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Abstract

Evidence of stock return predictability by financial ratios is still controversial, as docu-

mented by inconsistent results for in-sample and out-of-sample regressions and by substantial

parameter instability. This paper shows that these seemingly incompatible results can be

reconciled if the assumption of a fixed steady-state mean of the economy is relaxed. We find

strong empirical evidence in support of shifts in the steady-state and propose simple methods

to adjust financial ratios for such shifts. The in-sample forecasting relationship of adjusted

price ratios and future returns is statistically significant and stable over time. In real-time,

however, changes in the steady-state make the in-sample return forecastability hard to ex-

ploit out-of-sample. The uncertainty of estimating the size of steady-state shifts rather than

the estimation of their dates is responsible for the difficulty of forecasting stock returns in

real-time. Our conclusions hold for a variety of financial ratios and are robust to changes in

the econometric technique used to estimate shifts in the steady-state.
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1 Introduction

The question of whether stock returns are predictable has received an enormous amount of atten-

tion. This is not surprising because the existence of return predictability is not only of interest

to practitioners but also has important implications for financial models of risk and return. One

branch of the literature asserts that expected returns contain a time-varying component that im-

plies predictability of future returns. Due to its persistence, the predictive component is stronger

over longer horizons than over short horizons. Classic predictive variables are financial ratios, such

as the dividend-price ratio, the earnings-price ratio, and the book-to-market ratio (Rozeff (1984),

Fama and French (1988), Campbell and Shiller (1988), Cochrane (1991), Goetzman and Jorion

(1993), Hodrick (1992), Lewellen (2004), and others), but other variables have also been found

to be powerful predictors of long-horizon returns (e.g., Lettau and Ludvigson (2001), Lustig and

Van Nieuwerburgh (2005a), Menzly, Santos, and Veronesi (2004), Piazzesi, Schneider, and Tuzel

(2006)). Moreover, these studies conclude that growth rates of fundamentals, such as dividends or

earnings, are much less forecastable than returns, suggesting that most of the variation of financial

ratios is due to variations in expected returns.

These conclusions are controversial because the forecasting relationship of financial ratios and

future stock returns exhibits a number of disconcerting features. First, correct inference is prob-

lematic because financial ratios are extremely persistent; in fact, standard tests leave the possibility

of unit roots open. Nelson and Kim (1993), Stambaugh (1999), Ang and Bekaert (2006), Ferson,

Sarkissian, and Simin (2003), and Valkanov (2003) conclude that the statistical evidence of fore-

castability is weaker once tests are adjusted for high persistence. Second, financial ratios have

poor out-of-sample forecasting power, as shown in Bossaerts and Hillion (1999) and Goyal and

Welch (2003, 2004), but see Campbell and Thompson (2005) for a different interpretations of the

out-of-sample evidence 1. Third, and related to the poor out-of-sample evidence, the forecasting

relationship of returns and financial ratios exhibits significant instability over time. For example, in

rolling 30-year regressions of annual log CRSP value-weighted returns on lagged log dividend-price

ratios, the ordinary least squares (OLS) regression coefficient varies between zero and 0.5 and the

associated R2 ranges from close to zero to 30% depending on the subsample. Not surprisingly,

the hypothesis of a constant regression coefficient is routinely rejected (Viceira (1996), Paye and

Timmermann (2005)).

In addition to concerns that return forecastability might be spurious, the benchmark model

of time-varying expected returns faces additional challenges. The extreme persistence of price

ratios implies that expected returns have to be extremely persistent as well. But if shocks to

expected returns have a half-life of many years or even decades, as implied by the high persistence

1There is some ambiguity about the use of the term “forecast” in this literature. Most papers use “forecast” to
refer to in-sample regressions using the entire sample. In contrast, predictions using only currently available data
are referred to as “out-of-sample forecasts.” We follow this convention.
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of financial ratios, they are unlikely to be linked to many plausible economic risk factors, such as

those linked to business cycles. Instead, researchers have to identify slow-moving factors that are

primary determinants of equity risk. In addition, the extraordinary valuation ratios in the late

1990s represent a significant challenge for the benchmark model. Given the historical record of

returns, fundamentals, and prices, it is exceedingly unlikely that persistent stationary shocks to

expected returns are capable of explaining price multiples like those seen in 1999 or 2000.

In summary, the return predictability literature has yet to provide convincing answers to the

following four questions: What is the source of parameter instability? Why is the out-of-sample

evidence so much weaker than the in-sample evidence? Why has even the in-sample evidence

disappeared in the late 90s? Why are price ratios extremely persistent? In this paper, we show

that these puzzling empirical patterns can be explained if the steady-state mean of financial ratios

has changed over the course of the sample period. Such changes could be due to changes in

the steady-state growth rate of economic fundamentals resulting from permanent technological

innovations and/or changes in the expected return of equity caused by, for example, improved risk

sharing, changes in stock market participation, changes in the tax code, or lower macroeconomic

volatility.

Using standard econometric techniques, we show that the hypothesis of permanent changes in

the mean of various price ratios is supported by the data. We then ask how such changes affect

the forecasting relationship of returns and lagged price ratios. Standard econometric techniques

that assume that the regressor is stationary will lead to biased estimates and incorrect inference.

However, since deviations of price ratios from their steady-state values are stationary, it is straight-

forward to correct for the non-stationarity if the timing and magnitudes of shifts in steady states

can be estimated. We conduct tests that incorporate such adjustments from the perspective of an

econometrician with access to the entire historical sample (in-sample tests), as well as from the

perspective of an investor who forecasts returns in real-time (out-of-sample tests).

Our in-sample results conclude that “adjusted� price ratios have favorable properties compared

to unadjusted price ratios. In the full sample, the slope coefficient in regressions of annual log

returns on the lagged log dividend-price ratio increases from 0.094 for the unadjusted ratio to

0.235 and 0.455 for the adjusted ratio with one and two steady-state shifts, respectively. While

the statistical significance of the coefficient on the unadjusted dividend-price ratio is marginal,

coefficients on the adjusted dividend-price ratios are strongly significant. Finally, the regression

coefficients using adjusted price ratios as regressors are more stable over time. We find similar

differences for other price ratios such as the earnings-price ratio and the book-to-market ratio.

In real time, however, the changes in the steady-state are not only difficult to detect but also

estimated with significant uncertainty, making the in-sample return forecastability hard to exploit.

Results for out-of-sample forecasting tests reflect this difficulty. While adjusted price ratios have

superior out-of-sample forecasting power relative to their unadjusted counterparts, they do not
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outperform the benchmark random walk model. Why does the real time prediction fail to beat

the random walk model? In real time an investor faces two challenges. First, she has to estimate

the timing of a break. Second, if she detects a new break, she has to estimate the new mean after

the break occurred. If the new break occurred towards the end of the sample that the investor

has access to, the new mean has to be estimated using a small number of observations and is

subject to significant uncertainty. We perform additional test to evaluate the relative difficulty of

estimating the break dates versus estimating the means relative to the pure out-of-sample forecasts

and the ex-post adjusted dividend price ratio. We find that (i) the estimation of the break dates

in real time is not crucial and the resulting prediction errors are smaller than for the random walk

model, and (ii) that the estimation of the magnitude of the break in the mean dividend-price ratio

entails substantial uncertainty, and is ultimately responsible for the failure of the real time out-of-

sample predictions to beat the random walk. These findings can explain the lack of out-of-sample

predictability documented by Goyal and Welch (2004).

Several papers have explored the impact of structural breaks on return predictability. For

example, Viceira (1996) and Paye and Timmermann (2005) reported evidence in favor of breaks

in the OLS coefficient in the forecasting regression of returns on the lagged dividend-price ratio.

Our focus is instead on shifts in the mean of financial ratios, which in turn render the forecasting

relationship unstable if such shifts are not taken into account. In other words, in contrast to Viceira

(1996) and Paye and Timmermann (2005), we focus on the behavior of the mean of price ratios

instead of the behavior of the slope coefficient. Pastor and Stambaugh (2001) use a Bayesian

framework to estimate breaks in the equity premium. They found several shifts in the equity

premium since 1834 and identified the sharpest drop in the 1990s, which is consistent with the

timing of the shift in price ratios identified in this paper. This paper is also related to the recent

literature on inference in forecasting regressions with persistent regressors (see e.g., Amihud and

Hurwich (2004), Ang and Bekaert (2006), Campbell and Yogo (2002), Lewellen (2004), Torous,

Volkanov, and Yan (2004), and Eliasz (2005)). In these papers, asymptotic distributions for OLS

regressions are derived under the assumption that the forecasting variable is a close-to unit, yet

stationary, root process. In contrast, we allow for the presence of a small but econometrically

important non-stationary component in forecasting variables.

The rest of the paper is organized as follows. In Section 2 we establish that the standard

dividend-price ratio does not significantly forecast stock returns or dividend growth. In contrast,

we find much stronger evidence for return predictability in various subsamples. The slope coefficient

in the return equation is much smaller in the full sample than in any of the constituent subsamples,

which confirms the instability of the forecasting relationship over time. In sections 3 and 4, we show

how changes in the steady-state affect the dividend-price ratio and other price ratios. For the log

dividend-price ratio, we find evidence for either one break in the early 1990s or two breaks around

1954 and 1994. Other valuation ratios such as the earnings-price ratio and the book-to-market
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value ratio exhibit similar breaks. We show that filtering out this non-stationary component yields

adjusted price ratios that have strong and stable in-sample return predictability. In Section 5 we

study out-of-sample predictability. We use a recursive Perron procedure that estimates both the

break dates and the means of the regimes in real-time. We show that using the break-adjusted

dividend-price series produces superior one-step ahead return forecasts compared to using the

unadjusted dividend-price series, but does slightly worse than the naive random walk model. Using

a Hamilton (1989) regime-switching model, we show that if the investor did not have to estimate

regime means in real time, but only the regime switching dates, her out-of-sample forecast would

improve substantially, and beat the random walk. The Hamilton procedure leads to slightly later

break dates but predictability results that are virtually as good as those when the (ex-post) break

dates were known and used. In sum, the hardest part of real-time out-of-sample prediction in

the presence of regimes is the estimation uncertainty about the mean of the new regime. In

Section 6 we consider a vector error correction model that includes the return and dividend growth

predictability equations and imposes a joint present value restriction on the slope parameters from

both equations. We find that this restriction is satisfied when we use the adjusted dividend-price

ratio as an independent variable, but not when we use the unadjusted series. We use this framework

to estimate long-horizon regressions. Finally, in Section 7, we find that our simple model serves

as a plausible data generating process. It is able to replicate both the findings of no predictability

when the unadjusted dividend-price ratio is used and the findings of in-sample and out-of-sample

predictability when the adjusted series is used.

2 Instability of Forecasting Relationships

In this section we document the instability of the forecasting relationship between returns, dividend

growth, and the lagged dividend-price ratio. The forecasting relationship of returns and other

financial ratios (such as the earnings-price ratio and the book-to-market ratio) and alternative

measures of dividends (such as accounting for repurchases or considering only dividend-paying

firms) are similar and will be presented later. The data are based on annual CRSP value-weighted

returns from 1927 to 2004 and are described in Appendix A. The top panel of Figure 1 shows

the estimation results for the forecasting regression of demeaned returns on the demeaned lagged

dividend-price ratio using 30-year rolling windows:

rt+1 − r = κr(dpt − dp) + τ rt+1, (1)

where rt denotes the log return, dpt denotes the log dividend-price ratio dt − pt, and r̄ and dp

denote the sample means of returns and the log dividend-price ratio in each of the subsamples,

respectively. The top panel plots the slope coefficient κr along with two standard error bands.
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The instability of the forecasting relationship is strikingly illustrated by the variation of the return

predictability coefficient over time. The estimates of κr are around 0.5 in the subsamples ending

in the late 1950s and in the samples ending in the early 1980s to the mid 1990s. In contrast,

κr is much smaller for the samples ending in the mid 1960s and is close to zero and statistically

insignificant in samples ending in the late 1990s and early 2000s. Similarly, theR2 of the forecasting

regression displays instability with values ranging from 34% in 1982 to 0% at the end of the 1990s

(not shown). This evidence has led some researchers to conclude that the dividend-price ratio

does not forecast stock returns, or at least not robustly so. Not surprisingly, the hypothesis of a

constant regression coefficient is routinely rejected.

We also estimate a predictability regression for demeaned dividend growth rates:

∆dt+1 − d = κd(dpt − dp) + τ dt+1, (2)

where dt denotes log dividends and d denotes the sample mean of dividend growth. Dividend

growth rates are even less forecastable than returns. For most of the sample, the point estimate

is not statistically significantly different from zero, and the regression R2 never exceeds 16% (not

shown). Interestingly, the dividend-price ratio at the end of the 1990s seems to forecast neither

stock returns nor dividend growth. This is a conundrum from the perspective of any present value

model (see Section 3.1), as also pointed out by Cochrane (2006).

[Figure 1 about here.]

The left two columns of Table 1, denoted “No Break,� report the coefficients κr and κd from

equations (1) and (2) and their asymptotic standard errors for the entire 1927-2004 sample, as well

as for various subsamples. The first row shows that the dividend-price ratio marginally predicts

stock returns (first column); the coefficient is significant at the 5% level if asymptotic standard

errors are used for inference. However, small sample standard errors computed from a bootstrap

simulation suggest that the coefficient κr is not statistically different from zero for the entire

sample.2 The dividend-price ratio does not forecast dividend growth at conventional significance

2Asymptotic standard errors may be a poor indicator of the estimation uncertainty in small samples, and the
p-values for the null of no predictability may be inaccurate. The asymptotic corrections advocated by Hansen and
Hodrick (1980) have poor small sample properties. Ang and Bekaert (2006) find that use of those standard errors
leads to over-rejection of the no-predictability null. The bootstrap exercise imposes the null of no predictability
and asks how likely it is to observe the estimated κr coefficients reported in the first column of Table 1. We find
that the small sample p-value for κr is 6.8% compared to an asymptotic p-value of 4.1%. We also conduct a second
bootstrap exercise to find the small-sample bias in the return coefficient. Consistent with Stambaugh (1999), we
find an upward bias. If the true value is .094, the bootstrap exercise estimates a coefficient of .115. Detailed results
are available upon request. The empirical size of tests based asymptotic and bootstrapped standard errors tend to
be larger than their nominal size if the regressor is highly persistent (e.g. Amihud, Hurvich, and Wang (2005)).
Alternative tests with better size properties weaken the evidence for forecastability with the dividend price ratio
further.
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levels (third column). Thus, we cannot reject the hypothesis that the dividend-price ratio forecasts

neither dividend growth nor returns.

Rows 2 and 3 report the results for two non-overlapping samples that span the entire period:

1927-1991 and 1992-2004. We will justify this particular choice of subsamples in Section 3. The

estimates of κr display a remarkable pattern across subsamples: In both subsamples κr is much

larger than its estimate in the whole sample. In fact, the estimates are almost identical in the two

subsamples: .2353 in the 1927-1991 subsample compared to .2351 in the later 1992-2004 subsample.

Yet, when we join the two subsamples, the point estimate drops to .094. In addition, κr is strongly

statistically significant in both subsamples but only marginally significant in the whole sample.

Confirming the instability of κr estimates, row 4 reports the results of a Chow test, which rejects

the null hypothesis of no structural break in 1991 at the 4% level. Finally, the dividend growth

forecasting relationship displays less instability, and the coefficient remains insignificant in both

subsamples.

The pattern of κr is not unique to the specific subsamples chosen. We obtain very similar results

when we use three non-overlapping subsamples: 1927-1954, 1955-1994, and 1995-2004 (bottom half

of Table 1). Again, we find that the return predictability coefficient κr is estimated to be much

higher in each of the three subsamples than in the entire subsample. In row 5, the predictability

coefficient is .09, whereas it is .51, .38, and .53 in rows 6, 7, and 8 respectively. Moreover, it

is statistically significant in each subsample. Row 9 shows that we strongly reject the joint null

hypothesis of parameter stability in 1954 and 1994. For dividend growth, the evidence is more

mixed. We fail to reject the same null hypothesis of no breaks in 1954 and 1994, but the κd

coefficient is marginally statistically different from zero in rows 7 and 8.

Finally, the last two columns repeat the analysis using returns in excess of a 90-day Treasury

bill rate instead of gross returns. The exact same findings hold for excess returns. In the rest of

the analysis, we proceed with gross returns only.

[Table 1 about here.]

We conclude that the forecasting relationship between returns and the dividend-price ratio is

unstable over time. Coefficient estimates of κr are almost identical in non-overlapping subsamples,

but the point estimate for the whole sample is much lower than it is in each of the subsamples.

Next, we investigate what might explain this intriguing pattern of the regression coefficients that

links returns to past dividend-price ratios.

3 Steady-State Shifts and Forecasting

The macroeconomics literature has recently turned to models with persistent changes in fundamen-

tals to explain the dramatic change in valuation ratios in the bull market of the 1990s. Most such
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models imply a persistent decline in expected returns or an increase in the steady-state growth

rate of the economy. Lettau, Ludvigson, and Wachter (2004) argued that a persistent decline in

the volatility of aggregate consumption growth leads to a decline in the equity premium. Another

class of models argues for persistent improvements in the degree of risk-sharing among house-

holds or regions, either due to developments in the market for unsecured debt or the market for

housing-collateralized debt (Krueger and Perri (2005) and Lustig and Van Nieuwerburgh (2005b)).

In the model of Lustig and Van Nieuwerburgh (2005c), the improvement in risk sharing implies a

persistent decline in the equity premium. McGrattan and Prescott (2005) argued that persistent

changes in the tax code can explain the persistent decline in the equity premium. Lastly, models

of limited stock market participation argue that the gradual entry of new participants has per-

sistently depressed equity premia (Vissing-Jorgensen (2002), Calvet, Gonzalez-Eiras, and Sadini

(2003), and Guvenen (2003)). Other models argue that there was a persistent increase in the

long-run growth rate of the economy in the 1990s (Quadrini and Jermann (2003) and Jovanovic

and Rousseau (2003)). The first set of models lower the long-run required return of equity (r), the

last set of models raise the long-term growth rate of the economy (d). A intuition based on the

Gordon growth model implies that either effect lowers the steady-state level of the dividend-price

ratio dp. In this section, we augment the Campbell-Shiller framework for such changes in dp, we

estimate these shifts in the data, and explore their implications for return predictability.

3.1 Changes in the Mean of Price Ratios

The standard specification of stock returns and forecasting variables assumes that all processes are

stationary around a constant mean. For example, Stambaugh (1986, 1999), Mankiw and Shapiro

(1986), Nelson and Kim (1993), and Lewellen (1999) considered the following model:

rt+1 = r̄ + κryt + τ rt+1 (3)

yt = ȳ + vt. (4)

The mean of the forecasting variable yt, ȳ, is constant and the stochastic component vt is assumed

to be stationary, often specified as an AR(1) process. Means of financial ratios are determined by

properties of the steady-state of the economy. For example, the mean of the log dividend-price

ratio dp is a function of the growth rate d of log dividends and expected log return r in steady-state:

dp = log(exp(r)− exp(d))− d, (5)
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whereas the stochastic component depends on expected future deviations of returns and dividend

growth from their steady-state values (Campbell and Shiller (1988)):

dpt = dp+ Et

∞
∑

j=1

ρj−1
[

(rt+j − r)− (∆dt+j − d)
]

, (6)

where ρ = (1 + exp(dp))−1 is a constant. Similar equations can be derived for other financial

ratios (e.g., Vuolteenaho (2000)). Berk, Green, and Naik (1999) show how stock returns and

book-to-market ratios are related in a general equilibrium model.

A crucial assumption is that the steady-state of the economy is constant over time: The average

long-run growth rate of the economy as well as the average long-run return of equity are fixed and

not allowed to change. However, if either the steady-state growth rate or expected return were

to change, the effects on financial ratios and their stochastic relationships with returns would be

profound. Even relatively small changes in long-run growth and/or expected return have large

effects on the mean of the dividend-price ratio, as can be seen from (5). The effects of steady-state

shifts on other valuation ratios, such as the earnings-price ratio and the book-to-market ratio, are

similar. In this paper, we entertain the possibility that the steady change of the U.S. economy has

indeed changed since 1926, and we study the effect of these changes on the forecasting relationship

of returns and price ratios.

A steady-state is characterized by long-run growth and expected return. Any short-term devi-

ation from steady-state is expected to be only temporary and the economy is expected to return

to its steady-state eventually. Thus, steady-state growth and expected return must be constant

in expectations, but the steady-state might shift unexpectedly. Correspondingly, we assume that

Etrt+j = rt, Etdt+j = dt, Etdpt+j = dpt.
3

The log linear framework introduced above illustrates the effect of time-varying steady-states,

though none of our results depend on the accuracy of the approximation. Just as in the case with

constant steady-state, the log dividend-price ratio is the sum of the steady-state dividend-price

ratio and the discounted sum of expected returns minus expected dividend growth in excess of

3Although the log dividend-price ratio is a nonlinear function of steady-state returns and growth, we assume
that the steady-state log dividend-price ratio is also (approximately) a martingale: Etdpt+j = dpt. This assumption
is justified for the specific processes for steady-state returns and growth that we will consider below. Appendix C
spells out a simple asset pricing model where the price-dividend ratio in levels follows a (bounded) martingale. It
shows that dp and d are approximate (bounded) martingales.
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steady-state growth and returns 4:

dpt = dpt + Et

∞
∑

j=1

ρj−1t

[

(rt+j − rt)− (∆dt+j − dt)
]

, (7)

where ρt = (1 + exp(dpt))
−1. The important difference of (7) compared to (6) is that the mean

of the log dividend-price ratio is no longer constant. In fact, it not only varies over time but it

is non-stationary. If, for example, the steady-state growth rate increases permanently, the steady-

state dividend-price ratio decreases and the current log dividend-price ratio declines permanently.

While the log dividend-price ratio contains a non-stationary component it is important to note that

deviations of dpt from steady-states are stationary as long as deviations of dividend growth and

returns from their respective steady-states are stationary, an assumption we maintain throughout

the paper.5 In other words, the dividend-price ratio dpt itself contains a non-stationary component

dpt but the appropriately demeaned dividend-price ratio dpt − dpt is stationary. The implications

for forecasting regressions with the dividend-price ratio are immediate. First, in the presence of

steady-state shifts, a non-stationary dividend-price ratio is not a well-defined predictor and this

non-stationarity could be the cause for the empirical patterns described in the previous section.

Second, the dividend-price ratio must be adjusted to remove the non-stationary component dpt to

render a stationary process.

While we emphasized the effect of steady-state shifts on the dividend-price ratio, the intuition

carries through to other financial ratios. Changes in the steady-state have similar effects on the

earnings-price ratio and the book-to-market ratio. However, other permanent changes in the

economy, such as changes in payout policies, could affect different ratios differently. In the following

section, we provide evidence that steady-state shifts have occurred in our sample and propose simple

methods to adjust financial ratios for such shifts.

4Appendix B presents a detailed derivation. Under our assumption, the log approximation in a model with time-
varying steady-states is as accurate as the approximation for the corresponding model with constant steady-state.
In fact, the ex-ante expressions of the approximate log dividend-price ratio (6) and (7) are exactly the same. Only
their ex-post values are different in periods when the steady-state shifts.

5Of course, in a finite sample it is impossible to conclusively distinguish a truly permanent change from an
extremely persistent one. Thus, our insistence of non-stationarity might seem misguided. However, the important
insight is that the dividend-price ratio is not only a function of (less) persistent changes in expected growth rates
and expected returns that could potentially have cyclical sources but is also affected by either extremely persistent
or permanent structural changes in the economy. This distinction turns out be very useful, as we will show in the
remainder of the paper. In this sense our assumption of true non-stationarity can be regarded to include “extremely
persistent but stationary.” In a finite sample, the conclusions will be the same in either setting. The distinction
of “permanent” versus “extremely persistent” is important, however, for structural asset pricing models because
permanent shocks might have much larger impact on prices than very persistent ones.
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3.2 Steady-state Shifts in the Dividend-Price Ratio

Has the steady-state relationship of growth rates and expected returns shifted since the beginning

of our sample in 1926? If so, have these shifts affected the stochastic relationship between returns

and price ratios? In this section we use econometric techniques that exploit the entire sample to

detect changes in the steady-state. In section 5, we study how investors in real-time might have

assessed the possibility of shifts in the steady-states without the benefit of knowing the whole

sample. In both cases, there is strong empirical evidence in favor of changes in the steady-state

and we find that such changes have dramatic effects on the forecasting relationship of returns and

price ratios. We suggest a simple adjustment to the dividend-price ratio and revisit the forecasting

equations from Section 2. We first study shifts in the dividend-price ratios in detail and consider

alternative ratios in section 4.

Our econometric specification is directly motivated by the framework that allows for changes in

the steady-state laid out in the previous section. Equation (7) implies that the log dividend-price

ratio is the sum of a non-stationary component and a stationary component. In this section, we

model the non-stationary component as a constant that is subject to rare structural breaks as in

Perron (1989).6

The full line in each of the panels of Figure 2 shows the log dividend-price ratio from 1927 to

2004. Visually, the series displays evidence of non-stationarity. Especially the bull market of the

1990s seems hard to reconcile with a stationary model. The dividend-price ratio has risen since, but

at the end of our sample in 2004, prices would have to fall an additional 46% for the dividend-price

ratio to return to its historical mean. A first explanation we entertain is that the bull market of

the 1990s represents a sequence of extreme realizations from a stationary distribution.

[Figure 2 about here.]

The solid line in Figure 3 shows the smoothed empirical distribution of the log dividend-price

ratio dpt. This distribution has a fat left tail, mainly due to the observations in the last 15 years. To

investigate whether this is a typical plot from a stationary distribution, we conduct two exercises.

Following Campbell, Lo, and MacKinlay (1997), Stambaugh (1999), Campbell and Yogo (2002),

Ang and Bekaert (2006), and many others we estimate an AR(1) process for the log dividend-price

ratio. First, in a bootstrap exercise, we draw from the empirical distribution with replacement.

The smoothed bootstrap distribution is the dash-dotted line in the figure. Second, we compute

the density of dpt using Monte Carlo simulations from an estimated AR(1) model with normal

innovation. This density is plotted as the dashed line. The graph shows that neither the bootstrap

nor the Monte Carlo can replicate the fat left tail that we observe in the data. Interestingly, the

6As an alternative, we have also studied in-sample predictability in a Hamilton regime-switching model. Because
the estimated regimes are so persistent, the predictability coefficients are very close to the ones we report here. In
section 5 we revisit the Hamilton model in the context of out-of-sample predictability.
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stationary model also cannot generate the right tail of the empirical distribution. In summary, it

is unlikely that the dpt data sample from 1927 to 2004 was generated by a stationary distribution.

[Figure 3 about here.]

An alternative explanation is that the long-run mean of the log dividend-price ratio is subject

to structural breaks. To investigate this possibility, we test the null hypothesis of no break against

the alternative hypotheses of one or two breaks with unknown break dates. Table 2 reports sup-F

test statistics suggested by Perron (1989). The null hypothesis of no break is strongly rejected (the

p-value is less than 1%) in favor of a break in 1991 or two breaks in 1954 and 1994. While the

evidence against no breaks is very strong, the question whether the dividend-price ratio is subject

to one or two breaks does not have a clear answer. The sup-F test of the null of a single break

against the alternative of two breaks is rejected at the 10% level but not at the 5% level. The null

of two breaks against the alternative of three breaks is not rejected (not shown). Alternatively, one

can use an information criterion to select the number of breaks. Both the Bayesian Information

Criterion (BIC) and the modified Schwartz criterion proposed by Liu, Wu, and Zidek (1997) (LWZ)

favor two breaks. In summary, the data seem to strongly favor one or two breaks, rather than zero

or three, but the relative evidence for one or two breaks is not as strong and only slightly in favor

of two breaks.

[Table 2 about here.]

The table also reports the estimated change in the log dividend-price ratio before and after

the break. In the one-break case, the change in dp is -.86, whereas in the two-break case, the first

change in 1954 is -.37 and the second change is -.78. The two plots in the left column of Figure

2 overlay the long-run mean dp on the raw dp series. For now, we are agnostic as to whether the

break(s) is (are) due to a change in the long-run mean of dividend growth or expected returns, or

a combination of the two. We return to this question later. It is worth emphasizing, however, that

the date(s) of the shift in the dividend-price ratio is (are) consistent with the breaks in the equity

premium identified by Pastor and Stambaugh (2001).

This result motivates us to construct two adjusted dividend-price series, one for the one-break

case and one for the two-break case. For each, we simply subtract the mean in the relative

subsample(s). In the one-break case with break date τ , the adjusted ratio is defined as

˜dpt =

{

dpt − dp1 for t = 1, ..., τ

dpt − dp2 for t = τ + 1, ..., T ,
(8)

where dp1 is the sample mean for 1927-1991 and dp2 is the sample mean for 1992-2004. The adjusted

dp ratio in the two-break case is defined analogously. The right column of Figure 2 illustrates this

procedure graphically.
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The bottom half of Table 2 compares the autocorrelation properties of the unadjusted and

adjusted dp series. As is well known, the raw dp series is very persistent. The first and second

order autocorrelations are .91 and .81. The null hypothesis of a unit root cannot be rejected,

according to an Augmented Dickey Fuller (ADF) test (third column). In contrast, the two adjusted
˜dp series are much less persistent; the first order autocorrelation drops to .77 and .61, respectively.

The null of a unit root in the adjusted series is rejected at the 4% and 1% levels. Interestingly,

the volatility of the adjusted series is only half as large as for the adjusted series (last column).

This substantially alleviates the burden on standard asset pricing models to match the volatility

of the price-dividend ratio, once the non-stationary nature of the mean dp ratio has been taken

into account.

3.3 Forecasting with the Adjusted Dividend-Price Ratio

We now revisit the return and dividend growth predictability equations (1) and (2), but use the

adjusted dividend-price ratios instead of the raw series as predictor variable. The second and fourth

columns of Table 1 show the estimation results of the return and dividend growth predictability

regressions using ˜dp, respectively. Rows 1-4 are for the one-break case; rows 5-9 are for the two-

break case. Starting with the one-break case, because the adjusted dividend-price ratio is the same

as the raw series with each subsample, the results in rows 2 and 3 are unchanged. But now in row 1,

we find that the adjusted dividend-price ratio significantly predicts stock returns. The coefficient

for the entire sample is .235, which is almost identical to the estimates in the two subsamples.

Thus the low point estimate for κr in the first column was due to averaging across regimes. Not

taking the non-stationarity of the dp ratio into account severely biases the point estimate for κr

downwards. Furthermore, row 4 shows that the evidence for a break in the forecasting relationship

between returns and the dividend-price ratio has disappeared. The null hypothesis of parameter

stability can no longer be rejected when using˜dp. The full sample regression R2 is 10%, more than

twice the value of the first column. The results for dividend growth predictability remain largely

unchanged. This is not surprising given that we did not detect much instability in the relationship

between ∆dt+1 and dpt to begin with.

The rolling window estimates confirm this result.7 The middle panel of Figure 1 shows that

the coefficient κr is much more stable in the one-break case than in the no-break case (top panel).

In particular, its value in the 1990s hovers around .3, compared to 0 without the adjustment.

Likewise, the regression R2 is also more stable and does not drop off in the 1990s. The same

exercise shows that the dividend growth relationship is stable and that κd never moves far from

zero (not shown). The evidence for dividend growth predictability is weak at best.8

7In the rolling window estimation we assume that the break in dp is caused by a break in mean expected returns
r̄. The alternative assumption that the break is in the long-run growth rate of the economy ḡ gives identical results.

8The lack of predictive power of the dividend-price ratio for dividend growth does not imply that dividend growth
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The bottom panel of Table 1 uses ˜dp, adjusted for breaks in 1954 and 1994. The full sample

estimate for κr is now .455 (row 5) and highly significant.9 The full sample regression R2 is 22%.

In contrast, dividend growth is not predictable. The bottom panel of Figure 1 shows that the

rolling estimates for κr are very stable when we use ˜dp adjusted for two breaks. The point estimate

hovers around .4 and the return regression R2 goes up as high as 40%. Moreover, the Chow test

in row 9 finds no evidence for instability in either forecasting equation.

We conclude that taking changes in the long-run mean of the dividend-price ratio into account

is crucial for forecasts of stock returns. Forecasting with the unadjusted dividend-price ratio series

results in coefficient instability in the forecasting regression and unreliable inference (insignificance

in small samples, and results depending on the subsample). These disconcerting properties are

due to a non-stationary component that shifts the mean of the dividend-price ratio. In Section

3.1 we extended the model to allow for such non-stationarity in dp. In this section we examined

a simple form of non-stationarity, a structural break. Appropriately adjusting the dividend-price

ratio for the structural break strengthens the evidence for return predictability, but not dividend

growth predictability. The predictability coefficient is stable over time and least squares coefficient

estimates are highly significant. Finally, the in-sample return predictability evidence stands up to

the usual problem of persistent regressor bias (Nelson and Kim (1993), Stambaugh (1999), Ang

and Bekaert (2006) and Valkanov (2003)) because the adjusted dividend-price ratio is much less

persistent.

4 Other Financial Ratios

While the dividend-price ratio has been the classic prediction variable at least in the academic

literature, it is useful to investigate to what extent our results are robust to a different measure of

payouts. Lamont (1998) finds that the log earnings-price ratio ep forecasts returns. We find very

much the same patterns for the earnings-price ratio as for the dividend-price ratio. The earnings

data start in 1946 and are described in Appendix A. The book-to-market ratio is computed from

the same earnings and dividend data using the clean-surplus method (Vuolteenaho (2000)).

[Table 3 about here.]

Table 3 shows that the null hypothesis of no structural break in the ep ratio is strongly rejected

in favor of one or two breaks (first row). The Perron test estimates a 1990 break date in the one-

is not forecastable because any correlated movement in expected returns and expected dividend growth cancels in
d− p, as shown in Lettau and Ludvigson (2005).

9A bootstrap analysis confirms that the small sample p-value (asymptotic p-value) is 1.11% (0.00%) in the one-
break case and 0.00% (0.00%) in the two-break case. A second bootstrap exercise shows that the small sample bias
in the coefficients is small relative to their magnitude. In the one-break case, the bias is .019 (we estimate .254
when the true coefficient is .235). In the two-break case, the bias is .013 (we estimate .468 when the true value is
.455). Detailed results are available upon request.
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break case and 1953 and 1994 break dates in the two-break case. These line up almost perfectly

with the dp break dates in Table 2. One other often used valuation ratio, the log book-to-market

ratio (bm) also displays strong evidence of two breaks with similar break dates in 1953 and 1990

(row 2). Clearly, there is evidence for a permanent or strongly persistent component in all valuation

ratios.

Some researchers have argued that there were persistent changes in firms’ payout policies in the

1990s and have argued to adjust dividend-price ratios for repurchases (Fama and French (2001),

Grullon and Michaely (2002), and Boudoukh, Michaely, Richardson, and Roberts (2004)). First,

we find no evidence for a break in the payout ratio de = d− e at the 10% level (row 3 of Table 2).

This is consistent with the view that both dp and ep contain structural breaks. Second, even if there

was a break in the de ratio and we took the point estimate for de in the subsamples, we would find

that more than three-fourths of the change in the mean dividend-price ratio comes from a change

in the mean earnings-price ratio and less than one-fourth from a change in de (dp = ep + de). In

particular, for our S&P 500 sample from 1946-2004 with a 1991 break date, we find a change in dp

of -.81, a change in ep of -.63, and a change in de of -.18.

To further investigate the role of repurchases and the role of a changing composition in CRSP, we

consider two additional valuation ratios. First, we consider the CRSP universe without NASDAQ

stocks. Arguably, removing NASDAQ stocks goes a long way towards eliminating new economy

and non-dividend paying companies that became more prevalent in the 1990s.10 We compute the

dividend-price ratio, dpnas, and the dividend growth for this group. This time series has properties

very similar to those of the series with the NASDAQ. The Perron tests in row 5 of Table 3 show a

break of -75% in 1992, close to the -86% change in the full sample series in 1991. For the two-break

case, the break dates and magnitudes are also very similar: 1954 and 1995 and -35% and -70%.

Second, we use the Boudoukh, Michaely, Richardson, and Roberts (2004) repurchase yield data,

available from 1971 onwards, and construct a corrected dividend-price ratio and dividend growth

rate series. We label this repurchase-adjusted dividend price series dprep.11 The case favored by the

data is a three-break case with break dates in 1957, 1973, and 1990 (see last row of Table 3). We

show below that these two adjustments do not materially affect our predictability results with the

standard dividend-price ratio presented earlier. This leads us to conclude that structural changes

in payout policies and/or the composition of firms in the 1990s can only explain a small part of

10Fama and French (2001) document that the fraction of non-financial, non-utility firms that paid dividends
declined by almost 45% between 1978 and 1999. However, most of that decline is attributable to new firms and to
small firms. They write: “The characteristics of dividend payers (large profitable firms) do not change much after
1978.” We take this group to be the value-weighted CRSP index without NASDAQ stocks. This series starts to
deviate from the full sample series in 1973. We verified that the dividend growth rate of this set of firms did not
change in the 1990s. Average dividend growth from 1927-1991 was 5.45%. Average dividend growth from 1992-2004
was 5.46%.

11We note that this is just one possible adjustment. The correct adjustment depends on the investor under
consideration. Here, an investor’s cash flows are adjusted for aggregate repurchases, but not for seasoned equity
offerings nor initial public offerings.
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the change in the dividend-price ratio.

We first turn to the forecasting regressions with the earnings-price ratio. When we use the

earnings-price ratio as a return predictor, we obtain similar results to what we reported for the

dividend-price ratio in Table 1. The first row of Table 4 shows that when the unadjusted earnings-

price ratio is the independent variable, the slope coefficient is .119. Just as in the dividend-price

ratio regressions, this coefficient displays parameter instability among subsamples: The full sample

point estimate is lower than the estimates in all subsamples, and the Chow test of no break has

a p-value of only .15 (not shown). The next two columns show that this bias is due to averaging

over subsamples. Once we use the adjusted ẽp ratio, the instability disappears and the full sample

point estimate increases to .215 in both the one-break and two-break case. These coefficients are

twice the size of the ones obtained with the unadjusted ep ratio and are measured precisely. The

regression R2 almost doubles. The slope coefficient is very similar to the one we found in the

first panel of Table 1: κr = .235. One difference from the results in Table 1 is that the adjusted

earnings-price ratio also significantly forecasts earnings growth, with a negative sign (not shown).

[Table 4 about here.]

For the unadjusted lagged log book-to-market ratio bm = b−m, we find that the predictability

coefficient κr is only marginally significant. The point estimate is .07, lower than the point estimates

in the subsamples 1927-1952 (.26), 1953-1990 (.44), and 1991-2004 (.72), all of which are strongly

significant. Again, this downward bias is due to averaging over the break(s). The full sample point

estimate increases to .255 with the one-break adjusted ˜bm series as regressor and to .308 with the

two-break adjusted ˜bm series. The regression R2 increases from 3% in the first column to 19% in

the third column.

The return predictability findings for dpnas and dprep are also similar to the benchmark dp

results. First, using dpnas without break adjustment, we find a point estimate for κr of .11. This

point estimate is lower than in either subsample (.24 for 1927-1992 and .30 in 1993-2004). Once

we use the break-adjusted series, the point estimate more than doubles to .250. Just as for the

standard dp ratio, the downward bias comes from averaging over the break. The break-adjusted

point estimate is close to the .235 we found for the sample that includes the NASDAQ. We obtain

further increases in the point estimate and the R2 in the two-break case. Second, using dprep, the

full sample return predictability coefficient is .19, higher than the .09 for the standard dp series, but

again lower than in either subsample (.25 in 1927-1990 and .53 in 1991-2004). Clearly, adjusting

for repurchases improves the forecasting power of the dp ratio. However, adjusting for the breaks

is important and further strengthens the case for predictability. In the preferred case of three

breaks, the predictability coefficient is .58, three times its unadjusted value. The regression R2 is

also three times higher.
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We conclude that the other financial ratios indicate a predictability pattern similar to that of

the dividend-price ratio. Without an adjustment for the change in their long-run mean and the

relationship between one-year ahead returns and the financial ratios is unstable over time. However,

once we filter out the non-stationary component, we find a stable forecasting relationship and a

large predictability coefficient. The fact that the results are so similar for earnings and dividend

data suggests that an explanation that exclusively rests on changing payout policies misses the

most important structural changes in the economy: changes in long-run growth rate or long-run

expected returns.

5 Out-Of-Sample Predictability

The in-sample predictability results presented so far used a break adjustment constructed using

the entire data sample. In this section we investigate how an investor who forms an adjusted

dividend-price ratio in real time fares in predicting out-of-sample returns. We compare the out-

of-sample forecasting properties of adjusted dividend-price ratios to the unadjusted series and a

random walk model. We find that a real time dividend-price ratio adjustment yields uniformly

smaller prediction errors compared to the unadjusted series but slightly larger forecast errors than

the random walk model.

Why does the real time prediction errors fail to beat the random walk model? In real time

an investor faces two challenges. First, she has to estimate the timing of a break. Second, if

she detects a new break, she has to estimate the new mean after the break occurred. If the new

break occurred towards the end of the sample that the investor has access to, the new mean can

only be estimated using a small number of observations and is subject to significant estimation

uncertainty. To investigate which issue is responsible for the deterioration of the out of sample

forecasting power, we consider two additional exercises. In the first exercise, the investor predicts

out-of-sample using the ex-post adjusted dividend-price ratio series considered in section 3.1. In

other words, we endow the investor with information about estimated break dates and means from

the entire sample, thus this case is not a pure out-of-sample test. However, it sets an informative

benchmark for the analysis of the pure out-of-sample forecasts. In a second exercise, we consider a

Hamilton (1989) regime-switching model for the mean of the dividend-price ratio. In this model,

the regime means are estimated using data from the entire data sample. The Hamilton model

computes two estimates for the break dates (regime switching probabilities): (i) “unsmoothed�

probabilities estimated using only currently available data and (ii) “smoothed� probabilities based

on the entire sample. While this case is not a pure out-of-sample forecast, it allows us to study the

relative difficulty of estimating the break dates versus estimating the means relative to the pure

out-of-sample forecasts and the ex-post adjusted dividend price ratio.

The conclusions from these two exercises are that (i) the estimation of the break dates in
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real time is not crucial and the resulting prediction errors are smaller than for the random walk

model, and (ii) that the estimation of the magnitude of the break in the mean dividend-price ratio

entails substantial uncertainty, and is ultimately responsible for the failure of the real time out-of-

sample predictions to beat the random walk. These findings can explain the lack of out-of-sample

predictability documented by Goyal and Welch (2004).

5.1 Real-Time Dividend Price Adjustments

Before presenting the estimation results, we confirm our earlier conclusion (based on ex-post data,

see Figure 3) that it is extremely unlikely that the dividend-price ratio sample is drawn from a

stationary distribution, based on real-time data only. Figure 4 shows a recursive (i.e., real-time)

estimation of the empirical distribution of the log dividend-price ratio. In each year, the investor

estimates an AR(1) model for dp, using data up to the current year. She then bootstraps from

the available sample to compute the empirical distribution of the log dividend-price ratio. Each

year she recomputes the 2.5, 5, 95, and 97.5 percentiles of the bootstrapped distribution (dashed

and dotted lines in the figure). The figure also plots the realized dividend-price ratio, in deviation

from its recursive sample mean (full line). By 1958, the investor is quite confident that the realized

dividend-price ratio is far below the mean; it hits the 2.5 percentile of the empirical distribution.

Likewise, in 1994, the observed dividend-price ratio falls in the 2.5% tail of the distribution.

Between 1995 and 1999, the investor is almost certain that the observed dividend-price ratio has

not been drawn from a stationary distribution. Interestingly, these ‘crossing’ dates are almost

identical to the break dates estimated in the previous sections. This shows that the permanent

changes in the dividend-price ratio that were identified by the ex-post break tests do not rely on

having the benefit of the entire sample through 2004. Even an investor in real-time would have

concluded that extreme observations of dividend-price ratios are unlikely to be generated by a

stationary process with constant parameters.

[Figure 4 about here.]

Next we construct a real-time adjustment of the dividend-price ratio that can be used in out-

of-sample forecasting tests. In each year T ′ ≤ T , the investor estimates the Perron structural

break test using data available up to year T ′ using one of the three tests: the sequential sup-F

test with a 10% critical value, the BIC criterion, and the LWZ criterion. Given the break dates

and corresponding means, the real-time adjustment of the dividend-price ratio is analogous to the

adjustment using the entire sample in (8), with the exception that only data up to date T ′ instead

of T are used in the estimation. Denote this corrected ratio ̂dp
P

t,T ′ , t = 1, ..., T ′. The out-of-sample

return forecast for period T ′ + 1 is then computed from a regression of returns rt+1 on ̂dp
P

t,T ′ for
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t = 1, ..., T ′ − 1 and the currently observed adjusted dividend-price ratio ̂dp
P

t,T ′ .
12

To gauge the relative difficulties of estimating the timing of a break versus the estimation of the

means, we also use a “pseudo� real-time adjustment based on a Hamilton (1989) regime-switching

model in real-time. The dividend-price ratio is assumed to follow an AR(1) with different means

in either two regimes (one-break case) or three regimes (two-break case). The top panel of Figure

5 shows the smoothed (based on the entire sample) and unsmoothed (real-time) estimates of the

probability that the dividend-price ratio is drawn from the low regime, when two regimes are

considered. Using real-time data, the investor puts non-zero probability on a shift to the low d− p
regime starting in early 1990. By 1995, she is more than 50% certain that the shift occurred.

The difference between smoothed probabilities and unsmoothed probabilities is that the investor is

assigning a higher likelihood to the new, low dividend-price regime earlier if she has access to the

entire data set. Note that the dp estimates for the two regimes coincide with our ex-post estimates

because they use the entire data sample. When she considers three regimes instead, the investor

increases the real-time probability of a switch from the high to the middle dp regime in 1954. By

1960 she is more than 50% certain that the first shift occurred (see middle panel of Figure 5).

In 1990, she starts to attribute probability mass to the low-p regime, and by 1996, she is more

than 50% confident that the economy left the middle-dp regime for the low-dp regime. As in the

two-regime case, the smoothed probabilities indicate that knowing the entire sample yields a faster

transition to the new regime.

Not surprisingly, the regimes in the Hamilton model are estimated to be very persistent. The

probability of remaining in the current regime is above 0.9 in all cases. In other words, the regimes

identified by the Hamilton estimation are close to permanent structural breaks as specified in the

Perron-model.

[Figure 5 about here.]

5.2 Out-Of-Sample Forecast Errors

We follow the approach taken by Goyal and Welch (2003) and predict one-year ahead returns with

the lagged dividend-price ratio. The first forecasting regression uses 20 years of data, so that the

first forecasted return is the one in 1946. For all future years we use expanding windows and

compare three different forecasters. The first is the current sample mean return implied by the

“naive� random walk model. The second is the standard unadjusted dividend-price ratio dp. The

third is the break-adjusted dividend-price ratio. To explain the results, we use several alternatives

for the break-adjusted series.

12This procedure implies that there are no breaks between T ′ and T ′ + 1, consistent with our assumption that
the break is unpredictable.
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[Table 5 about here.]

Panel 1 of Table 5 reports the mean absolute forecast error (MAE) and the root mean-squared

forecasting error (RMSE). Comparing the second to the first row, we confirm the result of Goyal

and Welch (2003): The random walk model has superior out-of-sample properties compared to the

standard dividend-price ratio specification. The latter’s prediction errors are almost 1% per year

higher.

The third through fifth rows report the real-time adjusted dividend-price ratio ̂dp
P
obtained

from the Perron procedure. For all three criteria for dating the breaks, sup-F , BIC and LWZ, the

prediction errors of the adjusted series are lower than those obtained from using the unadjusted

series (row 2) but the out-of-sample prediction errors are larger than for the random walk model.

The sequential sup-F test has the lowest mean absolute error while the BIC criterion delivers the

lowest root mean squared error.

We contrast these results with three “pseudo� out-of-sample cases to investigate why the out-of-

sample forecast errors are higher than those for the random walk model. First, we use the dividend-

price ratio adjustment based on the Perron break test estimated in the entire sample ˜dp. Second,

we construct adjusted dividend-price ratios based on the Hamilton model ̂dp
H

t by subtracting the

average of the means of each regime weighted by the time-t probability of each regime from dpt.

Figure 6 plots the mean dividend-price ratios that result from probability-weighting the regime

mean estimates. The weights are either the unsmoothed (solid line) or the smoothed probabilities

(dashed line). It also plots the ex-post mean (dotted line). Naturally, the mean dividend-price ratio

based on smoothed probabilities tracks the ex-post breaks somewhat faster than the unsmoothed

mean.

[Figure 6 about here.]

Rows six and seven in Panel 1 of Table 5 show that the use of the ex-post adjusted dividend-price

ratios ˜dp substantially reduces the forecasting error. The MAE and RMSE of the dividend-price

ratio adjusted for a single break in 1991 are lower than those for the random walk model. The

out-of-sample forecasting power of the dividend-price ratio adjusted for two breaks in 1954 and

1994 is dramatically improved compared to the unadjusted ratio and to the random walk model.

The RMSE and MAE are reduced by 12-15% compared to the random walk model.

The pseudo out-of-sample forecast errors based on the Hamilton correction with smoothed

probabilities are similar but slightly lower than those in the ex-post Perron correction. Since both

cases use the entire sample to estimate the regime means and probabilities it is not surprising that

the out-of-sample results are comparable. The Hamilton model allows for a smoother adjustment

to a new regime compared to the Perron model, which might account for the lower forecast error.
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For the Hamilton regime switching model we also compute pseudo out-of-sample forecast errors

based on unsmoothed probabilities. Recall that these probabilities are estimated using only cur-

rently available information but estimates of regime means are based on information of the entire

sample. Thus, this case enables us to assess the relative difficulty of real-time estimation of the

timing of breaks versus real-time estimation of the level of regimes. Interestingly, the out-of-sample

prediction errors of the case with unsmoothed probabilities are only slightly higher than those with

ex-post Perron adjustment and smoothed probabilities. In the one-break example, the RMSE for

the unsmoothed Hamilton adjustment is 15.90% compared to 15.58% for the ex-post Perron ad-

justment and 15.43% for the smoothed Hamilton adjustment. In contrast, the forecast errors for

the pure OOS adjustments are significantly higher; between 16.46% and 16.80% depending on the

selection criterion.

Where does the difference in forecast errors come from? In the Hamilton adjustment with

unsmoothed probabilities, the investor estimates the probability of each regime in real time but

has access to the entire time series to estimate the mean dp ratio in the different regimes.13 In the

ex-post Perron and smoothed Hamilton procedures, the investor not only estimates break dates in

real-time, but also the long-run mean in the current regime. Our results suggest that the poor real-

time out-of-sample forecasts are to a larger extent due to the uncertainty about the magnitudes

of breaks rather than uncertainty about the exact timing of a break. Estimating a new long-run

mean based on a few data points incurs a lot of measurement error. For example, if the Perron

investor in 2001 detects a break in 1995, she only has six data points to estimate the new dp
P
.

The difficulty in estimating this mean is what accounts for the increase in prediction errors.

6 Long-Horizon Predictability

An important component of the empirical work on return predictability uses long-horizon regres-

sions. In this section we provide a framework for analyzing long-horizon predictability. We use

the ex-post dividend-price ratio as the predictor and derive theoretical restrictions that link return

and dividend growth to lagged dividend-price ratios at different horizons. Rather than estimating

regressions for various horizons separately, the advantage of this approach is that fewer parameters

have to be estimated. Moreover, the restrictions impose that the estimates across horizons are

consistent with each other.

13A satisfactory resolution that avoids any look-ahead bias in the Hamilton model would be to conduct a full
Bayesian analysis in which the investor estimates the number of regimes, the regime switching dates, and their
associated long-run means based on real-time available data and prior information. Pettenuzzo and Timmermann
(2005) have worked out such an estimation in the context of an asset allocation problem.
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Recall the return and dividend growth predictability equations (1) and (2)

r̃t+1 = κr˜dpt + τ rt+1 (9)

∆d̃t+1 = κd˜dpt + τ dt+1, (10)

where variables with a tilde are appropriately demeaned and stationary. Subtracting (10) from

(9) and using the log-linear approximation for log returns r̃t+1 = ˜dpt − ρ˜dpt+1 + ∆d̃t+1 yields the

implied AR(1) process for the dividend-price ratio in (11):

˜dpt+1 = φ˜dpt + τ dpt+1 , where (11)

1− ρφ = κr − κd (12)

where the innovations are linked by ρτ dpt+1 = τ dt+1 − τ rt+1. The model imposes a non-linear present

value restriction (12) on the predictability coefficients κr and κd. Because ρ < 1 and stationarity

implies |φ| < 1, κr − κd must be positive. This is another way of saying that either returns

(κr 6= 0) or dividend growth (κd 6= 0) have to be forecastable (or both). Most researchers work

with equations (9) and (11); we work with (9) and (10) instead because long-horizon restrictions

are more easily derived in this case. Iterating forward on equations (9) and (10), we obtain the

(annualized) H-period dividend growth and return forecasting equations

1

H

H
∑

j=1

r̃t+j = κr(H)˜dpt + τ rt,t+H (13)

1

H

H
∑

j=1

∆d̃t+j = κd(H)˜dpt + τ dt,t+H , (14)

where

κd(H) = κd
1

H

(

1− φH

1− φ

)

(15)

κr(H) = κr
1

H

(

1− φH

1− φ

)

. (16)

Let N be the number of horizons H > 1. Then the joint system of one-year ahead and H-year

ahead predictability regressions for returns and dividend growth contains 2 + 2N equations but

only two free parameters (κd, κr). The parameter φ is implied by the present value constraint

(12). The typical approach in the literature is to estimate univariate long-horizon return pre-

dictability equations without imposing these restrictions. Instead, we estimate the entire system

of long-horizon return and dividend growth regressions jointly. This estimation procedure not only

takes the high correlation of return regression coefficients at different horizons, pointed out by
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Boudoukh, Richardson, and Whitelaw (2005), explicitly into account. It also takes the present

value relationship (12) explicitly into account.

The estimation routine we describe below finds parameters to match the entire ‘term structure’

of univariate predictability coefficients. Figure 7 illustrates this procedure for H = {1, 3, 5, 7, 10}.
The top panel plots the univariate predictability coefficients obtained from standard OLS regres-

sions of H-year ahead returns and dividend growth on the unadjusted dividend-price ratio dp, as

well the predictability coefficients (κd(H), κr(H)) implied by the joint estimation of the system

of equations. To match the pattern of the ten OLS predictability coefficients, the optimization

routine chooses a value for κr above the value from the one-year ahead univariate regression.

[Figure 7 about here.]

We start by estimating the one-period ahead equations for returns and dividend growth (9-10).

These are the same equations we estimated in Section 3.3, but the additional restriction provides

two new insights. First, the estimation delivers a value for the autocorrelation coefficient of the

dividend-price ratio φ because we impose the present value constraint (12). Second, we use the

break adjusted series ˜dp from Section 3 in the estimation.

Because return and dividend growth series were demeaned by their sample averages, the previ-

ous sections implicitly assumed a break in dp without associated break in r or d. The model tells

us that a break in dp must be associated with a break in either r or d, or both. First, we assume

that d is constant and focus on changes in the expected returns, consistent with the evidence on

breaks in the equity premium in Pastor and Stambaugh (2001). The change in r̄ implied by the

change in dp can be inferred from r̄t = (1 + d) exp(dpt) + d. The top panel of Table 6 shows

how large the change in r is (row 2) corresponding to the change in the mean dividend-price ratio

in the data (row 1). The left panel is for the one-break case, the right panel for the two-break

case. The observed change in dpt implies a decline in mean expected returns of 2.6% in 1991 or a

dual decline of 1.7% in 1954 and 2% in 1994, assuming long-run dividend growth did not change.

Alternatively, it can stem from an increase in long-run dividend growth of 2.5% in 1991 or a dual

increase of 1.6% in 1954 and 2% in 1994, when mean expected returns are held constant. In the

results reported below, we choose to correct rt, but this choice turns out to be unimportant for

the point estimates.14 The second panel reports the change in the mean earnings-price ratio in

the various subsamples, as well as the implied change in the long-run mean return or long-run

mean dividend growth rate. Appendix A describes how the latter two are computed. We find

that the change in the mean return of -2.47% that accounts for the change in the earnings-price

ratio ep (bottom panel) is very similar to the -2.60% change that accounted for the change in the

14The reason is that returns and dividend growth are very volatile, compared to the change in their mean implied
by the change in dp. For the same reason, the results reported below are virtually identical if we assume that the
break takes place in d instead. This validates the results in Section 3.3.
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dividend-price ratio dp (top panel). The same is true when the long-run growth rate does all the

adjustment.

[Table 6 about here.]

Panel A of Table 7 reports the estimation of the one-year ahead system. Row 1 uses the

unadjusted dp series, whereas rows 2 and 3 use the adjusted series ˜dp for the one-break and two-

break case respectively. The GMM estimation uses the OLS normal conditions to estimate κd and

κr. Therefore, the point estimates are identical to the ones reported in Table 1. Three differences

are worth pointing out. First, the adjustment in r̄ delivers slightly lower standard errors for κr in

rows 2 and 3. Second, as foreshadowed by Table 2, the point estimates for φ are substantially lower

when we use the adjusted dividend-price ratio: .81 and .69 in rows 2 and 3 compared to .95 in row

1. Third, the first number in the last column reports the violation of the present value constraint

(12) by the univariate (OLS) coefficient estimates κd,ols and κr,ols, expressed in the same units as

κd and κr. Row 1 shows that using the unadjusted dp ratio leads to violations of the present value

constraint. They are half the size of the estimated κr. Yet, when we use the adjusted dp ratio,

constraint (12) is satisfied.

[Table 7 about here.]

Next, we estimate the one-period ahead equations for returns and dividend growth (9-10)

jointly with the long-horizon regressions (13-14). We select a small number (N = 2) of long-

horizon moments, corresponding to H = {1, 3, 5}. The joint system of one-year, three-year, and

five-year ahead predictability regressions for returns and dividend growth contains 2 + 2N = 6

equations and 2N = 4 restrictions. Panel B of Table 7 reports the results.

The point estimates for (κd, κd) are similar to those obtained from the one-year ahead system in

panel A. Row 4, which uses the unadjusted dp ratio, fails to find evidence for return predictability

or dividend growth predictability at the 5% level. The point estimate falls from .094 in panel A

to .068 in panel B. Using long-horizon information makes the case for return predictability weaker

when the unadjusted dp series is used. Furthermore, the estimate for φ = .99 and its standard

error indicate that we cannot reject the null hypothesis of a unit root in the dividend-price ratio.15

Results using adjusted series reported in rows 5 and 6 are quite different. Once we use the

adjusted ratio ˜dp, we find strong evidence for return predictability. The point estimates remain

large: .210 in the one-break case and .409 in the two-break case. Moreover, the asymptotic

standard errors on κr are reduced. The reason is that we use restrictions of the term structure

of predictability coefficients that cannot be uncovered by estimating the long-horizon moments

15The standard error of φ is implied by the estimates for κd and κr through (12) and computed using the delta
method.
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in isolation; imposing these constraints improves the inference on κr and κd. Put differently, the

univariate OLS long-horizon coefficients violate the present value constraint. The first number in

the last column reports the average violation across the three constraints (the RMSE); it is 19% in

row 1. This violation is lower in rows 5 and 6. The second number in the last column reports the

average moment violation (RMSE) and measures the degree to which the imposed restrictions are

satisfied. In row 5, the average moment violation is only 8.5%, less than half as big as in row 4.

The middle and bottom panels of Figure 7 graphically illustrate the long-horizon estimation

results with the adjusted dividend-price ratio for the larger {1, 3, 5, 7, 10}-year system. First, the

one-period coefficients are very similar to the ones we reported for the {1, 3, 5}-year system. Second,

the two panels show that when the adjusted dividend-price ratio is used, the pattern of GMM long-

horizon regression slopes generated by our model lines up almost perfectly with the univariate OLS

regression slopes. Put differently, the normal conditions for the long-horizon moments are satisfied

at the model-implied long-horizon predictability coefficients. This contrasts with the first panel,

which is for the unadjusted dp ratio. There, the OLS coefficients are quite different from the GMM

estimates. The correction supports both our specification and our main argument.

The results for the {1, 3, 5}-year and {1, 3, 5, 10}-year systems are representative of the results

we found for different numbers of long-horizon moments and choices of horizons. Imposing long-

horizon information confirms the results of the earlier sections: Returns are predictable by the

dividend-price ratio, once its non-stationary component is removed.

7 Monte Carlo Simulations

In this section, we provide further evidence that the model in (9-11) captures the moments of the

data well. We use a Monte Carlo exercise to show (i) that this model replicates the failures that are

found in the in-sample and out-of-sample predictability literature using the unadjusted dp ratio,

(ii) that it matches the moments once the dividend-price ratio is properly adjusted for and after

taking into account small sample inference issues.

For the Monte Carlo exercise, we specify a structural model for the joint behavior of expected

returns, expected dividend growth, and dividend growth innovations. In Appendix D, we derive

the regression residuals τ = (τ d, τ r, τ dp) as functions of the structural innovations and show how

to identify the structural parameters from the parameters of the vector error correction model

(VECM) in equations (9-11). We back out the structural parameters from the previously reported

estimates of the VECM parameters and simulate the structural model generating 10,000 time series

for returns, dividend growth and the dividend-price ratio of length T = 78, the same length as the

data. We then run univariate predictability equations on the model-generated data and compare

the parameter estimates to the true predictability coefficients and to the data. The Monte Carlo

exercise also serves as a way to investigate the small sample properties of the regression coefficients.
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Appendix E describes the algorithm in detail.

We start by studying the properties of univariate return predictability regressions. The first row

of Table 8 reports the ‘true’ predictability coefficients for the one-year, three-year, and five-year

horizon equations, as well as the theoretical regression R2.16 In the top panel, the true parameters

come from an estimation of the VECM that assumes a break in dp in 1991; in the bottom panel

we specify two breaks in 1954 and 1994.

The second and fourth rows report the same coefficients and R2 estimated on simulated data.

This simulation ignores the presence of the break(s). Row 2 uses the unadjusted dp ratio, and row

4 the adjusted ˜dp to predict returns. The second row shows that the model with the unadjusted

dp ratio fails to detect the return predictability that is present in the data. The simulation-based

estimate of κr and the regression R2 are too small. The regression R2 does not increase enough

with the horizon. The one-year ahead coefficient is not significant when we use the small-sample

standard error (fourth column). Moreover, this failure of the model matches the failure in the

data. Row 3 shows the results of the same univariate regressions in the data using the unadjusted

dp ratio. The slope coefficients, standard errors, and R2 line up closely with the results from the

Monte Carlo simulation without break adjustment.

In row 4, we adjust each Monte Carlo series for a break in 1991 (top panel) or two breaks in

1954 and 1994 (bottom panel). The predictability coefficients at all horizons now line up closely

with their true values. The model with adjusted dp ratio recovers the true predictability pattern

of row 1. Moreover, the predictability coefficients, their standard errors, and the regression R2

from the model in row 4 match the ones from regressions of observed returns on observed adjusted

dividend-price ratios (row 5). Results for dividend growth regressions are not reported but the

simulations recover the lack of predictability in the true κd coefficients implied by the VECM.

[Table 8 about here.]

Comparing row 4 to row 1, we notice that there is some small sample bias. In line with the

findings of Stambaugh (1999), the estimate for κr is upward biased. In the first panel, the true value

of the slope coefficient in the one-year ahead return regression is .222 versus .264 in simulation,

a bias of .042. At the five-year horizon, the upward bias is only .016. Likewise, the R2 of the

regression is slightly upward biased in the simulation: 10.5% versus 8.9% at one-year horizon and

28% versus 25% at the five-year horizon. In the two-break case reported in the second panel, the

bias is smaller. The one-year ahead coefficient estimate is .483 versus the true value of .456. The

upward bias disappears at the five-year horizon. Overall, the bias is small relative to the magnitude

of the coefficients, and therefore does not affect our conclusions. Finally, the small sample standard

16As Campbell, Lo, and MacKinlay (1997) point out, there is no closed form solution for the long-horizon R2.
We approximate it by simulating the structural model for 100,000 periods.
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errors, averaged across Monte Carlo simulations of the same length of the data, are very similar to

the asymptotic standard errors from the data (middle columns).

Panels 2 and 3 of Table 5 report the out-of-sample prediction errors from a second Monte Carlo

exercise. We simulate the structural model under the null hypothesis that the data generating

process has one break in 1991 (panel 2) or has two breaks in 1954 and 1994 (panel 3). We compare

the same three out-of-sample forecasting exercises as in the data (panel 1). In addition, we look

at the forecast errors when we only correct for the second break and not the first one. The ‘true’

parameters in panels 2 and 3 are the same and were obtained from the VECM parameters estimated

under the assumption of two breaks in 1954 and 1994 for the period 1947-2004, the same forecasting

period as in panel 1. The details are shown in Appendix E. The Monte Carlo exercise regenerates

the pattern we found in the data. When the unadjusted dividend-price ratio is used as a forecasting

variable, the out-of-sample prediction errors are large and close to the random walk errors. On

the other hand, when we implement the one-break or two-break adjustment in the model, the

simulated data generate substantially lower prediction errors, mimicking the improvement in the

data.

The simple model (9-11) replicates the patterns of univariate one-year ahead and long-horizon

regression results in-sample as well as one-year ahead out-of-sample prediction errors found in the

data. In particular, it regenerates (i) the failures of using the unadjusted dp ratio as a predictor,

and (ii) the successes of using the adjusted ˜dp ratio.

8 Conclusion

The macroeconomics literature has recently turned to models with persistent changes in funda-

mentals to explain the dramatic change in valuation ratios in the bull market of the 1990s. Most

such models imply a persistent decline in expected returns or a persistent increase in the dividend

growth rate. In this paper we argue that either of such changes leads to a persistent decline in

the mean of financial ratios. Such changes in the mean of valuation ratios have important effects

on estimation and inference of return forecasting regressions. We consider various econometric

techniques to detect shifts in the mean of price ratios and suggest a simple procedure to extract

their stationary component. The adjusted price ratios robustly forecast returns in sample. At the

same time, we show that shifts in the steady-state expected returns and growth rate of funda-

mentals are responsible for the instability of the return forecasting relation. Out-of-sample return

predictions based on the adjusted price ratios improve relative to those based on the unadjusted

ratios. However, estimation uncertainty about the magnitude of the break, rather than the break

date, is ultimately what prevents a real-time investor to profit.
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A Data Description

We use annual end-of-year data from 1926-2004 from CRSP on the value weighted market return (NASDAQ, NYSE,

AMEX), with and without dividend capitalization. Net return including dividends are denoted Rt and returns

excluding dividends are Rex. The dividend yield Dt+1/Pt as the difference of capitalized and uncapitalized series,

the dividend level is the product of the dividend yield Dt+1/Pt and the price Pt of a portfolio that does not reinvest

dividends. The dividend-price ratio is defined as Dt+1/Pt+1 and dividend growth as the change in the dividend

level (Dt+1 −Dt)/Dt We then define log returns rt+1 = log(1+Rt+1), log dividend growth ∆dt+1 = log (Dt+1/Dt),

and the log dividend-price ratio dpt ≡ dt − pt = log (Dt/Pt).

Data used in Section 4 is derived from monthly S&P 500 dividend-price and price-earnings ratios and end-of-

month composite price index data from Haver. The data are from January 1946-December 2004. Book-to-market

ratios are from Vuolteenaho (2000) for 1927-1999. The observations for 1999-2004 are constructed using the clean-

surplus ratio method with earnings and dividend data from Haver.

The second panel of Table 6 reports the subsample and full sample means of the log earnings-price ratio (ep),

dividend-earnings ratio (payout rate), and the implied mean changes in long-run expected returns r or expected div-

idend growth d. The implied change in r, holding d = 0.0709 fixed, is computed as r = d+(1+d)(D/E)(E/P ). Like-

wise, the implied change in d, holding r = .1098 fixed, is computed as: d =
(

r − (D/E)(E/P )
)

/
(

1 + (D/E)(E/P )
)

.

B A Modified Log-Approximation

In this section we extend the Campbell-Shiller log-linear approximation to allow for time-varying steady-state growth

rates and returns. This framework is a useful organizing principle for the empirical analysis in the main text, but

most of our specifications do not impose the approximation. Our results do not depend on the accuracy of the

approximation, but the framework helps to understand the intuition and implications.

The gross return of an asset is defined as

Rt+1 ≡
Pt+1 +Dt+1

Pt
=
Dt+1

Dt

1 + Pt+1/Dt+1

Pt/Dt
(17)

As of period t, the steady-state (gross) growth rate of dividends is Dt and steady-state expected (gross) returns are

Rt, implying a steady-state for the price-dividend ratio in levels (PDt) and logs (pdt):

PDt =
Dt

Rt −Dt

=⇒ pdt = dt − log(exp(rt)− exp(dt)). (18)

Instead of presuming that the steady-state growth rates and expected returns are constant, we allow for the pos-

sibility that the steady-state may change over time. The only requirement that we impose on the steady-state

log returns and log growth rates is that they are martingales; Et[rt+j ] = rt, Et[dt+j ] = dt. In other words, the

steady-state is constant in expectation only. We also assume that the steady-state log P/D ratio is a martingale;

Et[pdt+j ] = pdt. Although in general these assumption can be inconsistent with each other since the log P/D ratio

is a nonlinear function of rt and dt, we show in appendix C that the martingale assumptions are satisfied to a

very good approximation for reasonable break processes. Log-linearizing (17) around the steady-state in t+ 1 and

expressing the variables in deviations from steady-state yields

pdt − pdt = (∆dt+1 − dt)− (rt+1 − rt) + ρt+1(pdt+1 − pdt+1)

+ ∆pdt+1 +∆rt+1 −∆dt+1

(19)



where pdt = pt − dt and ρt+1 =
exp(pdt+1)

1+exp(pdt+1)
. The last two assumptions state that ρt is a martingale, and that

deviations from the mean price-dividend ratio are uncorrelated with ρ; Et[ρt+j ] = ρt and Et
[

ρt+j(pdt+j − pdt)
]

= 0.

Given our assumptions, we can take conditional expectations and solve the expectational difference equation for

pdt:

pdt − pdt = Et[∆dt+1 − dt]− Et[rt+1 − rt] + ρtEt[pdt+1 − pdt+1] (20)

=
∞
∑

j=1

ρj−1t Et[∆dt+j − dt]− Et[rt+j − rt] (21)

The log price dividend ratio is the sum of the steady-state price dividend ratio and the discounted sum of expected

dividend growth minus expected returns in excess of steady-state growth and returns:

pdt = pdt +
∞
∑

j=1

ρj−1t Et[∆d̃t+j ]− Et[r̃t+j ], (22)

where ∆d̃t+j = ∆dt+j − dt and r̃t+j = rt+j − rt. The expression in the main text for dpt follows from (22) and

dpt = −pdt.

C An Asset Pricing Model with Steady-State Shifts

This appendix solves a fully specified asset pricing model where the steady-state log dividend-price ratio follows

an approximate, bounded martingale. Breaks in the steady-state dividend-price ratio originate in breaks in the

steady-state mean dividend growth rate. Evidence for such breaks in US data is provided in Timmermann (2001).

Log dividend growth is ∆dt+1 = g+qt+εt+1. The unconditional average consumption growth rate is g, qt is the

stochastic component of the long-run mean, and εt+1 is a temporary consumption growth shock, εt+1 ∼ N (0, σ2ε).

Let Qt = (1−A exp(qt))
−1 for a constant A given below. We assume that Qt is a martingale and show below that

this implies that log dividend growth is also a martingale.

Qt+1 = Qt + ηt+1

The innovation to the random walk is independent from εt+1 and has the following distribution:

ηt+1 =

{

0 w.p. π

wt+1 w.p. 1− π and wt+1 ∼ N (0, σ2w,t+1).

With probability π the innovation wt+1 is 0, where π is close to 1 to capture that a break is a rare occurrence.

With the complementary probability 1 − π there is a break with normally distributed break size. The innovation

standard deviation of wt+1 is time-varying. It takes on the following form

σw,t+1 = σ̄w(1− exp(κ(1−Qt))). (23)

This implies that for Qt � 1, σw,t+1 ≈ σ̄w and as Qt → 1, σw,t+1 → 0. The parameter κ governs how fast the

standard deviation of w shrinks as Qt approaches 1 from above. This specification guarantees that Qt > 1 (at least

in continuous time). In other words, Qt is a bounded martingale.



If investors are risk neutral with a time discount factor of β, asset returns have to satisfy the Euler equation

1 = Et

[

β
Dt+1

Dt

1 + Pt+1

Dt+1

Pt
Dt

]

.

Conjecture that the price-dividend ratio takes the following form

Pt
Dt

= Qt − 1.

Using this conjecture, the Euler equation becomes

1 = Et

[

βeg+εt+1A−1
Qt+1

Qt

]

.

Because the innovation to Qt+1 is independent from the innovation εt+1, the conjecture is verified for

A = βeg+σ
2
ε/2Et

[

Qt+1

Qt

]

= βeg+σ
2
ε/2,

because Qt is a martingale. The log dividend-price ratio is also an (approximate) martingale. Consider a Taylor

approximation of dt+1 − pt+1 around Qt:

dt+1 − pt+1 = dt − pt +
1

1−Qt
(Qt+1 −Qt) +Ot+1.

Because Qt is a martingale, Et[dt+1−pt+1] = dt−pt+Et[Ot+1]. As long as the conditional mean of the higher order

terms Ot+1 is small, the log dividend-price ratio is approximately a martingale. For reasonable break processes the

higher order terms turn out to be neglible. For example, if π = .99, σ̄w = 5 and κ =, the conditional mean of the

higher order terms is 0.00006 for a price-dividend ratio level of 40, 0.00017 for a price-dividend ratio level of 20,

and 0.00048 for a price-dividend ratio of 2, which tiny compared to the value of d− p which is -3.10 on average in

a simulation with the same parameters. By the same token, Et[qt+1] ≈ qt. The difference between the conditional

expectation of qt+1 and qt is -0.000005 for a price-dividend ratio level of 40, -0.0000068 for P/D=20 and -0.0003114

for a price-dividend ratio of 2. Again this is small relative to the simulation average for q of -0.0094.

The above specification imposes that Qt > 1, or equivalently qt > −∞. It would be easy to impose tighter

restrictions on the steady-state log dividend growth rate process qt, based on a priori ‘reasonable range’ for log

dividend growth by modifying (23). For example, one could impose that the long-run dividend growth rate should

not be smaller than -5% per year. This amounts to price-dividend ratios in excess of 11.5 (Q̃ > 12.5). The same

bounded martingale approach would work with such a restriction.

D A Structural Model

We propose a model for log dividend growth ∆d and log returns r, where expected dividend growth z and expected

returns x follow an AR(1) with autoregressive coefficient φ:

∆dt+1 − d = zt + εt+1 zt+1 = φzt + ζt+1 (24)

rt+1 − r̄ = xt + ηt+1 xt+1 = φxt + ξt+1 (25)

where d is the long-run mean log dividend growth and r̄ is the long-run mean return. The model has three

fundamental shocks: a dividend innovation εt+1, an innovation in expected dividends ζt+1, and an innovation in



expected returns ξt+1. Campbell (1991)’s return decomposition implies that

ηt+1 = − ρ

1− ρφ
ξt+1 +

ρ

1− ρφ
ζt+1 + εt+1. (26)

We assume that all three errors are serially uncorrelated and have zero cross-covariance at all leads and lags:

Cov(εt+1, ζt+j) = 0, ∀j 6= 1, and Cov(εt+1, ξt+j) = 0, ∀j 6= 1, except Cov(ζt, ξt) = χ and Cov(ζt, εt) = λ.

In steady-state, the log dividend-price ratio is dp = log
(

r̄−d
1+d

)

, hence DP ≈ r̄−d
1+d

and ρ ≈ 1+d
1+r̄ . The log

dividend-price ratio can be written as

dpt = dt − pt = dp+
xt − zt
1− ρφ

. (27)

This equation clearly shows that the demeaned dividend-price ratio is an imperfect forecaster of returns. Returns

are predicted by xt (25) which not only contains the demeaned dp ratio, but also expected dividend growth zt:

xt = (1− ρφ)(dpt − dp) + zt.

This structural model implies a reduced form model that recovers the two predictability equations from Section

(2):

(∆dt+1 − d) = κd(dpt − dp) + τdt+1 (28)

(rt+1 − r̄) = κr(dpt − dp) + τ rt+1 (29)

(dpt+1 − dp) = φ(dpt − dp) + τdpt+1. (30)

The third equation of this Vector Error Correction Model is an AR(1) process for the dividend-price ratio. Because

of equation (6), the dividend-price ratio is the difference of two AR(1) processes with the same root φ, which is

again an AR(1) process. We also considered a model where expected dividend growth has a different autoregressive

coefficient ψ 6= φ: zt+1 = ψzt + ζt+1. In that case the dividend-price ratio is an ARMA(1,1) with roots φ+ ψ and

−φψ. Since the dp ratio is well described by an AR(1) model in the data, we set φ = ψ.

The slope coefficients are related to the structural parameters:

κd =
Cov(∆dt+1, dt − pt)

V ar(dt − pt)
=
−(1− ρφ)(σ2ζ − χ)
σ2ξ + σ2ζ − 2χ

(31)

κr =
Cov(rt+1, dt − pt)
V ar(dt − pt)

=
(1− ρφ)(σ2ξ − χ)
σ2ξ + σ2ζ − 2χ

(32)

The innovations to the VECM, τ = (τd, τ r, τdp), are given by:

τdt+1 = εt+1 + xt

(

−κd
1− ρφ

)

+ zt

(

κr
1− ρφ

)

(33)

τ rt+1 = εt+1 + xt

(

−κd
1− ρφ

)

+ zt

(

κr
1− ρφ

)

− ρξt+1 − ζt+1

1− ρφ
(34)

τdpt+1 =
ξt+1 − ζt+1

1− ρφ
. (35)

The structural model imposes a restriction on the innovation vector: ρτdpt+1 =
(

τdt+1 − τ rt+1

)

. Another way to write

this restriction is as a restriction on a weighted sum of κr and κd:

κr − κd = 1− ρφ.

We call this restriction the present value constraint.

Leaving aside the mean parameters (d, r̄, dp) which play no role in the demeaned system, the structural parameter



vector is Θ = (φ, σζ , σξ, σε, χ, λ). The variance σ2η is implied by (26). The vector of parameters from the reduced

form model (VECM) is b = (κd, κr, φ,Στ ), where Στ is the variance-covariance matrix of τ . There are six unique

elements in this covariance matrix and the present value constraint imposes three restrictions on these six elements.

In addition, the present value constraint imposes a restriction on one of the elements in (κr, κd, φ). Hence, there are

five unique elements in b = (κr, κd, στr , στd , στr,τd), where στr and στd are the standard deviations of τ r and τd,

and στr,τd is the covariance between the two. When we estimate the non-singular system of equations (28) and (29),

we can use these five coefficients to identify five out of six structural parameters in Θ. Therefore, whenever we back

out structural parameters from the reduced form estimates, we find it convenient to tabulate results for a range of

values for Vz, which measures the contribution of expected dividend growth to the variance of the dividend-price

ratio:

Vz =
σ2z

(1− ρφ)2σ2dp
=

σ2ζ
(σ2ξ + σ2ζ − 2χ)

. (36)

E Monte Carlo Simulations

The Monte Carlo exercise simulates the model under the null hypothesis of 1 break or 2 breaks in the dividend-price

ratio. It then asks what the univariate long-horizon slope coefficients and R2 are in a small sample (of the same

length as the data) when we use the unadjusted dp as regressor versus the adjusted ˜dp. For the one-break case

reported in the top panel of Table 8, we use the following algorithm:

step 1 To find the true parameters, we estimate the (1, 3, 5)-year VECM under the assumption of one break in 1991

for the full sample. This delivers reduced form estimates: b = (.0121, .2098, .1410, .1868, .0176). Throughout,

ρ = .9616, the value implied by the mean price-dividend ratio in the sample.

step 2 We invert these reduced form parameters to obtain structural parameters based on the identification scheme

described above. We need to take a stance on the fraction of the variance in the dividend-price ratio

attributable to expected dividend growth (equation 36). We set Vz = 0.3, but the results are not sensitive to

this choice. The implied structural parameters are: Θ = (.8344, .0182, .0355, .1371, .0004,−.0005).

step 3 In each Monte Carlo iteration, we draw a new 178×3 vector of i.i.d. standard normal variables. The struc-

tural shocks (εt, ζt, ξt) are these standard normal variables pre-multiplied by Σ
1
2
u , where Σu is the covariance

matrix of the structural innovations:

Σu =







σ2ε λ 0

λ σ2ζ χ

0 χ σ2ξ







step 4 We recursively build up time-series for x, r− r̄, z, and ∆d− d according to (25) and (24). We form a time

series for the demeaned dividend-price ratio from (27).

step 5a Under the null hypothesis of 1 break in 1991, the break-adjusted series for returns, dividend growth and

the dividend-price ratio are obtained by adding constant long-run means r̄, d, and dp to the demeaned series.

I.e. the adjusted dp series is the demeaned series plus the mean over the entire sample 1927-2004, which is

dp = −3.272. Likewise, the adjusted dividend growth series ∆d is formed by adding to the demeaned series

∆d−d the sample mean d = .0432. We then back out r̄ = d+(1+d) exp(dp) = .0827, and form the adjusted

return series as the demeaned series plus this r̄.

step 5b On the other hand, the unadjusted series still displays a break in 1991. To obtain the unadjusted series

we need to add in a different mean before and after 1991. As before, we assume d did not change, so that



the change in dp entirely comes from a change in r̄. The unadjusted dp series is obtained by adding in the

1927-1991 mean (-3.133) before 1991 and the 1992-2004 mean (-3.968) after 1991. Likewise for returns we

add in .0886 before 1991 and .0629 after 1991. These are the subsample means dp and r̄ that were reported

in lines 1 and 2 of Table 6 (left panel).

step 6 We form annualized, cumulative long-horizon returns and dividend growth rates 1
H

∑H
j=1∆rt+j and

1
H

∑H
j=1∆dt+j

in the same way. There is one set of unadjusted series and one set of adjusted series, corresponding to each

horizon H.

step 7 After the formation, we discard the first 100 observations (burn-in), and are left with the same number

of observations as in the data: 78- longest horizon+1. For the 1-, 3-, and 5-year system we report on, the

longest horizon is 5, so all statistics are computed with 74 observations.

step 8 We then run univariate 1-, 3-, and 5-year ahead predictability regressions of adjusted returns and divi-

dend growth on both unadjusted and adjusted dividend-price ratios. We keep track of the predictability

coefficients and regression R2.

step 9 We repeat this procedure 10,000 times and report the average predictability coefficients and R2 across

Monte Carlo iterations.

The Monte Carlo exercise in the two-break case is exactly analogous (bottom panel of Table 8). In step 1,

we estimate the 1-, 3-, and 5-year ahead VECM system under the null of 2-breaks in 1954 and 1994. The VECM

coefficient vector is b = (0.0795, 0.4089, 0.1391, 0.1743, 0.0157). The implied structural parameter vector for Vz = 0.3

is Θ = (0.6974, 0.0293, 0.0635, 0.1339, 0.0014,−0.0012). To construct the unadjusted dp and return series we use the

means reported in the right panel of Table 6.

We conduct a separate Monte Carlo exercise for the out-of-sample predictability (panels 2 and 3 in Table 5).

We simulate the model under the null hypothesis of two breaks in 1954 and 1994. For simplicity we use the same

true parameters in both panels 2 and 3. They are obtained from estimating the 1-year ahead VECM under the

assumption of two breaks in 1954 and 1994, but for the period 1947-2004, which is the same sample period as we use

in the data (panel 1 of Table 5). We then construct adjusted and unadjusted dp ratios as in the above algorithm,

and run the same out-of-sample predictions as in the data.



Table 1: Forecasting Returns and Dividend Growth with the Dividend-Price Ratio.

This table reports estimation results for the equations rt+1 − r̄ = κr(dpt − dp) + τrt+1 and ∆dt+1 − d = κd(dpt − dp) + τdt+1. The first

two columns report the equation for returns. The next two columns report the predictability equation for dividend growth. The last

two columns are for excess returns instead of gross returns. The table reports point estimates and standard errors in parentheses of κr

and κd, as well as regression R
2 in square brackets. The parameters (r̄, d, dp) are the sample means of log returns r (log excess returns

in the last two columns), log dividend growth ∆d and the log dividend-price ratio dp. The top panel compares the case of no break in

the log dividend-price ratio (dp is fixed) with the case where there is a break in the log dividend-price ratio: dp1 is the sample mean

log dividend-price ratio for 1927-1991 and dp2 is the mean for 1992-2004. The estimation is by GMM, where the moments are the OLS

normal conditions. Standard errors are by Newey-West with four lags. Row 1 reports results for the full sample; rows 2 and 3 report

results for two subsamples. Row 4 reports the F-statistic and associated p-value from a Chow test with null hypothesis of no structural

break in 1991 in the forecasting equations. The bottom panel compares the case of no break in the log dividend-price ratio (dp is fixed)

with the case where there are two breaks in the log dividend-price ratio: (dp1 is the sample mean log dividend-price ratio for 1927-1954

(row 6), dp2 is the mean for 1955-1994 (row 7), and dp3 is the mean for 1995-2004 (row 8). Row 9 reports the F-statistic and associated

p-value from a Chow test with null hypothesis of no structural breaks in 1954 and 1994 in the forecasting equations.

Returns Dividend Growth Excess Returns

Sample No Break 1 Break No Break 1 Break No Break 1 Break

1927-2004 .094 .235 .005 .019 .113 .282

(.046) (.058) (.037) (.047) (.049) (.059)

[.038] [.100] [.000] [.001] [.050] [.132]

1927-1991 .235 .235 .014 0.014 .295 .295

(.065) (.065) (.053) (.053) (.071) (.071)

[.087] [.087] [.001] [.001] [.125] [.125]

1992-2004 .235 .235 .035 .035 .241 .241

(.134) (.134) (.103) (.103) (.139) (.139)

[.199] [.199] [.006] [.006] [.198] [.198]

Chow F -stat 3.408 .134 .114 .024 4.383 .230

p-val [.038] [.875] [.892] [.977] [.016] [.795]

Sample No Break 2 Breaks No Break 2 Breaks No Break 2 Breaks

1927-2004 .094 .455 .005 .124 .113 .441

(.046) (.081) (.037) (.073) (.049) (.101)

[.038] [.223] [.000] [.032] [.050] [.193]

1927-1954 .510 .510 .037 .037 .529 .529

(.175) (.175) (.182) (.182) (.192) (.192)

[.163] [.163] [.002] [.002] [.170] [.170]

1955-1994 .383 .383 .142 .142 .336 .336

(.106) (.106) (.077) (.077) (.144) (.144)

[.240] [.240] [.064] [.064] [.151] [.151]

1995-2004 .532 .532 .226 .226 .539 .539

(.129) (.129) (.097) (.097) (.145) (.145)

[.546] [.546] [.126] [.126] [.533] [.533]

Chow F -stat 4.390 .235 .998 .500 3.261 .186

p-val [.003] [.918] [.414] [.736] [.016] [.945]



Table 2: Tests for Change in Mean of Log Dividend-Price Ratio

The first panel reports dates of structural breaks in the mean of the log dividend price ratio estimated by the Perron procedure as well

as the changes in the mean before and after the breaks. The second panel reports sup-F (i,j) statistics where i is the number of breaks

under the null hypothesis and j is the number of breaks under the alternative. ‘*’, ‘**’, ‘***’ denote significance at the 1%, 5% and

10% level, respectively. The third panel reports the number of breaks chosen according to the Bayesian Information criterion (BIC)

and the modified Schwartz’ criterion proposed by Liu, Wu, and Zidek (1997) (LWZ). The tests allow for autocorrelation in the residuals

and the trimming value is set to 5% of the sample. The bottom panel reports first and second order autocorrelation coefficients, an

Augmented Dickey Fuller test, testing the null hypothesis of a unit root (and associated p-value), and the time-series standard deviation

for the unadjusted log dividend-price ratio, the log price ratio adjusted for a change in its mean in 1991, and the log dividend-price ratio

adjusted for a change in its mean in 1954 and 1994.

# of Breaks Date(s) ∆dp

1 1991 -.86

2 1954, 1994 -.37, -.78

Test (H0, H1) Statistic

sup-F (0,1) 13.7***

sup-F (0,2) 23.9***

sup-F (1,2) 9.64*

Information Criterion # of Breaks

LWZ 2

BIC 2

Persistence Properties of Adjusted Dividend-Price Ratio

AC(1) AC(2) ADF Test p-val s.d.

dp, unadjusted .91 .81 -1.383 .586 .42

˜dp, adjusted, 1 break .77 .55 -3.016 .038 .26

˜dp, adjusted, 2 breaks .61 .23 -4.731 .010 .20



Table 3: Tests for Change in Mean of Financial Ratios

The top half of the table reports the test-statistic of a sup-F Perron structural break tests of the null hypothesis of no break against

the alternative hypothesis of one (first row) or two (second row) breaks with unknown break date. It reports the p-value of the test

statistic, as well as the resulting break date. The last column reports the estimated change in means before and after the break(s).

These tests are performed for the log earnings-price ratio ep = e − p, the log book value -to-market value of equity ratio bm = b −m,

the log dividend-earnings ratio de = d− e, the log dividend-price ratio adjusted for repurchases dprep, and the log dividend-price ratio

of the universe of CRSP firms that excludes the NASDAQ firms dpnas.

Structural Break Tests

H0 H1 sup−F-Test p-value Date(s) ∆mean

ep 0 break 1 break 15.5 < 1% 1990 -.67

0 break 2 breaks 18.0 < 1% 1953, 1994 -.50, -.62

bm 0 break 1 break 9.3 < 10% 1953 -.80

0 break 2 breaks 17.9 < 1% 1953, 1990 -.71, -.33

de 0 break 1 break 5.6 > 10% 1993 -.24

0 break 2 breaks 5.3 > 10% 1990, 1993 +.27, -.46

dpnas 0 break 1 break 10.2 < 5% 1992 -.75

0 break 2 breaks 18.1 < 1% 1954, 1995 -.35, -.70

dprep 0 break 1 break 3.7 > 10% 1990 -.43

0 break 2 breaks 4.5 > 10% 1954, 1991 -.23, -.34

0 break 3 breaks 20.1 < 1% 1957, 1973, 1990 -.46, +.50, -.57



Table 4: Forecasting Returns With Other Financial Ratios.

This table reports estimation results for the equation rt+1 − r̄ = κr(yt − y) + τrt+1, where y is the log earnings-price ratio ep = e− p in

the first row, the log book-to-market value ratio bm = b−m in the second row, the log dividend-price ratio without the NASDAQ firms

dpnas in the third row, and the repurchase adjusted log dividend-price ratio dprep in the fourth row. The table reports point estimates

and standard errors in parentheses of κr, and the regression R2 in brackets. The regressor is the unadjusted valuation ratio in the first

column, the one-break adjusted valuation ratio in the second column, and the two-break adjusted valuation ratio in the third column.

For the predictor dprep, we report the three-break case as well. The break dates for all regressors are reported in Table 3. The sample

is 1946-2004 in row 1, and 1927-2004 in all other rows.

Predictor y No Break 1 Break 2 Breaks 3 Breaks

ep .119 .214 .216

(.030) (.039) (.045)

[.104] [.190] [.185]

bm .070 .255 .308

(.036) (.063) (.064)

[.030] [.154] [.188]

dpnas .110 .250 .417

(.048) (.056) (.090)

[.043] [.105] [.182]

dprep .191 .282 .361 .576

(.054) (.065) (.084) (.097)

[.079] [.126] [.161] [.250]



Table 5: Out-of-Sample Predictability.

The table reports one-period-ahead return forecast errors based on the Random Walk model (row 1) and based on the forecasting

equation rt+1 − r̄ = κr(dpt − dp) + τrt+1 with fixed dp (row 2). Rows 3 through 5 use the real time Perron procedure to estimate ̂dp
P
.

We report results for three different methods of selecting the number of break: the sequential sup-F test with 10% critical value, and

the LWZ and BIC information criteria. Rows 6 and 7 use the ex-post break adjusted dividend price ratios with a change in dp in 1991

(row 6), and two changes in the mean dp in 1954 and 1994 (row 7). Rows 8 to 11 use the Hamilton approach to construct adjusted

dividend-price ratios ̂dp
H
. We consider the cases of two regimes and three regimes. All numbers denote returns per annum. The second

and third panels report results from a Monte Carlo exercise. We simulate the structural model under the null hypothesis that the data

generating process has one break in 1991 (panel 2) or has two breaks in 1954 and 1994 (panel 3). We compare the same three out-of

sample forecasting exercises as in the data (panel 1). Except in the last panel, we also look at the forecast errors when we only correct

for the second break and not the first one. The structural parameters in panels 2 and 3 are the same and were obtained from the Vector

Error Correction Model (VECM) parameters estimated under the assumption of two breaks in 1954 and 1994 for the period 1947-2004,

the same forecasting period as in panel 1.

Mean absolute error Root mean squared error

Panel 1: Data

Benchmarks

Random Walk .1338 .1605

Unadjusted dp .1411 .1685

Pure OOS

̂dp
P

- Perron sequential sup-F .1350 .1661

̂dp
P

- Perron LWZ criterion .1391 .1680

̂dp
P

- Perron BIC criterion .1370 .1646

Pseudo OOS
˜dp - Perron, ex-post, 1 break .1309 .1558

˜dp - Perron, ex-post, 2 breaks .1158 .1421

̂dp
H

- Hamilton, 1 break, smoothed .1286 .1543

̂dp
H

- Hamilton, 2 breaks, smoothed .1100 .1340

̂dp
H

- Hamilton, 1 break, unsmoothed .1330 .1590

̂dp
H

- Hamilton, 2 breaks, unsmoothed .1243 .1512

Panel 2: Monte Carlo - 1 break

Random Walk .1212 .1525

Unadjusted dp .1210 .1555

˜dp - ex-post, 1 break .1058 .1334

Panel 3: Monte Carlo - 2 breaks

Random Walk .1222 .1533

Unadjusted dp .1203 .1516

˜dp - ex-post, 1 break .1165 .1493

˜dp - ex-post, 2 breaks .1064 .1336



Table 6: Implied Changes in Steady-state Expected Returns and Dividend Growth

The top panel (bottom panel) of the table reports the mean log dividend-price ratio (log earnings-price ratio) in the subsamples, as well

as the difference between the two. On the second row is reports the mean return r in the subsamples if all of the changes in dp (ep) in

the first row were attributable to changes in mean returns. The third row reports mean dividend growth rates d in the subsamples if all

of the changes in dp (ep) in the first row were attributable to changes in mean dividend growth. The left panel reports the case of one

break; the right panel the case of two breaks. For the log dividend-price ratio the break date is estimated to be 1991 for the one break

case (1954 and 1994 for the two break case). For the log earnings-price ratio, the break is estimated to be 1990 for the one break case

(1953 and 1994 for the two break case). In the bottom panel, we also report the change in the payout rate, the log dividend-earnings

ratio de. The sample for the top panel is 1927-2004, the sample for the bottom panel is 1946-2004 (see Appendix A).

Dividend-Price Ratio

27-91 92-04 Change 27-54 55-94 95-04 Changes

dp -3.133 -3.968 -.835 -2.940 -3.301 -4.086 -.362, -.785

r ↓, d constant 8.86% 6.29% -2.60% 9.83% 8.16% 6.07% -1.67%, -2.09%

d ↑, r constant 5.00% 7.54% 2.54% 4.07% 5.68% 7.76% 1.61% , 2.08%

Earnings-Price Ratio

46-90 91-04 Change 46-53 54-94 95-04

ep -2.540 -3.202 -.662 -2.217 -2.652 -3.267 -.435, -.616

Payout rate de -.665 -.779 -.114 -.606 -.661 -.889 -.056, -.227

r ↓, d constant 11.72% 9.24% -2.47% 13.70% 11.25% 8.87% -2.46%, -2.38%

d ↑, r constant 6.38% 8.79% 2.41% 4.52% 6.83% 9.16% 2.31%, 2.33%



Table 7: Estimation with Long-Horizon Moments

This table reports GMM estimates for the parameters (κd, κr, φ), their asymptotic standard errors and p-values. The results in panel

A are for the system with one-year ahead equations for dividend growth and returns (H = 1, N = 0). The results in panel B are for the

system with one-year, three-year and five-year ahead equations for dividend growth and returns (H = {1, 3, 5}, N = 2). The estimation

is by GMM. The first stage weighting matrix is the identity matrix. The asymptotic standard errors and p-values are computed using

the Newey-West HAC procedure (second stage weighting matrix) with four lags in panel A and H = 5 lags in panel B. The first number

in the last column denotes the present-value constraint violation of the univariate OLS slope estimators: (1− ρφols)−1(κolsr − κolsd ). It

is expressed in the same units as κd and κr. In panel B this number is the average violation of the three constraints, one constraint at

each horizon. The second number in the last column reports the average moment violation. In panel A that number is not available

(N/A) because the system is exactly identified. The dividend-price ratio in rows 1 and 4 is the unadjusted one. In rows 2 and 5, the

dividend-price ratio is adjusted for one break in 1991 (see equation 8), and in rows 3 and 6, it is the series adjusted for two breaks in

1954 and 1994. All estimation results are for the full sample 1927-2004.

κd κr φ PV violation moment violation

Panel A: No Long-Horizon Moments H = {1}

No Break .005 .094 .945 -.046 N/A
(.037) (.046) (.052)

1 Break (’91) .019 .2353 .813 .004 N/A
(.047) (.0554) (.052)

2 Breaks (’54, ’94) .124 .4553 .694 -.001 N/A
(.073) (.0792) (.070)

Panel B: Long-Horizon Moments H = {1, 3, 5}

No Break .021 .068 .990 .189 .205
(.018) (.038) (.032)

1 Break (’91) .012 .210 .834 .076 .085
(.019) (.043) (.042)

2 Breaks (’54, ’94) .080 .409 .697 .100 .144
(.065) (.078) (.060)



Table 8: Long-Horizon Predictability in Data and Monte Carlo Exercise.

The table reports results from univariate regressions of cumulative long-horizon returns on the log dividend-price ratio. The left columns

denote slope coefficients for one-year, three-year, and five-year horizon regressions; the middle columns report standard errors for the

slope coefficients; the right columns report the corresponding regression R2. The rows labeled ‘Data, dp unadj.’ denote regressions run

with real data using the unadjusted log dividend-price ratio as independent variable. The rows labeled ‘Data, dp adj.’ denote regressions

run with real data using the log dividend-price ratio, adjusted for a break in the mean dp. In the top panel there is one break in this

mean in 1991; in the bottom panel there are two breaks in 1954 and 1994. The results for the data are contrasted with a the results from

a Monte carlo exercise. The return and dividend growth system is estimated until 1991 in the top panel (1954 in the bottom panel) on

real data. The estimated parameters imply ‘true’ structural parameters. The theoretical long-horizon slope coefficients and regression

R2 are reported in the row with label ‘True Values in Sim.’ For these parameters, the structural model is then simulated 10,000 times

for 78 periods. The row ‘Sim., dp unadj.’ denotes the Monte carlo average slope coefficient and R2 statistic using the unadjusted log

dividend-price ratio as independent variable. The row ‘Sim., dp adj.’ also reports regression coefficients and statistics of regressions on

artificial data, but now the independent variable comes from a model where the mean r is adjusted to equal the change in dp in the

data.

κr s.e. R2 (%)

Horizon 1 3 5 1 3 5 1 3 5

One Break in 1991

True Values in Sim. .222 .187 .159 N/A N/A N/A 8.9 20.0 25.2

Sim., dp unadj. .115 .092 .075 .064 .034 .025 5.1 11.5 14.6

Data, dp unadj. .087 .095 .071 .065 .037 .026 2.4 8.1 9.2

Sim., dp adj. .264 .214 .175 .093 .048 .034 10.5 22.7 28.0

Data, dp adj. .220 .200 .150 .084 .047 .033 8.6 20.0 22.0

Two Breaks in 1954 and 1994

True Values in Sim. .456 .330 .249 N/A N/A N/A 20.7 37.0 38.8

Sim., dp unadj. .128 .089 .064 .063 .032 .023 6.2 11.5 12.8

Data, dp unadj. .087 .095 .071 .065 .037 .026 2.4 8.1 9.2

Sim., dp adj. .483 .340 .249 .110 .052 .037 21.4 37.5 38.6

Data, dp adj. .442 .355 .231 .102 .054 .041 20.7 37.4 30.8



Figure 1: Forecasting Returns - Rolling Regressions

The top panel plots estimation results for the equation rt+1 − r̄ = κr(dpt − dp) + τrt+1. It shows the estimates for κr using 30-year
rolling windows. The dashed line in the left panels denote the point estimate plus or minus one standard deviation. The parameters
r̄ and dp) are the sample means of log returns r and the log dividend-price ratio dp. The data are annual for 1927-2004. The middle

panel gives the slope coefficient κr from a regression where the right-hand side variable is ˜dp, adjusted for 1 break in 1991 (see Section

3.3). The bottom panel gives the slope coefficient κr from a regression where the right-hand side variable is ˜dp, adjusted for 2 breaks
in 1954 and 1994 (see Section 3.3). The standard errors are asymptotic.
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Figure 2: Change in the Mean of the Dividend-Price Ratio.

The top left panel plots the log dividend-price ratio dpt = dt − pt (solid line) as well as its sample means dp1 in the subsample
1927-1991 and dp2 in the subsample 1992-2004 (dashed line). The bottom left panel overlays the subsample means dp1 in 1927-1954,

dp2 in 1955-1994, and dp3 in 1995-2004. The top right panel plots the adjusted dividend-price ratio ˜dpt = dpt − dp1, t = 1, ..., τ and
dpt − dp2, t = τ, ..., T . The bottom right panel plots the adjusted dividend-price ratio in the two-break case. In the two bottom panels,
the adjusted series is rescaled so that it coincides with the adjusted series for the first subsample.
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Figure 3: The Empirical Distribution of the Dividend-Price Ratio.

The figure plots the smoothed empirical distribution of the log dividend-price ratio dp (solid line), alongside the smoothed density
obtained from drawing from the empirical distribution with replacement (bootstrap, dash-dotted line), and the smoothed density from
a Monte-Carlo exercise (dashed line).
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Figure 4: Recursive Estimation of the Empirical Distribution of the Dividend-Price Ratio.

We recursively estimate an AR(1) for the log dividend-price ratio dp, dpt+1 = c+φdpt+ τ
dp
t+1 using data up to time t+1, and bootstrap

percentiles of the empirical distribution by drawing with replacement from the residuals {τdp1 , · · · , τdpt+1}. The dashed lines represent
the 2.5, 5, 95, and 97.5 percentiles of the bootstrapped distribution. The initial sample is 1927-1951. Each successive exercise adds one
year of data. The solid line represents the observed log-dividend-price ratio in deviation from its recursive sample mean.
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Figure 5: Regime Switching Model - State probabilities

This figure reports estimation results from a Hamilton regime-switching model for the log dividend-price ratio d− p. The top panel is
for the two-regime (one-break) case; the bottom panel is for the three-regime (two-break) case. The solid lines represent unsmoothed
probabilities, based on real-time information. The dashed lines represent smoothed probabilities. The top panel represents the probability
of being in the low dp regime; the bottom panel plots the probabilities of being in the low and in the middle d− p regimes. The latter
are denoted by squares and diamonds.
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Figure 6: Regime Switching Model - Mean Dividend-Price Ratio

This figure reports the mean dividend-price ratio based on the estimation results from a Hamilton regime-switching model for the log
dividend-price ratio d − p. The top panel is for the two-regime (one-break) case; the bottom panel is for the three-regime (two-break)
case. The solid line is the weighted average of the regime means, where the weights are the unsmoothed (real-time) state probabilities.
The dashed line is a weighted average of the same regime means, but the weights are the smoothed state probabilities (based on the
entire sample).
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Figure 7: Estimation with Long-Horizon Moments

This figure compares the univariate OLS long-horizon regression coefficients, κd(H) − OLS and κr(H) − OLS to the GMM estimates
that impose the present-value restriction (12), κd(H)−GMM and κr(H)−GMM . The system contains 10 equations, 5 return and 5
dividend growth equations. The horizons (in years) are H ∈ 1, 3, 5, 7, 10. The top panel uses the unadjusted dp ratio as predictor, the

middle panel uses the ˜dp ratio adjusted for one break in 1991, and the bottom panel uses the ˜dp ratio adjusted for two breaks in 1954
and 1994.
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