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Abstract

I propose a new implementation of the q-theory of investment using corporate bond
yields instead of equity prices. In q-theory, the optimal investment rate is a function
of risk-adjusted discount rates and of future marginal profitability. Corporate bond
prices also depend on these variables. I show that, when aggregate shocks are small,
aggregate q is a linear combination of risk free rates and average yields on risky corporate
debt. The yield-theory of investment, unlike its equity-based counter part, is empirically
successful: it can account for more than half of the volatility of investment in post-war
US data, it drives out cash flows from the investment equation, and it delivers sensible
estimates for the parameters of the adjustment cost function.
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I propose a new implementation of the q-theory of investment using corporate bond

yields instead of equity prices. According to q-theory, investment should be an increasing

function of marginal q, defined as the net present value of the future marginal product of

capital. Hayashi (1982) shows that, with constant returns to scale, marginal and average q

are the same. Therefore, the ratio of the market value of unlevered equity over the existing

capital stock should be a sufficient statistic for the investment rate. Unfortunately, the

implementation of the theory using equity has not been successful (see Caballero (1999) for

a recent survey).

Just like Hayashi (1982), I use a model with constant returns to scale and convex costs

of adjustment. Thus, in my setup, marginal and average q are the same. The innovation

is that I use the corporate bond market, as opposed to the equity market, to construct

my proxy for q. Just like equity prices, corporate bond prices react to changes in the risk-

adjusted discount rate and to news about future profitability. When aggregate shocks are

small and there is a continuous distribution of firm level shocks, I show that bond prices

are in fact proportional to q. After deriving the yield-based equation, I find that, unlike

its equity counter-part, this investment equation is empirically successful: it can account

for more than half of the volatility of investment in post-war US data, it drives out cash

flow variables, and it delivers quantitatively sensible estimates for the parameters of the

adjustment cost function.

The yield-theory is successful because yield spreads of corporate bonds over treasuries

forecast investment. It is well-known (Bernanke (1983) and Stock and Watson (1989)) that

credit spreads have forecasting power for output, but there has been much disagreement

about how one should interpret this fact. My work suggests a straightforward interpretation:

this is just q-theory. In particular, it does not require that firms be credit constraint, or

that financial markets be imperfect. As an aside, I also find that corporate credit spreads

forecast output through corporate investment, not consumption or residential investment.

Beyond the macroeconomic literature already mentioned, this paper is related to Cochrane

(1996) who studies the joint dynamics of physical and financial returns, Lettau and Lud-

vigson (2002) who emphasize the role of time varying risk premia, and Zhang (2005) who

shows how irreversibility and counter-cyclical risk premia could explain the value premium.

Finally, I build on the credit risk literature pioneered by Merton (1974). Berndt, Douglas,
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Duffie, Ferguson, and Schranz (2005) and Pan and Singleton (2005) estimate credit risk

premia from default swap rates, respectively for US corporate and sovereign bonds, and

find large and volatile risk premia. Almeida and Philippon (2005) show that risk premia

are of first order importance for capital structure decisions.

In section 1, I present the setup of the model. In section 2, I derive the approximations

to the value function and to the investment policy function that are needed to establish

the main result. In section 3, I show how one can use corporate bond spreads to build a

sufficient statistic for aggregate investment. Section 4 contains empirical evidence on the

relevance of the theory and on the implied adjustment costs. Section 5 contains robustness

checks, including numerical simulations in section 5.4. In the last section, I summarize

the results in the context of existing theories of investment, and I discuss some remaining

puzzles.

1 Model

I present a model of investment with aggregate shocks to discount rates, risk premia and av-

erage profitability, as well as idiosyncratic profitability shocks. This is a partial equilibrium

model and the pricing kernel is specified exogenously.

1.1 Technology and Pricing Kernel

I now describe the technology of the firms, and the stochastic processes for aggregate and

idiosyncratic shocks.

Cash Flows

The state of the aggregate economy is an integer st ∈ [1, 2.., S] which evolves according to a
stationary Markov chain with transition matrix P . Abusing notations, I will also use S to

denote the aggregate state space. Firms are subject to aggregate and idiosyncratic shocks.

The profits of a firm with idiosyncratic shock η in state s are

(a (s) + η − Γ (x)) k, (1)

where k is the firm’s capital stock and x := i
k − δ is the investment rate, i is investment

and δ is the depreciation rate. The function Γ (.) is strictly convex, and the aggregate profit
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rate a (.) is normalized so that Γ (0) = 0.1 Capital accumulates according to

kt+1 = (1 + xt)kt. (2)

Risk Neutral Probabilities

The state s characterizes the aggregate economy, and the pricing kernel between state s and

s0 is ms,s0 . Let pst,st+1 be the objective probability of st+1 given st. Let m̄s be the price of

a one period risk free bond in state s and let rs be the corresponding risk free rate

1

1 + rs
:= m̄s =

X
s0∈S

ps,s0ms,s0 .

The risk neutral probability πs,s0 is defined by

πs,s0 :=
ms,s0

m̄s
ps,s0 ,

and the risk-adjusted transition matrix is Π =
£
πs,s0

¤
s∈S,s0∈S. I assume that Π is stationary

with a unique invariant distribution, π̄s, which solves π̄s0 =
P

s∈S π̄sπs,s0 .

Idiosyncratic Shocks

The idiosyncratic component of profits follows a continuous Markov process over a compact

interval Ω ⊂ R with a transition density ζ
¡
ηt, ηt+1

¢
which is independent of the state of

the economy. The economy has reached its ergodic steady state for idiosyncratic shocks,

and the ergodic distribution of η is ζ̄ (.). By definition, the ergodic distribution is such that

ζ̄ (η0) =
R
Ω ζ (η, η

0) ζ̄ (η) dη. Finally, I normalize the mean of η to zero:
R
Ω ηζ̄ (η) dη = 0.

1.2 Program of the Firm

The value of the firm at time 0 is

V0 = E
∞X
t=0

m (t) (a (st) + ηt − Γ (xt)) kt (3)

where

m (0) = 1 and m (t) = ms0,s1 × ..mst−1,st

1This functional form is the general case when the production function has constant returns to scale and
there is no adjustment cost for labor. Start from the traditional formulation of cash flows (ã+ η) k − i −
kΓ̃ i

k
, where ã+ η is the profit rate net of wages, and Γ̃ i

k
the adjustment cost per-unit of capital. Using

x, I then define a = ã− δ − Γ̃ (δ) and Γ (x) = x+ Γ̃ (x+ δ)− Γ̃ (δ) and I obtain (1).
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The program of the firm is to maximize (3) with respect to the sequence {xt}t≥0 and subject
to the capital accumulation constraint (2) and the initial condition (k0, s0, η0). I assume that

the solution to this program is finite and strictly positive for all possible initial conditions

(k0, s0, η0) ∈ R++ × S × Ω. Since the technology exhibits constant returns to scale, it is
useful to consider the scaled value function

vt :=
Vt
kt
.

The function v (.) solves

v (s, η) = max
x>−1

©
a (s) + η − Γ (x) + (1 + x) m̄sE

π
£
v
¡
s0, η0

¢ |s, η¤ª , (4)

and the transversality condition is

lim
τ→∞E [mt,τ (1 + xt) ..× .. (1 + xτ ) vτ |st, ηt] = 0. (5)

1.3 Investment

The first order condition for investment is

γ (x (s, η)) = m̄sE
π
£
v
¡
s0, η0

¢ |s, η¤ , (6)

where
R x
0 γ (t) dt := Γ (x). I assume that limx→−1 γ (x) = −∞ and limx→∞ γ (x) = +∞,

so that the solution is always interior. Equation (6) says that investment is equal to the

expected discounted marginal product of capital, usually called marginal q. With constant

returns to scale, the marginal product of capital is equal to the average product of capital.

One way to test this theory is to use the value of unlevered equity over physical assets as

a measure of q, but it has not worked well in practice (see Caballero (1999) for a recent

survey). I discuss potential explanations for this lack of success in the last section of the

paper. Instead of using equity, I argue that one can use corporate bond spreads to estimate

equation (6).

1.4 Debt Policy

I assume that the Modigliani-Miller assumptions hold. Default can happen, but default

does not entail any deadweight loss. In case of default, the creditors take over the assets,

but the firm continues to operate. In the Modigliani-Miller world, debt policy does not
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affect firm value. It does, however, affect bond spreads, so I must specify debt dynamics

before I can use bond prices to estimate the net present value of the marginal product of

capital. I consider two polar cases: short term debt and perpetuity.

Short Term Debt

The firm issues at time t a one period bond with face value dtkt+1, where the book leverage

dt might be a function of the state of the firm (st, ηt). The price of the bond is then

Bt = btkt+1, where the pricing function solves

b (s, η) = m̄sE
π
£
min

¡
v
¡
s0, η0

¢
, d (s, η)

¢ |s, η¤ (7)

Perpetuity

Empirically, firms continuously issue and retire long term debt in order to keep their leverage

ratio within reasonable bounds. To capture this in a simple way, I assume that firms keep

the total coupon payments on long term debt a constant fraction c of their capital stock k.

In case of default, each creditor therefore recovers v, and the value of each perpetuity solves

b∞ (s, η) = m̄sE
π
£
min

¡
v
¡
s0, η0

¢
, c+ b∞

¡
s0, η0

¢¢ |s, η¤ (8)

2 First Order Approximations

In this section, I present approximations to the value and policy functions that are needed

to show how one can use (7) or (8) to estimate the right hand side of (6). To make the

statements more precise, define the vectors

A =

⎡⎣ a (1)
..

a (S)

⎤⎦ ; M̄ =

⎡⎣ m̄ (1)
..

m̄ (S)

⎤⎦ ,
and the norm over vectors and functions of s as

kAk := sup
s∈S

|a (s)| .

Similarly, for a function that depends on both η and s

kv (., .)k := sup
s∈S,η∈Ω

|v (s, η)| .

Note that Ω is compact so the sup is a max for continuous functions. I start by considering

two polar cases: an economy with one representative firm, and then an economy with no

aggregate risk.
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2.1 No Idiosyncratic Shocks

In this section, I assume that the idiosyncratic shock η is identically equal to zero, i.e.

kΩk = 0, and I focus on aggregate shocks. Consider first the pseudo-steady state defined as
the steady state of an economy where the profit rate is constant and equal to ā := Eπ [a (s)],

and the discount factor is m̄ := Eπ [m̄s]. Combining equation (4) evaluated at the pseudo-

steady state, v̄ = ā − Γ (x̄) + (1 + x̄) m̄v̄, with the first order condition for investment

γ (x̄) = m̄v̄, I find that the pseudo-steady state is characterized by

Γ (x̄) + (r − x̄) γ (x̄)− ā = 0, (9)

where r := 1−m̄
m̄ is the steady state interest rate.

Lemma 1 Equation (9) has at most one solution over (−1, r] and one over [r,∞). If

rγ (0) < ā < Γ (r) , (10)

then there exists a unique solution x̄ ∈ (0, r) which does not violate the transversality con-
dition (5).

Proof. See appendix

With no uncertainty, condition (10) is necessary and sufficient for balanced growth with

finite firm value. It is also necessary and sufficient when uncertainty is small enough.2

From now on, I assume that condition (10) is satisfied. The unique solution of (4) that

satisfies (5) is also the solution to the original problem of the firm. Let va (.) be the solution

for the particular case of no idiosyncratic shocks, and let xa (.) be the corresponding policy

function. Clearly, va (.) converges to v̄ when kA− āk + °°M̄ − m̄
°° → 0. To approximate

va (.)− v̄, I define the stochastic process v̂ (.) as the solution to

v̂ (s) := as − ā+ (1 + x̄) v̄ (m̄s − m̄) + (1 + x̄) m̄Eπ
£
v̂
¡
s0
¢ |s¤ , (11)

and the stochastic process x̂ (s) as

x̂ (s) :=
v̄ (m̄s − m̄) + m̄Eπ [v̂ (s0)]

γ1
, (12)

2For instance, by imposing that rγ (0) < min (a) and max (a) < Γ (r) .
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where the curvature parameter is γ1 :=
∂γ
∂x (x̄). I now show that v̄+ v̂ (.) is the correct first

order approximation of va (.) when aggregate shocks are small. The next Lemma says that

the convergence of va (.) to v̄ is at least linear in kA− āk+ °°M̄ − m̄
°°

Lemma 2 As shocks become small, va (.) converges to v̄ and

lim
kA−āk+kM̄−m̄k→0

kva (.)− v̄k
kA− āk+ °°M̄ − m̄

°° <∞

Proof. See appendix

The following Lemma says that the economy with small aggregate shocks and no idiosyn-

cratic shocks is well approximated by the functions x̂ (.) and v̂ (.).

Lemma 3 As shocks become small, va (.)− v̄ converges to v̂ (.), in the sense that

lim
kA−āk+kM̄−m̄k→0

kva (.)− v̄ − v̂ (.)k
kA− āk+ °°M̄ − m̄

°° = 0
and xa (.)− x̄ converges to x̂ (.)

lim
kA−āk+kM̄−m̄k→0

kxa (.)− x̄− x̂ (.)k
kA− āk+ °°M̄ − m̄

°° = 0
Proof. See appendix

2.2 No Aggregate Shocks

In this section, I assume that a (s) = ā and m̄ (s) = m̄ for all s, and I focus on idiosyncratic

shocks. Define ṽ (.) and x̃ (.) as the solutions to

ṽ (η) := ā+ η − Γ (x̃η) + (1 + x̃η) m̄E
£
ṽ
¡
η0
¢ |η¤ (13)

and

γ (x̃η) = m̄E
£
ṽ
¡
η0
¢ |η¤ (14)

The average investment rate in this economy is given by
R
γ−1 (m̄E [ṽ (η0) |η]) ζ̄ (η) dη. This

average rate converges to x̄ when kΩk → 0, but is in general different from x̄. In this

economy, because of constant returns to scale, there is no tendency of firm size to mean

revert, so one must be careful when studying limiting distributions. Suppose, without loss
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of generality, that all firms start with one unit of capital at time t = 0, i.e., kj,0 = 1 for all

j. The capital stock of a firm j at time T is then

log (kj,T ) =
T−1X
t=0

log (1 + x̃j,t)

By the law of large numbers, we know that
log(kj,T )

T converges in mean squares toE ζ̄ [log (1 + x̃ (η))],

which I assume to be strictly positive.3 Clearly, there is no ergodic distribution for kj,t. Let

f̃ (kt, ηt, t) be the joint distribution of k and η at time t. It evolves according to the law of

motion

f̃
¡
kt+1, ηt+1, t+ 1

¢
=

Z
ηt∈Ω

ÃZ
kt=

kt+1
1+x̃(ηt)

f̃ (kt, ηt, t) dkt

!
ζ
¡
ηt, ηt+1

¢
dηt.

Define the aggregate stock of capital at time t by k̄t :=
R R

ktf̃ (kt, ηt, t) dktdηt. Since

kjt
exp(1+tEζ̄ [log(1+x̃(η))])

p−→ 1, we see that the scaled aggregate capital stock converges in

probability
k̄t

exp
¡
1 + tE ζ̄ [log (1 + x̃ (η))]

¢ p−→ 1.

Similarly, defining aggregate investment by ı̄t :=
R R

(x̃ (ηt) + δ) ktf̃ (kt, ηt, t) dktdηt, we see

that the aggregate investment rate ı̄t
k̄t
converges in probability

ı̄t
k̄t

p−→ Eζ̄ [x̃ (η)] + δ.

After a long time, the aggregate investment rate is constant and equal to the uncondi-

tional mean of the firm level investment rate. Note that the key for this result is that

E ζ̄ [log (1 + x̃ (η))] > 0: as the economy grows, the aggregate capital stock becomes very

large, and differences in k across firms, even though they are infinitely large in absolute

terms, become small relative to the aggregate capital stock. To study ı̄t
k̄t
, we can thus safely

assume that all firms have the same capital stock, and that the heterogeneity is simply due

to η.

3 In fact, since ζ (., .) is ergodic and Ω is bounded, a central limit theorem holds, and
√
T

log(kjT )
T −Eζ̄ [log (1 + x (η))] → N (0, σ̃) where the variance is given by σ̃2 = varζ̄ log (1 + x̃η) +

2 ∞
τ=1 cov

ζ̄ (log (1 + x̃t) , log (1 + x̃t+τ )).
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2.3 General Case

In the general case, there are both aggregate and firm level shocks. The following Lemma

shows that, when aggregate and idiosyncratic shocks are small, the value function is well

approximated by the sum of an idiosyncratic and an aggregate component. The same is

true for the policy function and for the aggregate investment rate.

Lemma 4 ṽ (η) + v̂ (s) is a first order approximation to v (s, η), in the sense that

lim
kA−āk+kM̄−m̄k+kΩk→0

sups,η (v (s, η)− ṽ (η)− v̂ (s))

kA− āk+ °°M̄ − m̄
°°+ kΩk = 0.

Similarly, x̃ (η)− x̂ (s) is a first order approximation to the policy function

lim
kA−āk+kM̄−m̄k+kΩk→0

sups,η (x (s, η)− x̃ (η)− x̂ (s))

kA− āk+ °°M̄ − m̄
°°+ kΩk = 0.

The aggregate investment rate converges to

lim
kA−āk+kM̄−m̄k+kΩk→0

¯̄̄
ı̄t
k̄t
−E ζ̄ [x̃ (η)]− δ − x̂ (st)

¯̄̄
kA− āk+ °°M̄ − m̄

°°+ kΩk = 0, for all t.
The proof of Lemma 4 is a straightforward extension of the proof of Lemma 3 and is

omitted. It is important to emphasize that both the aggregate and the idiosyncratic shocks

must be small, because the convexity of Γ (.) creates interaction effects between aggregate

and idiosyncratic shocks. Therefore, it is not enough for aggregate shocks to be small in

order to get additive separability of the value function into v̂ and ṽ. It is legitimate to

wonder what happens when idiosyncratic shocks are only second-order small, and I address

this issue in section 5.

3 Corporate Yields and Aggregate Investment

I now derive the relationship between the average yield on corporate bonds and the aggregate

investment rate. In this section, I restrict my attention to short term corporate debt. I

extend the analysis to long term debt in section 5.
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3.1 Short Term Bond Prices

Equation (7) gives the value of the one-period bond issued by a firm in the state (s, η). It

can be written as

b (s, η) = m̄sd (s, η)− m̄s

X
s0∈S

πs,s0

Z
v(s0,η0)<d(s,η)

¡
d (s, η)− v

¡
s0, η0

¢¢
ζ
¡
η, η0

¢
dη0

The first term is the discounted face value. The second term is the discounted value of

credit losses. Integrating over the ergodic distribution of η, I define the aggregate bond

price as b (s) :=
R
Ω b (s, η) ζ̄ (η) dη, and the aggregate default loss in state s

0 as

L
¡
s, s0

¢
:=

Z
η∈Ω

ζ̄ (η)

"Z
v(s0,η0)<d(s,η)

¡
d (s, η)− v

¡
s0, η0

¢¢
ζ
¡
η, η0

¢
dη0
#
dη. (15)

so that, by definition,

b (s) = m̄s

Z
η∈Ω

d (s, η) ζ̄ (η) dη − m̄s

X
s0∈S

πs,s0L
¡
s, s0

¢
.

I specify the dynamics of d (s, η) as

d (s, η) = d̂ (s) + d̃ (η) ,

normalized so that d̂ (s̄) = 0, and I define d̄ as the mean of d̃. Then, using the approximations

of Lemma 4 that v (s, η) ≈ ṽ (η) + v̂ (s), I find that4

Lemma 5 The first-order approximation of the credit loss function L (.) is

L
¡
s, s0

¢ ≈ θ̄
³
l̄d̄+ d̂ (s)− v̂

¡
s0
¢´

,

where l̄ is the average loss-rate given default and θ̄ is the average default rate

θ̄ :=

Z
ṽ(η0)<d̄

ζ̄
¡
η0
¢
dη0.

Proof. See appendix

For small aggregate shocks, we therefore find that the average bond price is, to a first order,

given by

b (s) ≈ m̄sd̄
¡
1− θ̄l̄

¢
+ m̄

¡
1− θ̄

¢
d̂ (s) + θ̄m̄

X
s0∈S

πs,s0 v̂
¡
s0
¢
. (16)

4To lighten the notations, I use the symbol ≈ to denote first order approximation.
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This equation has a very natural interpretation. The market value of debt depends on three

factors. The first term is the discounted value of the average recovery rate. The second

term captures time variation in debt issuance: the higher the face value, all else equal, the

higher the market value. The last term captures the effect of the future macroeconomic

conditions on the average recovery rate. In this last term, the future marginal product of

capital is scaled by θ̄, the likelihood of default evaluated at the risk neutral steady state.

3.2 The y-Theory of Investment

Consider now the first order approximation to the investment equation (6): γ (x (s, η)) ≈
γ0 + γ1 (x̃ (η) + x̂ (s)). Integrating over η, we get

γ1x̂ (s) ≈ (m̄s − m̄) v̄ + m̄sE
π
£
v̂
¡
s0
¢ |s¤

where v̄ := E ζ̄ [ṽ (η)], x̄ := E ζ̄ [x̃ (η)] and γ0 + γ1x̄ = m̄v̄. Therefore, using equation (16)

and defining the average risky yield y (s) := d
b(s) − 1, we obtain

x̂ (s) ≈ r − r (s)

(1 + r) (1 + r (s))

v̄

γ1
+

d̄

γ1θ̄ (1 + r (s))

µ
1 + r (s)

1 + y (s)
− 1 + r

1 + ȳ

¶
+

d̂ (s)

γ1

1− l̄

1 + r
(17)

where r (s) is the one period real risk free rate.

We can summarize our finding in the following theorem

Theorem 1 When aggregate shocks and firm level shocks are small, there exists a linear

combination of risk free yields, risky corporate yields and book leverage that is a sufficient

statistic for aggregate investment.

A practical issue that I have not discussed so far is inflation. Modern research in asset

pricing suggests that real risk free rates do not vary much over time. Suppose that real

rates are exactly constant, and let y$ (s) and r$ (s) denote nominal yields. Then, we have

the following corollary:

Corollary 1 If the real risk free rate is constant, then

x̂ (s) ≈ d̄

γ1θ̄ (1 + r)

Ã
1 + r$ (s)

1 + y$ (s)
− 1 + r̄$

1 + ȳ$

!
+

d̂ (s)

γ1

1− l̄

1 + r
(18)
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4 Empirical Estimates

4.1 Data Description

In equation (18), the key variable is 1+r$(s)

1+y$(s)
, the price of corporate bonds relative to trea-

suries. As shown in Figure 1, the spreads of corporate bonds over treasuries have increased

over the post-war period. Campbell and Taksler (2003) argue that this is due to a secular

increase in the volatility of publicly traded companies.5 I use Moody’s Baa index (yBaat ) as

my main measure of the yield on risky corporate debt. Moody’s index is the equal weighted

average of yields on Baa-rated bonds issued by large non financial corporations. To be

included in the index, a bond must have a face value of at least 100 million, an initial ma-

turity of at least 20 years, and most importantly, a liquid secondary market. Beyond these

characteristics, Moody’s has some discretion on the selection of the bonds. The number of

bonds included in the index varies from 75 and 100 in any given year. The main advantages

of Moody’s measure are that it is available since 1919, and that it is broadly representative

of the U.S. non financial sector, since Baa is close to the median among rated companies.

On the other hand, the main issue with this measure is maturity. The theory presented

above is based on the yield on short term bonds, but yBaat is an average among outstanding

bonds of different maturities. This creates two problems. First, it is not obvious which

treasury yield one should use as a benchmark. I will follow the literature and use the 10-

year treasury yield.6 Second, if the term structure of default spreads is not flat, using a

long yield to estimate the price of a one-year bond might introduce measurement errors.

In section 5, I consider the case of infinite horizon debt, and I use numerical simulations

to show the robustness of the results. For now, however, I focus on 1+r10t
1+yBaat

as my main

proxy for 1+r$(s)

1+y$(s)
, where r10t is the yield on a 10-year constant maturity treasury and ybaat

is Moody’s yield for an index of Baa bonds. Both variables are obtained from FRED R°.7

The variables are described in Table 1a.
5See Comin and Philippon (2005) for a discussion, and Davis, Haltiwanger, Jarmin, and Miranda (2006)

for evidence on privately held companies.
6All the results presented below are robust to using a 20-year risk free yield (which is not available on as

long a sample, however).
7Federal Reserve Economic Data: http://research.stlouisfed.org/fred2/
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4.2 Regression Results

Constant real rates and constant book leverage

Suppose that the real rate and book leverage are constant, i.e. m̄s ≡ 1
1+r and d̂ (s) ≡ 0.

Then equation (18) becomes

x̂ (s) ≈ d̄

γ1θ̄ (1 + r)

1 + r$ (s)

1 + y$ (s)
+ cte, (19)

where r$ (s) is the nominal risk free rate, and y$ (s) is the nominal yield on corporate bonds.

Because of the persistence in the investment rate and the other variables, as reported in

Table 1a, I estimate equation (19) in changes, rather than in levels.8 The dependent

variable is thus the year-to-year change in the annual investment rate ∆
¡
i
k

¢
and the first

estimation equation is simply

∆

µ
it
kt

¶
= α+ β∆

µ
1 + r10t
1 + yBaat

¶
, (20)

where it is real aggregate non-residential fixed investment, and kt is the capital stock con-

structed using the investment series and a depreciation rate of δ = 12%. Table 2 reports

the results. Each column corresponds to a different specification. Column (i) presents

the results from estimating equation (20). The regression of annual change in i
k on an-

nual change in the relative price of defaultable bonds has an adjusted R2 of 42%. We can

interpret column (i) as saying that

d̄

γ1θ̄ (1 + r)
≈ 1.9

The mean book leverage is around 5% for short term debt and 20% for long term debt, and

it is customary in the empirical credit risk literature to use short term debt plus half of long

term debt as a proxy for d̄ (see Moody’s KMV methodology, as explained in Crosbie and

Bohn (2003)). So we can use d̄ = 15% as a benchmark. What is θ̄? It is the default rate in

the average risk-neutral state. Table 1b shows that the average historical default rate for

Baa bonds (annualized from the 10-year cumulative rate) is around 0.5% over 1970-2001

and 0.8% over 1920-1999. The standard deviation of this rate is 0.25% over 1970-2001 and
8Another reason is that there is a slow-moving upward trend in the default probability, mostly reflecting

the increase in idiosyncratic risk, as explained in Campbell and Taksler (2003) and Comin and Philippon
(2005).
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0.9% over 1920-1999. Thus, the mean plus one standard deviation is between 0.75% and

1.7%. On the other hand, it is easy to see that θ̄ must be more than the average spread.

Assuming a recovery rate of 20%, we would get θ̄ between 2% and 3%. Let us take 2%.

Then we would get

γ1 ≈
15

1.03× 1.9× 2 ≈ 3.832.

Shapiro (1986) estimates γ between 8 and 9 using quarterly data, which corresponds to 2

to 2.2 at annual frequencies. Hall (2004) finds even smaller adjustment costs. Thus, the

y-theory brings a substantial improvement compared to estimates of more than 20 that one

would get from the equity based theory. Moreover, simple extensions to take into account

non-convexities at the firm level would likely decrease the implied γ1 further (see Caballero

and Engle (2005)).9

Another important fact to keep in mind is that the Baa spread is not a pure measure

of credit risk. There is an ongoing debate in the literature about the role of default risk in

explaining yield spreads. Because treasuries are more liquid than corporate bonds, part of

the spread should reflect a liquidity premium. Also, treasuries have a tax-advantage over

corporate bonds because they are not subject to state and local taxes. These arguments

suggest that we cannot attribute the entire spreads to default risk. Almeida and Philippon

(2005) discuss in details the various ways one can use to estimate the default component of

bond spreads, and find that roughly 3/4 of the spread is due to credit risk. Taken literally,

this means that we should multiply of estimated γ1 by 3/4 in order to obtain the correct

estimate: it would be 2.875.

Other Regressions

Column (ii) adds the 10-year treasury yield and the mean current liabilities over assets

of Baa firms as a measure of leverage. Column (ii) shows that it is really the spread

that matters, since the coefficient on the 10-year treasury is zero. The change in book

leverage has the predicted sign, and it is significant. Column (iii) introduces a cash flow

variable, earnings before interest and taxes over capital, as well as the market value of equity

9To keep things simple, I have used a purely convex model. But it is not a good approximation at the
firm level because of fixed costs and time-to-build. These issues will not disappear in the aggregate. If one
approximates lumpiness at the firm level in the Calvo way, it is straightforward to show that one should
scale the coefficient on the spread by the fraction of active companies to obtain the correct estimates. If only
half of the firms actively change their investment plans in any given period, then we would get γ1 around
1.9.
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over capital. Quite remarkably, the cash flow variable is not significant in the investment

equation, and neither is the market value of equity. So far, it seems that a model with

constant real risk-free interest rates, constant book leverage, and the bond spread as a

sufficient statistic, is not rejected by the data. The next three columns allow for different

coefficients on the current spread and its lag. Column (iv) shows a significant increase in

the R2, and the restriction that the sum of the coefficients is zero is rejected at the 1%

level. This suggests that the adjustment cost function might be misspecified, probably

because of non-convexities at the firm level, as in Caballero and Engle (1999). Column (v)

and (vi) suggest that controlling for book leverage can marginally improve the fit, while

equity does not seem to bring in a significant amount of new information. I have also run

regressions controlling for long term book leverage, which is not significant and leaves the

other coefficients unchanged.

5 Extensions and Robustness

5.1 Long Term Yields

For long term bonds, the pricing equation (8) can be integrated over η with the er-

godic distribution ζ̄ (.). This defines the aggregate long term bond price as b∞ (s) :=R
η0∈Ω b

∞ (s, η) ζ̄ (η) dη, and (8) becomes

b∞ (s) = m̄sc+ m̄s

X
s0∈S

πs,s0b
∞ ¡s0¢− m̄s

X
s0∈S

πs,s0L
∞ ¡s0¢ , (21)

where

L∞
¡
s0
¢
:=

Z
v(s0,η0)<c+b∞(s0,η0)

¡
c+ b∞

¡
s0, η0

¢− v
¡
s0, η0

¢¢
ζ̄
¡
η0
¢
dη0. (22)

Formula (21) and (22) are exact, but cannot be used directly in the investment equation.

At this point, and just like with short term debt, I make a first order approximation to

the function b∞ (s0, η0) in equation (8) as b∞ (s0, η0) ≈ b̂∞ (s0)+ b̃∞ (η0), where b̃∞ (η0) is the

price that would prevail in the idiosyncratic economy. To a first order, equation (22) then

becomes

L∞
¡
s0
¢ ≈ L̄∞ + θ̄

∞ ³
b̂∞
¡
s0
¢− v̂

¡
s0
¢´

, (23)

where the average default rate is defined by θ̄
∞
:=
R
ṽ(η)<c+b̃∞(η) ζ̄ (η) dη and the average

loss rate by L̄∞ :=
R
ṽ(η)<c+b̃∞(η)

³
c+ b̃∞ (η)− ṽ (η)

´
ζ̄ (η) dη. Substituting (23) into (21),
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and defining the average bond price b̄∞ :=
R
b̃∞ (η) ζ̄ (η) dη, and noting that b̄∞ = c−L̄∞

r , I

find that

b̂∞ (s) ≈ (m̄s − m̄) b̄∞ +
¡
1− θ̄

∞¢
m̄Eπ

h
b̂∞
¡
s0
¢ |si+ θ̄

∞
m̄Eπ

£
v̂
¡
s0
¢ |s¤ ,

while the investment equation is γ1x̂ (s) ≈ (m̄s − m̄) v̄+m̄Eπ [v̂ (s0) |s]. In matrix notations,
we get µ

I − 1− θ̄
∞

1 + r
Π

¶
B̂∞ = b̄∞M̂ + θ̄

∞
m̄ΠV̂ ,

γ1X̂ = v̄M̂ + m̄ΠV̂ .

Therefore

γ1X̂ =

µ
v̄ − b̄∞

θ̄
∞

¶
M̂ +

µ
I − 1− θ̄

∞

1 + r
Π

¶
B̂∞

θ̄
∞ .

The bond price is not a sufficient statistic for investment because of the off-diagonal elements

in the matrix Π. In the case of long term bonds, we must therefore extend our first order

approximation to the matrix Π by assuming that Π is close to being diagonal. This is a

new approximation, one that we did not need to make before. It extends the small shock

approximation that we have used so far, but it applies to the transition matrix. It says

that the system is not likely to jump from one extreme to the other. If Π is close to

being diagonal, then the response of x̂ to b̂ is r+θ̄
∞

(1+r)γ1θ̄
∞ , and with b∞ (s) = c

y(s) we get

b̂∞ (s) = − c
ȳ
ŷ(s)
ȳ = b̄∞ ŷ(s)

ȳ and therefore

xt ∝ −
¡
r + θ̄

∞¢
b̄∞

(1 + r) γ1θ̄
∞
ŷ (s)

ȳ
. (24)

If we implement this regression using the same data as in table 1, we get (
r+θ̄

∞)b̄∞

(1+r)γ1θ̄
∞ ≈ 0.12.

Assuming that long term debt is on average b̄∞ = 20% of book assets, we get, with r = 3%

and θ̄
∞
= 2%

γ1 ≈
5× 0.2

1.03× 0.12× 2 = 4.05.

I return to the issue of long term debt in section 5.4 where I perform numerical simulations.

5.2 Second Order Approximations

The appendix shows the approximation v (s, η) = ṽ (η)+ v̂ (s)+ηh (s) and characterizes the

function h (.). Consider the case of short term debt with constant book leverage. Note thatZ
v
¡
s0, η0

¢
ζ̄
¡
η0
¢
dη0 = v̂

¡
s0
¢
+

Z
ṽ
¡
η0
¢
ζ̄
¡
η0
¢
dη0,
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so that the RHS of the investment equation does not change. On the other hand, the loss

function becomes

L
¡
s, s0

¢
=

Z
ṽ(η0)+v̂(s0)+η0h(s0)<d̄

¡
d̄− ṽ

¡
η0
¢− v̂

¡
s0
¢− η0h

¡
s0
¢¢
ζ̄
¡
η0
¢
dη0,

= L̄− v̂
¡
s0
¢
θ̄ − h

¡
s0
¢ Z

ṽ(η0)<d̄
η0ζ̄
¡
η0
¢
dη0.

so h (s0) creates a measurement issue. The above equation shows the effect of an increase

in h: The integral is negative, so a higher value of h increases the credit losses. On the

other hand, as on can see in the appendix, h (s) increase with Eπ [v̂ (s0)]. Suppose good news

arrive: Investment increases, h increases, which indirectly increases credit losses. As a result,

bond prices do not rise as much as one would expect from the first order approximation.

This could lead to a bias in the estimation of γ1. To investigate this issue further, I use

numerical simulations in section 5.4.

5.3 Time Varying Idiosyncratic Risk

To study this issue, let us assume that idiosyncratic shocks are iid. Otherwise, keeping

track of the distribution of idiosyncratic shocks would be too complicated. In this case, all

the firms have the same bond price, the same investment rate and η simply affects the level

of the value function

v (s, η) = v̄ + η + v̂ (s) .

Suppose that the conditional distribution of η0 is ζ̄ (s, η0)

L
¡
s, s0

¢
=

Z
η0<d̄−v̄−v̂(s0)

¡
d̄− v̄ − v̂

¡
s0
¢− η0

¢
ζ̄
¡
s, η0

¢
dη0.

The first order approximation is

L
¡
s, s0

¢ ≈ L̄ (s)− v̂
¡
s0
¢
θ̄ (s) ,

where θ̄ (s) :=
R
η0<d̄−v̄ ζ̄ (s, η

0) dη0 and L̄ (s) :=
R
η0<d̄−v̄

¡
d̄− v̄ − η0

¢
ζ̄ (s, η0) dη0. The bond

price is then

b (s) ≈ m̄s

¡
d̄− L̄ (s)

¢
+ θ̄ (s) m̄sE

π
£
v̂
¡
s0
¢ |s¤ ,

and the investment equation becomes

γ1x̂ (s) ≈ (m̄s − m̄) v̄ +
b (s)− m̄s

¡
d̄− L̄ (s)

¢
θ̄ (s)

.
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The effect of time varying idiosyncratic risk is theoretically straightforward. In practice,

one can simply control for changes in idiosyncratic volatility. In column (vi) of Table 2,

I add the (change in) average idiosyncratic asset volatility of Baa-rated companies.10 The

change in mean asset volatility has the predicted sign and it is significant.

5.4 Numerical Simulations

In this section, I try to answer the following questions:

• how good is the first order approximation for estimating γ with aggregate data?

• how well would the y-theory perform on firm level data?

To do so, I first need to approximate the aggregate dynamics a (s), and the firm level

dynamics η. I assume that a and η can be approximated as AR(1) processes, and I estimate

the persistence of the processes using aggregate and firm level data

at = ρaat−1 + εat ,

ηt = ρηηt−1 + εηt .

For each firm, I define a + η as operating income before depreciation divided by the book

value of assets. I define a as the mean across all the firms rated and η as the residual. I

allow for a deterministic time trend in order to capture changes in the composition of the

sample and other non-stationarities, as discussed in Comin and Philippon (2005) and Davis,

Haltiwanger, Jarmin, and Miranda (2006). I find similar persistence for a for η of 0.75. I

then choose the volatility of the distribution of shocks to match the mean and standard

deviations of 1+r10t
1+yBaat

reported in Table 1a. Roughly speaking, the dispersion of η pins

down the average spread, and the dispersion of a (s) pins down how it changes over time.

The rest of the parameters are standard: r=4%, γ=4. The parameters needed to match

the data imply risk neutral volatilities of 0.012154 for a (s), and 0.12103 for η. I simulate

1000 observations, and I run equation (20) and (24) in the simulated data, at the firm level

10 I have used a simple Merton model for each Baa rated company and each year in order to extract asset
volatility. Equity volatility was estimated on the 12 month of each year, and the face value of debt was
computed as short term debt + one half of long term debt (as in the simplest version of KMV). Details are
available on request.
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and in the aggregate. The next table summarizes the results. For each regression, I report

the R2 and the ratio of the implied γ̂ over the true γ, which is equal to 4.

Equation (20) (20) (24) (24)
γ̂/γ R2 γ̂/γ R2

Aggregate 0.70327 0.97413 1.3751 0.99033
Firm Level 3.8673 0.13247 2.9813 0.38957

Several findings emerge. Firstly, the aggregate regression deliver very high R2. Secondly,

despite the high R2, there can be a significant bias in the estimation of γ. The bias is down-

ward when one uses short term debt, and upward when one uses long term debt. Thirdly,

the performance of the model deteriorates substantially when we move from aggregate to

firm level data. This underlines the importance of averaging across firms. Note also that

the direction of the bias in the short debt equation is reversed. Finally, at the firm level,

the R2 of the long term debt equation is substantially higher than the one of the short term

equation. Estimating equations (20) and (24) on firm level data is an important task for

future research.11

6 Discussion

I show theoretically that, in an economy where aggregate shocks are small and there is a

continuous distribution of firms, aggregate q is a simple function of the risk free rate and

of the average yield on risky corporate debt. Empirically, I find that y-theory explains

aggregate investment reasonably well. Numerical simulations suggest that y-theory might

also be useful at the firm level. I now discuss the implications of this finding for the existing

research on corporate investment, and I mention the remaining puzzles that need to be

addressed.

On the failure of q-theory

One could summarize my results by saying that aggregate q-theory seems to work fine,

provided one uses the bond market instead of the equity market to construct one’s measure

of q. Keeping this fact in mind, let us revisit the various explanations that have been

proposed in the literature for the failure of q-theory. The q-theory relies on a first order

condition linking a firm’s investment rate I/K to the firm’s Tobin’s Q. The theory could

11The practical issue is to obtain reliable bond prices at the firm level.
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therefore fail if the first order condition does not hold at the firm level, because of credit

constraints (Fazzari, Hubbard, and Petersen (1988), Bernanke and Gertler (1989)) or non-

convexities (Caballero and Engle (1999)) for instance. If these issues caused the q-theory

to fail, however, they would cause the y-theory to fail as well, since the underlying equation

is the same.

The theory could also fail because of measurement errors (Erickson and Whited (2000)).

It is important to separate measurement errors in I orK from issues involving market prices.

Measurement errors in I or in K — due to improper accounting, incorrect depreciation rates,

aggregation across heterogenous types of capital, failure to take into account intangibles and

human capital — would affect my investment equations as well.

Thus, it seems unlikely that credit constraints, fixed costs and measurement errors in I

or in K are responsible for the first order failures of q-theory in the aggregate, and it seems

more likely that the issue lies in the behavior of the market value of equity.12

Equity prices versus bond prices

Why is the equity-based investment equation less successful than the bond-spread invest-

ment equation? It is important to understand that there are two separate issues here. The

first is why the correlation between equity and bond prices is so low in the data, given

that, with small aggregate shocks, we would expect a very high correlation. The presence

of bubbles in equity prices but not in bond prices is a potential explanation for the observed

low correlation. Another is the presence of large growth options: a small probability of a

large increase in the present value of assets would have almost no impact on bond prices,

and a large impact on equity prices.

The second issue is why investment does not respond more to equity prices. One expla-

nation is that firms choose not to respond, either because they perceive the equity prices to

be disconnected from fundamentals, or because of adverse selection in the equity issuance

market. Another explanation, suggested by Abel and Eberly (2005), is that firms cannot

invest before the growth options are realized. It is as if firms faced two types of adjust-

ment costs, the ones for normal investment, well captured by convex costs, and the ones
12Erickson and Whited (2006) reach a similar conclusion using an econometric approach to deal with the

measurement errors. They find that most of the measurement errors responsible for the failure of q-theory
are in the market value V , not in K. In their terminology, measurement errors in V include bubbles and
other deviations of market values from fundamentals.
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for growth options, highly non-convex. This would seem to be consistent with the fact that

IPOs are well explained by equity market valuations, while the bulk of capital expenditures

is well explained by bond market valuations.

On the importance of risk premia in macroeconomics

It is well known in the credit risk literature that risk premia explain a large fraction of

credit spreads. Given that these spreads account for most of investment dynamics, one

should conclude that risk premia are important for macroeconomic dynamics. Yet, risk

premia play essentially no role in the standard business cycle model of Kydland and Prescott

(1982).13

Much of the investment literature abstracts from risk premia. On the empirical side,

Abel and Blanchard (1986) construct a time series for marginal q that takes into account

changes in the risk free rate, while abstracting from changes in risk premia. In this setup,

changes in aggregate investment are driven either by changes in the (real) risk free rate, or

by news about future aggregate profitability. The ex-ante real rate is neither volatile nor

very correlated with aggregate investment, however, and aggregate cash flows news explain

little of the variation in aggregate valuations, as shown by Shiller (1981). Compared to the

approach in Abel and Blanchard (1986), the yield theory has the advantage of taking into

account changes in risk premia over time.

On the theoretical side, the leading papers focusing on credit constraints, such as

Bernanke and Gertler (1989) and Kiyotaki and Moore (1997), assume that investors are

risk neutral. In this case, it is the objective probability of financial distress that matters for

investment. This objective probability, however, is much smaller that the risk adjusted one,

as shown in Berndt, Douglas, Duffie, Ferguson, and Schranz (2005). Thus, irrespective of

whether firms are indeed constrained or not, one should not neglect the effects of investor

risk aversion.

Similarly, models of non-convex adjustment costs in the tradition of Caballero and En-

gle (1999) also rely on risk neutral investors for tractability. To the extent that one is

concerned with explaining firm level investment dynamics, the assumption of risk neutral

13Obtaining high risk premia in general equilibrium models is not straightforward. Tallarini (2000) builds
a real business cycle model where consumers’s preferences are modelled as in Epstein and Zin (1989), and
studies the consequences of high risk aversion for asset prices and macroeconomic dynamics.
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investors is probably fine, because much of the volatility at the firm level reflects cash flow

news, not discount rate shocks, as emphasized for instance in Vuolteenaho (2002). In the

aggregate, however, discount rate shocks are much more important. My results suggest that

understanding the nature of these macroeconomic shocks could be necessary and sufficient

to obtain a successful theory of aggregate investment.
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A Proofs

This appendix contains the proofs of the Lemmas mentioned in the main text.

Proof of Lemma 1
Define

' (x) := (r − x) γ (x) + Γ (x)− ā

The function ' (.) is continuous over (−1,∞). Moreover
∂'

∂x
(x) = (r − x)

∂γ

∂x
(x)

so ' is increasing over (−1, r] and decreasing over [r,∞). If rγ (0) < ā < Γ (r), then
' (0) < 0 and ' (r) > 0, so there is a unique solution over (0, r). There might be another
over (r,∞), but it violates the transversality condition.
Proof of Lemma 2
First of all, it is clear that when kA− āk and °°M̄ − m̄

°° are small enough, we can use
Lemma 1 to argue that va (.) exists and solves

va (s) = max
x>−1

©
a (s)− Γ (x) + (1 + x) m̄sE

π
£
va
¡
s0
¢ |s¤ª .

Then, we can define ov (s) := va (s) − v̄ and ox (s) := xa (s) − x̄, and it is also clear that
both kovk and kovk go to 0 when kA− āk + °°M̄ − m̄

°° → 0. To show the stronger result
in the Lemma, let us assume that kA− āk and °°M̄ − m̄

°° are small enough that there exist
a neighborhood Ξ of x̄ such that xa (s) ∈ Ξ for all s and a neighborhood ( of r such that
r (s) ∈ ( for all s and

xmax = supΞ < rmin = inf (

Note that this is possible under assumption (10). Then notice that

m̄sE
π
£
va
¡
s0
¢ |s¤ ≤ amax − Γ (xmax)

rmin − xmax
for all s ∈ S

Using the investment equation, this implies that

χ (xmax) ≤ amax,

where the function χ (.) is defined by

χ (x) := (rmin − x) γ (x) + Γ (x) .

The function χ (.) is strictly increasing over Ξ, and its derivative can be bounded below by
some strictly positive number �

∂χ (x)

∂x
= (rmin − x)

∂γ (x)

∂x
> � > 0 for all x ∈ Ξ,

which implies that χ (xmax) > � (xmax − x̄) + χ (x̄). Now, given the definition of x̄, we see
that χ (x̄) = (rmin − r) γ (x̄) + ā and therefore

xmax − x̄ <
amax − ā+ (r − rmin) γ (x̄)

�
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This last inequality then implies that

lim
kA−āk+kM̄−m̄k→0

xmax − x̄

kA− āk+ °°M̄ − m̄
°° <∞

The same strategy applies to the lower bound xmin, and it is then straightforward to extend
to the value function to prove the Lemma.

Proof of Lemma 3
By the mean value theorem, there exist x̃s ∈ [x̄, xs] such that

Γ (xs) = Γ (x̄) + ox (s) γ (x̃s)

and thus
ka (.)− ā− Γ (.) + Γ (x̄)k ≤ ka (.)− āk+max

s
{γ (x̃s)} koxsk

The function ov (s) satisfies

v̄ + ov (s) = a (s)− Γ (xs) + (1 + x̄+ ox (s))
¡
m̄sv̄ + m̄sE

π
£
ov
¡
s0
¢ |s¤¢

Using the investment equation and the definitions of v̄ and v̂ (s), we get

ov (s)−v̂ (s) = oxs
¡
m̄sE

π
£
va
¡
s0
¢ |s¤− γ (x̃s)

¢
+(1 + x̄)

¡
(m̄s − m̄)Eπ

£
ov
¡
s0
¢ |s¤+ m̄Eπ

£
ov
¡
s0
¢− v̂

¡
s0
¢ |s¤¢

Therefore

kovs − v̂ (s)k ≤ ko
x
sk km̄sE

π [va (s0) |s]− γ (x̃s)k+ (1 + x̄)
°°M̄ − m̄

°° kovsk
1− (1 + x̄) m̄

By continuity of γ (.), and using the first order condition for investment in the pseudo-steady
state, we know that

lim
kA−āk+kM̄−m̄k→0

°°m̄sE
π
£
va
¡
s0
¢ |s¤− γ (x̃s)

°° = 0,
and therefore, using Lemma 2, we get

lim
kA−āk+kM̄−m̄k→0

kovs − v̂ (s)k
kA− āk+ °°M̄ − m̄

°° = 0.
Proof of Lemma 5
Let us consider a small change in d

d = d̄+ ε

Then, using Leibniz’s formulaZ
v(s0,η0)<d̄+ε

¡
d̄+ ε− v

¡
s0, η0

¢¢
ζ
¡
η, η0

¢
dη0

≈
Z
v(s0,η0)<d̄

¡
d̄− v

¡
s0, η0

¢¢
ζ
¡
η, η0

¢
dη0 + ε

Z
v(s0,η0)<d̄

ζ
¡
η, η0

¢
dη0
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Applying to ε = d1 (s) + d2 (η), we get

L
¡
s, s0

¢ ≈ Z
v(s0,η0)<d̄

¡
d̄− v

¡
s0, η0

¢¢
ζ̄
¡
η0
¢
dη0

+

Z
η∈Ω

(d1 (s) + d2 (η)) ζ̄ (η)

ÃZ
v(s0,η0)<d̄

ζ
¡
η, η0

¢
dη0
!
dη

Using Leibniz’s formula to small changes in v, and neglecting second order terms

L
¡
s, s0

¢ ≈ Z
ṽ(η0)<d̄

¡
d̄− v

¡
s0, η0

¢¢
ζ̄
¡
η0
¢
dη0 + d1 (s)

Z
ṽ(η0)<d̄

ζ̄
¡
η0
¢
dη0

+

Z
η∈Ω

ÃZ
ṽ(η0)<d̄

ζ
¡
η, η0

¢
dη0
!
d2 (η) ζ̄ (η) dη

Define

L̄ :=

Z
ṽ(η0)<d̄

¡
d̄− ṽ

¡
η0
¢¢
ζ̄
¡
η0
¢
dη0 +

Z
η∈Ω

ÃZ
ṽ(η0)<d̄

ζ
¡
η, η0

¢
dη0
!
d2 (η) ζ̄ (η) dη

and

θ̄ :=

Z
ṽ(η0)<d̄

ζ̄
¡
η0
¢
dη0

to get
L
¡
s, s0

¢
= L̄+ θ̄

¡
d1 (s)− v̂

¡
s0
¢¢

Second Order Approximation
Suppose that aggregate shocks are first order small, and firm level shocks are second order
small. Then, write

v (s, η) ≈ ṽ (η) + v̂ (s) + ηh (s)

The value function satisfies

v (s, η) = max
x>−1

©
a (s) + η − Γ (x) + (1 + x) m̄sE

π
£
v
¡
s0, η0

¢ |s, η¤ª
Differentiating the value function with respect to aggregate shocks, we get

∆v (s, η) = ∆a (s) + (1 + x)
¡
∆m̄ (s)Eπ [ṽ (η)] + m̄Eπ

£
v̂
¡
s0
¢
+ η0h

¡
s0
¢ |s, η¤¢

and then with respect to idiosyncratic shocks

∂∆v (s, η)

∂η
=

∂x̃

∂η
× ¡∆m̄ (s)Eπ [ṽ (η)] + m̄Eπ

£
v̂
¡
s0
¢
+ η0h

¡
s0
¢ |s, η¤¢

+(1 + x̄)× ∂

∂η

¡
∆m̄ (s)Eπ [ṽ (η)] + m̄Eπ

£
v̂
¡
s0
¢
+ η0h

¡
s0
¢ |s, η¤¢

A second order expansion of the idiosyncratic component gives

ṽ (η) = v̄ + ṽ1η + ṽ2η
2

x̃ (η) = x̄+ x̃1η + x̃2η
2
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and neglecting the small terms, we get

h (s) =

∙
∂x̃

∂η

¸
η=0

¡
∆m̄ (s) v̄ + m̄Eπ

£
v̂
¡
s0
¢ |s¤¢

+(1 + x̄)

∙
∂E [η0|η]

∂η

¸
η=0

Ã
∆m̄ (s)

∙
∂ṽ

∂η

¸
η=0

+ m̄Eπ
£
h
¡
s0
¢ |s¤!

The driving forces are m̄ (s) − m̄ and Eπ [v̂ (s0) |s]. From the investment equation, we see
that ∙

∂x̃

∂η

¸
=

m̄χ

γ1

∙
∂ṽ

∂η

¸
η=0

where χ =
h
∂E[η0|η]

∂η

i
η=0
, and

h (s) =
m̄χ

γ1

∙
∂ṽ

∂η

¸
η=0

m̄Eπ
£
v̂
¡
s0
¢ |s¤

+(1 + x̄)χm̄Eπ
£
h
¡
s0
¢ |s¤

+χ∆m̄ (s)

∙
∂ṽ

∂η

¸
η=0

µ
1 + x̄+

m̄

γ1
v̄

¶
v = ā− Γ (x) + (1 + x) m̄v

and from the value function equation

ṽ (η) = ā+ η − Γ (x̃η) + (1 + x̃η) m̄E
£
ṽ
¡
η0
¢ |η¤∙

∂ṽ

∂η

¸
η=0

=
1

1− (1 + x̄) m̄
h
∂E[η0|η]

∂η

i
η=0

So ∙
∂x̃

∂η

¸
=
1

γ1

m̄χ

1− (1 + x̄) m̄χ

So

h (s) =
1

γ1

m̄χ

1− (1 + x̄) m̄χ

¡
∆m̄ (s) v̄ + m̄Eπ

£
v̂
¡
s0
¢ |s¤¢

+(1 + x̄)χ

Ã
∆m̄ (s)

∙
∂ṽ

∂η

¸
η=0

+ m̄Eπ
£
h
¡
s0
¢ |s¤!
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Data Source Mean St. Dev. Min Max Auto-
correlation

I / K NIPA 0.165 0.017 0.134 0.200 0.758

(1+r10) / (1+yBaa) FRED 0.988 0.005 0.978 0.996 0.766

(1+r10) / (1+yBaa) post 1980 FRED 0.985 0.003 0.978 0.989 0.598

Mean (Current Liabilities / 
Book Assets) of Baa firms COMPUSTAT 0.199 0.021 0.156 0.263 0.582

EBIT / K NIPA 0.285 0.049 0.188 0.405 0.869

Total Equity Value / K CRSP & NIPA 1.478 0.533 0.766 3.048 0.843

I / K 0.000 0.012 -0.026 0.021 0.2472

(1+r10) / (1+ybaa) 0.000 0.003 -0.006 0.005 0.0146

Mean (Current Liabilities / 
Book Assets) of BBB firms -0.001 0.019 -0.047 0.037 0.0496

EBIT / K -0.002 0.022 -0.047 0.060 0.0162

Equity / K 0.025 0.272 -0.575 0.449 0.1054

Table 1a: Summary Statistics

Variables in Levels. 1953-2004, 52 annual observations

Variables in First Difference, 51 annual observations



Years 1 5 10 20 1 5 10 1 5 10 20 1 10

Aaa 0.00 0.03 0.08 0.10 0.00 0.00 0.04 0.11 0.12 0.00 0.15

Aa 0.02 0.06 0.09 0.15 0.08 0.19 0.31 0.35 0.20 0.34

A 0.02 0.10 0.16 0.28 0.08 0.28 0.37 0.39 0.30 0.55

Baa 0.15 0.39 0.52 0.66 0.28 0.29 0.25 0.30 0.71 0.82 0.75 0.50 0.91

Ba 1.27 2.40 2.36 2.36 1.43 2.09 2.09 1.83 1.70 1.38

B 6.66 7.15 6.26 4.15 4.66 4.48 4.58 3.77 2.83 4.50 1.97

Caa-C 21.99 15.46 13.78 7.86

Investment-Grade 0.06 0.18 0.25 0.36 0.16 0.40 0.50 0.48 0.58

Speculative-Grade 4.73 4.60 3.83 3.09 3.35 3.33 2.88 2.34 1.52

All Corporates 1.54 1.37 1.09 0.89 1.07 1.33 1.37 1.21 0.97 0.88

(%, annualized from cumulative)

1970-2001

Std. Dev. of Default Rate

Table 1b: Descriptive Statistics on Bond Default Rates 

1920-1999

Mean Default Rates Std DevMean Default Rates



(i) (ii) (iii) (iv) (v) (vi) (vi)

Change in (1+r10) / (1+yBaa) 1.893 1.772 1.363 1.909

6.03 5.91 3.62 6.82

Change in 1 / (1+r10) -0.012

-0.08

Change in Current Liabilities / Assets 0.203 0.209 0.165

3.15 3.45 2.72

Change in EBIT over Capital 0.113

1.66

Change in Equity over Capital 0.001

0.15

Change in Mean Asset Volatility 0.192

2.41

(1+r10) / (1+yBaa) 2.296 2.274 1.845

7.86 7.59 4.8

Lagged (1+r10) / (1+yBaa) -1.523 -1.55 -1.048

-5.26 -5.6 -2.68

Current Liabilities / Assets 0.193 0.167

3.15 2.58

Lagged Current Liabilities / Assets -0.131 -0.149

-2.04 -2.32

EBIT over Capital 0.107

1.73

Lagged EBIT over Capital -0.126

-1.89

Equity over Capital 0.001

0.16

Lagged Equity over Capital 0.002

0.53

Constant 0.001 0.001 0.001 -0.761 -0.725 -0.787 0.001

0.46 0.66 0.77 -4.02 -3.83 -2.65 0.67

N 51 51 51 51 51 51 51

R2 0.426 0.534 0.563 0.571 0.647 0.687 0.585

Adj. R2 0.414 0.504 0.525 0.553 0.616 0.627 0.559

Notes: Annual Data from 1953 to 2004. The capital stock is constructed assuming an annual depreciation rate of 12%. T-statistics are below the 
coefficients.

Table 2: Investment Equations

The dependent variable is the change in the investment capital ratio.



Figure 1: Price of Baa Bonds Relative to Treasuries

Note: The figure shows (1+r10) / (1+yBaa). The 10-year treasury is from FRED, the yield on Baa bonds is from Moody's.
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Figure 2: Annual Change in Investment-Capital Ratio

Note: the predicted value is from the regression reported in column (iv) of Table 2.
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