
�c; rf

�
; �c is the mean growth rate of aggregate consumption, and �i

is the mean growth rate of the consumption of asset-holder i: Notice that, in equilibrium, bc and b�c will take
the same value regardless of the identity of the assetholder. This follows because any two households must

in equilibrium agree on asset prices, so that the Euler equation holds for each individual household. Thus,

c = i

�
�is � �if
�cs � �cf

�
= k

�
�ks � �kf
�cs � �cf

�
for any two asset-holders i and k:
20This is done by choosing �j to match the mean excess return for each asset, choosing var

�
�j
�
to match

the volatility of each return, and choosing cov
�
�; "i

�
to match the cov

�
rj ;�c

�
from the data.
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in the data. When only two assets are priced (stock market return and Treasury-bill),

lognormality implies that values for �c and c can be found for which the pricing errors are

precisely zero, whereas this is not true in the data when no distributional assumptions are

imposed. Similarly, the bottom panel shows that the lognormal model cannot match the

magnitude of the Euler equation errors for the eight-asset case, especially in the empirically

relevant region where c is large. Moreover, it should be noted that these results above hold

for any pricing kernelM i
t+1 that is jointly lognormally distributed with returns and aggregate

consumption growth; it is not necessary that the pricing kernel take the form given in (7). As

long as the true kernel M i
t+1 is jointly lognormally distributed with aggregate consumption

and returns, values for the discount factor and risk aversion can be found for which the

standard model generates identically zero unconditional Euler equation errors for any two

asset returns, and for which the root mean-squared pricing errors are much smaller than in

the data for larger cross-sections of asset returns.

3.2 Leading Asset Pricing Models

Next, we use simulated data from each of the leading asset pricing models mentioned above

to study the extent to which these models explain the mispricing of the standard model.

We show that some of these models can explain why an econometrician obtains implausibly

high estimates of � and  when freely �tting aggregate data to (2). But, none can explain

the large unconditional Euler equation errors associated with such estimates for plausibly

calibrated sets of asset returns. Indeed, the asset pricing models we consider counterfactually

imply that values of � and  can be found for which (2) satis�es the unconditional Euler

equation restrictions just as well as the true pricing kernel, implying that the standard model

generates negligible pricing errors for cross-sections of asset returns.

3.2.1 Simulating the Models

To assess the extent to which the models above are capable of explaining the pricing errors

of the standard model, we assume each model generates the asset pricing data, and then

compute the pricing errors that would arise if an econometrician �t (2) to data generated by

the models. This requires simulating the models and then computing pricing errors of the

standard model using simulated data in precisely the same way that we did using historical

data. Except where noted, our simulations use the baseline parameter values of each paper.

It is important to emphasize that even though the primitive shocks in these theories are

often speci�ed as normally distributed, the pricing kernels are nonlinear, and thus both

the marginal distribution of asset returns, and the joint distribution of consumption and

returns� what matters for Euler equation errors� are endogenous features of the asset pricing

16



model. It follows that the pricing kernels and returns in these models are not unconditionally

jointly lognormally distributed with aggregate consumption growth as was presumed in the

previous sections, a fact that can be veri�ed by statistical tests on simulated data. The

question posed here is whether these models can endogenously generate a return distribution

su¢ ciently non-normal that it is capable of rationalizing the large Euler equation errors of

the standard consumption-based model (2).21 We brie�y describe only the main features of

each model, and refer the reader to the Appendix and the original articles for details.

3.2.2 Misspeci�ed Preferences

We �rst consider theories that deviate from the standard consumption-based model (2) in

their speci�cation of investor preferences. These include the habit models of Campbell and

Cochrane (1999) and Menzly, Santos, and Veronesi (2004), and the long-run risk model of

Bansal and Yaron (2004). Since these are representative agent models, an econometrician

who attempted to �t (2) to data generated by these models would err by using the wrong

functional form for the marginal rate of substitution in consumption (misspeci�ed prefer-

ences).

The stochastic discount factor in the CC and MSV models takes the form

Mt+1 = �

�
Ct+1 �Xt+1

Ct �Xt

��
;

where Ct is aggregate consumption and Xt is habit level (a function of current and past

aggregate consumption), and � is the subjective discount factor. The key innovation in

each of these models concerns the speci�cation of the habit process Xt, which in both cases

evolves according to heteroskedastic autoregressive processes. However CC and MSV di¤er

in their speci�cation of Xt (see the Appendix). LetMCC
t+1 denote the speci�cation of the SDF

corresponding to the Campbell-Cochrane model of Xt, and MMSV
t+1 denote the speci�cation

of the SDF corresponding to the MSV model of Xt. Both CC and MSV assume that �ct =

�+ �vt;where vt is a normally distributed, i.i.d. shock, and both models derive equilibrium

returns for a risk-free asset and a risky equity claim that pays aggregate consumption as its

dividend. As above, the returns to these assets are denoted Rft+1, and R
s
t+1, respectively.

21For the three representative agents models, it is assumed that innovations in consumption growth are

lognormally distributed. It is reasonable to ask whether the lognormality assumption for consumption is

merely a convenient but inaccurate representation of the data that could be relaxed to generate the observed

Euler equation errors. The di¢ culty with this scenario is that the distribution of aggregate consumption

growth in the data appears to be well described by a lognormal process, while the distribution of stock

returns displays higher kurtosis than lognormal. (Results available upon request.) Thus, the distributional

assumptions made for consumption growth in these models are not only convenient, they are empirically

reasonable.
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Campbell and Cochrane set  = 2 and � = 0:89 under their baseline calibration, both at

an annual rate. Menzly, Santos and Veronesi choose  = 1 and � = 0:96: Notice that the

curvature parameter , is no longer equal to relative risk-aversion in these models.

The MSV model is a multi-asset extension of the CC model that generates implications

for multiple risky securities, thus we study the implications of the habit models for larger

cross-sections of asset returns by applying the MSV framework. Each �rm is distinguished

by a distinct dividend process with dynamics characterized by �uctuations in the share sjt
it represents in aggregate consumption, sjt =

Djt
Ct
. Cross-sectional variation in unconditional

mean returns across risky securities is governed by cross-sectional variation in the covariance

between shares sjt and aggregate consumption growth �ct.

Bansal and Yaron (2004) consider a representative agent who maximizes utility given

by recursive preferences of Epstein and Zin (1989, 1991) and Weil (1989). The stochastic

discount factor under Epstein-Zin-Weil utility used in BY takes the form

MBY
t+1 =

 
�

�
Ct+1
Ct

�� 1
 

!�
R��1w;t+1; (15)

where Rw;t+1 is the simple gross return on the aggregate wealth portfolio, which pays a

dividend equal to aggregate consumption, Ct, � � (1� ) = (1� 1= ) ;  is the intertemporal
elasticity of substitution in consumption (IES),  is the coe¢ cient of relative risk aversion,

and � is the subjective discount factor. The dynamics of consumption growth and stock

market dividend growth, �dt, take the form

�ct+1 = �+ xt + �t�t+1 (16)

�dt+1 = �d + �xt + �d�tut+1; (17)

xt+1 = �xt + �c�tet+1

�2t+1 = �2 + �1
�
�2t � �2

�
+ �wwt+1;

where �2t+1 represents the time-varying stochastic volatility, �
2 is its unconditional mean, and

�; �d, �, �d; �, �c, �1 and �w are parameters, calibrated as in BY. Here, the stock market

asset is the dividend claim, given by (17), rather than a claim to aggregate consumption,

given by (16). We denote the return to this dividend claim Rst+1, since it corresponds the

model�s stock market return. BY calibrate the model so that xt is very persistent, with a

small unconditional variance. Thus, xt captures long-run risk, since a small but persistent

component in the aggregate endowment can lead to large �uctuations in the present dis-

counted value of future dividends. Their favored speci�cation sets � = 0:998,  = 10 and

 = 1:5.
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We analyze the multi-asset implications of the BY model by considering risky securities,

indexed by j; that are distinguished by their cash-�ow processes:

�djt+1 = �jd + �jxt + �jd�tut+1: (18)

By considering a grid of values for �j, we create risky securities with di¤erent risk-premia,

since this parameter governs the correlation of equilibrium returns with the stochastic dis-

count factor. By altering �jd, we control the variance in the risky security returns, while �
j
d

controls the mean price-dividend ratio across risky assets.

For both the MSV and BY models, we choose parameters of the cash-�ow processes

to create a cross-section of asset returns that include a risk-free rate, an aggregate equity

return, and six additional risky securities, or eight securities in total. For each model, we

exactly replicate the authors�original calibration to obtain the same risk-free return and

aggregate equity return studied there. For the six additional risky securities, we choose

parameters of the individual cash-�ow processes that allow us to come as close as possible

to matching the spread in risk-premia found in the six size/book-market sorted portfolio

returns in the data. For the BY model, we can generate a cross-section of returns that

come very close to matching the historical spread in these returns. For example, the largest

spread in average annualized returns is given by the di¤erence between the portfolio in the

smallest size and highest book-market category and the portfolio in the largest size and lowest

book-market category, equal to about seven percent; thus we create six arti�cial returns for

which the largest spread is 6.7 percent per annum. Constructing such returns for the MSV

framework is more complicated, since the solutions for the multi-asset model hold only as an

approximation (see the Appendix for the approximate relation). Unfortunately, we �nd that

the approximation error in this model can be substantial under parameter values required to

make the maximal spread as large as seven percent.22 As a result, we restrict the parameter

values to ranges that limit approximation error to reasonably small degrees. This still leaves

us with a signi�cant spread of 4.5 percent per annum in the returns of the six arti�cial

securities created.

To study the implications of these representative-agent models, we simulate a large time-

series (e.g., 20,000 periods) from each model and compute the pricing errors that would arise

in equilibrium ifM c
t+1 = �c

�
Ct+1
Ct

��c
were �tted to data generated by these models. Thus, we

conduct precisely the same empirical estimation on model-generated data as was conducted

on historical data, above. The parameters c and �c are chosen by GMM to minimize

the Euler equation errors ejR = E[M c
t+1R

j
t+1] � 1. We denote the estimated parameters

22Menzly, Santos, and Veronesi (2004) state that the approximation error is small for the parameters they

employ, but it is not small for our parameters, which were chosen to mimic returns of the Fama-French

portfolios.
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that minimize the GMM criterion as b�c and bc. As in the historical data, we focus on
the case of N = 2 asset returns (Rst+1 and R

f
t+1), and the case of N = 8 asset returns,

(Rst+1; R
f
t+1; R

1
t+1; :::; R

6
t+1).

The main results, presented in Table 3, are as follows. For both habit models, we �nd

the pricing errors that arise from �tting M c
t+1 to model-generated data are numerically

zero, just as they are when the true habit pricing kernel is used. This result does not

depend on the number of assets being priced; it is the same for the two-asset case and

eight-asset case. Values of �c and c can in each case be found that allow the standard

consumption-based model to unconditionally price assets just as well as the true pricing

kernel, as measured by the root mean-squared pricing error. The habit models can explain

what many would consider the implausible estimates (Table 1) of time preference and risk

aversion obtained when freely �tting aggregate data to (2). In the CC model, the values of �c
and c that minimize the GMM criterion for Rst+1 and R

f
t+1 are 1.28 and 57.48, respectively.

The corresponding values in the MSV model are 1.71 and 30.64, respectively. This represents

a signi�cant distortion from the true values of these parameters. (Recall that the true

preference parameters are  = 2 and � = 0:89 in CC and  = 1 and � = 0:96 in MSV.)

But, it is in those parameters that all of the distortion from erroneously using M c
t+1 to price

assets arises. No distortion appears in the Euler equation errors themselves.

The conclusions for the Bansal-Yaron long-run risk model, also displayed in Table 3,

are the same. Here we follow BY and simulate the model at monthly frequency, aggregate

to annual frequency, and report the model�s implications for pricing errors and parameter

values. The monthly consumption data are time-aggregated to arrive at annual consumption,

and monthly returns are continuously compounded to annual returns.23 We �nd that �c is

estimated to be close to the true value, but c is estimated to be about �ve times as high as

true risk aversion. As for the habit models, an econometrician will estimate high values of

risk aversion when �tting the standard consumption-based model to the BY data, but the

resulting Euler equation errors would be e¤ectively zero.24

23The resulting Euler equation errors are unchanged if they are computed for quarterly time-aggregate

consumption and quarterly returns rather than annual time-aggregated consumption and annual returns.
24For models based on recursive preferences, Kocherlakota (1990) shows that there is an observational

equivalence to the standard model with power utility preferences, if the aggregate endowment growth is i.i.d.

However, the endowment growth process in the BY model is not i.i.d., but instead serially correlated with

stochastic volatility. Moreover, the annual consumption data are time-aggregated, which further distorts the

time-series properties from those of the monthly endowment process.
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3.2.3 Misspeci�ed Consumption

Next we consider the limited participation model of Guvenen (2003). The Guvenen economy

has two types of consumers, stockholders and nonstockholders, and two assets, a stock return

and a riskless bond. Nonstockholders are exogenously prevented from participating in the

stock market. The stochastic discount factor in this model is denoted

MG
t+1 � �i

�
Cit+1
Cit

��i
;

where Cit is stockholder consumption, which by assumption is not the same as aggregate

per capita consumption, �i is the subjective discount factor of the stockholder, and i is the

stockholder�s relative risk aversion. Thus, an econometrician who attempted to �t (2) to

aggregate data would err by using the wrong measure of consumption, aggregate consump-

tion rather than stockholder consumption (misspeci�ed consumption). In other respects, the

model is a standard one-sector real business cycle model with adjustment costs in capital.

Both stockholders and nonstockholders receive labor income with wages determined compet-

itively by the marginal product of labor, and �rms choose output by maximizing the present

discounted value of expected future pro�ts. Both agents have access to the riskless bond.

We follow the same procedure discussed above to quantify pricing errors in this model.

We simulate a large time series of arti�cial data and use these data to quantify the magnitude

of unconditional pricing errors that an econometrician would �nd if the misspeci�ed MRS,

M c
t+1 = �c

�
Ct+1
Ct

��c
, based on aggregate consumption, were �tted to asset pricing data

generated by MG
t+1. Since cash-�ows are endogenously determined by the properties of a

general equilibrium setting in that model, the extension to multiple-assets is not straight-

forward. For this reason, we focus only on the implications of the Guvenen model for Rs

and Rf below.

The main results are presented in the bottom panel of Table 4. They show that the

Guvenen model, like the habit models, generates e¤ectively zero Euler equation errors when

M c
t+1 is used to price assets, but in this case estimates of the parameters show much less

distortion from their true values. The table also reports the pricing errors using the true

kernel MG
t+1 based on stockholder consumption, which are quite small (0.02% on an annual

basis) but not exactly zero due to the rarely-binding borrowing constraints that apply to

both stockholders and nonstockholders. Euler equation errors based on the misspeci�edM c
t+1

are tiny even when preference parameter values are not chosen to minimize those errors. For

example, when �c and c are set to their true values for stockholders, (in Guvenen�s baseline

speci�cation, stockholders have risk aversion i = 2 and subjective discount factor �i = 0:99),

the pricing errors using aggregate consumption are equal to about 0.4% at an annual rate for

the stock return and -0.34% for the risk-free rate, small in magnitude compared to the data.
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When �c and c are chosen to minimize the sum of squared pricing errors for these two asset

returns, as in empirical practice, the Euler equation errors are, to numerical accuracy, zero

for the stock return and risk-free return. Moreover, the estimated values for the subjective

time-discount factor and risk aversion from such an estimation show minimal distortion from

their true value, equal to b�c = 0:99 and bc = 4:49, respectively. These results imply that

by increasing  by a factor of 2.5�from 2 to 4.5�the Guvenen model delivers a power utility

pricing kernel using aggregate consumption that explains the historical mean return on the

stock market and risk-free (Treasury bill) return just as well as the true pricing kernel based

on stockholder consumption. This model therefore does not explain the equity premium

puzzle of Mehra and Prescott (1985), which is the puzzle that a high value of  is required

to explain the magnitude of the equity premium when the power utility model is �tted to

aggregate consumption data.

To aid in understanding these results, the top panels of Table 4 provides summary sta-

tistics from the model. Panel A of Table 4 shows that stockholder consumption growth

is about two and a half times as volatile as aggregate consumption growth, and perfectly

correlated with it. Stockholder consumption is over four times as volatile as nonstockholder

consumption growth, but the two are almost perfectly correlated, with correlation 0.99. This

is not surprising since both types of consumers participate in the same labor market and

bond markets; the agents di¤er only in their ability to hold equities and in their risk-aversion

(nonstockholders have higher risk-aversion). As a consequence, the true pricing kernel based

on the stockholder�s marginal rate of substitution, MGUV
t+1 , is highly correlated with the mis-

speci�ed aggregate consumption �pricing kernel�M c
t+1 � �c(Ct+1=Ct)

�c , for a variety of

values of �c and c. Panel B of Table 4 shows this correlation for two combinations of

these parameters, �rst with these parameters set at their true values �c = �i = 0:99 and

c = i = 2, and second with �c and c set to the values that minimize the equally-weighted

sum of squared Euler equation errors when M c
t+1 is used to price assets. In both cases, the

correlation between MGUV
t+1 and M c

t+1 is extremely high, 0.99. In addition, when c = 4:5,

MGUV
t+1 and M c

t+1 have virtually identical volatilities, so their asset pricing implications are

the same.

3.2.4 Additional Diagnostics

Misspeci�ed Preferences and Misspeci�ed Consumption One possible reaction to

the results above, is that we should take the representative agent nature of the CC, MSV and

BY models less literally and assume that they apply only to a representative stockholder,

rather than to a representative household of all consumers. Would the results for these

models be better reconciled with the data if we accounted for limited participation? Not
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necessarily. As an illustration, we consider a limited-participation version of the MSV model

and show that the conclusions are unchanged from the representative agent setup.

Since the MSV model is a representative agent model, we modify it in order to study

the role of limited participation. Assume that asset prices are determined by the framework

above, where a valid stochastic discount factor is a function of any stockholder�s consumption

Cit and stockholder�s habit X
i
t . The process for stockholder consumption is the same as in

MSV, described above, but now with i subscripts:

�cit = �i + �iv
i
t;

where vit is a normally distributed i.i.d. shock. Aggregate consumption is assumed to follow

a separate process given by

�ct = �c + �cv
c
t ;

with vct a normally distributed i.i.d. shock. We analyze the results over a range of cases for

the correlation between vit and v
c
t , and their relative volatilities �i=�c.

Asset prices are determined by the stochastic discount factor of individual assetholders,

denoted

MMSV i
t+1 � �i

�
Cit+1 �X i

t+1

Cit �X i
t

��i
;

where X i
t+1 is the external habit modeled as in MSV, now a function of C

i
t (the Appendix

provides an exact expression). We assume the data are generated by MMSV i
t+1 and compute

the Euler equation errors that arise from �tting

M c
t+1 � �c (Ct+1=Ct)

�c

to asset pricing data. We refer to this case as �misspeci�ed preferences and misspeci�ed

consumption,�since an econometrician who �tM c
t+1 to asset return data would be employing

both the wrong model of preferences and the wrong consumption measure. The parameters,

�c and c are chosen to minimize an equally-weighted sum of squared pricing errors of the

assets under consideration, as with the historical data.

The results are presented in Table 5, where the Euler equation errors for a range of

parameter values. The standard deviation of asset-holder consumption growth is allowed to

range from one times to �ve times as volatile as that of aggregate consumption growth, the

correlation from -1.0 to 1.0. The pricing errors (as measured by RMSE/RMSR) are reported

in the bottom subpanels. The top panel reports these errors for the two-asset case where

only Rst+1 and, R
f
t+1 are priced; the bottom panel reports for the eight-asset case with six

additional risky securities. For each parameter con�guration, we also report the values b�c
and bc that minimize the quadratic form gT (c; �c), as above.
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Table 5 shows that the pricing errors that arise from using M c
t+1 to price assets are

always zero, even if assetholder consumption growth has very di¤erent properties from ag-

gregate consumption growth. For example, aggregate consumption growth can be perfectly

negatively correlated with stockholder consumption growth and �ve times as volatile, yet

the pricing errors that arise from using Ct in place of Cit are still zero. Notice, however,

that the parameters �c and c can deviate substantially from the true preference parame-

ters of stockholders. This is similar to the lognormal example in Section 3.1, in which the

use of mismeasured consumption distorts preference parameters, but does not explain the

large pricing errors generated by the standard consumption-based model.25 Results for the

multi-asset case are qualitatively the same as those for two-asset case. These �ndings rein-

force the conclusion that changing the pricing kernel does not necessarily change the pricing

implications.

The results reveal a striking implication of leading asset pricing models: the unconditional

pricing errors of the standard consumption-based model can be virtually identical to those

using the true pricing kernel, even when (i) the true kernel has preferences di¤erent from the

CRRA form of the standard model, (ii) the consumption of marginal assetholders behaves

di¤erently from per capita aggregate consumption, and (iii) the number of assets exceeds

the number of free parameters to be estimated. This implies that the explanation for the

high average pricing errors produced by the standard model has to be something more than

limited participation and/or nonstandard preferences per se, since in many models parameter

values can be found that allow the standard model to price cross-sections of assets almost

as well as the true pricing kernel that generated the data.

Time Aggregated Consumption What if the decision interval of households is shorter

than the data sampling interval, leading to time-aggregated consumption observations? We

have repeated the same exercise for all the models above using time-aggregated consumption

data, assuming that agents�decision intervals are shorter than the data sampling interval,

for a variety of decision intervals. An example is provided in the Appendix. For all models

the essential results for the Euler equation errors remain the same: values of �c and c can

always be found such that the unconditional pricing errors associated with using M c
t+1 to

price assets are very small relative to the data.

25Variation in �i=�c has little a¤ect on the estimated value of the risk-aversion parameter c. This happens

because we adjust the parameter � in the MSV habit speci�cation (see the Appendix) at the same time as we

adjust �i=�c so that the mean excess return Rs�Rf remains roughly what it is in MSV. Since the volatility
of aggregate consumption is kept the same and � is adjusted to keep the returns of the same magnitude, c
doesn�t change much.
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Finite Sample Pricing Errors The results above are based on long samples of model-

generated data, whereas the estimates using historical data are based on a �nite sample of 204

observations. An analysis provided in the Appendix shows that that our main conclusions

are robust to using samples equal in size to that of our historical dataset.

3.2.5 Do Leading Models Generate the Right Form of Nonnormality?

The results in this section show that none of the four leading consumption-based asset pricing

models we explore provide a compelling explanation for the large unconditional pricing errors

of the standard-consumption based model. We noted above that, due to nonlinearities,

the pricing kernels and returns in these models are not unconditionally jointly lognormally

distributed with aggregate consumption growth, a fact that is straightforward to verify by

statistical tests on simulated data. In fact, QQ plots of the simulated data for each model

shows some signi�cant departures from lognormality for the joint unconditional distribution

of consumption growth, the risk-free rate and the stock return. But the results above show

that none of the models generate the right type of departures from joint lognormality that

is required to explain the data.

3.3 Limited Participation/IncompleteMarketsWithout Joint Log-

normality

We now revisit the potential role of limited participation in explaining the large Euler equa-

tion violations of the standard consumption-based model, this time relaxing the assumption

of lognormality. We �rst show that limited participation combined with arbitrary departures

from normality based on Hermite expansions does not in general explain the mispricing of the

standard model, but that limited participation combined with speci�c departures from joint

lognormality, such as those based on a time-varying, state-dependent correlation between

stockholder and aggregate consumption, is far more successful.

3.3.1 Expansions Around Normality

We employ �rst-order Hermite expansions around the multivariate normal distribution, and

consider the Euler equation errors associated with two assets, a stock market return and a

risk-free rate. Let yt = (�ct;�cit;�dt)
0 � (y1;t; y2;t; y3;t)0, where�ct is aggregate consumption

growth, �cit is individual asset-holder consumption growth, and �dt is dividend growth of an

aggregate stock market claim. We will consider asset pricing models in which these variables

are i.i.d., but not necessarily jointly lognormally distributed.

25



Ideally, the unconditional joint density of yt would be estimated. Unfortunately, this

density must be calibrated because a lack of su¢ ciently long time-series data on stockholder

consumption prohibits estimation. Let the joint density of yt be denoted h (y). A Hermite

expansion is a polynomial in y times the standard Gaussian density f (y). Gallant and

Tauchen (1989) show how the density can be put in tractable form. The Appendix provides

an exact expression.

The MRS of individual assetholder consumption, M i
t+1 � �

�
Cit+1=C

i
t

��
, is a valid sto-

chastic discount factor. Under the assumptions above, the equilibrium price-dividend ratio

is a constant, P=D. Given a distribution h (y) and the equilibrium value for P=D, it is

straightforward to compute the pricing errors associated with erroneously using M c
t+1 �

�c (Ct+1=Ct)
�c to price assets. As above, we assume the asset return data are generated by

M i
t+1 and solve numerically for the values of �c and c that minimize an equally-weighted

sum of squared pricing errors ejR that arise from using M c
t+1 to price assets.

Parameters of the leading normal density are calibrated to match data on aggregate con-

sumption growth and dividend growth for the CRSP value-weighted stock market index, on

an annual basis.26 The parameters for asset-holder consumption and assetholder preferences

are somewhat arbitrary since there is insu¢ cient data available to measure these empiri-

cally. We therefore consider a range for ; �, �i=�c, �i=�c; �ci; and �id, where �i � E (�cit),

�c � E (�ct), �i �
p
Var (�cit), �c �

p
Var (�ct), and �id �Cov(�cit;�ct) are parameters

of f (y). Because our calibration corresponds to an annual frequency, the Euler equation

errors we compute are comparable to the annualized errors from U.S. data reported in Table

1.

We evaluated pricing errors obtained from a wide grid (over 20,000 parameter combina-

tions) for the Hermite parameters a0 through a3. To conserve space, we report a limited

number of results. Table 6 reports results for which  is set to 5, � to 0.99, �i=�c = 1, 2,

4, �i=�c = 0:85, 1:5, �ci = 0:1, �id = 0:9. The point of this table is that there are a wide

range of cases in which the joint distribution of yt deviates considerably from normality (of-

ten producing bimodal marginal density shapes) and yet the pricing errors associated with

erroneously using M c
t+1 to price assets in place of M

i
t+1 are, to numerical accuracy, zero. For

example, the kurtosis of the marginal distribution of �ct is often greater than 11, and the

26From annual post-war data used in Lettau and Ludvigson (2005), we take the E (�c) to be 2% annually

and E (�d) to be 4% annually; the standard deviation �c is �c = 1:14% and the standard deviation of �d

is �d = 12:2%. The covariance �cd between �c and �d is notoriously hard to measure. It is estimated to be

negative, equal to -0.000177 in the annual post-war data used by Lettau and Ludvigson (2005), but others

have estimated a positive correlation (e.g., Campbell (2003)). We therefore consider both small negative

values for this covariance (equal to the point estimate from Lettau and Ludvigson (2005)), and small positive

values of the same order of magnitude, e.g., 0.000177.
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skewness greater than 4, but still the Euler equation errors from using a representative agent

pricing kernel are zero. The parameter estimates are biased, however, echoing the lognormal

results. The parameter c is larger than the true  when asset-holder consumption growth

is more volatile than aggregate consumption growth or when it is not highly correlated with

it, as suggested by (14). When Cov(�c;�d) = �cd is negative, c is negative, as suggested

by (12).

We reach similar conclusions when evaluating the Euler equation errors for a larger cross-

section of returns. These results have been omitted to conserve space, but can be summarized

as follows. As in the two-asset case, we �nd that the average pricing errors from using M c
t+1

to price assets are often very small, indeed close to zero, even for signi�cant perturbations

from joint lognormality. A small number of cases provided larger pricing errors, but these

cases were relatively rare, occurring in less than 0.2% of the parameter permutations. Most

non-normal models we considered imply that the wrong pricing kernel based on aggregate

consumption delivers tiny pricing errors even when the joint distribution of �ct, �cit, and

returns are signi�cantly non-normal. This suggests that the explanation for the large pricing

errors of the standard representative agent model must be more than limited participation

per se. The joint distribution of assetholder, aggregate consumption and returns has to be of

a particular form, and it is that form that must be the central part of the story. We present

one such story next.

3.3.2 Limited Participation with State Dependent Correlations

An intriguing feature of aggregate consumption and return data is that violations of Euler

equations in (2) are especially large in recessions. For example, in the troughs of recessions

in the 1950s, 1970s, early 1960s, 1980s and 1990s, as identi�ed by the National Bureau of

Economic Research, aggregate consumption growth is steeply negative but the aggregate

stock return and Treasury-bill rate are, more often than not, steeply positive (Table 2).

These �ndings suggest that the link between the aggregate economy and asset returns is

fundamentally di¤erent in economic downturns than in upturns.

As a preliminary step, we consider the following modi�cation to the simple limited par-

ticipation model that is motivated by this empirical �nding. Assume that both stockholder

and aggregate consumption growth are i.i.d. processes, with normally distributed shocks.

For simplicity, stockholders are presumed to have CRRA utility and, as above, stock prices

are determined only by stockholder�s consumption. We modify the previous framework, how-

ever, by assuming that the correlation between the growth rates of stockholder consumption

and aggregate consumption is time-varying and depends on the state of the economy. In

�normal�times, the correlation between consumption growth of stockholders and aggregate
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consumption growth is one. Normal times are modeled as any period in which aggregate con-

sumption growth is not unusually low, say one standard deviation or more below its mean.

In �bad�times, the correlation between consumption growth of stockholders and aggregate

consumption growth is signi�cantly less than one, even negative. Bad times are modeled as

any period when aggregate consumption growth is more than one standard deviation below

its mean. This changing correlation could be due to unemployment shocks that primarily

a¤ect less wealthy nonstockholders, to binding borrowing constraints that make it harder for

nonstockholders to smooth consumption in recessions, or to cyclical shifts in the composition

of income between labor and capital.

Interestingly, a time-varying correlation of this type between stockholder consumption

and aggregate consumption growth generates deviations from joint log-normality of aggre-

gate consumption growth and asset returns in the model that are remarkably similar to

those found in the data. (Although the shocks to aggregate consumption and stockholder

consumption growth are normally distributed, the time-varying correlation means that their

joint distribution with endogenous returns is unconditionally nonnormal.) It also allows the

model to rationalize the large Euler equation errors of the standard, representative agent,

CRRA model. To illustrate, we model the equity claim as a claim to stockholder consump-

tion, cit, and model additional risky securities, indexed by j, as those with dividend processes

taking the form �dj = �j�cit + "jt ;where "
j
t is an i.i.d. shock uncorrelated with �c

i
t. By

varying �j across assets, we create a spread in the covariance of returns on these securi-

ties with stockholder consumption growth, and therefore a spread in risk premia. Values

for �j and the standard deviation of "jt are chosen to mimic the spread in returns in the

6 Fama-French portfolios for which we have historical data. For the results below, stock-

holder risk-aversion is set to  = 10: Since we have assumed, for illustrative simplicity, that

stockholders have CRRA utility, this stylized model has some important limitations. For

example, with  = 10, the model generates a mean risk-free rate that is much higher than

in the data (Weil (1989)); thus we set � = 1:2 to obtain more reasonable values. Never-

theless, the simplicity of the model serves to illustrate an important point, namely that a

state-dependent correlation between the consumption of stockholders and nonstockholders

can help explain why the standard consumption-based model�s Euler equations are violated

by such large magnitudes.

Figure 5 shows QQ plots from model-simulated data, which are directly comparable to

those using historical data in Figure 4. Note that the deviations from joint log-normality

are concentrated in periods with observations that are in the tails of the joint distribution,

both in the data and in the model. These deviations from log-normality are of the type

necessary to generate large Euler equation errors for the misspeci�ed SDF based on aggregate

consumption and power utility. Table 7 shows that the state-dependent correlations model
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is able to generate pricing errors for the standard model that rival those in the data, both

for the set of two asset returns that include the stock market return and the risk-free rate, as

well as for a larger cross-section of returns that include the 6 additional risky securities. The

table has a layout similar to that of Table 5, except that we vary the correlation in bad states

at the top of each column, rather than the unconditional correlation. The calibrations that

deliver the largest Euler equation errors are those for which the correlation between aggregate

and stockholder consumption is unity most of the time (in good states), but is negative in

bad states (de�ned as states in which aggregate consumption is more than one standard-

deviation below its mean). For example, when the correlation in bad states is -0.5 and the

standard deviation of stockholder consumption growth is twice that of aggregate consumption

growth, this model implies Euler equation errors for the standard consumption-based model,

as measured by RMSE/RMSR, of 0.47, a value that almost exactly replicates that found

in the data when the standard model is �t to historical data on aggregate consumption,

the stock market and Treasury-bill (Table 1). These results are promising because they

go signi�cantly in the direction required to explain why the standard model appears so

misspeci�ed.

The examples in this section are designed to be illustrative and are not meant to be taken

as realistic models. Nevertheless, they are useful for building intuition about why the lead-

ing models fail to match the empirical properties of the standard model�s Euler equations

found in the data. The previous section showed that a very low or even negative uncon-

ditional correlation between stockholder and nonstockholder consumption is not by itself

enough to explain why the standard model fails: when the MSV model is modi�ed to have

limited participation, a low unconditional correlation between stockholder and nonstock-

holder consumption does not generate non-negligible pricing errors. Instead, what is needed

is a state-dependent correlation, of the type explored above. It is straightforward to intro-

duce the same state-dependent correlation between stockholder and aggregate consumption

into the limited participation version of the MSV habit model. Doing so, we obtain results

very similar to those reported above. This is encouraging because it suggests that leading

consumption-based models can be modi�ed to �t the Euler equation facts, while at the same

time preserving their favorable implications for a range of other asset pricing phenomena.

4 Conclusion

It is well understood that the standard, representative agent, consumption-based asset pric-

ing theory based on constant relative risk aversion utility fails to explain the behavior of risky

assets. Some aspects of this failure have been famously pointed out by authors like Mehra and
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Prescott (1985), who argue that the model is incapable of rationalizing the equity premium

for reasonable levels of risk aversion. Other researchers have estimated the Euler equations

of the model using GMM, and found that the model is formally rejected in statistical tests

(Hansen and Singleton (1982)). This paper points out that the puzzle with this model runs

even deeper: the unconditional Euler equation errors for the standard consumption-based

model cannot be driven to zero�indeed they remain economically large�for any value of risk

aversion or the subjective rate of time-preference.

The empirical failure of the standard consumption-based model (including its rejection

in GMM tests of the model�s Euler equations) has driven the search for new consumption-

based models. Many of these theories have delivered important insights into �nancial market

behavior. Ironically, however, none explain why the standard model is so soundly rejected

in basic GMM tests of its Euler equations. We �nd that if the data on asset returns and

consumption were generated by any of the leading models considered in the previous section,

an econometrician would estimate zero Euler equation errors and the consequence of using

the wrong pricing kernel would simply be incorrect estimates of � and . This is true

both for explaining the behavior of the market return and risk-free rate generated by the

models�own baseline calibrations, and for explaining larger cross-sections of risky returns.

Moreover, some leading models imply that the standard consumption-based has negligible

asset pricing errors even when it is based both on the wrong consumption measure (aggregate

consumption instead of individual assetholder consumption) and on the wrong model of

underlying preferences (CRRA instead of habit or recursive preferences).

We suggested one speci�c direction along which the current models can be improved,

based on a time-varying, state-dependent correlation between stockholder and aggregate con-

sumption growth. But our preliminary analysis leaves room for much future work. Ultimately

it will be important to model the primitive technological sources of any state-dependent cor-

relation between the consumption of stockholders and that of the rest of the economy. The

theoretical results also raise tantalizing empirical questions. Is there any direct evidence

that the correlation of stockholder and non-stockholder consumption is state-dependent? If

so, can this time-variation be linked to asset returns and cyclical variation in the economy?

Unfortunately, these questions are di¢ cult to answer because of the dearth of time-series

data on household consumption.

A number of alternative research directions could prove fruitful for explaining the mis-

spricing of the standard consumption-based model. Possibilities include classes of economic

models with endogenously distorted beliefs, as surveyed in the work of Hansen and Sargent

(2000) or illustrated in the learning model of Cogley and Sargent (2004). In such models,

beliefs are distorted away from what a model of rational expectations would impose, so asset

return volatility can be driven by �uctuations in beliefs not necessarily highly correlated
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with consumption. Other candidates include any modi�cations to the standard model that

would make unconditional Euler equations more di¢ cult to satisfy, especially in recessions,

such as binding restrictions on the ability to trade and smooth consumption, short-sales con-

straints, and transactions costs (e.g., Luttmer (1996); He and Modest (1995); Heaton and

Lucas (1996, 1997); Ludvigson (1999); Guo (2004)) or infrequent adjustment in consump-

tion (Gabaix and Laibson (2002); Jagannathan and Wang (2005)). An important area for

future research will be to determine whether such modi�cations are capable of delivering the

empirical facts, once introduced into plausibly calibrated economic models with empirically

credible frictions.
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5 Appendix

5.1 Data Description

This appendix describes the data. The sources and description of each data series we use

are listed below.

CONSUMPTION

Consumption is measured in per capita terms as expenditures on nondurables and services,

excluding shoes and clothing. The quarterly data are seasonally adjusted at annual rates, in

billions of chain- weighted 1996 dollars. The components are chain-weighted together, and

this series is scaled up so that the sample mean matches the sample mean of total personal

consumption expenditures. We exclude shoes and clothing expenditure from this series since

they are partly durable and are therefore inappropriate in a measure of the service �ow

of consumption. Our source is the U.S. Department of Commerce, Bureau of Economic

Analysis.

POPULATION

Ameasure of population is created by dividing real total disposable income by real per capita

disposable income. Our source is the Bureau of Economic Analysis.

PRICE DEFLATOR

Real asset returns are de�ated by the implicit chain-type price de�ator (1996=100) given for

the consumption measure described above. Our source is the U.S. Department of Commerce,

Bureau of Economic Analysis.

ASSET RETURNS

� Three-Month Treasury Bill Rate: secondary market, averages of business days, discount
basis%; Source: H.15 Release �Federal Reserve Board of Governors.

� Six size/book-market returns: Six portfolios, monthly returns from July 1926-December
2003. The portfolios, which are constructed at the end of each June, are the inter-

sections of 2 portfolios formed on size (market equity, ME) and 3 portfolios formed

on the ratio of book equity to market equity (BE/ME). The size breakpoint for

year t is the median NYSE market equity at the end of June of year t. BE/ME

for June of year t is the book equity for the last �scal year end in t-1 divided by

ME for December of t-1. The BE/ME breakpoints are the 30th and 70th NYSE

percentiles. Source: Kenneth French�s homepage, http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.



� The stock market return is the Center for Research and Security Prices (CRSP) value-
weighted stock market return. Our source is the Center for Research in Security Prices.

5.2 Detailed Description of Models

The utility function in the CC and MSV models take the form

U = E

( 1X
t=0

�t
(Cit �X i

t)
1� � 1

1� 

)
;  > 0 (19)

where Cit is individual consumption and Xt is habit level which they assume to be a function

of aggregate consumption, and � is the subjective discount factor. In equilibrium, identical

agents choose the same level of consumption, so Cit is equal to aggregate consumption, Ct.

CC de�ne the surplus consumption ratio

St �
Ct �Xt

Ct
< 1;

and model its log process as evolving according to a heteroskedastic �rst-order autoregressive

process (where as before lowercase letters denote log variables):

st+1 = (1� �) s+ �st + � (st) (ct+1 � ct � g) ;

where �, g, and s are parameters. � (st) is the so-called sensitivity function that CC choose

to satisfy three conditions: (1) the risk-free rate is constant, (2) habit is predetermined at

steady state, and (3) habit moves nonnegatively with consumption everywhere. We refer the

reader to the CC paper for the speci�c functional form of � (st) : The stochastic discount

factor in the CC model is given by

MCC
t+1 = �

�
Ct+1
Ct

St+1
St

��
:

In all of the models considered here, the return on a risk-free asset whose value is known

with certainty at time t is given by

Rft+1 � (Et [Mt+1])
�1 ;

where Mt+1 is the pricing kernel of whichever model we are considering.

MSV model the behavior of Yt; the inverse surplus consumption ratio:

Yt =
1

1� (Xt=Ct)
> 1:

Following Campbell and Cochrane (1999), MSV assume that Yt follows a mean-reverting

process, perfectly negatively correlated with innovations in consumption growth:

�Yt = k
�
Y � Y

�
� � (Yt � �) (�ct � Et�1�ct) ;



where Y is the long-run mean of Y and k, �; and � are parameters, calibrated as in MSV.

Here �ct � log (Ct+1=Ct), which they assume it follows an i.i.d. process

�ct = �+ �vt;

where vt is a normally distributed i.i.d. shock. The stochastic discount factor in the MSV

model is

MMSV
t+1 = �

�
Ct+1
Ct

Yt
Yt+1

��
:

Since the MSV model is a representative agent model, we modify it in order to study

the role of limited participation. Assume that asset prices are determined by the framework

above, where a valid stochastic discount factor is a function of any stockholder�s consumption

Cit and stockholder�s habit X
i
t . The process for stockholder consumption is the same as in

MSV, described above, but now with i subscripts:

�cit = �i + �iv
i
t;

where vit is a normally distributed i.i.d. shock. Aggregate consumption is assumed to follow

a separate process given by

�ct = �c + �cv
c
t ;

with vct a normally distributed i.i.d. shock. We analyze the results over a range of cases for

the correlation between vit and v
c
t , and their relative volatilities �i=�c.

For the representative stockholder, we model the �rst di¤erence of Y i
t as in MSV:

�Y i
t = k

�
Y
i � Y i

�
� �

�
Y i
t � �

� �
�cit � Et�1�c

i
t

�
;

and compute equilibrium asset returns based on the stochastic discount factor MMSV i
t+1 =

�
�
Cit+1=C

i
t

�� �
Y i
t =Y

i
t+1

��
: As before, this is straightforward using the analytical solutions

provided in MSV.

Next, we compute two types of unconditional pricing errors. First, we compute the

pricing errors generated from erroneously using aggregate consumption in the pricing kernel

in place of assetholder consumption. That is, we compute the pricing errors that arise from

using M ch
t+1 � �c (Ct+1=Ct)

�c
�
Y c
t =Y

c
t+1

��c in place of MMSV i
t+1 to price assets, where �c and

c are chosen freely to �t the data, and where Y
c
t follows the process

�Y c
t = k

�
Y
c � Y c

�
� � (Y c

t � �) (�ct � Et�1�ct) :

With the exception of �, all parameters are set as in MSV. The parameter � is set to keep

the mean return on the aggregate wealth portfolio the same as in MSV. Thus, if �i=�c = 2,

the value of � in MSV is divided by two.



To model multiple risky securities, MSV model the share of aggregate consumption that

each asset produces,

sjt =
Dj
t

Ct
for j = 1; :::; n;

where n represents the total number of risky �nancial assets paying a dividend D. MSV

assume that these shares are bounded, mean-reverting and evolve according to

�sjt = �j
�
sj � sjt

�
+ sjt� (si) �t;

where � (sj) is an N�dimensional row vector of volatilities and �t is an N�dimensional
column vector of standard normal random variables, and �j and sj are parameters. (N �
n + 1 because MSV allow for other sources of income, e.g., labor income, that support

consumption.) Cross-sectional variation in unconditional mean returns across risky securities

in this model is governed by cross-sectional variation in the covariance between shares and

aggregate consumption growth: Cov
�
�sjt
sjt
; �ct
ct

�
, for j = 1; :::; n. This in turn is determined

by cross-sectional variation in �j, sj and � (sj) : We create n arti�cial risky securities using

an evenly spaced grid of values for these parameters. The values of �j lie on a grid between

0 and 1, and the values of sj 2 [0; 1) lie on a grid such that the sum over all j is unity.

The parametric process for � (sj) follows the speci�cation in MSV in which the volatilities

depend on a N -dimensional vector of parameters vj as well as the individual share processes

� (sj) = v
j �

nX
k=0

skt v
k:

We choose the parameters �j, sj, and vj, to generate a spread in average returns across

assets. In analogy to the empirical exercise (Panel B of Table 1), we do this for n = 6 risky

securities plus the aggregate wealth portfolio return and the risk-free for a total of 8 asset

returns.

Closed-form solutions are not available for the individual risky securities, but MSV show

that equilibrium price-dividend ratios on the risky assets are given by the approximate

relation
P jt

Dj
t

� aj0 + aj1St + aj2
sj

sjt
+ aj3

sj

sit
St; (20)

where St � 1=Y i
t and where Y

i
t again denotes the inverse surplus ratio of an individual

assetholder indexed by i, which should not be confused with the indexation by j, which

denotes a security. The parameters aj0, a
j
1; a

j
2; and a

j
3 are all de�ned in terms of the other

parameters above. Using these solutions for individual price-dividend ratios, we create a

cross-section of equilibrium risky securities using

Rit+1 =

 
P jt+1=D

j
t+1 + 1

P jt =D
j
t

!
exp

�
�djt+1

�
: (21)



Bansal and Yaron (2004) consider a representative agent who maximizes utility given by

recursive preferences of Epstein and Zin (1989, 1991) and Weil (1989). The utility function

to be maximized takes the form

U = E

( 1X
t=0

�t
n
(1� �)C

1�
�

t + �
�
EtU

1�
t+1

� 1
�

o �
1�

)
; (22)

where � � (1� ) = (1� 1= ) ;  is the intertemporal elasticity of substitution in consump-
tion (IES),  is the coe¢ cient of relative risk aversion, and � is the subjective discount factor.

The stochastic discount factor under Epstein-Zin-Weil utility takes the form given in (15).

5.3 Hermite Expansions Around the Normal Density

Gallant and Tauchen (1989) show that the Hermite expansion can be put in tractable form

by specifying the density as

h (y) =
a (y)2 f (y)R R R

a (u)2 f (u) du1du2du3
:

Here, a (y) is the sum of polynomial basis functions of the variables in y; it is squared to

insure positivity and divided by the integral over R3 to insure the density integrates to
unity. We set a (y)2 = (a0 + a1y1;t + a2y2;t + a3y3;t)

2, a �rst-order expansion but one that

can nonetheless accommodate quite signi�cant departures from normality. We investigate a

large number of possible joint distributions by varying the parameters a0,...,a3:When a0 = 1

and a1 = a2 = a3 = 0, h (y) collapses to the Gaussian joint distribution, f (y).

Under the assumptions above, the equilibrium price-dividend ratio is a constant, P=D,

that satis�es
P=D

P=D + 1
=

Z Z
�i exp

�
�iy2

�
exp (y3)h (y2; y3) dy2dy3:

5.4 Additional Diagnostics

5.4.1 Time Aggregated Consumption

To explore how time aggregation of aggregate data is likely to a¤ect our results, we assume

that agents make decisions quarterly but that the data sampling interval is annual. We also

allow for the possibility that aggregate consumption is a misspeci�ed measure of assetholder

consumption. For all models the essential results for the Euler equation errors remain: values

of �c and c can always be found such that the unconditional pricing errors associated with

usingM c
t+1 to price assets are very small relative to the data, even when using time-averaged

data. As one example, Table A.1 shows results for the MSVmodel with limited participation.

To conserve space, we report only the results for this model, since the conclusion is unchanged



for the other models, although note that the results above for the BY model are already

based on time-aggregate data. The table shows that the pricing errors are again small,

even when data is time-aggregated. Most values of RMSE/RMSR are close to zero. The

largest occurs for the eight asset case and is equal to 0.07, far smaller than the value of

0.33 found in the data, which happens only if we assume stockholder consumption growth

is negatively correlated with aggregate consumption growth. Since time-averaging changes

both the serial dependence of the consumption data and its unconditional correlation with

returns, this suggests that the exact time-series properties of consumption growth are not

crucial for explaining the large pricing errors of the standard model.

5.4.2 Finite Sample Pricing Errors

To investigate how �nite sample considerations are likely to a¤ect our conclusions, we redo

the simulation exercises reported on above using samples of the size employed in our empirical

application. Table A.2 reports the maximum RMSE/RMSR over 1,000 samples of size 204

that arises from �tting M c
t+1 to data generated from the relevant model. We do not report

small-sample results for the eight-asset MSV model. The small sample behavior of the MSV

model is problematic because the model is solved in continuous time and moreover holds only

as an approximation for multiple risky securities. As a result, we �nd that small amounts of

approximation error are compounded by discretization error in small samples and it is not

possible to reduce these errors to reasonable levels unless the number of decisions within the

period is almost in�nite. Nevertheless, we are able to report the results for the two-asset

case, since the solutions for the aggregate consumption claim and risk-free rate in the MSV

model are not approximate. Table A.2 shows that, for the three representative agent models,

CC, MSV, and BY, the maximum Euler equation errors that arise from �tting M c
t+1 to data

are numerically zero, for both the two-asset and eight-asset speci�cations. The Guvenen

model produces a slightly higher maximum RMSE/RMSR in �nite samples, equal to about

0.87% at an annual rate, but still well below the value of almost 50% found in historical data

(Table 1).



References

Bansal, R., and A. Yaron (2004): �Risks for the Long-Run: A Potential Resolution of Asset

Pricing Puzzles,�Journal of Finance, 59(4), 1481�1509.

Campbell, J. Y. (2003): �Consumption-Based Asset Pricing,� in Handbook of the Economics

of Finance forthcoming, ed. by G. Constantinides, M. Harris, and R. Stulz. North-Holland,

Amsterdam.

Campbell, J. Y., and J. H. Cochrane (1999): �By Force of Habit: A Consumption-Based

Explanation of Aggregate Stock Market Behavior,�Journal of Political Economy, 107, 205�251.

(2000): �Explaining the Poor Performance of Consumption-Based Asset Pricing Models,�

Journal of Finance, 55(6), 2863�2878.

Campbell, J. Y., A. W. Lo, and C. MacKinlay (1997): The Econometrics of Financial

Markets. Princeton University Press, Princeton, NJ.

Cochrane, J. H. (1996): �A Cross-Sectional Test of an Investment-Base Asset Pricing Model,�

Journal of Political Economy, 104, 572�621.

(2005): Asset Pricing, Revised Edition. Princeton University Press, Princeton, NJ.

Cogley, T., and T. J. Sargent (2004): �The Market Price of Risk and the Equity Premium:

A Legacy of the Great Depression?,�Unpublished paper, New York University.

Constantinides, G. M., and D. Duffie (1996): �Asset Pricing With Heterogeneous Con-

sumers,�Journal of Political Economy, 104, 219�40.

Epstein, L., and S. Zin (1989): �Substitution Risk Aversion and the Temporal Behavior of

Consumption and Asset Returns: A Theoretical Framework,�Econometrica, 57, 937�968.

(1991): �Substitution, Risk Aversion, and the Temporal behavior of Consumption and

Asset Returns: An Empirical Investigation,�Journal of Political Economy, 99, 555�576.

Fama, E. F., and K. R. French (1992): �The Cross-Section of Expected Returns,�Journal of

Finance, 47, 427�465.

(1993): �Common Risk Factors in the Returns on Stocks and Bonds,�Journal of Financial

Economics, 33, 3�56.

Ferson, W. E., and G. M. Constantinides (1991): �Habit Persistence and Durability in

Aggregate Consumption,�Journal of Financial Economics, 29, 199�240.

Ferson, W. E., and J. J. Merrick (1987): �Non-stationary and Stage of the Business Cycle

E¤ects in Consumption-Based Asset Pricing Relations,� Journal of Financial Economics, 18,

127�146.



Gabaix, X., and D. Laibson (2002): �The 6-D Bias and the Equity Premium Puzzle,�in NBER

Macroeconomics Annual: 2002, ed. by B. Bernanke, and K. Rogo¤, pp. 257�312. MIT Press,

Cambridge, MA.

Gallant, A. R., and G. Tauchen (1989): �Seminonparametric Estimation of Conditionally

Constrained Heterogeneous Processes: Asset Pricing Applications,�Econometrica, 57(5), 1091�

1120.

Guo, H. (2004): �Limited Stock Market Participation and Asset Prices in a Dynamic Economy,�

Journal of Financial and Quantitative Analysis forthcoming, 39, 495�516.

Guvenen, M. F. (2003): �A Parsimonious Macroeconomic Model for Asset Pricing: Habit For-

mation or Cross-sectional Heterogeneity?,� Rochester Center for Economic Research Working

Paper No. 499.

Hansen, L. P. (1982): �Large Sample Properties of Generalized Methods of Moments Estimators,�

Econometrica, 50, 1029�54.

Hansen, L. P., and R. Jagannathan (1991): �Restrictions on Intertemporal Marginal Rates of

Substitution Implied by Asset Returns,�Journal of Political Economy, 99, 225�262.

(1997): �Assessing Speci�c Errors in Stochastic Discount Factor Models,� Journal of

Finance, 52, 557�590.

Hansen, L. P., and T. J. Sargent (2000): �Wanting Robustness in Macroeconomics,�Unpub-

lished Paper, New York University.

Hansen, L. P., and K. Singleton (1982): �Generalized Instrumental Variables Estimation of

Nonlinear Rational Expectations Models,�Econometrica, 50(5), 1269�86.

He, H., and D. M. Modest (1995): �Portfolio Choice and Asset Prices: The Importance of

Entrepreneurial Risk,�Journal of Finance, 103, 94�117.

Heaton, J., and D. Lucas (1996): �Evaluating the E¤ects of Incomplete Markets on Risk Sharing

and Asset Pricing,�Journal of Political Economy, 104(3), 443�87.

(1997): �Market Frictions, Savings Behavior, and Portfolio Choice,�Macroeconomic Dy-

namics, 1(1), 76�101.

Jagannathan, R., and Y. Wang (2005): �Lazy Investors, Discretionary Consumption, and the

Cross-Section of Stock Returns,�Unpublished paper, Kellog School of Management, Northwest-

ern University.

Kocherlakota, N. R. (1990): �Disentangling the Coe¢ cient of Relative Risk Aversion from

the Elasticity of Intertemporal Substitution: An Irrelevance Result,�Journal of Finance, 45(1),

175�190.



(1996): �The Equity Premium: It�s Still A Puzzle,�Journal of Economic Literature, 34,

42�68.

Lettau, M., and S. C. Ludvigson (2005): �Expected Returns and Expected Dividend Growth,�

Journal of Financial Economics, 76, 583�626.

Ludvigson, S. C. (1999): �Consumption and Credit: A Model of Time-Varying Liquidity Con-

straints,�Review of Economics and Statistics, 81, 434�447.

Luttmer, E. G. J. (1996): �Asset Pricing in Economies with Frictions,� Econometrica, 64(6),

1439�1467.

Mardia, K. (1970): �Measures of Multivariate Skewness and Kurtosis with Applications,�Bio-

metrika, 57, 519�530.

Mehra, R., and E. C. Prescott (1985): �The Equity Premium Puzzle,�Journal of Monetary

Economics, 15, 145�161.

Menzly, L., T. Santos, and P. Veronesi (2004): �Understanding Predictability,�Journal of

Political Economy, 112(1), 1�47.

Vissing-Jorgensen, A. (1999): �Limited Stock Market Participation and the Equity Premium

Puzzle,�Unpublished manuscript, Northwestern University, Kellog School of Management.

Weil, P. (1989): �The Equity Premium Puzzle and the Risk-Free Rate Puzzle,�Journal of Mon-

etary Economics, 24(3), 401�421.



Table 1: Euler Equation Errors with CRRA Preferences

Assets ̂δ γ̂ RMSE (in %) RMSE/RMSR p (W = I) p (W = S−1)

Rs, Rf 1.41 89.78 2.71 0.48 N/A N/A

Rs, Rf , 6 FF 1.39 87.18 3.05 0.33 0.00 0.00

Excluding Periods with low Consumption Growth

Rs, Rf 2.55 326.11 0.73 0.13 N/A N/A

Rs, Rf , 6 FF 2.58 356.07 1.94 0.21 0.00 0.00

Notes: This table reports the minimized annualized postwar data Euler Equation errors for CRRA preferences. The
preference parameters ̂δc and γ̂c are chosen to minimize the mean square pricing error for different sets of returns:
minδc,γc

[

g(δc, γc)
′Wg(δc, γc)

]

where g(δc, γc) = E[δc(Ct/Ct−1)
−γcRt − 1]. Rs is the CRSP-VW stock returns, Rf is the

3-month T-bill rate and Ct is real per-capita consumption of nondurables and services excluding shoes and clothing. The
table also reports results when the periods with the lowest six consumption growth rates are eliminated. The table reports
estimated ̂δ, γ̂ and the minimized value of RMSR/RMSRR where RMSE is the square root of the average squared Euler
Equation error and RMSR is the square root of the averaged squared returns of the assets under consideration forW = I.
The last two colums report χ2 p-values for tests for the null hypothesis that Euler Equation errors are jointly zero for
W = I and W = S−1 where S is the spectral density matrix at frequency zero. The data span the period 1951Q4 to
2002Q4.



Table 2: Low Consumption Growth Periods

Quarter NBER Recession Dates Ct/Ct−1 − 1 Rst Rft

1980Q02 80Q1-80Q3 -1.28 16.08 3.59

1990Q04 90Q3-91Q1 -0.87 8.75 2.16

1974Q01 73Q4-75Q1 -0.85 -1.26 2.37

1958Q01 57Q3-58Q2 -0.84 7.03 0.65

1960Q03 60Q2-61Q1 -0.64 -4.93 0.67

1953Q04 53Q1-54Q2 -0.60 7.87 0.47

Notes: This table reports consumption growth, the return of the CRSP-VW stock returns Rs and the 3-month T-bill
rate Rf (all in in percent per quarter) in the six quarters of our sample with the lowest consumption growth rates. The
consumption measure is real per-capita expenditures on nondurables and services excluding shoes and clothing. The data
span the period 1951Q4 to 2002Q4.



Table 3: Euler Equation Errors

Model ̂δc γ̂c RMSE/RMSR (Rs, Rf ) RMSE/RMSR (8 assets)

Data 0.48 0.33

CC Habit 1.28 57.48 0.00 N/A

MSV Habit 1.71 30.64 0.00 0.00

BY LR Risk 0.93 48.97 0.00 0.00

Notes: This table reports the annualized Euler Equation errors for stock returns Rs and the riskfree rate Rf from
simulated data from Campbell and Cochrane’s habit model (CC Habit), Menzly, Santos and Veronesi’s habit model
(MSV Habit) and Bansal and Yaron’s long run risk model (BY LR Risk) for CRRA preferences. The preference pa-

rameters ̂δc and γ̂c are chosen to minimize the mean square Euler Equation error: minδc,γc
[

g(δc, γc)
′g(δc, γc)

]

where
g(δc, γc) = E[δc(Ct/Ct−1)

−γcRt − 1]. RMSR is the square root of the averaged squared returns of the assets under
consideration. RMSE is the square root of the average squared Euler Equation error. Euler Equation errors are computed
from simulations with 10,000 observations.



Table 4: Properties of Guvenen’s Model

Panel A: Consumption Growth

Ct/Ct−1 − 1 Cit/C
i
t−1 − 1 Cnt /C

n
t−1 − 1 Rst Rft

Mean 0.01 0.02 0.00 1.31 0.64

Std. Dev. 2.04 4.53 0.83 7.30 1.69

Correlation 1.00 1.00 0.99 1.00 0.17

1.00 1.00 0.98 0.99 0.17

0.99 0.98 1.00 0.99 0.16

1.00 0.99 0.99 1.00 0.19

0.17 0.17 0.16 0.19 1.00

Panel B: Stochastic Discount Factors

M i
t (0.99, 2.00) M c

t (0.99, 2.00) M c
t (0.99, 4.49)

Mean 0.99 0.99 0.99

Std. Dev. 0.09 0.04 0.09

Correlation 1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00

Panel C: Euler Equation Errors

Consumption (δ, γ) E[Mt(δ, γ) R
s
t − 1] E[Mt(δ, γ) R

f
t − 1]

SH (0.99, 2.00) 0.02% 0.02%

AC (0.99, 2.00) 0.39% -0.34%

AC (0.99, 4.49) 0.00% 0.01%

Notes: This table reports properties of Guvenen’s model. Panel A reports the properties of consumption growth rates
of aggregate consumption Ct/Ct−1, stockholders consumption Cit/C

i
t−1, nonstockholders consumption Cnt /C

n
t−1, stock

returns Rst and the riskfree rate Rft in Guvenen’s model. Panel B reports properties of stochastic discount factors. The
first row reports properties of the SDF for stockholders consumption. The remaining rows report SDF properties for
total consumption and different preference parameters. The stochastic discount factors are of the CRRA form Mt =
δ(Ct/Ct−1)

−γ . The first parameter in parenthesis is δ, the second one is γ. Panel C reports the annual Euler Equation
error Guvenen’s model. The preference parameters δ and γ are chosen to minimize the equally weighted sum of Euler
Equation errors for the stock returns Rs and the riskfree rate Rf . The first row labelled “SH� reports the Euler Equation
errors for stockholders consumption. The remaining rows labelled “AC� report Euler Equation errors for aggregate
consumption and different preference parameters. All statistics are quarterly.



Table 5: Properties of a Limited Participation Habit Model

σi/σc ρ(Cit/C
i
t−1, Ct/Ct−1)

−1.0 −0.5 −0.25 0.25 0.5 1.0

2 Assets: Rs, Rf

̂δc

1 0.51 0.24 0.03 5.27 2.69 1.61

2 0.52 0.24 0.03 5.20 2.75 1.83

5 0.48 0.23 0.03 4.94 2.81 1.79

γ̂c

1 -30.71 -60.15 -128.80 127.03 58.59 27.93

2 -29.22 -61.24 -132.02 117.99 61.69 33.28

5 -33.48 -64.30 -131.01 117.94 64.43 32.56

RMSE/RMSR

1 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00

8 Assets

̂δc

1 0.50 0.24 0.04 5.44 2.76 1.74

2 0.50 0.23 0.04 5.60 2.80 1.74

5 0.48 0.21 0.03 5.74 2.94 1.85

γ̂c

1 -30.83 -61.99 -123.23 124.24 61.51 31.21

2 -31.69 -62.76 -124.21 126.92 62.34 31.22

5 -33.73 -67.43 -134.53 133.41 65.50 34.11

RMSE/RMSR

1 0.03 0.03 0.03 0.03 0.04 0.03

2 0.04 0.03 0.03 0.03 0.03 0.03

5 0.03 0.03 0.04 0.03 0.03 0.04

Notes: This table reports preference parameters and Euler Equation errors in Menzly, Santos and Veronesi’s (2004) habit
model. Consumption growth of stockholders is assumed to follow a random walk with a mean of 2% and standard deviation
of 1%. All parameters are as in Menzly, Santos and Veronesi except α, which is set obtain the same average stock return
as in Menzly-Santos-Veronesi. σi and σc are the standard deviations of stockholder’s and aggregate consumption growth,
respectively, and ρ(Cit/C

i
t−1, Ct/Ct−1) is their correlation. The preference parameters ̂δc and γ̂c are chosen to minimize

the mean square Euler Equation error minδc,γc
[

g(δc, γc)
′Wg(δc, γc)

]

where g(δc, γc) = E[Mc
tRt − 1],Mc

t = δc(
Ct
Ct−1

)−γc .

Ct is aggregate consumption, Rs is the return of equity, Rf is the riskfree rate, and W = I. R includes the return of
the market Rs, the riskfree rate Rf and the returns of six individual assets. RMSR is the square root of the averaged
squared returns of the assets under consideration. RMSE is the square root of the average squared Euler Equation error.
The weighting matrix W is the identity matrix.



γ δ ρ(Δc,Δci) ρ(Δci,Δd) σ(i)/σ(c) μ(Δci)/μ(Δc) γc δc e(Rs) e(Rf) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 36.211 2.5613 4.95E-10 4.90E-10 4.0917 11.195 -0.0042337 3 0.036111 3.0009
5 0.99 0.1 0.9 1 1.5 36.217 2.3988 2.12E-10 2.10E-10 4.0899 11.181 -0.004228 3 0.036063 3.0009
5 0.99 0.1 0.9 2 0.85 71.495 6.0675 1.14E-09 1.12E-09 4.0952 11.207 0.0078509 3 0.04699 3.0015
5 0.99 0.1 0.9 2 1.5 71.53 5.6869 1.50E-09 1.49E-09 4.0934 11.193 0.0078403 3 0.046927 3.0015
5 0.99 0.1 0.9 4 0.85 129.08 14.235 9.75E-08 9.67E-08 4.1018 11.229 0.032021 3.0007 0.068751 3.0032
5 0.99 0.1 0.9 4 1.5 129.22 13.395 -9.01E-08 -8.50E-08 4.1 11.215 0.031977 3.0007 0.068658 3.0031

γ δ ρ(Δc,Δci) ρ(Δci,Δd) σ(i)/σ(c) μ(Δci)/μ(Δc) γc δc e(Rs) e(Rf) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 -64.06 0.1052 -1.41E-14 -1.40E-14 4.1037 11.313 -0.0041596 3 -0.66437 3.2899
5 0.99 0.1 0.9 1 1.5 -64.05 0.0987 -1.27E-08 -1.27E-08 4.1034 11.303 -0.0041543 3 -0.66356 3.2891
5 0.99 0.1 0.9 2 0.85 -118.7 0.0121 -6.34E-14 -6.22E-14 4.1071 11.324 0.0077134 3 -0.65304 3.2802
5 0.99 0.1 0.9 2 1.5 -118.6 0.0113 -8.05E-11 -8.07E-11 4.1067 11.314 0.0077036 3 -0.65225 3.2795
5 0.99 0.1 0.9 4 0.85 -210.4 0.0002 -6.58E-13 -6.60E-13 4.1134 11.346 0.031459 3.0007 -0.63043 3.2614
5 0.99 0.1 0.9 4 1.5 -210.2 0.0001 -2.31E-13 -2.31E-13 4.1131 11.336 0.03142 3.0007 -0.62966 3.2607

γ δ ρ(Δc,Δci) ρ(Δci,Δd) σ(i)/σ(c) μ(Δci)/μ(Δc) γc δc e(Rs) e(Rf) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 35.488 1.7114 -7.93E-09 -8.00E-09 0.2175 3.0307 0.49692 2.4804 0.46153 2.2946
5 0.99 0.1 0.9 1 1.5 35.488 1.6032 -7.94E-09 -7.99E-09 0.2175 3.0307 0.49691 2.4804 0.46153 2.2946
5 0.99 0.1 0.9 2 0.85 70.978 2.7445 9.82E-09 9.64E-09 0.2175 3.0307 0.49692 2.4804 0.46154 2.2946
5 0.99 0.1 0.9 2 1.5 70.978 2.571 9.82E-09 9.64E-09 0.2175 3.0307 0.49691 2.4804 0.46153 2.2946
5 0.99 0.1 0.9 4 0.85 141.96 4.3612 2.26E-07 2.25E-07 0.2175 3.0307 0.49692 2.4804 0.46154 2.2946
5 0.99 0.1 0.9 4 1.5 141.96 4.0855 2.26E-07 2.25E-07 0.2175 3.0307 0.49692 2.4804 0.46153 2.2946

γ δ ρ(Δc,Δci) ρ(Δci,Δd) σ(i)/σ(c) μ(Δci)/μ(Δc) γc δc e(Rs) e(Rf) Sk[c] Ku[c] Sk[i] Ku[i] Sk[d] Ku[d]
5 0.99 0.1 0.9 1 0.85 -35.46 0.4115 -4.87E-08 -4.88E-08 -0.218 3.0308 0.49691 2.4804 0.46152 2.2946
5 0.99 0.1 0.9 1 1.5 -35.46 0.3855 -4.88E-08 -4.88E-08 -0.218 3.0308 0.4969 2.4804 0.46151 2.2946
5 0.99 0.1 0.9 2 0.85 -70.92 0.1587 4.66E-15 4.66E-15 -0.218 3.0308 0.49691 2.4804 0.46152 2.2946
5 0.99 0.1 0.9 2 1.5 -70.92 0.1487 4.22E-15 5.33E-15 -0.218 3.0308 0.4969 2.4804 0.46151 2.2946
5 0.99 0.1 0.9 4 0.85 -141.8 0.0146 1.21E-13 1.22E-13 -0.218 3.0308 0.49692 2.4805 0.46153 2.2946
5 0.99 0.1 0.9 4 1.5 -141.8 0.0137 1.15E-13 1.18E-13 -0.218 3.0308 0.49691 2.4804 0.46152 2.2946

Cov(Δc,Δd)=-0.00017

Table 6: Lim. Partic./Inc. Markets Euler Equation Errors for Stock Return and Risk-Free Rate: Hermite Densities
Cov(Δc,Δd)=0.00017

Cov(Δc,Δd)=0.00017

Cov(Δc,Δd)=-0.00017

Notes: This table reports output on the pricing error associated with erroneously using aggregate consumption in place of asset-holder consumption, for a range of parameter values and joint 
distributions. γi is the persumed value of asset-holder risk-aversion; δi is the presumed value of the asset-holder's subjective discount rate; ρ(Δc,Δci) denotes the correlation between 
aggregate consumption growth and asset-holder consumption growth in the leading normal; ρ(Δci,Δd) denotes the correlation between asset-holder consumption growth and dividend growth 
in the leading normal; σ(Δci)/σ(Δc) denotes the standard deviation of asset-holder consumption growth divided by the standard deviation of aggregate consumption growth in the leading 
normal; μ(Δci)/μ(Δc) denotes the mean of asset-holder consumption growth divided by the mean of aggregate consumption growth in the leading normal; γc and δc are the values of γ and δ 
that minimize the pricing errors using aggregate consumption; e(Rs) is the error for the Euler equation associated with the stock return; e(Rf) is the pricing error of the Euler equation 
associated with the risk-free rate, and Sk[ ], Ku[ ] refer to the skewness and kurtosis of aggregate consumption (c), asset-holder consumption (i), and dividends (d). 



Table 7: Limited Participation CRRA Model and State-Dependent Correlation Estimated with Aggregate
Consumption CRRA SDF

σi/σc ρ−(Cit/C
i
t−1, Ct/Ct−1)

−1.0 −0.5 −0.25 0.25 0.5 1.0

2 Assets: Rs, Rf

̂δc

1 1.39 2.27 3.33 2.16 1.67 1.26

2 2.11 3.04 4.27 6.67 3.75 2.19

5 4.42 4.30 5.15 0.00 2.55 5.15

γ̂c

1 19.30 47.77 72.82 44.27 29.26 14.07

2 47.37 68.58 90.13 162.03 83.06 45.21

5 107.78 93.29 95.69 142.34 193.52 101.68

RMSE/RMSR

1 0.55 0.43 0.27 0.00 0.00 0.00

2 0.53 0.47 0.40 0.00 0.00 0.00

5 0.33 0.41 0.41 0.00 0.00 0.00

8 Assets

̂δc

1 1.33 2.22 3.23 2.19 1.71 1.30

2 2.00 2.81 3.75 6.95 3.80 2.25

5 3.86 3.10 3.17 5.12 6.69 4.79

γ̂c

1 19.30 47.77 72.82 44.27 29.26 14.07

2 47.37 68.58 90.13 162.03 83.06 45.21

5 107.78 93.29 95.69 142.34 193.52 101.68

RMSE/RMSR

1 0.31 0.25 0.16 0.00 0.00 0.00

2 0.29 0.26 0.22 0.01 0.00 0.00

5 0.17 0.22 0.22 0.19 0.12 0.02

Notes: This table reports preference parameters and Euler Equation errors in a CRRA model with state-dependent
correlation of stockholder’s and aggregate consumption growth rates. Aggregate consumption growth is assumed to
follow a random walk with a mean of 2% and standard deviation σc of 1% (annually). The standard deviation of
stockholders is σi. Aggregate consumption growth and stockholders consumption growth is perfectly correlation unless
aggregate consumption growth is more than one standard deviation below its mean. In such periods, the correlation is
ρ−(Cit/C

i
t−1, Ct/Ct−1). Risk aversion of stockholders is 10 and their time discount factor is 1.2. Equity is modelled as lev-

ered claims to stockholders consumption. The Euler eqution is estimated using aggregate consumption growth. The pref-
erence parameters ̂δc and γ̂c are chosen to minimize the mean square Euler Equation error minδc,γc

[

g(δc, γc)
′Wg(δc, γc)

]

where g(δc, γc) = E[Mc
tRt − 1],Mc

t = δc(
Ct
Ct−1

)−γc . Ct is aggregate consumption, Rs is the return of equity, Rf is the

riskfree rate, and W = I. R includes the return of the market Rs, the riskfree rate Rf and the returns of six individual
assets. RMSR is the square root of the averaged squared returns of the assets under consideration. RMSE is the square
root of the average squared Euler Equation error. The weighting matrix W is the identity matrix.



Figure 1: Euler Equation Errors for CRRA Preferences: Excess Returns

Notes: The figure plots RMSE/RMSR as a function of γ for excess returns. The Euler equation

errors are eX = E
[

δ(Ct+1/Ct)
−γ(Rt+1 −Rf

t+1)
]

. The solid line shows RMSE/RMSR for R =

Rs, the dotted line shows RMSE/RMSR for R = (Rs, 6 FF). For each value of γ, δ is chosen

to minimize the Euler equation error for the risk-free rate.



Figure 2: Euler Equation Errors: With and Without Lognormality

Notes: This figure plots RMSE/RMSR with and without the assumption of joint log-

normality as a function of γc. δc is chosen to minimize the RMSE for each value of

γc. The top panel shows the case for R = (Rs, Rf ), in the bottom panel R =

(Rs, Rf , 6 FF). The Euler equation error for asset j without assuming lognormality is

ejR = δcE [exp {−γc∆c+ rj}]− 1. Under the assumption of joint lognormality, the Euler equa-

tion error is ejR = δc exp {−γcE∆c+ γ2cσ
2
c/2 + Erj + σ2r/2− γcCov(∆c, rj)} − 1.



Figure 3: QQ Plots – Data

Notes: This figure shows multivariate quantile-quantile (QQ) plots of log consumption growth

and asset returns. Each panel plots the sample quantiles (on the y-axis) against the quantiles

of a given distribution (on the x-axis) as well pointwise 5% and 95% bands. The top panel

shows the QQ plot for the joint distribution of ∆c, rs and rf , i.e. the quantiles of the squared

Mahalanobis distances against those of a χ2
3 distribution. The bottom panel shows the QQ

plot for the joint distribution of ∆c, rs, rf and 6 FF portfolios, i.e. the quantiles of the squared

Mahalanobis distances against those of a χ2
9 distribution. The squared Mahalanobis distanceMt

for a p-dimensional multivariate distribution xt with mean µx and variance-covariance matrix

V is defined as Mt = (xt − µx)′V −1(xs − µx). Under the null hypothesis that ∆c, rs and rf
are jointly normally distributed, Mt has a χ

2
p distribution.



Figure 4: QQ Plots – Model with State-Dependent Correlation

Panel A: 2 Assets

Panel B: 8 Assets

Notes: This figure shows multivariate quantile-quantile (QQ) plots of log consumption growth

and asset returns for data generated by the CRRA model with state-dependent correlation. See

the notes to figure 3 for a description of the QQ plots and the notes to table 7 for a description

of the model and values for the parameters. ρ−(Ci
t/C

i
t−1, Ct/Ct−1)is−0.5 and σi/σc is 2. Panel

A shows the case of 2 assets, Panel B presents the 8 asset case.




