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Abstract

During financial disruptions, marketmakers provide liquidity by absorb-

ing external selling pressure. They buy when the pressure is large,

accumulate inventories, and sell when the pressure alleviates. This pa-

per studies optimal dynamic liquidity provision in a theoretical market

setting with large and temporary selling pressure, and order-execution

delays. I show that competitive marketmakers offer the socially optimal

amount of liquidity, provided they have access to sufficient capital. If

raising capital is costly, this suggests a policy role for lenient central-

bank lending during financial disruptions.
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1 Introduction

When disruptions subject financial markets to unusually strong selling pres-
sures, NYSE specialists and NASDAQ marketmakers typically lean against the
wind by absorbing the market’s selling pressure and creating liquidity: they
buy large quantity of assets and build up inventories when selling pressure in
the market is large, then dispose of those inventories after that selling pressure
has subsided.1 In this paper, I develop a model of optimal dynamic liquid-
ity provision. To explain how much and when liquidity should be provided,
I solve for socially-optimal liquidity provision. I argue that some features of
the socially-optimal allocation would be regarded by a policymaker as symp-
toms of poor liquidity provision. In fact, these symptoms can be consistent
with efficiency. I also show that when they can maintain sufficient capital,
competitive marketmakers supply the socially-optimal amount of liquidity. If
capital-market imperfections prevent marketmakers from raising sufficient cap-
ital, this suggests a policy role for lenient central-bank lending during financial
disruptions.

The model studies the following scenario. In the beginning at time zero,
outside investors receive an aggregate shock which lowers their marginal util-
ity for holding assets relative to cash. This creates a sudden need for cash
and induces a large selling pressure. Then, randomly over time, each investor
recovers from the shock, implying that the initial selling pressure slowly alle-
viates. This is how I create a stylized representation of a “flight-to-liquidity”
(Longstaff [2003]) or a stock-market crash such as that of October 1987. All
trades are intermediated by marketmakers who do not derive any utility for
holding assets and who are located in a central marketplace which can be
viewed, say, as the floor of the New-York Stock Exchange. I assume the asset
market can be illiquid in the sense that traders face order-execution delays.
Specifically, investors make contact with marketmakers only after delays that
are designed to represent, for example, front-end order capture, clearing, and
settlement. While one expects such delays to be short in normal times, the
Brady [1988] report suggests that they were unusually long and variable dur-
ing the crash of October 1987. Similarly, during the crash of October 1997,
customers complained about “poor or untimely execution from broker dealers”
(SEC Staff Legal Bulletin No. 8 of September 9, 1998). Lastly, McAndrews
and Potter [2002] and Fleming and Garbade [2002] document payment and
transaction delays, due to disruption of the communication network after the
terrorist attacks of September 11, 2001.

1This behavior reflects one aspect of the U.S. Securities and Exchange Commission (SEC)
Rule 11-b on maintaining fair and orderly markets.
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In this economic environment, marketmakers offer buyers and sellers quicker
exchange, what Demsetz [1968] called “immediacy”. Marketmakers anticipate
that after the selling pressure subsides, they will achieve contact with more
buyers than sellers, which will allow them then to transfer assets to buyers in
two ways. They can either contact additional sellers, which is time-consuming
because of execution delays; or they can sell from their own inventories, which
can be done much more quickly. Therefore, by accumulating inventories early,
when the selling pressure is large, marketmakers mitigate the adverse impact
on investors of execution delays.

The socially-optimal asset allocation maximizes the sum of investors’ and
marketmakers’ intertemporal utility, subject to the order-execution technol-
ogy. Because agents have quasi-linear utilities, any other asset allocation could
be Pareto improved by reallocating assets and making time-zero consumption
transfers. The upper panel of Figure 1 shows the socially-optimal time path
of marketmakers’ inventory. (The associated parameters and modelling as-
sumptions are described in Section 2.) The graph shows that marketmakers
accumulate inventories only temporarily, when the selling pressure is large.
Moreover, in this example, it is not socially optimal that marketmakers start
accumulating inventories at time zero when the pressure is strongest. This
suggests that a regulation forcing marketmakers to promptly act as “buyers
of last resort” could in fact result in a welfare loss. For example, if the initial
preference shock is sufficiently persistent, marketmakers acting as buyers of
last resort will end up holding assets for a very long time, which cannot be
efficient given that they are not the final holder of the asset. Lastly, when
the economy is close to its steady state (interpreted as a “normal time”) mar-
ketmakers should effectively act as “matchmakers” who never hold assets but
merely buy and re-sell instantly.

If marketmakers maintain sufficient capital, I show that the socially-optimal
allocation is implemented in a competitive equilibrium, as follows. Investors
can buy and sell assets only when they contact marketmakers. Marketmakers
compete for the order flow and can trade among each other at each time.
The lower panel of Figure 1 shows the equilibrium price path. It jumps down
at time zero, then increases, and eventually reaches its steady-state level. A
marketmaker finds it optimal to accumulate inventories only temporarily, when
the asset price grows at a sufficiently high rate. This growth rate compensates
for the time value of the money spent on inventory accumulation, giving a
marketmaker just enough incentive to provide liquidity. A marketmaker thus
buys early at a low price and sells later at a high price, but competition implies
that the present value of her profit is zero.

Ample anecdotal evidence suggests that marketmakers do not maintain
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Figure 1: Features of the Competitive Equilibrium.

sufficient capital (Brady [1988], Greenwald and Stein [1988], Marès [2001], and
Greenberg [2003].) I find that if marketmakers do not maintain sufficient cap-
ital, then they are not able to purchase as many assets as prescribed by the
socially-optimal allocation. If capital-market imperfections prevent market-
makers from raising sufficient capital before the crash, lenient central-bank
lending during the crash can improve welfare. Recall that during the crash of
October 1987, the Federal Reserve lowered the funds rate while encouraging
commercial banks to lend to security dealers (Parry [1997], Wigmore [1998].)

It is often argued that marketmakers should provide liquidity in order to
maintain price continuity and to smooth asset price movements.2 The present
paper steps back from such price-smoothing objective and instead studies liq-
uidity provision in terms of the Pareto criterion. The results indicate that
Pareto-optimal liquidity provision is consistent with a discrete price decline at
the time of the crash. This suggests that requiring marketmakers to maintain
price continuity at the time of the crash might result in a welfare loss.

2For instance, the glossary of www.nyse.com states that NYSE specialists “use their
capital to bridge temporary gaps in supply and demand and help reduce price volatility.”
See also the NYSE information memo 97-55.
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Related Literature

Liquidity provision in normal times has been analyzed in traditional inventory-
based models of marketmaking. Garman [1976], Amihud and Mendelson
[1980], and Mildenstein and Schleef [1983] study pricing and inventory manage-
ment by risk-neutral monopolistic marketmakers receiving buying and selling
orders at random arrival times. Stoll [1978], Ho and Stoll [1981], and O’Hara
and Oldfield [1986] study risk-averse monopolistic marketmakers and explain
the impact of return and order-flow uncertainty on bid-ask spreads. Ho and
Stoll [1983] derive some equilibrium results with competitive marketmakers.
Because they study inventory management in normal times, all of the above
authors assume that supply and demand curves are time-invariant. In con-
trast, I study the inventory management of competitive marketmakers under
unusual market conditions, when the market is subject to a large and tempo-
rary selling pressure. In my model, supply and demand are time-varying. With
competitive marketmakers receiving orders at random arrival times, traditional
models would feature time variation in the cross-sectional distribution of in-
ventories and as a result would loose much of their tractability. The present
model shortcuts this difficulty by assuming that, at each time, marketmak-
ers can trade among each other. Moreover, while traditional models specify
exogenous supply and demand curves, I derive them from the solutions of in-
vestors’ intertemporal utility maximization problems. This explicit treatment
of investors’ preferences facilitates welfare analysis. Lastly, the final difference
with this literature is that I address the impact of scarce marketmaking capital
on marketmakers’ profit and price dynamics.

Grossman and Miller [1988] and Greenwald and Stein [1991] analyze mar-
ketmaking during disruptions from a risk-sharing perspective. In their model,
both the sellers and the marketmakers enter a Walrasian market in the first
time period and they wait for buyers to enter in the second. With or without
marketmakers, assets are allocated to buyers in the second period, implying
that marketmakers play no role in facilitating trade between the initial sellers
and the later buyers. Instead, the social benefit of marketmakers’ liquidity
provision is to share risk with the sellers before the arrival of buyers. In the
present model, the social benefit of liquidity provision is not to share risk but
to facilitate trade, in that it speeds up the allocation of assets from the initial
sellers to the later buyers. Moreover Grossman and Miller study a two-period
model, which means that the timing of liquidity provision is effectively ex-
ogenous, in that marketmakers buy in the first period and sell in the second.
With its richer intertemporal structure, my model sheds light on the optimal
timing of liquidity provision. Bernardo and Welch [2004] propose a two-period
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model of financial-market run, along the lines of Diamond and Dybvig [1983].
Their main objective is to explain the cause of a financial crisis. In the run,
their myopic marketmakers end up providing too much liquidity, prior to an
uncertain aggregate liquidity shock. The objective of the present model is not
to explain the cause of a crisis but rather to develop an intertemporal model of
marketmakers optimal liquidity provision, after an aggregate liquidity shock.

The impact of trading delays in security markets is studied by dynamic
asset-pricing models with search frictions, such as Duffie, Gârleanu and Ped-
ersen [2001b], Weill [2002], Vayanos and Wang [2003], Spulber [1996] and Hall
and Rust [2003]. The present model builds specifically on the work of Duffie,
Gârleanu and Pedersen [2001a]. In their model, marketmakers are matchmak-
ers who, by assumption, cannot hold inventory. By studying investment in
marketmaking capacity, they focus on liquidity provision in the long run. By
contrast, I study liquidity provision in the short run and view marketmak-
ing capacity as a fixed parameter. In the short run, marketmakers provide
liquidity by adjusting their inventory positions.

Another related literature studies the equilibrium and socially-optimal en-
try of middlemen in search-and-matching economies (see, among others, Ru-
binstein and Wolinsky [1987], Li [1998], Shevchenko [2004], and Masters [2004]).
The central objective of these papers is to characterize the size of the mid-
dlemen sector in a steady-state where the aggregate amount of middlemen’s
inventories remains constant over time. The present paper studies intermedi-
ation during a financial crisis, when it is arguably reasonable to take the size
of the marketmaking sector as given. In the short run, the marketmaking sec-
tor can only gain capacity by increasing its capital and aggregate inventories
fluctuate over time.

The remainder of this paper is organized as follows. The second Section de-
scribes the economic environment. The third Section solves for socially optimal
dynamic liquidity provision. The fourth Section studies the implementation
of this optimum in a competitive equilibrium. The fifth Section introduces
borrowing-constrained marketmakers, the sixth Section discusses policy impli-
cations, and the last Section concludes. The Appendix contains the proofs.

2 The Economic Environment

This Section describes the economy and introduces the two main assumptions
of this paper. First, there is a large and temporary selling pressure. Second,
there are order-execution delays.
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2.1 Marketmakers and Investors

Time is treated continuously, and runs forever. A probability space (Ω,F , P )
is fixed, as well as an information filtration {Ft, t ≥ 0} satisfying the usual
conditions (Protter [1990]). The economy is populated by a non-atomic con-
tinuum of infinitely lived and risk-neutral agents who discount the future at
the constant rate r > 0. An agent enjoys the consumption of a non-storable
numéraire good called “cash,” with a marginal utility normalized to 1.3

There is one asset in positive supply. An agent holding q units of the asset
receives a stochastic utility flow θ(t)q per unit of time. Stochastic variations
in the marginal utility θ(t) capture a broad range of trading motives such as
changes in hedging needs, binding borrowing constraints, changes in beliefs,
or risk-management rules such as risk limits. There are two types of agents,
marketmakers and investors, with a measure one (without loss of generality)
of each. Marketmakers and investors differ in their marginal-utility processes
{θ(t), t ≥ 0}, as follows. A marketmaker has a constant marginal utility
θ(t) = 1 − δ2, for some δ2 ∈ (0, 1) while an investor’s marginal utility is
a two-state Markov chain: the high-marginal-utility state is normalized to
θ(t) = 1, and the low-marginal-utility state is θ(t) = 1 − δ1, for some δ1 ∈
(0, δ2). Investors transit randomly, and pair-wise independently, from low to
high marginal utility with intensity4 γu, and from high to low marginal utility
with intensity γd.

These independent variations over time in investors’ marginal utilities cre-
ate gains from trade. A low-marginal-utility investor is willing to sell his asset
to a high-marginal-utility investor in exchange for cash. The assumption that
δ1 < δ2 means that, in the equilibrium to be described, a marketmaker will not
be the final holder of the asset. In particular, a marketmaker would choose
to hold assets only because she expects to make some profit by buying and
reselling.

Asset holdings

The asset has s ∈ (0, 1) shares outstanding per investor’s capita. Marketmak-
ers can hold any positive quantity of the asset. The time t asset inventory I(t)

3Equivalently, one could assume that agents can borrow and save cash in some “bank
account,” at the interest rate r̄ = r. Section 4 adopts this alternative formulation.

4For instance, if θ(t) = 1 − δ1, the time inf{u ≥ 0 : θ(t + u) 6= θ(t)} until the next
switch is exponentially distributed with parameter γu. The successive switching times are
independent.
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of a representative marketmaker satisfies the shortselling constraint5

I(t) ≥ 0. (1)

An investor also cannot shortsell and, moreover, he cannot hold more than
one unit of the asset. This paper restricts attention to allocations in which an
investor holds either zero or one unit of the asset. In equilibrium, because an
investor has linear utility, he will find it optimal to hold either the maximum
quantity of one or the minimum quantity of zero.

An investor’s type is made up of his marginal utility (high “h,” or low
“ℓ”) and his ownership status (owner of one unit, “o,” or non-owner, “n”).
The set of investors’ types is T ≡ {ℓo, hn, ho, ℓn}. In anticipation of their
equilibrium behavior, low-marginal-utility owners (ℓo) are named “sellers,”
and high-marginal-utility non-owners (hn) are “buyers.” For each σ ∈ T , µσ(t)
denotes the fraction of type-σ investors in the total population of investors.
These fractions must satisfy two accounting identities. First, of course,

µℓo(t) + µhn(t) + µℓn(t) + µho(t) = 1. (2)

Second, the assets are held either by investors or marketmakers, so

µho(t) + µℓo(t) + I(t) = s. (3)

2.2 Crash and Recovery

I select initial conditions representing the strong selling pressure of a financial
disruption. Namely, it is assumed that, at time zero, all investors are in the low-
marginal-utility state (see Table 1). Then, as earlier specified, investors transit
to the high-marginal-utility state. Under suitable measurability requirements
(see Sun [2000], Theorem C), the Law of Large Numbers applies, and the
fraction µh(t) ≡ µho(t) + µhn(t) of high-marginal-utility investors solves the
ordinary differential equation (ODE)

µ̇h(t) = γu
(

µℓo(t) + µℓn(t)
)

− γd
(

µho(t) + µhn(t)
)

(4)

= γu
(

1 − µh(t)
)

− γdµh(t)

= γu − γµh(t),

5One can allow for a limited amount of shortselling by letting I(t) ≥ −ε for some small
ε ∈ R+. Then the results of this paper would continue to hold, with the change of variable
Ĩ(t) = I(t) + ε and s̃ = s+ ε.
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where µ̇h(t) = dµh(t)/dt and γ ≡ γu + γd. The first term in (4) is the rate
of flow of low-marginal-utility investors transiting to the high-marginal-utility
state, while the second term is the rate of flow of high-marginal-utility investors
transiting to the low-marginal-utility state. With the initial condition µh(0) =
0, the solution of (4) is

µh(t) = y
(

1 − e−γt
)

, (5)

where y ≡ γu/γ is the steady-state fraction of high-marginal-utility investors.
Importantly for the remainder of the paper, it is assumed that

s < y. (6)

In other words, in steady state, the fraction y of high-marginal-utility investors
exceeds the asset supply s. This will ensure that, asymptotically in equilib-
rium, the selling pressure has fully alleviated. Figure 2 plots the time dynamic
of µh(t), for some parameter values that satisfy (6). On the Figure, the unit
of time is one hour. Years are converted into hours assuming 250 trading days
per year, and 10 hours of trading per days. The parameter values used for all
of the illustrative computations of this paper, are in Table 2.

Table 1: Initial conditions.

µℓo(0) µhn(0) µℓn(0) µho(0) I(0)

s 0 1 − s 0 0

2.3 Order-execution delays

This paper departs from the traditional Walrasian model by assuming that the
asset market is illiquid, in that there are order-execution delays. Marketmakers
intermediate all trades from a central marketplace which can be viewed, say,
as the floor of the New York Stock exchange. The asset market is illiquid in
the sense that investors cannot contact that marketplace instantly. Instead, an
investor establishes contact with marketmakers at Poisson arrival times with
intensity ρ > 0, where ρ 6= γ. Contact times are pairwise independent across
investors and independent of marginal utility processes. Therefore, an applica-
tion of the Law of Large Numbers (under the technical conditions mentioned
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Figure 2: Dynamic of µh(t).

earlier) implies that contacts between type-σ investors and marketmakers oc-
cur at a total (almost sure) rate of ρµσ(t). Hence, in a market equilibrium,
ρµσ(t) represents the order-flow rate originating from type-σ investors.

Alternative Specification of the Contact-time Technology

In the present model, an investor’s average contact time 1/ρ with marketmak-
ers is constant over time and does not depend on the fraction of buyers and sell-
ers in the market. One could study an alternative model in which the average
contact time would increase when the selling or the buying pressure is larger,
representing for instance congestions. For example, one could assume that the
instantaneous rate of contact with type-σ investors is no longer the linear func-
tion ρµσ(t) but instead is an increasing and strictly concave function of µσ(t).
This alternative non-linear specification is much less tractable and requires a
numerical solution method. Moreover, the basic intuitions for the welfare im-
proving role of marketmakers’ liquidity provision would be the same as with
the present linear specification. An interesting difference is that the socially-
optimal allocation would need to be implemented in a “competitive-search”
equilibrium, along the lines of Moen [1997], Shimer [1995], and Mortensen and
Wright [2002].

Interpreting Random Contact Times

The random contact times represent a broad range of execution delays, includ-
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Table 2: Parameter Values.

Parameters Value

Measure of Shares s 0.2
Discount Rate r 5%
Contact Intensity ρ 1000
Intensity of Switch to High γu 90
Intensity of Switch to Low γd 10
Low marginal utility 1 − δ1 0.01
Marketmaker marginal utility 1 − δ2 0

Time is measured in years. Assuming that the stock market opens
250 days a year, ρ = 1000 means that it takes 2.5 hours to execute
an order, on average. The parameter γ = γu + γd measures the
speed of the recovery. Specifically, with γ = 100, µh(t) reaches
half of its steady-state level in about 1.73 days.

ing the time to contact a marketmaker, to negotiate and process an order, to
deliver an asset, or to transfer a payment. The parameter ρ is viewed as a
measure of marketmaking capacity, encompassing for instance the communi-
cation network and the infrastructures needed to execute transactions. One
might argue that execution delays are usually quite short and perhaps there-
fore of little consequence to the quality of an allocation. The Brady [1988]
report shows, however, that during the October 1987 crash, delays were much
longer and much more variable than in normal times. In particular, the report
documents that many delays were caused by failures of overloaded execution
systems, by congestions in the communication network, and by automated pro-
tection features. The report suggests that such delays might have amplified
liquidity problems in a far-from-negligible manner. After describing the sell-
ing pressure originating from portfolio insurers, the report notes:“Transaction
systems, such as DOT, or market stabilizing mechanisms, such as NYSE spe-
cialists, are bound to be crushed by the pressure, however they are designed
or capitalized.” Along similar lines, Wigmore [1998] argues that the specialist
system was the “weak link” of the October 1987 crash, because it was not
designed to handle the massive selling pressure in a timely fashion.

Delays also occurred during the crash of October 1997. The SEC reported
that “broker-dealers web servers had reached their maximum capacity to han-
dle simultaneous users” and “telephone lines were overwhelmed with callers
who were frustrated by the inability to access information online.” As a result
of these capacity problems, customers could not be “routed to their designated
market center for execution on a timely basis” and “a number of broker deal-
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ers were forced to manually execute some customers orders.”6 This suggests
that technological improvements which followed the 1987 crash did not prevent
substantial order-execution delays from arising during the crash of 1997.

Market Orders versus Limit Orders

In what follows, the trades of investors with marketmakers are interpreted as
market orders. This means in particular that investors cannot trade with limit
orders. This might be viewed as a strong assumption since limit orders are
often considered good substitute for the liquidity provision of marketmakers.
Empirical evidence suggest however that investors do not find limit orders very
attractive in bad times and that they instead prefer to directly send market
orders to floor brokers who provide more flexible execution. Goldstein and
Kavajecz [2003] report that, during the market break of October 1997, there
was a dramatic drain of liquidity in the limit-order book. They show that, for
the Dow Jones Industrial Average stocks of their sample, the limit-order book
spread could be as high as 3 to 4 dollars. Meanwhile, the quoted spread for the
same stocks was about 20 cents. The authors write in their conclusion that
“the results suggest that extreme uncertainty concerning the ability to trade
continuously caused market participants to change their behavior in such a
way that it effectively shut down liquidity provision via the limit order book.”

3 Optimal Dynamic Liquidity Provision

The first objective of this Section is to explain the benefit of liquidity provi-
sion, addressing how much and when liquidity should be provided. Its second
objective is to establish a benchmark against which to judge the market equi-
libria studied in Sections 4 and 5. To these ends, I temporarily abstract from
marketmakers’ incentives to provide liquidity and solve for socially-optimal al-
locations, maximizing the sum of investors and marketmakers’ intertemporal
utility, subject to order-execution delays. The optimal allocation is found to
resemble “leaning against the wind.” Namely, it is socially optimal that a
marketmaker accumulates inventories when the selling pressure is strong.

3.1 Asset Allocations

At each time, a representative marketmaker can transfer assets only to her
own account or among those of investors who are currently contacting her.

6SEC Staff Legal Bulletin No. 8, http://www.sec.gov/interps/legal/slbmr8.htm
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For instance, the flow rate uℓ(t) of assets that a marketmaker takes from low-
marginal-utility investors is subject to the order-flow constraint

−ρµℓn(t) ≤ uℓ(t) ≤ ρµℓo(t). (7)

The upper (lower) bound shown in (7) is the flow of ℓo (ℓn) investors who es-
tablish contact with marketmakers at time t. Similarly, the flow uh(t) of assets
that a marketmaker transfers to high-marginal-utility investors is subject to
the order-flow constraint

−ρµho(t) ≤ uh(t) ≤ ρµhn(t). (8)

When the two flows uℓ(t) and uh(t) are equal, a marketmaker is a matchmaker,
in the sense that she takes assets from some ℓo investors (sellers) and transfers
them instantly to some hn investors (buyers). If the two flows are not equal, a
marketmaker is not only matching buyers and sellers, but she is also changing
her inventory position. For example, if both uℓ(t) and uh(t) are positive, a
marketmaker is matching sellers and buyers at the rate min{uℓ(t), uh(t)}. The
net flow uℓ(t)−uh(t) represents the rate of change of a marketmaker’s inventory,
in that

İ(t) = uℓ(t) − uh(t). (9)

Similarly, the rate of change of the fraction µℓo(t) of low-marginal-utility owners
is

µ̇ℓo(t) = −uℓ(t) − γuµℓo(t) + γdµho(t), (10)

where the terms γuµℓo(t) and γdµho(t) reflect transitions of investors from low
to high marginal utility, and from high to low marginal utility, respectively.
Likewise, the rate of change of the fractions of hn, ℓn, and ho investors are,
respectively,

µ̇hn(t) = −uh(t) − γdµhn(t) + γuµℓn(t) (11)

µ̇ℓn(t) = uℓ(t) − γuµℓn(t) + γdµhn(t) (12)

µ̇ho(t) = uh(t) − γdµho(t) + γuµℓo(t). (13)

13



Definition 1 (Feasible Allocation.) A feasible allocation is some distribu-
tion µ(t) ≡

(

µσ(t)
)

σ∈T of types, some inventory holding I(t), and some piece-

wise continuous asset flows u(t) ≡
(

uh(t), uℓ(t)
)

such that

(i) At each time, the shortselling constraint (1) and the order-flow con-
straints (7)-(8) are satisfied.

(ii) The ODEs (9)-(13) hold.

(iii) The initial conditions of Table 1 hold.

Since u(t) is piecewise continuous, µ(t) and I(t) are piecewise continuously
differentiable.

A feasible allocation is said to be Pareto optimal if it cannot be Pareto
improved by choosing another feasible allocation and making time-zero cash
transfers. As it is standard with quasi-linear preferences, it can be shown that
a Pareto optimal allocation must maximize

∫ +∞

0

e−rt
(

µho(t) + (1 − δ1)µℓo(t) + (1 − δ2)I(t)

)

dt, (14)

the equally weighted sum of investors’ and marketmakers’ intertemporal util-
ities. This criterion is deterministic, reflecting pairwise independence of in-
vestors’ marginal-utility and contact-time processes. Conversely, an asset al-
location maximizing (14) is Pareto optimal.7 This discussion motivates the
following definition of an optimal allocation.

Definition 2 (Optimal Allocation.) An optimal allocation is some feasible
allocation maximizing (14).

3.2 The Cost and Benefit of Liquidity Provision

This subsection illustrates the social benefits of accumulating inventories. Namely,
it considers the no-inventory allocation (I(t) = 0, at each time), and shows
that it can be improved if marketmakers accumulate a small amount of inven-
tory, when the selling pressure is strong. I start by describing some features
of the no-inventory allocation. Substituting I(t) = 0 into equation (3) gives

µℓo(t) = s− µh(t) + µhn(t). (15)

7Weill [2004] shows that this result also hold under the alternative assumption that cash
transfers are be made dynamically over time, subject to the same trading technology as
asset transfers.
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The “crossing time” is the time ts at which µh(ts) = s. This is, as Figure
2 illustrates, the time at which the fraction µh(t) of high-marginal-utility in-
vestors crosses the supply s of assets. Because µh(t) is increasing, equation
(15) implies that

ρµhn(t) < ρµℓo(t) (16)

if and only if t < ts. Therefore, in the no-inventory allocation, before the
crossing time, the selling pressure is “positive,” meaning that marketmakers
are in contact with more sellers (ℓo) than buyers (hn). After the crossing time,
they are in contact with more buyers than sellers.

Intuitively, the no-inventory allocation can be improved as follows. A mar-
ketmaker can take an additional asset from a seller before the crossing time,
say at t1 = ts − ε, and transfer it to some buyer after the crossing time, at
t2 = ts + ε. Because the transfer occurs around the crossing time, the transfer
time 2ε can be made arbitrarily small.

The benefit is that, for a sufficiently small ε, this asset is allocated almost
instantly to some high-marginal-utility investor. Without the transfer, by
contrast, this asset would continue to be held by a low-marginal-utility investor
until either (i) the seller transits to a high marginal utility with intensity γu, or
(ii) the seller establishes another contact with a marketmaker with intensity ρ.
This means that, without the transfer, this asset would continue to be held by
a seller and not by a buyer, with an instantaneous utility cost of δ1, incurred
for a non-negligible average time of 1/(γu + ρ).

The cost of the transfer is that the asset is temporarily held by a market-
maker and not by a seller, implying an instantaneous utility cost of δ2 − δ1. If
ε is sufficiently small, this cost is incurred for a negligible time and is smaller
than the benefit. This intuitive argument can be formalized by studying the
following family of feasible allocations.

Definition 3 (Buffer Allocation.) A buffer allocation is a feasible alloca-
tion defined by two times (t1, t2) ∈ [0, ts] × [ts,+∞), called “breaking times,”
such that8

uℓ(t) = ρµhn(t)I[0,t1)(t) + ρµℓo(t)I[t1,+∞)(t) (17)

uh(t) = ρµhn(t)I[0,t2)(t) + ρµℓo(t)I[t2,+∞)(t) (18)

I(t2) = 0. (19)

8In what follows, IA( · ) denotes the indicator function of some set A ⊆ R.

15



0 2  6  10 12 14

0  

10 

 

30 

40 

 

time (hours)

I(t)/s (%)

t1 t2

m̄/s

Figure 3: Illustrative buffer allocations.

The no-inventory allocation is the buffer allocation for which t1 = t2 = ts. A
buffer allocation has the “bang-bang” property: at each time, either uℓ(t) =
ρµℓo(t) or uh(t) = ρµhn(t). Because of the linear objective (14), it is natural
to guess that an optimal allocation will also have this bang-bang property. In
the next subsection, Theorem 1 will confirm this conjecture, showing that the
optimal allocation belongs to the family of buffer allocations.

In a buffer allocation, a marketmaker acts as a “buffer,” in that she accu-
mulates assets when the selling pressure is strong and unwinds these trades
when the pressure alleviates. Specifically, as illustrated in Figure 3, a buffer
allocation (t1, t2) has three phases. In the first phase, when t ∈ [0, t1], a mar-
ketmaker does not accumulate inventory (uℓ(t) = uh(t) and I(t) = 0). In the
second phase, when t ∈ (t1, t2), a marketmaker first builds up (uℓ(t) > uh(t)
and I(t) > 0) and then unwinds (uℓ(t) < uh(t) and I(t) > 0) her inventory
position. At time t2, her inventory position reaches zero. In the third phase
t ∈ [t2,+∞), a marketmaker does not accumulate inventory (uℓ(t) = uh(t)
and I(t) = 0). The following proposition characterizes buffer allocations by
the maximum inventory position held by marketmakers.

Proposition 1. There exists some m̄ ∈ R+, some strictly decreasing function
ψ : [0, m̄] → R+, and some strictly increasing functions φi : [0, m̄] → R+,
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i ∈ {1, 2}, such that, for all m ∈ [0, m̄] and all buffer allocations (t1, t2),

m = max
t∈R+

I(t) (20)

ψ(m) = arg max
t∈R+

I(t) (21)

t1 = ψ(m) − φ1(m) (22)

t2 = ψ(m) + φ2(m), (23)

where m̄ is the unique solution of ψ(z) − φ1(z) = 0. Furthermore, ψ(0) = ts
and φ1(0) = φ2(0) = 0.

In words, the breaking times (t1, t2) of a buffer allocation can be written as
functions of the maximum inventory position m. The maximum inventory
position is achieved at time ψ(m). In addition, the larger is a marketmaker’s
maximum inventory position, the earlier she starts to accumulate and the
longer she accumulates. Lastly, if she starts to accumulate at time zero, then
her maximum inventory position is m̄.

The social welfare (14) associated with a buffer allocation can be written
as W (m), for some function W ( · ) of the maximum inventory position m. As
anticipated by the intuitive argument, one can prove the following result.

Proposition 2.

lim
m→0+

W (m) −W (0)

m
> 0. (24)

This demonstrates that the no-inventory allocation (m = 0) is improved by
accumulating a small amount of inventory near the crossing time ts.

Having shown that accumulating some inventory improves welfare, one
would like to explain how much inventory marketmakers should accumulate.
Some intuition on this issue can be gained with the following numerical com-
putations. (Theorem 1 will provide the exact answer). For a given buffer
allocation

(

µm(t), Im(t), um(t)
)

with maximum inventory position m, I define
the cost of holding inventory as

C(m) ≡
∫ +∞

0

e−rt(δ2 − δ1)I
m(t) dt, (25)

the intertemporal utility which is lost because some assets are temporarily
held by marketmakers rather than by sellers. Figure 4 shows a numerical
computation of C(m). The convexity suggests that the marginal cost of holding
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Figure 5: The intertemporal benefit of accumulating inventory.

inventory is increasing in the maximum inventory position. Intuitively, an
additional unit of inventory is transferred later in time, implying that the
holding cost δ2 − δ1 is incurred for a longer time period. Similarly, I define the
benefit of holding inventory as

B(m) ≡ W (m) + C(m). (26)

The function B(m) is a measure of social welfare which is compensated for the
holding cost δ2−δ1 of a marketmaker. Figure 5 shows a numerical computation
of B(m). The concavity suggests that the marginal benefit of accumulating
inventory is decreasing in the maximum inventory position: an additional unit
of inventory is transferred to a buyer later in time, which represents a smaller
benefit because agents are impatient. Interestingly, B( · ) decreases above some
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inventory level. In this decreasing branch, marketmakers take too long to
transfer a marginal unit. It would be faster, on average, to simply wait for the
ℓo investors to transit to the high-marginal-utility state.

Overall, these computations suggest that providing liquidity is cheap and
valuable near the crossing time (m close to zero). By contrast, providing
liquidity near time zero, when the selling pressure is strongest (m close to m̄), is
both more expansive and less valuable. The marginal social value of providing
liquidity near time zero can even be negative, as illustrated by Figures 4 and
5.

3.3 The Optimal Allocation

This subsection provides first-order sufficient conditions for, and solves for, a
socially optimal allocation. The reader may wish to skip the following para-
graph on first-order conditions, and go directly to Theorem 1, which describes
the optimal allocation.

First-Order Sufficient Conditions

The first-order sufficient conditions are based on Seierstad and Sydsæter [1977],
and are described in detail in Appendix E. The accounting identities µho(t) =
µh(t)−µhn(t) and µℓn(t) = 1−µh(t)−µℓn(t) are substituted into the objective
and the constraints, reducing the state variables to

(

µℓo(t), µhn(t), I(t)
)

. The
“current-value” Lagrangian (see Kamien and Schwartz [1991], Part II, Section
8) is

L(t) = µh(t) − µhn(t) + (1 − δ1)µℓo(t) + (1 − δ2)I(t) (27)

+λℓo(t)
(

−uℓ(t) − γuµℓo(t) − γdµhn(t) + γdµh(t)
)

+λhn(t)
(

−uh(t) − γuµℓo(t) − γdµhn(t) + γu(1 − µh(t))
)

+λI(t)
(

uℓ(t) − uh(t)
)

+wℓo(t)
(

ρµℓo(t) − uℓ(t)
)

+ whn(t)
(

ρµhn(t) − uh(t)
)

+ ηI(t) I(t).

The multiplier λℓo(t) of the ODE (10) represents the social value of increasing
the flow of investors from the ℓn type to the ℓo type or, equivalently, the value
of transferring an asset to an ℓn investor. One gives a similar interpretation
to the multipliers λhn(t) and λI(t) of the ODEs (11) and (9), respectively.
The multipliers wℓo(t) and whn(t) of the flow constraints (7) and (8) represent
the social value of increasing the rate of contact with ℓo and hn investors,
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respectively.9 The multiplier on the shortselling constraint (1) is ηI(t). The
first-order condition with respect to the controls uℓ(t) and uh(t) are

wℓo(t) = −λℓo(t) + λI(t) (28)

whn(t) = −λhn(t) − λI(t), (29)

respectively. For instance, (28) decomposes wℓo(t) into the opportunity cost
−λℓo(t) of taking assets from ℓo investors, and the benefit λI(t) of increas-
ing a marketmaker’s inventory. The positivity and complementary-slackness
conditions for wℓo(t) and whn(t), respectively, are

wℓo(t) ≥ 0 and wℓo(t)
(

ρµℓo(t) − uℓ(t)
)

= 0, (30)

and

whn(t) ≥ 0 and whn(t)
(

ρµhn(t) − uh(t)
)

= 0. (31)

The multipliers wℓo(t) and whn(t) are non-negative because a marketmaker
can ignore additional contacts. The complementary-slackness condition (30)
means that, when the marginal value wℓo(t) of additional contact is strictly
positive, a marketmaker should take the assets of all ℓo investors with whom
she is currently in contact. One also has the positivity and complementary-
slackness conditions

ηI(t) ≥ 0 and ηI(t)I(t) = 0. (32)

The ODE for the the multipliers λℓo(t), λhn(t), and λI(t) are

rλℓo(t) = 1 − δ1 + γu(−λhn(t) − λℓo(t)) + ρwℓo(t) + λ̇ℓo(t) (33)

rλhn(t) = −1 − γd(λhn(t) + λℓo(t)) + ρwhn(t) + λ̇hn(t) (34)

rλI(t) = 1 − δ2 + ηI(t) − ηM(t) + λ̇I(t), (35)

respectively. For instance, (33) decomposes the flow value rλℓo(t) of trans-
ferring an asset to a low-marginal-utility investor. The first term, 1 − δ1, is

9It is anticipated that the left-hand constraints in (7) and (8) never bind. In other words,
a marketmaker never transfers asset from a high-marginal-utility to a low-marginal-utility
investor.

20



the flow value of the dividend, for a low-marginal-utility investor. The second
term, γu

(

−λhn(t)−λℓo(t)
)

, is the expected rate of net utility associated with a
transition to high marginal utility. That is, with intensity γu, λℓo(t) becomes
the value −λhn(t) of transferring an asset to a high-marginal-utility investor.
The third term, ρwℓo(t), is the expected rate of net utility of a contact be-
tween an ℓo investor and a marketmaker. The multipliers

(

λℓo(t), λhn(t), λI(t)
)

must satisfy the following additional restrictions. First, they must satisfy the
transversality conditions10

lim
t→+∞

λj(t)e
−rt = 0, (36)

for j ∈ {ℓo, hn, I}. Second, the multipliers λhn(t) and λℓo(t) are continuous.
Because the control variable u(t) does not appear in the short-selling constraint
I(t) ≥ 0, however, the multiplier λI(t) might jump, with the restriction that

λI(t
+) − λI(t

−) ≤ 0 if I(t) = 0. (37)

In other words, the multiplier λI(t) can jump down, but only when the short-
selling constraint is binding. Intuitively, if λI(t) were to jump up at t, a
marketmaker could accumulate additional inventory shortly before t, say a
quantity ε, improving the objective by ε

(

λI(t
+) − λI(t

−)
)

e−rt.

The Optimal Allocation

Appendix B guesses and verifies that the (essentially unique) optimal allocation
is a buffer allocation. Namely, for a given buffer allocation, one constructs
multipliers solving the first-order conditions (28) through (37). The restriction
wℓo(t1) = 0 is used to find the breaking-times t1 and t2.

Theorem 1 (Optimal Allocation.) There exists an optimal allocation
(

µ∗(t), I∗(t), u∗(t), t ≥ 0
)

. This allocation is a buffer allocation with breaking
times (t∗1, t

∗
2) determined by

e−γt
∗

1 =

(

1 − s

y

)

1 − e−ρ∆
∗

ρ

ρ− γ

e−γ∆∗ − e−ρ∆∗
(38)

t∗2 = t∗1 + ∆∗ (39)

∆∗ = min

{

1

r + ρ
log

(

1 +
δ1(r + ρ)

δ2γu + (δ2 − δ1)(r + ρ+ γd)

)

, ∆̄

}

,

10This condition, derived in Appendix E, allows to complete the standard optimality
verification argument when the time horizon is infinite.
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where ∆̄ ≡ φ1(m̄) + φ2(m̄).

If ∆∗ = ∆̄, the first breaking time is t∗1 = 0, meaning that a marketmaker
starts accumulating inventory at the time of the “crash.”

The optimal allocation has three main features. First, it is optimal that
a marketmaker provides some liquidity: From time t∗1 to time t∗2, she builds
up and unwinds a positive inventory position. Second, it is not necessarily
optimal that a marketmaker provides liquidity at time zero, when the selling
pressure is strongest. This suggests that, although a marketmaker should pro-
vide liquidity, she should not act as a “buyer of last resort.” Third, when the
economy is close to its steady state, interpreted as a normal time, a market-
maker should act as a mere matchmaker, meaning that she should buy and
sell instantly. Thus, the optimal allocation draws a sharp distinction between
socially-optimal marketmaking in a normal time of low selling pressure, versus
a bad time of strong selling pressure.

Proposition 3 (Uniqueness.) If
(

µ(t), I(t), u(t)
)

is an optimal allocation,
then µ(t) = µ∗(t) and I(t) = I∗(t), for all t ∈ R+.

3.4 Comparative Statics

A natural measure of the amount of liquidity provided by marketmakers is
the length ∆∗ of the inventory-accumulation period. Another measure would
be the maximum inventory position m∗, which is strictly monotonic with ∆∗,
provided that ρ and γ are held constant.11 With Theorem 1, ∆∗ can be writ-
ten as F (ρ, r, δ1, δ2, γu, γd), for some continuous function F ( · ). The following
proposition provides some natural comparative statics.

Proposition 4 (A Comparative Static.) Let x = (ρ, r, δ1, δ2, γu, γd) be a
vector of exogenous parameters. If F (x) < ∆̄, then F ( · ) is differentiable at x,
with partial derivatives

∂F

∂ρ
< 0,

∂F

∂r
< 0,

∂F

∂δ1
> 0,

∂F

∂δ2
< 0,

∂F

∂γd
< 0, and

∂F

∂γu
< 0. (40)

If, on the other hand, F (x) = ∆̄, then marketmakers provide the maximum
amount of liquidity, in that they start accumulating inventory at time zero,
when the selling pressure is strongest. In that case, locally, F ( · ) does not

11Specifically, m∗ = (φ1 +φ2)
−1(∆∗), where φ1(m) and φ2(m) are increasing in m. These

two functions, however, implicitly depend on ρ and γ.
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depend on (r, δ1, δ2). Proposition 4 shows that the inventory-accumulation pe-
riod is longer when an investor’s holding cost δ1 is larger. It is shorter whenever
the order-execution technology is faster, the agents are more impatient, mar-
ketmakers holding cost is larger, or investors’ switching intensities γd and γu
are larger. This last comparative static reflects the fact that larger γd and
γu reduce the net utility of transferring the asset. Namely, with a larger γd,
an investor keeps a high marginal utility for a shorter time, on average. As
a result, the net utility of transferring the asset to an hn investor is smaller.
With a larger γu, an ℓo investor transits faster to a high marginal utility. This
increases the value of leaving the asset to this ℓo investor, and waiting for him
to transit to the ho type. Hence, this decreases the net utility of transferring
the asset.

Walrasian Limit

This paragraph studies the optimal allocation as ρ goes to infinity, interpreted
as the Walrasian limit with no execution delay. This comparative static exer-
cise illustrates the crucial role of order-execution delays in making it optimal
for a marketmaker to provide some amount of liquidity to investors. Specifi-
cally, it is shown that, in the limit ρ→ +∞, a marketmaker should not provide
any liquidity.

Theorem 1 implies that the length ∆∗ of the inventory-accumulation period
goes to zero. This does not immediately imply that the maximum inventory
position, m∗ = (φ1 + φ2)

−1(∆∗), goes to zero. Although marketmakers accu-
mulate inventories during increasingly small time periods as ρ → +∞, they
also accumulate inventories increasingly quickly. The following Proposition
settles this issue.

Proposition 5 (Walrasian Limit.) Given some (r, δ1, δ2, γu, γd), as ρ̂ →
+∞,

F (ρ̂, r, δ1, δ2, γu, γd) → 0 (41)

(φ1 + φ2)
−1 ◦ F (ρ̂, r, δ1, δ2, γu, γd) → 0. (42)

As the average execution delay 1/ρ approaches zero, an asset can be transferred
almost instantly to some high-marginal-utility investor. Then, the inventory
holding cost is large relative to the benefit of providing liquidity. In such
circumstances, a marketmaker should hold a smaller quantity of the asset, for
a shorter time.

23



4 Market Equilibrium

This Section studies marketmakers’ incentives to provide liquidity. I show that
the optimal allocation can be implemented in a competitive equilibrium.

4.1 Competitive Marketmakers

This subsection describes a competitive market structure which implements
the optimal allocation. Weill [2004] shows that the efficiency result generalizes
to environments with stochastic contact intensity ρ and transition intensities
γu and γd.

Marketmaker’s Problem

A marketmaker has access to a bank account earning the constant interest
rate r̄ = r. At each time t, she buys a flow uℓ(t) ∈ R+ of assets, sells a flow
uh(t) ∈ R+, and consumes cash at the positive rate c(t) ∈ R+. She takes
as given the asset price path

{

p(t), t ≥ 0
}

. Hence, her wealth a(t) and her
inventory position I(t) evolve according to

ȧ(t) = ra(t) + (1 − δ2)I(t) + p(t)
(

uh(t) − uℓ(t)
)

− c(t) (43)

İ(t) = uℓ(t) − uh(t). (44)

In addition, she faces the borrowing and shortselling constraints

a(t) ≥ 0 (45)

I(t) ≥ 0. (46)

Lastly, it is assumed that at time zero, a marketmaker’s holds no inventory
(I(0) = 0) and maintains a strictly positive amount of capital a(0). This
Section restricts attention to some large a(0), in the sense that the borrowing
constraint (45) does not bind in equilibrium. (This statement is made precise
by Theorem 2.) The marketmaker’s objective is to maximize the present value
of her consumption stream,

∫ +∞

0

e−rtc(t) dt, (47)
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with respect to
{

a(t), I(t), uℓ(t), uh(t), c(t), t ≥ 0
}

, subject to the constraints
(43)-(46), and the constraint that uℓ(t) and uh(t) are piecewise continuous.
The above formulation will imply that in equilibrium, if the borrowing con-
straint (45) never binds, a marketmaker’s intertemporal utility is equal to a(0),
meaning that equilibrium net profit must be equal to zero.

Investor’s Problem

An investor establishes contact with some marketmaker at Poisson arrival
times with intensity ρ > 0. Conditional on establishing contact at time t,
he can buy or sell the asset at the price p(t). I solve the investor’s problem
using a “guess and verify” method.12 Specifically, I guess that, in equilibrium,
an ℓo (hn) investor always finds it weakly optimal to sell (to buy). If an ℓo
(hn) investor is indifferent between selling and not selling, he might choose not
to sell (to buy). Lastly, I guess that investors of types ℓn and ho never trade.
The time-t continuation utility of an investor of type σ ∈ T who follows this
policy is denoted Vσ(t). Hence, a seller’s reservation value is

∆Vℓ(t) ≡ Vℓo(t) − Vℓn(t). (48)

Similarly, a buyer’s reservation value is ∆Vh(t) ≡ Vho(t) − Vhn(t). The reser-
vation value ∆Vℓ(t) of a seller solves

r∆Vℓ(t) = 1− δ1 + γu
(

∆Vh(t)−∆Vℓ(t)
)

+ ρ
(

p(t)−∆Vℓ(t)
)

+ ∆V̇ℓ(t), (49)

Equation (49) breaks the reservation value into four terms. The first term,
1− δ1, is net rate of dividends for a low-marginal-utility investor. The second
term, γu

(

∆Vh(t) − ∆Vℓ(t)
)

, is the expected rate of net utility associated with
transition to the high-marginal-utility state, because, with intensity γu, the
investor’s reservation value changes from ∆Vℓ(t) to ∆Vh(t). The third term,
ρ
(

p(t) − ∆Vℓ(t)
)

, is the expected rate of net utility associated with selling
the asset, and the fourth term reflects time variation in the reservation value.
Similarly the reservation value ∆Vh(t) of a buyer solves

r∆Vh(t) = 1 + γd
(

∆Vℓ(t) − ∆Vh(t)
)

− ρ
(

∆Vh(t) − p(t)
)

+ ∆V̇h(t), (50)

12Appendix D describes the investor’s dynamic programming problem in details. In par-
ticular, it is shown that, when he is permitted to hold any quantity q ∈ [0, 1] of shares, an
investor finds it optimal to hold either the minimum quantity of zero unit, or the maximum
quantity of one unit.
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Lastly, I impose the transversality conditions

lim
t→+∞

∆Vj(t)e
−rt = 0, (51)

for j ∈ {h, ℓ}. This transversality condition allows to complete the optimality
verification argument described in detail in Appendix D.

Definition 4 (Competitive Equilibrium.) A Competitive Equilibrium is a
feasible allocation

(

µ(t), I(t), u(t)
)

, a price p(t), a collection
(

∆Vℓ(t),∆Vh(t)
)

of reservation values, a consumption stream c(t), and a wealth position a(t)
such that

(i) Given the price p(t),
(

I(t), u(t), c(t), a(t)
)

solves the marketmaker’s prob-
lem.

(ii) Given the price p(t), the reservation values
(

∆Vℓ(t),∆Vh(t)
)

solve equa-
tions (49)-(51) and satisfy, at each time,

p(t) − ∆Vℓ(t) ≥ 0 (52)

∆Vh(t) − p(t) ≥ 0 (53)
(

p(t) − ∆Vℓ(t)
)(

ρµℓo(t) − uℓ(t)
)

= 0 (54)
(

∆Vh(t) − p(t)
)(

ρµhn(t) − uh(t)
)

= 0. (55)

Equations (52) through (55) verify the optimality of investors’ policies. For
instance, equation (52) means that the net utility of selling is positive, which
verifies that a seller ℓo finds it weakly optimal to sell. Equation (54), on the
other hand, verifies that a seller’s trading decision is optimal. Namely, if the net
utility p(t)−∆Vℓ(t) of selling is strictly positive, then uℓ(t) = ρµℓo(t), meaning
that all ℓo investors in contact with marketmakers choose to sell. If, on the
other hand, the net utility of selling is zero, then ℓo investors are indifferent
between selling and not selling. As a result, uℓ(t) ≤ ρµℓo(t), meaning that
some ℓo investors might choose not to sell.

Theorem 2 (Implementation.) There exists some a0 ∈ R+ such that, for
all a(0) ≥ a0, there exists a competitive equilibrium whose allocation is the
optimal allocation.

Theorem 2 states that the optimal allocation can be implemented in some
competitive equilibrium. The proof identifies the price and the reservation
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Table 3: Identifying Prices with Multipliers.

Equilibrium Objects Multipliers Constraints

p(t) λI(t) İ(t) = uℓ(t) − uh(t)

∆Vℓ(t) λℓo(t) µ̇ℓo(t) = −uℓ(t) . . .

p(t) − ∆Vℓ(t) wℓo(t) uℓ(t) ≤ ρµℓo(t)

∆Vh(t) −λhn(t) µ̇hn(t) = −uh(t) . . .

∆Vh(t) − p(t) whn(t) uh(t) ≤ ρµhn(t)

In a given row, the equilibrium object in the first column is
equal to the Lagrange multiplier in the second column. The
third column describes the constraints associated with these mul-
tipliers. For instance, in the first row, the price p(t) (first col-
umn) is equal to the multiplier λI(t) (second column) of the ODE
İ(t) = uℓ(t) − uh(t) (third column).

values with the Lagrange multipliers of the optimal allocation (see Table 3).
For instance, the asset price p(t) is equal to the multiplier λI(t) for the ODE
İ(t) = uℓ(t)− uh(t), interpreted as the social value of increasing the inventory
position of a marketmaker.

The minimum capital a0 can be shown to be maxt∈R+
λI(t)I(t)e

−rt. In
other words, optimal implementation is obtained if there is enough market-
making capital to purchase the inventory position of maximum present value.

Equilibrium Price Path and Marketmaker’s Incentive

Appendix B.2 derives closed-form solutions for the equilibrium price path p(t)
and the reservation values ∆Vℓ(t) and ∆Vh(t). The price path, shown in the
lower panel of Figure 6, jumps down at time zero and increases thereafter.13

The price has three phases reflecting the three phases of the socially-optimal
allocation. Before the first breaking time t∗1, marketmakers do not accommo-
date the selling pressure. This implies that the price must adjust in order to
make a seller indifferent between selling or not, meaning that p(t) = ∆Vℓ(t).
In between the two breaking times t∗1 and t∗2, marketmakers accommodate all

13A simple way to construct the initial price jump is to start the economy in steady state at
t = 0 and assume that agents anticipate a crash at some Poisson arrival time with intensity
κ. One can show that the results of this paper would apply, provided that either κ is small
enough, or t∗1 > 0. For Figure 6, it is assumed that κ = 0.
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Figure 6: The Equilibrium Price Path.

of the selling pressure. As a result, the “marginal investor” is a marketmaker,
and

∆Vℓ(t) < p(t) < ∆Vh(t). (56)

In particular, p(t) > ∆Vℓ(t), meaning that the liquidity provision of market-
makers raises the asset price above a seller’s marginal utility. In that sense,
marketmakers’ liquidity provision helps to “support” the price level. After the
second breaking time t∗2, the asset price has reached its steady-state value.

A marketmaker buys the asset early, at a low price, and later re-sells at a
higher price. The price growth rate in [t∗1, t

∗
2] exactly compensates a market-

maker for the time value of cash, net of the flow value 1−δ2 of the dividend. In
other words, the marketmaker is indifferent between (i) investing cash in her
bank account, and (ii) buying assets after t∗1 and selling them before t∗2. Before
t∗1 and after t∗2, however, the price growth rate is lower, making it unprofitable
for the marketmaker to buy the asset on her own account.

The previous paragraph implies in particular that a marketmaker intertem-
poral utility is equal to a(0), the present value of her time-zero capital. In other
words, although a marketmaker buys low and sells high, competition drives
the present value of her profit to zero.

Allocative Efficiency in Related Search-and-Matching Models

Hosios [1990] provides a necessary condition for allocative efficiency in search-
and-matching models: the buyer’s (seller’s) bargaining strength should be

28



equal to the elasticity of the matching function14 with respect to the mass
of buyers (sellers). This condition is satisfied in the present model, provided
that one recognizes that there are two matching functions: the rate ρµhn(t)
of contact between buyers and marketmakers, and the rate ρµℓo(t) of con-
tact between sellers and marketmakers. Because these two matching functions
have unit elasticity, the Hosios conditions would prescribe that the bargaining
strengths of buyers and sellers should be both equal to 1. In particular, in or-
der to achieve efficiency, marketmakers should buy and sell at the same price
and should make zero intertemporal profit. These two conditions are satisfied
by the equilibrium of Theorem 2.

5 Borrowing-Constrained Marketmakers

The implementation result of Theorem 2 relies on the assumption that the
time-zero capital a(0) is sufficiently large. This ensures that, in equilibrium,
a marketmaker’s borrowing constraint (45) never binds. There is, however,
much anecdotal evidence suggesting that, during the October 1987 crash, spe-
cialists and marketmakers’ borrowing constraints were binding. Some market
commentators have suggested that insufficient capital might have amplified the
disruptions (see, among others, Brady [1988] and Bernanke [1990]). This Sec-
tion describes an amplification mechanism associated with insufficient capital
and binding borrowing constraints. Specifically, it shows that if marketmakers
are borrowing constrained during the crash, and if their time-zero capital is
small enough, then they do not have enough purchasing power to absorb the
selling pressure, and therefore fail to provide the optimal amount of liquidity.

Because time-zero capital represents a marketmaker’s purchasing power, it
resembles an upper bound on a marketmaker’s inventory. This Section for-
malizes this intuition. First, it defines, and solves for, constrained-optimal
allocations, subject to an exogenous inventory upper bound. Then, it imple-
ments each of these allocations with an appropriately chosen time-zero capital.

5.1 Constrained-Optimal Allocations

It is assumed that each marketmaker faces the inventory bound

I(t) ≤M, (57)

14The “matching function” specifies the rate of contact between buyers and sellers as a
function of two arguments, the mass of buyers and the mass of sellers.
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for some M ∈ R+. Subject to this additional constraint, one can reproduce
the analysis of the previous Section.

Definition 5 (Constrained-Optimal Allocations.) A constrained-optimal
allocation with inventory bound M ∈ R+ is a feasible allocation maximizing
(14), subject to the inventory constraint (57).

As before, m∗ denotes the maximum inventory position in the optimal alloca-
tion of Theorem 1.

Proposition 6. There exists a constrained-optimal allocation with inventory
bound M . It is a buffer allocation with maximum inventory position m =
min{M,m∗}.

When M ≤ m∗, the inventory constraint binds, meaning that marketmakers
should accumulate as much inventory as permitted by (57). Moreover, in that
case, the constraint binds only once, meaning that, given an inventory bound
of M ≤ m∗, marketmakers should maximally delay inventory accumulation.
These features are illustrated in Figure 7. Importantly, Appendix B.2 shows
that a binding inventory constraint produces a jump in the path of the multi-
plier λI(t) associated with the ODE İ(t) = uℓ(t)− uh(t). Namely, if M < m∗,
then

λI(t
+
m) − λI(t

−
m) > 0, (58)

when I(tm) = M . This jump reflects the benefit, when the inventory constraint
binds, of accumulating additional inventory.

5.2 Market Equilibrium

This subsection implements each constrained-optimal allocation with an ap-
propriately chosen time-zero capital. As in the previous Section, the equilib-
rium price and values serve as Lagrange multipliers of the constrained-optimal
allocation (see Table 3).

Proposition 7 (Implementation.) Consider a buffer allocation with maxi-
mum inventory position m ≤ m∗. This allocation is constrained-optimal with
inventory bound M = m. Let tm be the only time at which I(tm) = m, and
let λI(t) be the Lagrange multiplier of the ODE İ(t) = uℓ(t) − uh(t). Lastly,
let a(0) ≡ e−rtmλI(t

−
m)m be a marketmaker’s time-zero capital. Then, there

exists a competitive equilibrium whose allocation is the buffer allocation with
maximum inventory position m.

30



0 2 4 8 10 12 14

0 

5 

15

25

tm

M

time

I(t)/s(%) constrained
unconstrained

Figure 7: Constrained-optimal Allocations.

A marketmaker uses her capital to build up her inventory position between
times t1 and tm. Time-zero capital is chosen so that a(tm) = 0, meaning that
a marketmaker’s borrowing constraint is binding at time tm.

As before, the equilibrium price is the multiplier λI(t) of the ODE İ(t) =
uℓ(t) − uh(t). In particular, this price path features an upward jump at time
tm (see Figure 8). The price jump seems to suggest the following arbitrage. A
utility-maximizing marketmaker would buy more assets shortly before tm and
sell them shortly after. This does not, in fact, truly represent an arbitrage
because a marketmaker runs out of capital precisely at the jump time tm, so
she cannot purchase more assets. Because of the price jump, a marketmaker
makes positive profit, in that her intertemporal utility is

p(t+m)

p(t−m)
a(0) > a(0) (59)

if p(t+m)/p(t−m) > 1. The intuition for (59) is as follows. A marketmaker can
invest her capital a(0) at the risk-free rate r between time zero and time tm.
At the last instant before tm, she spends all her capital ertm a in order to buy
assets at price p(t−m). She can re-sell these assets the next instant after tm
at price p(t+m). With this trading strategy, the present value of her profit is
(59). Many other trading strategies would achieve the same profit. Namely,
given the equilibrium price path, the optimal timing of purchases and sales is
indeterminate, as long as all assets are purchased in [t1, tm], sold in [tm, t2],
and a(tm) = 0.

Lastly, the results of Proposition 7 would also hold under the alternative
assumption that marketmakers have different time-zero capital endowment, as
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long as the aggregate endowment per capita is a(0) = λI(t
−
m)Me−rtm .

6 Policy Implications

This Section discusses some policy implications of this model of optimal liq-
uidity provision.

Marketmaking capital

The model suggests that, with perfect capital markets, competitive market-
makers would have enough incentive to raise sufficient capital. The intuition
is that marketmakers will raise capital until their net profit is equal to zero,
which precisely occurs when they provide optimal liquidity. For example, sup-
pose that, at t = 0, wealthless marketmakers can borrow capital instantly on
a competitive capital market. Then, for t > 0, the economic environment
remains the one described in the present paper. If, at t = 0, a marketmaker
borrows a quantity a > 0, then she has to repay a erT at some time T ≥ t∗2.
Equation (59) implies that the net present value of her profit is

(

p(t+m)

p(t−m)
− 1

)

a, (60)

where the jump-size
(

p(t+m)/p(t−m) − 1
)

depends implicitly on the time-zero
aggregate marketmaking capital. As long as the jump size is strictly positive,
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a marketmaker wants to borrow an infinite amount of capital. Therefore, in
a capital-market equilibrium, a marketmaker’s net profit (60) must be zero,
implying that p(t+m)/p(t−m) = 1 and m = m∗. This means that marketmakers
borrow a sufficiently large amount of capital and provide the socially-optimal
amount of liquidity.

Lending capital to marketmakers, however, might be costly because of
capital-market imperfections associated for example with moral hazard or ad-
verse selection problems. In order to compensate for such lending costs, the net
return

(

p(t+m)/p(t−m)− 1
)

on marketmaking capital must be greater than zero.
This would imply that, in an equilibrium, marketmakers do not raise sufficient
capital. As a result, subsidizing loans to marketmakers might improve welfare.
Appendix F provides an explicit model of marketmakers’ borrowing limits
based on some asymmetric information problems on the capital market.15 The
model supports the recommendation of subsidizing loans to marketmakers.

During disruptions, some policy actions can be interpreted as bank-loan
subsidization. For instance, during the October 1987 crash, the Federal Re-
serve lowered the fund rate, while encouraging commercial banks to lend gen-
erously to security dealers (Wigmore [1998]).

Capital requirements for imperfectly competitive marketmakers

In an article published by The Financial Times, Maurice “Hank” Greenberg,
chairman of the American International Group (AIG), severely criticizes the
seven specialist firms of NYSE which handle the trading of more than 2,800
stocks.16 In particular, he argues that these firms do not maintain sufficient
capital and he proposes to raise their minimum regulatory capital require-
ments.

Suppose for simplicity that there are two marketmakers who choose simul-
taneously their time-zero capital, and who compete in price for the order flow.
Assume that competition in price implies the perfectly competitive outcome,
meaning that the equilibrium during the crash with two marketmakers is the
same as with a continuum of marketmakers. The choice of time-zero capital,
however, would be different than with a continuum of marketmakers. A mar-
ketmaker would recognize that committing less capital to marketmaking would
increase her net return during the crash. Hence, she would have incentive to

15A different model of limited access to capital is due to Shleifer and Vishny [1997]. They
show that capital constraints might be tighter when prices drop, due to a backward-looking,
performance-based rule for allocating capital to arbitrage funds.

16The article “Shake up the NYSE Specialist System or Drop it” was published by The
Financial Times on October 10th, 2003.
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maintain a small level of capital so as to make strictly positive profit, mean-
ing that the aggregate marketmaking capital would turn out to be smaller
than optimal (an intuition analogous to Kreps and Scheinkman [1983]). One
assumes that, in a model which incorporates this intuition, the setting of a
minimum regulatory capital requirement could improve welfare. Such a result
would support Greenberg’s claim that specialists firms are undercapitalized
and should face tighter capital requirements.

Price continuity

It is often argued that marketmakers should provide liquidity in order to main-
tain price continuity and to smooth asset price movements.17 The present pa-
per studies liquidity provision in terms of the Pareto criterion rather than in
terms of some price smoothing objective. The results are evidence that Pareto
optimality is consistent with a discrete price decline at the time of the crash.
This suggests that requiring marketmakers to maintain price continuity at the
time of the crash may result in a welfare loss.

A comparative static exercise suggests, however, that liquidity provision
promotes some degree of price continuity. Namely, in an economy with no
capital at time zero (a(0) = 0), no liquidity is provided and the price jumps
up at time ts > 0. In an economy with large time-zero capital, however, the
price path is continuous at each time t > 0.

Marketmakers as Buyers of Last Resort

A commonly held view is that marketmakers should not merely provide liq-
uidity, they should also provide it promptly. In contrast with that view, the
present model illustrates that prompt action is not necessarily consistent with
efficiency. Namely, it is not always optimal that marketmakers start providing
liquidity immediately at the time of the crash, when the selling pressure is
strongest. For example, if the initial preference shock is very persistent, then
marketmakers who buy asset immediately end up holding assets for a very
long time. This cannot be efficient given that marketmakers are not the final
holders of the asset. This suggests that requiring marketmakers to always buy
assets immediately at the time of the crash can result in a welfare loss.

17For instance, Investor Relations, an advertising document for the specialist firm Fleet
Meehan Specialist, argues that specialists “use their capital to fill temporary gaps in supply
and demand. This can actually help to reduce short-term volatility by cushioning the intra-
day price movements.”
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7 Conclusion

This paper studies the optimal liquidity provision of marketmakers during fi-
nancial disruptions. The first main result is that competitive marketmakers
will provide the optimal amount of liquidity, provided they maintain suffi-
cient capital at the time of the crash. If capital-market imperfections prevent
marketmakers from raising sufficient capital before the crash, transferring pur-
chasing power to marketmakers during the crash might improve welfare. The
second main result is that the competitive equilibrium has features which are
traditionally viewed as symptomatic of poor liquidity provision but are in fact
consistent with efficiency. Namely, there is a discrete price decline at the time
of the crash and marketmakers do not always start buying assets immediately
when the selling pressure is strongest.
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A Buffer Allocations

This Appendix studies buffer allocations and proves propositions 1 and 2.

A.1 Proof of Proposition 1

This subsection studies some features of buffer allocations. First, in any buffer allo-
cation, the inventory position is hump-shaped. Second, it proves that the breaking
times t1 and t2 of any buffer allocation can be viewed as functions of the maximum
inventory position m. In all what follows, some buffer allocation (t1, t2) is fixed. For
t ∈ [t1, t2), the inventory position I(t) evolves according to

İ(t) = uℓ(t) − uh(t) = ρ
(

µℓo(t) − µhn(t)
)

. (61)

With equation (3), this ODE can be written

İ(t) = −ρI(t) + ρ
(

s− µh(t)
)

. (62)

With the initial condition I(t1) = 0, this implies that, for t ∈ [t1, t2], I(t) = H(t1, t),
where

H(t1, t) = ρ

∫ t

t1

(

s− µh(z)
)

eρ(z−t)dz (63)

= (s− y)
(

1 − e−ρ(t−t1)
)

+ ρye−γt1
e−γ(t−t1) − e−ρ(t−t1)

ρ− γ
. (64)

The following Lemma shows that I(t) is hump-shaped and that, given the first
breaking time t1, the second breaking time t2 is uniquely characterized.

Lemma 1 (Hump-Shaped Inventory.) There exists a unique pair (tm, t2) ∈ [t1, ts]×
[ts,+∞) such that

∂H

∂t
= 0 ⇔ t = tm (65)

∂H

∂t
> 0 ⇔ t ∈ [t1, tm) (66)

H(t1, t2) = 0 (67)

Proof. Differentiating equation (64) shows that there is at most one z ≥ 0 such that
∂H/∂t(t1, z) = 0. Differentiating (63) shows that ∂H/∂t(t1, t1) = ρ(s− µh(t1)) ≥ 0
and ∂H/∂t(t1, ts) = −ρ2

∫ ts
t1

(s − µh(z))e
ρ(z−t)dz ≤ 0. This implies (65) and (66).

Furthermore, because µh(t) > s for t large enough, it follows from (63) that H(t1, t)
is negative for t large enough. This, together with (65) and (66), implies that, given
some t1 ∈ [0, ts], there exists a unique t2 ∈ [ts,+∞) solving (67).
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Equipped with this last result, one can characterize the various objects of Proposition
1. First, the maximum inventory position is defined as m ≡ I(tm). Second, one
defines tm ≡ ψ(m), for some function ψ( · ). This function can be written in closed
form by substituting İ(tm) = 0 and I(tm) = m in (62).

ψ(m) = −1

γ
log

(

1 − s−m

y

)

. (68)

Lastly, the breaking times (t1, t2) can be written t1 = φ1(m) and t2 = φ2(m), for
some functions φ1( · ) and φ2( · ) which are characterized as follows. Solving (62)
with the initial condition I(tm) = m, one finds

I(t) = me−ρ(t−tm) +(s−y)
(

1− e−ρ(t−tm)
)

+ρye−γtm
e−γ(t−tm) − e−ρ(t−tm)

ρ− γ
. (69)

Replacing (68) into (69), and making some algebraic manipulations, show that I(t) =
0 if and only if t = tm + z, for some z solution of G(m, z) = 1, where

G(m, z) =

(

1 +
m

y − s

)

ρe−γz − γe−ρz

ρ− γ
. (70)

The following Lemma shows the existence of the functions φ1( · ) and φ2( · ) of Propo-
sition 1. These can be written φi =

√
Φi, for some continuously differentiable func-

tion Φi( · ), i ∈ {1, 2}.

Lemma 2 (Breaking Times.) There exists some continuously differentiable and
increasing functions Φi : R+ → R+, i ∈ {1, 2}, such that G(m, z) = 1 if and only
if z ∈ {−

√

Φ1(m),
√

Φ2(m)}. Moreover Φi(0) = 0 and Φ′
i(0) = 2/(ργ(y − s)),

i ∈ {1, 2}.

Proof. Define, for x ∈ [0,+∞), the two functions gi(m,x) = G
(

m, (−1)i
√
x
)

, i ∈
{1, 2}. For x > 0, the partial derivatives of gi with respect to x is

∂gi
∂x

=

(

1 +
m

y − s

)

(−1)iργ

2
√
x

e(−1)i+1ρ
√
x − e(−1)i+1γ

√
x

ρ− γ
. (71)

This function is strictly negative for x > 0. It can be extended by continuity at
x = 0 with

∂gi
∂x

(m, 0) = −
(

1 +
m

y − s

)

ργ

2
. (72)

Hence, gi(m, · ) is strictly decreasing over [0,+∞). Moreover, form = 0, gi(0, 0) = 1.
For m > 0, gi(m, 0) > 1, g1(m,x) → −∞ and g2(m,x) → 0, when x → +∞.
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This implies that, for any m ≥ 0, there exists only one solution xi = Φi(m) of
gi(m,x) = 1. An application of the Implicit Function Theorem (see Taylor and
Mann [1983], Chapter 12) shows that the function Φi( · ) is strictly increasing and
continuously differentiable, and satisfies Φi(0) = 0, Φ′

i(0) = 2/(ργ(y − s)). Clearly
G(m, z) = 0 if and only if z ∈ {−

√

Φ1(m),
√

Φ2(m)}.

Lastly, the restriction t1 ≥ 0 defines the domain of the functions ψ( · ), φ1( · ), and
φ2( · ). Namely, t1 ≥ 0 if and only if

ψ(m) − φ1(m) ≥ 0. (73)

The left hand side of (73) is strictly decreasing, is strictly positive for m = 0 and
strictly negative form = s. Hence, there exists a unique m̄ such that ψ(m̄)−φ1(m̄) =
0. By construction, the maximum inventory of a buffer allocation is less than m̄.

A.2 Proof of Proposition 2

The first step is to construct multipliers for the no-inventory allocation, associated
with the various constraints. The multipliers associated with the ODE of µℓo(t),
µhn(t), and I(t) are denoted λℓo(t), λhn(t), and λI(t), respectively. The multiplier
on the shortselling constraint is denoted by ηI(t). The multipliers on the right con-
straints in (7) and (8) are denoted wℓo(t) and whn(t), respectively. These multipliers
solve the ODEs

λ̇hn(t) = rλhn(t) + 1 + γd
(

λhn(t) + λℓo(t)
)

− ρwhn(t) (74)

λ̇ℓo(t) = rλℓo(t) − (1 − δ1) + γu
(

λhn(t) + λℓo(t)
)

− ρwℓo(t) (75)

λ̇I(t) = rλI(t) − (1 − δ2) − ηI(t) (76)

whn(t) = −λhn(t) − λI(t) (77)

wℓo(t) = −λℓo(t) + λI(t) (78)

with the complementary slackness conditions

whn(t)
(

ρµhn(t) − uh(t)
)

= 0 and wℓo(t)
(

ρµℓo(t) − uℓ(t)
)

= 0, (79)

and the transversality conditions λj(t)e
−rt → 0, as t → ∞, for j ∈ {hn, ℓo, I}.

Summing (77) and (78) shows that whn(t) + wℓo(t) = −λhn(t) − λℓo(t). Summing
(74) and (75) and using transversality shows that, at each time, λhn(t) + λℓo(t) =
−δ1/(r + ρ + γ). Complementary slackness implies that, for t < ts, wℓo(t) = 0
and, for t ≥ ts, whn(t) = 0. For t ≥ ts, transversality implies that rλℓo(t) =
1 − δ1(r + γd)/(r + ρ + γ) and rλhn(t) = −1 + δ1γd/(r + ρ + γ). For t < ts, one
can use (74) and (75) to solve for λhn(t) and λℓo(t), imposing continuity of these
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multipliers at t = ts. Because λI(t) = λℓo(t) for t < ts, (75) and (76) imply that
ηI(t) = δ2 − δ1(r + ρ+ γd)/(r + ρ+ γ). Similarly, because λI(t) = λhn(t) for t ≥ ts,
(74) and (76) imply that ηI(t) = δ2 − δ1γd/(r + ρ+ γ).

Since λI(t) = λℓo(t) for t < ts, and λI(t) = λhn(t) for t ≥ ts, the multiplier
λI( · ) jumps at the crossing time ts, with with λI(t

+
s ) − λI(t

−
s ) = δ1/(r + ρ + γ).

This positive jump reflects the benefit of accumulating inventories, near the crossing
time. Given the jump, one can solve for the time path of λI( · ), for t < ts.

The second step is to use Corollary 2. It implies that, for any buffer allocation
(µm, Im, um),

W (m) −W (0) = −
∫ +∞

0
e−rtwhn(t)

(

ρµmhn(t) − umh (t)
)

dt (80)

−
∫ +∞

0
e−rtwℓo(t)

(

ρµmℓo(t) − umℓ (t)
)

dt

−
∫ +∞

0
e−rtηI(t)I

m(t)dt

+
(

λI(t
+
s ) − λI(t

−
s )
)

Im(ts)e
−rts .

The first two terms in equation (80) are zero because, for all t ≤ ts, u
m
h (t) = ρµmhn(t)

and, for all t ≥ ts, u
m
ℓ (t) = ρµmℓo(t). The third term can be bounded as follows

0 ≤
∫ ψ(m)+φ2(m)

ψ(m)−φ1(m)
e−rtηI(t)I

m(t)dt ≤
(

δ2 − γd
δ1

r + ρ+ γ

)

m
(

φ2(m) + φ1(m)
)

.

Since limm→0+ φi(m) = 0, for i ∈ {1, 2}, this implies that, as m→ 0+,

1

m

∫ ψ(m)+φ2(m)

ψ(m)−φ1(m)
e−rtηI(t)I

m(t)dt −→ 0. (81)

The fourth and last term of (80) is

(

λI(t
+
s ) − λI(t

−
s )
)

e−rtsIm(ts). (82)

One can make a Taylor expansion of Im(ts) around m = 0, using the expression (69)
for Im(ts), the fact that ts − tm = ψ(0)− ψ(m), and that ye−γtm = y − s+m. The
expansion shows that

1

m
Im(ts) −→ 1, (83)

as m goes to zero, establishing Proposition 2.
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B Optimal Allocations

This Appendix solves for constrained-optimal allocations with inventory bound M ∈
[0,+∞].

B.1 First-Order Sufficient Conditions

This paragraph provides the first order sufficient conditions of Theorem 3 and Propo-
sition 6. The two identities µho(t) = µh(t) − µhn(t) and µℓn(t) = 1 − µh(t) − µℓn(t)
have been substituted into the objective and the constraints. The current value
Lagrangian is

L(t) = µh(t) − µhn(t) + (1 − δ1)µℓo(t) + (1 − δ2)I(t) (84)

+λℓo(t)
(

−uℓ(t) − γuµℓo(t) − γdµhn(t) + γdµh(t)
)

+λhn(t)
(

−uh(t) − γuµℓo(t) − γdµhn(t) + γu(1 − µh(t))
)

+λI(t)
(

uℓ(t) − uh(t)
)

+wℓo(t)
(

ρµℓo(t) − uℓ(t)
)

+ whn(t)
(

ρµhn(t) − uh(t)
)

.
+ηI(t) I(t) + ηM (t)

(

M − I(t)
)

.

It is anticipated that the left constraints in (7) and (8) never bind. The first-order
conditions are

wℓo(t) = −λℓo(t) + λI(t) (85)

whn(t) = −λhn(t) − λI(t) (86)

rλℓo(t) = 1 − δ1 − γu(λhn(t) + λℓo(t)) + ρwℓo(t) + λ̇ℓo(t) (87)

rλhn(t) = −1 − γd(λhn(t) + λℓo(t)) + ρwhn(t) + λ̇hn(t) (88)

rλI(t) = 1 − δ2 + ηI(t) − ηM (t) + λ̇I(t). (89)

The complementary-slackness conditions for wℓo(t), whn(t), ηI(t), and ηM (t) are

wℓo(t) ≥ 0 and wℓo(t)
(

ρµℓo(t) − uℓ(t)
)

= 0 (90)

whn(t) ≥ 0 and whn(t)
(

ρµhn(t) − uh(t)
)

= 0 (91)

ηI(t) ≥ 0 and ηI(t)I(t) = 0 (92)

ηM (t) ≥ 0 and ηM (t)
(

M − I(t)
)

. (93)

Additionally, one imposes the transversality condition

lim
t→+∞

λj(t)e
−rt = 0, (94)
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for j ∈ {ℓo, hn, I}. The multipliers λhn(t) and λℓo(t) are restricted to be continuous.
However, because of the state constraints, the multiplier λI(t) can jump, with the
restrictions

λI(t
+) − λI(t

−) ≤ 0 if I(t) = 0 (95)

λI(t
+) − λI(t

−) ≥ 0 if I(t) = M. (96)

A Reduced System

It is convenient to eliminate λhn(t) and λℓo(t) from the above equations using the
first-order conditions (85) and (86). One obtains the system of ODE

rwℓo(t) = δ1 − δ2 − γu
(

whn(t) + wℓo(t)
)

− ρwℓo(t)

+ηI(t) − ηM (t) + ẇℓo(t) (97)

rwhn(t) = δ2 − γd
(

whn(t) + wℓo(t)
)

− ρwhn(t)

−ηI(t) + ηM (t) + ẇhn(t) (98)

rλI(t) = 1 − δ2 + ηI(t) − ηM (t) + λ̇I(t), (99)

with the jump conditions

λI(t
+) − λI(t

−) ≤ 0 if I(t) = 0 (100)

λI(t
+) − λI(t

−) ≥ 0 if I(t) = M (101)

λI(t
+) − λI(t

−) = wℓo(t
+) − wℓo(t

−) = −whn(t+) + whn(t
−), (102)

and the transversality conditions

lim
t→+∞

e−rtλI(t) = lim
t→+∞

e−rtwℓo(t) = lim
t→+∞

e−rtwhn(t) = 0. (103)

As before, the positivity restrictions and complementary slackness conditions are

ηI(t) ≥ 0 and ηI(t)I(t) = 0 (104)

ηM (t) ≥ 0 and ηM (t)
(

M − I(t)
)

(105)

wℓo(t) ≥ 0 and wℓo(t)
(

ρµℓo(t) − uℓ(t)
)

= 0 (106)

whn(t) ≥ 0 and whn(t)
(

ρµhn(t) − uh(t)
)

= 0. (107)

Since there is no sign restrictions on the multiplier λhn(t) and λℓo(t), equations (97)-
(107) are equivalent to the first-order sufficient conditions of the previous paragraph.
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B.2 Multipliers for Buffer Allocations

Consider some feasible buffer allocation with breaking times (t1, t2) and a maxi-
mum inventory position m ∈ [0,min{m̄,M}] reached at time tm. This paragraph
first constructs a collection

(

whn(t), wℓo(t), λI(t), ηI(t), ηM (t)
)

of multipliers solving
equations (97)-(107), but ignoring some of the positivity restrictions. These re-
strictions are imposed afterwards, when discussing the optimality of this allocation.
First, one guesses that

ηM (t) = 0, (108)

for all t ≥ 0. Second, summing equations (97) and (98), and using the transversality
condition (103) shows that

wℓo(t) + whn(t) =
δ1

r + ρ+ γ
, (109)

for all t ≥ 0. Then, one guesses that there are no jumps at t1 and t2.
18 With (102),

this shows that

λI(t
+
i ) − λI(t

−
i ) = wℓo(t

+
i ) − wℓo(t

−
i ) = −whn(t+i ) + whn(t

−
i ) = 0, (110)

for i ∈ {1, 2}. Now, one can solve for the multipliers, going backwards in time.

Time Interval t ∈ [t2,+∞)

Complementary slackness (107) implies that whn(t2) = 0. With (109), this shows
that wℓo(t) = δ1/(r + ρ + γ). With (98) and (109), this also implies that ηI(t) =
δ2−γdδ1/(r+ρ+γ). Lastly, (99) and (103) show that rλI(t) = 1− δ1γd/(r+ρ+γ).

Time Interval t ∈ [tm, t2)

First, because I(t) > 0, the complementary slackness condition (104) implies that
ηI(t) = 0. Then, one solves the ODE (98) with the terminal condition whn(t2) = 0,
and one finds that

whn(t) =
1

r + ρ

(

δ2 − δ1
γd

r + ρ+ γ

)

(

1 − e(r+ρ)(t−t2)
)

, (111)

18This is actually implied by the first-order conditions. Complementary slackness implies
that whn(t+2 ) = 0. From (102) and (100), whn(t−2 ) ≤ 0. Since whn(t−2 ) ≥ 0, this implies that
whn(t−2 ) = whn(t+2 ) = 0. A similar reasoning shows that, if t1 > 0, wℓo(t

−

1 ) = wℓo(t
+
1 ) = 0.
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for t ∈ [tm, t2). With (109), wℓo(t) = δ1/(r+ρ+γ)−whn(t). Similarly, one can solve
the ODE (99) with the terminal condition rλI(t

−
2 ) = 1 − γdδ1/(r + ρ + γ), finding

that

rλI(t) = 1 − δ2 +

(

δ2 − δ1
γd

r + ρ+ γ

)

er(t−t2). (112)

Time Interval t ∈ [t1, tm)

In this time interval, ηI(t) = 0. Two cases are considered.

Case 1: m < m̄. Complementary slackness at t = t1 shows that wℓo(t1) = 0,
implying that whn(t1) = δ1/(r + ρ+ γ). With this and (98), one finds

whn(t) =
1

r + ρ

(

δ2 − δ1
γd

r + ρ+ γ
−
(

δ2 − δ1
r + ρ+ γd
r + ρ+ γ

)

e(r+ρ)(t−t1)
)

, (113)

for t ∈ [t1, tm). Given (111) and (113), the multiplier whn(t) is not necessarily
continuous at time tm. The size whn(t

−
m) − whn(t

+
m) of the jump can be written as

some function b( · ) of the maximum inventory level m, where

b(m) ≡ 1

r + ρ

[(

δ2 − δ1
γd

r + ρ+ γ

)

e−(r+ρ)φ2(m)

−
(

δ2 − δ1
r + ρ+ γd
r + ρ+ γ

)

e(r+ρ)φ1(m)

]

. (114)

Equation (102) implies that λI(t
+
m) − λI(t

−
m) = b(m). This and the ODE (99) show

that

rλI(t) = (1 − δ2) +
(

rλI(t
+
m) − (1 − δ2) − rb(m)

)

er(t−tm). (115)

Case 2: m = m̄. Then, by construction of m̄, the first breaking time t1 is equal
to zero. If b(m̄) < 0, the multipliers are constructed as in the previous case. If,
on the other hand, b(m̄) ≥ 0, then the ODEs are solved so that multipliers do
not jump at t = tm. Namely, (98) and (99) are solved with terminal conditions
whn(t

−
m) = whn(t

+
m) and λI(t

−
m) = λI(t

+
m). Because b(m̄) ≥ 0, whn(t1) = whn(0) ∈

[0, δ1/(r + ρ+ γ)].

Time Interval t ∈ [0, t1], m < m̄

Complementary slackness shows that wℓo(t) = 0, implying that whn(t) = δ1/(r+ρ+
γ). With equation (97), this also implies that ηI(t) = δ2−δ1(r+ρ+γd)/(r+ρ+γ) ≥ 0.
Then

rλI(t) = 1 − δ2 − ηI(t) +
(

λI(t1) − (1 − δ2) + ηI(t)
)

er(t−t1). (116)
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B.3 Proof of Theorems 1 and Proposition 6

This paragraph verifies that some buffer allocation is constrained-optimal with in-
ventory bound M . First, if some buffer allocation is constrained-optimal, it must
satisfy the jump condition (96), meaning that b(m) ≥ 0 and b(m)(M − m) = 0.
In particular, if there is no inventory constraint, then the jump must be zero. One
defines the maximum m such that the jump b(m) is positive:

m∗ = sup{m ∈ [0, m̄] : b(m) ≥ 0}. (117)

If m∗ < m̄, then b(m∗) = 0. If m∗ = m̄, then b(m∗) ≥ 0. Furthermore, since b( · ) is
decreasing, b(m) ≥ 0 for all m ≤ m∗.

Proposition 8. There exists a constrained-optimal allocation. It is a buffer alloca-
tion with maximum inventory position m = min{m∗,M}.

Proof. Let’s consider this allocation and its associated multipliers
(

whn(t), wℓo(t), λI(t), ηI(t), ηM (t)
)

, constructed as in the previous subsection. In
order to prove optimality, two conditions remain to be verified: the jump conditions
(101) and the positivity restrictions in (106) and (107) . Because m ≤ m∗, the
jump condition (101) is satisfied. Also, because whn(t) is a decreasing function of
time, whn(0) ∈ [0, δ1/(r + ρ + γ)] and whn(t2) = 0, it follows that, at each time,
whn(t) ∈ [0, δ1/(r + ρ+ γ)], and therefore that wℓo(t) ≥ 0.

In particular, the first-order conditions are solved by the multipliers whn(t), wℓo(t),
λI(t), ηI(t), and ηM (t). This proves Proposition 6. The inventory-accumulation
period ∆∗ and the breaking times (t∗1, t

∗
2) of Theorem 1 are found as follows. First,

∆∗ = φ1(m
∗) + φ2(m

∗). Then, simple algebraic manipulations show that b(m) ≥ 0
if and only if

e(r+ρ)
(

φ1(m)+φ2(m)
)

≤ 1 +
δ1(r + ρ)

δ2γu + (δ2 − δ1)(r + ρ+ γd)
. (118)

If m∗ < m̄, then (118) holds with equality at m∗, and if m∗ = m̄, it holds with
inequality. This is equivalent to the formula of Theorem 1. Then, given ∆∗, the first
breaking time t∗1 is a solution of

H(t∗1, t
∗
1 + ∆∗) = 0, (119)

and manipulations of (64) give the analytical solution of Theorem 1.
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B.4 Proof of Proposition 3

The proof uses the path-comparison result of Corollary 2. The optimal allocation
is denoted

(

µ∗(t), I∗(t), u∗(t)
)

. The multipliers associated with this allocation are
denoted

(

whn(t), wℓo(t), λI(t), ηI(t)
)

. These are continuous. Let’s consider another
allocation

(

µ(t), I(t), u(t)
)

which achieves the optimum. Corollary 2 implies that

∫ +∞

0
e−rt

(

whn(t)
(

ρµhn(t) − uh(t)
)

+ wℓo(t)
(

ρµℓo(t) − uℓ(t)
)

+ ηI(t)I(t)
)

dt = 0.

Each term in the integrand is positive, and therefore is equal to zero, almost every-
where. Then, because ηI(t)I(t) = 0, it must be that uh(t) = uℓ(t) almost everywhere
in [0, t1] ∪ [t2,+∞). In [0, t1], whn(t) > 0 and therefore uh(t) = ρµhn(t) = uℓ(t) al-
most everywhere. In [t2,+∞), wℓo(t) > 0 and therefore uℓ(t) = ρµℓo(t) = uh(t)
almost everywhere. Lastly, in [t1, t2], both whn(t) > 0 and wℓo(t) > 0, implying
that uh(t) = ρµho(t), and uℓ(t) = ρµℓn(t), almost everywhere. Therefore, the alloca-
tion

(

µ(t), I(t), u(t)
)

is equal to
(

µ∗(t), I∗(t), u∗(t)
)

, almost everywhere. This proves
Proposition 3.

B.5 Proof of Proposition 4

From Theorem 1, the length of the inventory accumulation period is
∆∗ = min{D(x), ∆̄}, where

D(x) =
1

r + ρ
log

(

1 +
δ1(r + ρ)

δ2γu + (δ2 − δ1)(r + ρ+ γd)

)

. (120)

The function D( · ) is clearly increasing in δ1, decreasing in δ2, γd and γu. It remains
to show that it is also decreasing in r and ρ. Holding fixed (δ1, δ2, γu, γd), and letting
z ≡ r + ρ, one can write

D(x) =
1

z
log(1 + α(z)) ≡ η(z). (121)

where, α(z) = z/(a+ bz), for some (a, b) ∈ R
2
+. The first derivative of η( · ) is

dη

dz
= − 1

z2

(

log
(

1 + α(z))
)

− zα′(z)
1 + α(z)

)

≡ − 1

z2
β(z), (122)

where α′(z) denotes dα/dz. In turn,

dβ

dz
= −z d

dz

(

α′(z)
1 + α(z)

)

. (123)

Since α′(z)/
(

1 +α(z)
)

= a/(a+ bz)/
(

a+ (1 + b)z
)

is decreasing for z ≥ 0, it follows
that that dβ/dz ≥ 0. Since β(0) = 0, β(z) ≥ 0. Therefore, from (122), dη/dz ≤ 0.
This establishes that D( · ) is decreasing in r and ρ.
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B.6 Proof of Proposition 5

The maximum inventory position is reached at time t∗m. Theorem 1 implies that
∆∗ = t∗2 − t∗1 → 0, as ρ→ +∞. Since t∗1 < t∗m < ts < t∗2, it also implies that t∗m → ts,
as ρ→ +∞. Using the function ψ( · ) of (68), one can write

t∗m = −1

γ
log

(

1 +
s−m∗

y

)

. (124)

Since (124) does not depend on ρ, it follows that m∗ → 0 as ρ→ +∞.

C Market Equilibrium

This Appendix proves the various implementation results of the text.

C.1 Proof of Theorem 2 and Proposition 7

The idea of the proof is to identify equilibrium objects with multipliers of constrained-
optimal allocations. The current value Lagrangian for the representative market-
maker’s problem is

L(t) = c(t) + λ̂I(t)
(

uℓ(t) − uh(t)
)

+λ̂a(t)
(

ra(t) + (1 − δ2)I(t) + p(t)(uh(t) − uℓ(t)) − c(t)
)

+η̂I(t)I(t) + η̂a(t)a(t) + ŵc(t)c(t), (125)

where δ2 is set to 1 in the case of Proposition 7. Following Corollary 1, the first-order
sufficient conditions are

1 + ŵc(t) = λ̂a(t) (126)

λ̂I(t) = λ̂a(t)p(t) (127)

rλ̂I(t) = (1 − δ2)λ̂a(t) + η̂I(t) +
˙̂
λI(t) (128)

˙̂
λa(t) = −η̂a(t) (129)

ŵc(t) ≥ 0 and ŵc(t)c(t) = 0 (130)

η̂I(t) ≥ 0 and η̂I(t)I(t) = 0 (131)

η̂a(t) ≥ 0 and η̂a(t)a(t) = 0 (132)

λ̂a(t
+) − λ̂a(t

−) ≤ 0 if a(t) = 0, (133)

together with the transversality conditions

lim
t→+∞

λx(t)x(t)e
−rt = 0, (134)
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for x ∈ {I, a}. The Bellman equations for the reservation values (see Section D.3)
are

r∆Vℓ(t) = 1 − δ1 + γu
(

∆Vh(t) − ∆Vℓ(t)
)

+ ρ
(

p(t) − ∆Vℓ(t)
)

+ ∆V̇ℓ(t)(135)

r∆Vh(t) = 1 + γd
(

∆Vℓ(t) − ∆Vh(t)
)

− ρ
(

∆Vh(t) − p(t)
)

+ ∆V̇h(t). (136)

The optimality conditions are

p(t) − ∆Vℓ(t) ≥ 0 and
(

p(t) − ∆Vℓ(t)
)(

ρµℓo(t) − uℓ(t)
)

= 0. (137)

∆Vh(t) − p(t) ≥ 0 and
(

∆Vh(t) − p(t)
)(

ρµhn(t) − uh(t)
)

= 0 (138)

and the transversality conditions are

lim
t→+∞

∆Vi(t)e
−rt = 0, (139)

for i ∈ {h, ℓ}. One proves Theorem 2 and Proposition 7 as follows. One first
solves for constrained-optimal allocations with inventory bound M ∈ [0,m∗]. This
provides a buffer allocation and a collection

(

whn(t), wℓo(t), λI(t), ηI(t), ηM (t)
)

of
multipliers, solving a system (85)-(95) of first-order sufficient conditions. Then one
let λℓo(t) = λI(t) − wℓo(t) and λhn(t) = −λI(t) − whn(t). Direct comparison shows
that a solution of the system (126)-(139) of equilibrium equations is

p(t) = λI(t) (140)

λ̂a(t) = 1 +

(

λI(t
+
m)

λI(t
−
m)

− 1

)

I{t<tm} (141)

η̂a(t) = 0 (142)

λ̂I(t) = λ̂a(t)λI(t) (143)

η̂I(t) = λ̂a(t)ηI(t) (144)

ŵc(t) = λ̂a(t) − 1 (145)

∆Vℓ(t) = λℓo(t) (146)

∆Vh(t) = −λhn(t), (147)

together with the corresponding inventory-constrained allocation, and some con-
sumption process c(t) such that

c(t) = 0 for t ≤ t2 (148)

c(t) = ra(t2) for t ≥ t2. (149)
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In this setting, other consumption streams would be optimal. In particular, it is
enough that c(t) = 0 for t ∈ [0, tm] and that limt→+∞ a(t)e−rt = 0.

If M = m∗ and δ2 ≤ 1, one chooses some large a(0). If M ≤ m∗ and δ2 = 1,
one lets a(0) = MλI(t

−
m)e−rtm , which implies that a(tm) = 0, meaning that (133) is

satisfied.
To conclude the optimality verification argument for a marketmaker, one needs

to check that a(t) ≥ 0 for all t ≥ 0. This is equivalent to a(t)e−rt ≥ 0, for all
t ≥ 0. If M = m∗ and δ2 ≤ 1, this is clearly verified provided that a(0) is chosen
sufficiently large. If, on the other hand, M ≤ m∗ and δ2 = 1, one notes that, for
t ∈ [t1, t2], d/dt

(

a(t)e−rt
)

= −p(t)İ(t) and İ(tm) = 0. This implies that that a(t)e−rt

is continuously differentiable and achieves its minimum at t = tm. By construction
a(tm) = 0.

D Investors’ Bellman Equations

This Appendix defines the stochastic control problem faced by an individual in-
vestor. Then, it verifies that the continuation value equations (49) and (50), the
transversality condition (51), together with the positivity restrictions (52) and (53),
are jointly sufficient for optimality.

D.1 The Investor’s Problem

Some investor is fixed. At each time, his marginal utility for holding asset is some
θ(t) ∈ {1, 1− δ1}, and he holds a quantity q(t) ∈ [0, 1] of the asset. Two measurable
counting process N1(t) and N2(t) count the switching times of the marginal-utility
process θ(t) and the contact times with marketmakers, respectively. The sequence
of contact and switching times is denoted by T0 = 0 < T1 < . . . Tn . . . The internal
history of (filtration generated by)

(

N1(t), N2(t)
)

is denoted {FN
t , t ≥ 0}.

Definition 6 (Type Process.) A type process is some FN
t -adapted, {1, 1− δ1} ×

[0, 1]-valued process σ(t) =
(

θ(t), q(t)
)

. An admissible control is some FN
t -predictable,

[0, 1]-valued process Q(t). The set of admissible controls is denoted by Q.

Given some control Q ∈ Q, the type process σ(t) =
(

θ(t), q(t)
)

evolves according to
the stochastic differential equation (SDE)

dθ(t) =
(

2 − δ1 − 2θ(t−)
)

dN1(t) (150)

dq(t) =
(

Q(t) − q(t−)
)

dN2(t), (151)

meaning that the investor switches type when dN1(t) = 1, and rebalances his holding
to the quantity Q(t) when dN2(t) = 1. The associated cumulative consumption
process evolves according to the SDE

dCQ(t) = θ(t)q(t) dt− p(t) dq(t), (152)
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where, at time t, the investor buys or sells the asset at price p(t). Lastly, the
associated probability P on (Ω,F) is chosen such that

(

N1(t), N2(t)
)

admits the
P −FN intensity

(

γ(θ(t−)) , ρ
)

, where γ(1) = γd and γ(1 − δ1) = γu.

Definition 7 (Investor’s Problem.) The lifetime utility of an investor applying
the admissible control Q ∈ Q is

v(Q) = EP

(∫ +∞

0
e−rtdCQ(t)

)

. (153)

The investor’s problem is to attain the maximum lifetime utility

V = sup
Q∈Q

v(Q). (154)

D.2 Dynamic Programming

The investor’s Hamilton-Jacobi-Bellman (HJB) equation is

rJ(t, θ, q) = max
Q∈[0,1]

{

θq + γ(θ)
(

J(t, 2 − δ1 − θ, q) − J(t, θ, q)
)

+ρ
(

J(t, θ,Q) − J(t, θ, q) − p(t)(Q− q)
)

+
∂J

∂t
(t, θ, q)

}

. (155)

Definition 8 (Admissible Feedback.) An admissible feedback is some function
F : R+ × {1, 1 − δ1} × [0, 1] → [0, 1].

The following proposition, adapted from Theorem VII, T1 in Brémaud [1981], pro-
vides a sufficient condition for optimality.

Proposition 9 (Sufficiency.) Suppose there exists a function J(t, θ, q) which is
bounded, continuous and piecewise continuously differentiable with respect to time,
and which solves the HJB equation (155). Then,

V ≤ J
(

0, θ(0), q(0)
)

, (156)

for all
(

θ(0), q(0)
)

∈ {1, 1 − δ1} × [0, 1]. Suppose further that, given J(t, θ, q), the
maximum in (155) is achieved by some admissible feedback F (t, θ, q). Then, the
investor’s problem is solved by the admissible control Q such that, at each time

Q(t) = F
(

t, θ(t−), q(t−)
)

. (157)

Proof. One fixes some admissible control Q ∈ Q. The associated type process
is denoted σ(t). To simplify the notations, J(t, θ, q) is denoted J(t, σ), and the
following predictable processes are defined
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σ1(t) ≡
(

2 − δ1 − θ(t−), q(t−)
)

(158)

σ2(t) ≡
(

θ(t−), Q(t)
)

. (159)

The process σ1(t) (σ2(t)) is the new type of an investor with control Q(t) who, at
time t, switches marginal utility (establishes contact with a marketmaker). One can
write:

e−rtJ
(

t, σ(t)
)

= J
(

0, σ(0)
)

+
∑

0<Tn ≤t

(

e−rTnJ
(

Tn, σ(Tn)
)

− e−rTn−1J
(

Tn−1, σ(Tn−1)
)

)

+ e−rtJ
(

t, σ(τt)
)

− e−rτtJ
(

τt, σ(τt)
)

, (160)

where τt = sup{Tn, n ≥ 0 : Tn ≤ t}. Equation (160) can be manipulated as follows:

e−rtJ
(

t, σ(t)
)

= J
(

0, σ(0)
)

+
∑

0<Tn≤t
e−rTn

(

J
(

Tn, σ(Tn)
)

− J
(

Tn, σ(Tn−1)
)

)

+
∑

0<Tn≤t

(

e−rTnJ
(

Tn, σ(Tn−1)
)

− e−rTn−1J
(

Tn−1, σ(Tn−1)
)

+

(

e−rtJ
(

t, σ(τt)
)

− e−rτtJ
(

τt, σ(τt)
)

)

.

The second term on the right-hand side collects jumps of the value function at
switching and contact times. These can be rewritten using the two predictable pro-
cesses σ1(t) and σ2(t). The third and the fourth terms collect the time variation of
the value function between switching and contact times, when the type process stays
constant. Since the value function is continuous and piecewise continuously differ-
entiable with respect to time, these can be written as the integral of ∂/∂t

(

e−rtJ(t)
)

.
This implies that
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e−rtJ
(

t, σ(t)
)

= J(0) +

∫ t

0
e−rz

(

J
(

z, σ1(z)
)

− J
(

z, σ(z−)
)

)

dN1(z)

+

∫ t

0
e−rz

(

J
(

z, σ2(z)
)

− J
(

z, σ(z−)
)

)

dN2(z)

+

∫ t

0

∂

∂t

(

e−rzJ
(

z, σ(z)
)

)

dz

= J(0) +

∫ t

0
e−rz

(

J
(

z, σ1(z)
)

− J
(

z, σ(z−)
)

)

(

dN1(z) − γ(θ(z−)) dz
)

+

∫ t

0
e−rz

(

J
(

z, σ2(z)
)

− J
(

z, σ(z−)
)

)

(

dN2(z) − ρ dz
)

+

∫ t

0

[

−rJ
(

z, σ(z)
)

+
∂J

∂t

(

z, σ(z)
)

+ γ(θ(z−))

(

J
(

z, σ2(z)
)

− J
(

z, σ(z−)
)

)

+ρ

(

J
(

z, σ1(z)
)

− J
(

z, σ(z−)
)

)]

dz, (161)

Adding
∫ t

0 e
−rzdCQ(z) to both sides gives

∫ t

0
e−rzdCQ(z) + e−rtJ(t) (162)

= J(0) +

∫ t

0
e−rz

(

J
(

z, σ1(z)
)

− J
(

z, σ(z−)
)

)

(

dN1(z) − γ(θ(z−)) dz
)

+

∫ t

0
e−rz

(

J
(

z, σ2(z)
)

− J
(

z, σ(z−)
)

)

(

dN2(z) − ρ dz
)

−
∫ t

0
e−rzp(z)

(

Q(z) − q(z−)
)(

dN1(z) − ρ dz
)

+

∫ t

0

[

−rJ
(

z, σ(z)
)

+
∂J

∂t

(

z, σ(z)
)

+ γ(θ(z−))

(

J
(

z, σ1(z)
)

− J
(

z, σ(z−)
)

)

+q(z)θ(z) + ρ

(

J
(

z, σ2(z)
)

− J
(

z, σ(z−)
)

− p(z)
(

Q(z) − q(z−)
)

)]

dz.

Because J is bounded, and because σ1(z), σ2(z), σ(z−), Q(z), and q(z−) are FN
t -

predictable processes, it follows by Theorem II, T8 in Brémaud [1981] that the first
three integrals on the right-hand side of (162) are martingale. The last integral on
the right-hand side of (162) is negative because J( · ) solves the Bellman equation.
Taking expectations on both sides gives

EP

(∫ t

0
e−rzdCQ(z) + J(t)e−rt

)

≤ J(0), (163)

with equality forQ(t) = F
(

t, θ(t−), q(t−)
)

. Letting t go to infinity shows that v(Q) ≤
J(0), with equality for Q(t) = F

(

t, θ(t−), q(t−)
)

. This proves the proposition.
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D.3 Reservation Values and Value Function

This subsection constructs a solution of the HJB equation (155) using the reservation
values ∆Vℓ(t) and ∆Vh(t) of investors. These solve

r∆Vℓ(t) = 1 − δ1 + γu
(

∆Vh(t) − ∆Vℓ(t)
)

+ ρ
(

p(t) − ∆Vℓ(t)
)

+ ∆V̇ℓ(t)(164)

r∆Vh(t) = 1 + γd
(

∆Vℓ(t) − ∆Vh(t)
)

− ρ
(

∆Vh(t) − p(t)
)

+ ∆V̇h(t), (165)

and are assumed to satisfy the transversality condition

lim
T→+∞

e−rT∆Vj(T ) = 0, (166)

for j ∈ {ℓ, h}, as well as the positivity restrictions

∆Vℓ(t) ≤ p(t) ≤ ∆Vh(t). (167)

Given these, one solves the ODE

rVℓn(t) = γu
(

Vhn(t) − Vℓn(t)
)

+ V̇ℓn(t) (168)

rVhn(t) = γd
(

Vℓn(t) − Vhn(t)
)

+ ρ
(

∆Vh(t) − p(t)
)

+ V̇hn(t). (169)

Subtracting (168) from (169), integrating, and using the transversality condition, I
find that

Vhn(t) − Vℓn(t) =

∫ +∞

t

e−(r+γ)(z−t)ρ
(

∆Vh(z) − p(z)
)

dz. (170)

And, replacing (170) in (168), that

Vℓn(t) =

∫ +∞

t

e−r(z−t)γu
(

Vhn(t) − Vℓn(t)
)

dz. (171)

Then, it is easy to check that the HJB equation is solved by the value function

J(t, 1, q) = Vhn(t) + q∆Vh(t) (172)

J(t, 1 − δ1, q) = Vℓn(t) + q∆Vℓ(t). (173)

with some feedback F such that F (t, 1, q) = 1 if p(t) < ∆Vh(t), F (t, 1, q) ∈ [0, 1]
if p(t) = ∆Vh(t), F (t, 1 − δ1, q) = 0 if p(t) > ∆Vℓ(t), and F (t, 1 − δ1, q) ∈ [0, 1] if
p(t) = ∆Vℓ(t).
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E Maximum Principle

This Appendix defines a concave optimal control problem and provides sufficient
condition for optimality. The problem includes as special cases all the planner’s and
marketmakers’ problems considered in the text. Two features require some care:
first, there are state-variable inequality constraints and second, at some Poisson ar-
rival time, there is an uncontrollable jump of the state variable (this can be used
to treat the case of a fully anticipated crash). The proofs use standard optimality-
verification arguments from Seierstad and Sydsæter [1977], Brémaud [1981], and
Kamien and Schwartz [1991].

E.1 An Optimal Control Problem

Some probability space (Ω,F , P ) is fixed, as well as some counting process N(t),
with initial condition N(0) = 0 and admitting the P -intensity

κ(t) = κI{N(t)=0}, (174)

for some κ ≥ 0. In other words, the process N(t) jumps only once (almost surely),
at some exponentially distributed stopping time τ . The internal history of (filtration
generated by) N(t) is denoted {FN

t , t ≥ 0}. Lastly, y(t) ∈ R
ny is some bounded FN

t -
adapted piecewise continuous process (this process can be, for instance, a candidate
equilibrium price). At each time, the economy is described by some state variable
x(t) ∈ R

nx , with initial condition

x(0) = x0, (175)

and evolving according to the ODE

ẋ(t) = g
(

x(t), u(t), y(t)
)

, (176)

where u(t) ∈ R
nu is some control process, and g : R

nx+nu+ny → R
nx is some

continuously differentiable function. The state and the control must satisfy the
mixed constraint

h
(

x(t), u(t), y(t)
)

≥ 0, (177)

where h : R
nx+nu+ny → R

m is some continuously differentiable function. The state
must satisfy the constraint

k
(

x(t), y(t)
)

≥ 0, (178)
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where k : R
nx+ny → R

s is some continuously differentiable function. Lastly, there is
an uncontrollable jump of the state at time τ ,

x(τ+) = Q(x(τ−), y(τ−)), (179)

where Q : R
nx+ny → R

nx is some continuously differentiable function.

Definition 9 (State-Control Pair) . A state-control pair is some FN
t -adapted

piecewise continuous R
nx+nu-valued process

(

x(t), u(t)
)

. A state-control pair is fea-
sible if it satisfies the constraints (175) to (179).

The dynamic optimization problem is to choose some feasible state-control pair (x, u)
in order to maximize the objective

E0

(∫ +∞

0
e−rtf

(

x(t), u(t), y(t)
)

dt

)

, (180)

where f : R
nx+nu+ny → R

m is some continuously differentiable function.

E.2 Sufficient Conditions

In order to simplify the exposition, the following notations are adopted. Let z(t)
and z∗(t) be two R

nz -valued processes, and let θ : R
nz → R

mz . Then, θ(t) denotes
θ
(

z(t)
)

, and θ∗(t) denotes θ
(

z∗(t)
)

. Also, the time index is omitted whenever there
is no ambiguity. For two vectors z and z∗ in R

nz , z · z∗ denotes the inner product
∑nz

i=1 ziz
∗
i . Lastly, the current-value Lagrangian is

L
(

x, u, y
)

= f(x, u, y) + λ · g(x, u, y) + w · h(x, u, y) + η · k(x, y), (181)

where x ∈ R
nx , u ∈ R

nu , y ∈ R
ny , λ ∈ R

nx , w ∈ R
m, and η ∈ R

s.

Theorem 3 (Sufficient Condition.) Let
(

x∗(t), u∗(t)
)

be a feasible state-control
pair. If all feasible x(t) are bounded. If f , g, h, k and Q are concave in (x, u).
If there exists a piecewise continuously differentiable multiplier process λ(t) ∈ R

nx,
some piecewise continuous multiplier processes w(t) ∈ R

m, η(t) ∈ R
s, and some

piecewise continuous predictable processes ∆(t) ∈ R
nx and b(t) ∈ R

s such that

(i) Maximization: At each continuity point of u∗(t) and λ(t), for all j ∈ {1, . . . nu}

0 =
∂L∗

∂uj
(t). (182)
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(ii) Multipliers: At each continuity point of u∗(t) and λ(t), for all i ∈ {1, . . . , nx},

rλi(t) =
∂L∗

∂xi
(t) + κ(t)∆i(t) + λ̇i(t), (183)

and λi(t) ≥ 0 except if, for all y ∈ R
ny , the function gi(x, u, y) is affine in

(x, u).

(iii) Jumps: At any discontinuity point t of λ(t), for all i ∈ {1, . . . , nx},

t 6= τ ⇒ λi(t
+) − λi(t

−) = −
s
∑

l=1

bl(t)
∂k∗l
∂xi

(t) (184)

t = τ ⇒
nx
∑

p=1

λp(t
+)
∂Q∗

p

∂xi
(t−) − λi(t

−) = ∆i(t) (185)

and, for all p ∈ {1, . . . , nx}, λp(t+) ≥ 0 except if, for all y ∈ R
ny , the function

Qp(x, y) is affine in x.

(iv) Transversality: for all i ∈ {1, . . . , nx},

lim
t→+∞

E0

(

λi(t)e
−rt) = 0. (186)

(v) Positivity and Complementary Slackness

wp(t) ≥ 0 and wp(t)h
∗
p(t) = 0 (187)

ηl(t) ≥ 0 and ηl(t)k
∗
l (t) = 0 (188)

bl(t) ≥ 0 and bl(t)k
∗
l (t) = 0 (189)

for all p ∈ {1, . . . ,m} and all l ∈ {1, . . . , s}.

Then
(

x∗(t), u∗(t)
)

is optimal.

E.3 Proof of Theorem 3

Let
(

x∗(t), u∗(t)
)

be some state-control pair satisfying the condition of the Theorem,
and let

(

x(t), u(t)
)

be some other feasible state-control pair. Having fixed some T ≥
0, t1 < t2 < . . . < tK−1 denotes the discontinuity points of

(

x∗(t), u∗(t), λ(t), x(t), u(t))
in the interval [0, T ], t0 ≡ 0 and tK ≡ T . One considers

∫ T

0
e−rt

(

f∗(t) − f(t)
)

dt =

K
∑

k=1

∫ tk

tk−1

e−rt
(

f∗(t) − f(t)
)

dt

≥
K
∑

k=1

∫ tk

tk−1

e−rt





nx
∑

i=1

∂f∗

∂xi
(x∗i − xi) +

nu
∑

j=1

∂f∗

∂uj
(u∗j − uj)



 dt, (190)
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where the inequality follows from the concavity of f . Then, with equation (182)
and (183), the partial derivatives of f can be written, for all j ∈ {1, . . . , nu} and all
i ∈ {1, . . . , nx},

∂f∗

∂uj
(t) = −λ(t) · ∂g

∗

∂uj
(t) − w(t) · ∂h

∗

∂uj
(t) (191)

∂f∗

∂xi
(t) = −λ̇i(t) + rλi(t) (192)

−λ(t) · ∂g
∗

∂xi
(t) − w(t) · ∂h

∗

∂xi
(t) − η(t) · ∂k

∗

∂xi
(t) − κ(t)∆i(t),

Furthermore, integration by part shows that

∫ tk

tk−1

e−rt
(

−λ̇i(t) + rλi(t)
)

(x∗i (t) − xi(t)) dt

=

∫ tk

tk−1

e−rtλi(t)
(

g∗i (t) − gi(t)
)

dt−
[

λi(t)e
−rt (x∗i (t) − xi(t))

]tk

tk−1
, (193)

for all k ∈ {1, . . .K} and all i ∈ {1, . . . , nx}. Substituting (191), (192) and (193), in
equation (190), one finds that (190) is the sum of six terms. The first term is

∫ T

0
e−rtλ(t) ·



g∗(t) − g(t) −
nx
∑

i=1

∂g∗

∂xi
(x∗i − xi) +

nu
∑

j=1

∂g∗

∂uj
(u∗j − uj)



 dt. (194)

This term is positive if either one of the following conditions are satisfied: if g( · ) is
concave and λ positive or if, for all y, g(x, u, y) is affine in (x, u), in which case it is
equal to zero. The second term is

−
∫ T

0
e−rtw(t) ·





nx
∑

i=1

∂h∗

∂xi
(x∗i − xi) +

nu
∑

j=1

∂h∗

∂uj
(u∗j − uj)



 dt

≥ −
∫ T

0
e−rtw(t) ·

(

h∗(t) − h(t)
)

dt (195)

≥
∫ T

0
e−rtw(t) · h(t) dt ≥ 0 (196)

where the first inequality (195) follows from the concavity of h and the positivity
of w(t). The second inequality (196) follows from the complementary-slackness
condition (187). Similarly, the third term is
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−
∫ T

0
e−rtη(t) ·

nx
∑

i=1

∂k∗

∂xi
(x∗i − xi) dt ≥ −

∫ T

0
e−rtη(t) ·

(

k∗(t) − k̂(t)
)

dt

≥
∫ T

0
e−rtη(t) · k(t) dt ≥ 0. (197)

As before, the first inequality follows from the concavity of k and the positivity of
η(t). The second inequality (197) follows from the complementary-slackness con-
dition (188). The fourth term collects the jumps of λ(t) at discontinuity points
t 6= τ

∑

tk 6=τ
e−rtk

(

λ(t+k ) − λ(t−k )
)

·
(

x∗(tk) − x(tk)
)

(198)

= −
∑

tk 6=τ
e−rtkb(tk) ·

nx
∑

i=1

∂k∗

∂xi
(x∗i − xi)

≥ −
∑

tk 6=τ
e−rtkb(tk) ·

(

k∗(tk) − k(tk)
)

≥
∑

tk 6=τ
b(tk) · k(tk)e−rtdt ≥ 0.

The first equality follows from the jump condition (184). The second inequality
follows from the concavity of k and the positivity of b. And the third inequality
follows from the complementary-slackness condition (189).

The fifth term collects the jump of λ(t) at τ and the last term in (192). It can
be written

∫ T

0
e−rt

(

λ(t+) ·
(

x∗(t+) − x(t+)
)

− λ(t−) ·
(

x∗(t−) − x(t−)
)

)

dN(t)

−
∫ T

0
e−rtκ(t)∆(t) ·

(

x∗(t) − x(t)
)

dt. (199)

The term (199) can be manipulated as follows. First, one uses (179) and the con-
cavity of Q and the positivity of λ(t+) (or, alternatively, the fact that Q is affine in
x) to write

λ(t+) ·
(

x∗(t+) − x(t+)
)

− λ(t−) ·
(

x∗(t−) − x(t−)
)

≥
(

λ(t+)

nx
∑

i=1

∂Q∗

∂xi
(t−) − λ(t−)

)

·
(

x∗(t−) − x(t−)
)

. (200)
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Then, one substitutes the jump conditions (185) and collect terms to obtain that
(199) is greater than

∫ T

0
e−rt∆(t) ·

(

x∗(t−) − x(t−)
)(

dN(t) − κ(t)dt
)

. (201)

Since ∆(t) ·
(

x∗(t−)−x(t−)
)

is a bounded FN
t -predictable process on [0, T ], it follows

by theorem II, T8 in Brémaud [1981] that (201) is a martingale. This implies that
the expected value of (199) is greater than zero. The last and sixth term is

−e−rTλ(T ) ·
(

x∗(T ) − x(T )
)

. (202)

Collecting the six terms just studied and taking expectations, one finds

E0

(∫ T

0
e−rt

(

f∗(t) − f(t)
)

dt

)

≥ −E0

(

e−rTλ(T ) ·
(

x∗(T ) − x(T )
))

. (203)

The assumption that all feasible states are bounded, and the transversality condition
(186) imply that

E0

(∫ +∞

0
e−rt

(

f∗(t) − f(t)
)

dt

)

≥ 0. (204)

establishing the Theorem.

E.4 Two Corollaries

Theorem 3 assumed that all feasible states are bounded, which is enough to prove
optimality in all planner’s problems under consideration. Proving optimality in
Section 5 requires, however, alternative assumptions

Corollary 1 . Let
(

x∗(t), u∗(t)
)

be a feasible state-control pair. Assume that all
assumptions of Theorem 3 are satisfied except the first. Namely, instead of assuming
that all feasible states are bounded, assume that there exists some B ∈ R

nx such that,
for all i ∈ {1, . . . , nx}

(i) limT→+∞ e−rTλi(T )
(

x∗i (T ) −Bi
)

= 0, almost surely.

(ii) For all feasible states x(t),

either xi(t) ≤ Bi and lim sup
T→+∞

λi(T ) < 0, a.s. (205)

or xi(t) ≥ Bi and lim inf
T→+∞

λi(T ) > 0, a.s. (206)
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Then
(

x∗(t), u∗(t)) is optimal

Proof. The same proof can be applied, with one slight difference: term (202) has to
be written

nx
∑

i=1

e−rT
(

− λi(T )
(

x∗i (T ) −Bi
)

+ λi(T )
(

xi(T ) −Bi
)

)

. (207)

The first term goes to zero almost surely, and the second term is positive for T large
enough, implying (204).

In the proof of Theorem 3, all inequalities implied by concavity become equalities
when the functions f , g, h, k, and Q are affine in (x, u). This remark implies the
following “path-comparison” corollary. Specifically, given a feasible state-control
pair

(

x∗(t), u∗(t)
)

, one constructs multipliers satisfying the conditions of Theorem
3, except the positivity restrictions and the jump conditions (184). These multipliers
can be used to compare the value of the objective at

(

x∗(t), u∗(t)
)

with its value at
some other feasible pair

(

x(t), u(t)
)

.

Corollary 2 (Path Comparison.) . Let
(

x∗(t), u∗(t)
)

and
(

x(t), u(t)
)

be two fea-
sible state-control pairs. If both x∗(t) and x(t) are bounded. If f , g, h, k and Q
are affine in (x, u). If there exists multiplier processes (λ(t), w(t), η(t)) satisfying
all conditions of Theorem 3 except the jump condition (184) and the positivity of
(w(t), η(t)). Then

E0

(∫ +∞

0
e−rt (f∗(t) − f(t)) dt

)

= E0

(∫ +∞

0
e−rt

(

w(t)h(t) + η(t)k(t)
)

dt

)

+ E0





∑

tk 6=τ

(

x∗(tk) − x(tk)
)

·
(

λ(t+k ) − λ(t−k )
)

e−rtk



 , (208)

where t1, t2, . . . are the discontinuity points of λ(t).

F Capital Market Imperfection

This Appendix extends the model of this paper by studying a capital market im-
perfection associated with moral hazard. The key impact of such an imperfection is
to increase the cost of lending to marketmakers. In equilibrium, in order to cover
these costs, marketmakers must make positive profit. This implies in turns that
the aggregate quantity of marketmaking capital must be less than optimal. In the
environment presented here, welfare can be improved by subsidizing the loans made
to marketmakers. During financial disruptions, Federal Reserves take actions which
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effectively subsidize bank lending. For instance, they offer cheap discount window
borrowing and relax overdraft penalties (see, for instance, Parry [1997] or Wigmore
[1998]).

The Appendix is organized as follows. The first Section introduces some nota-
tions. The second Section studies an environment with moral hazard, and the third
an environment with adverse selection.

F.1 The Economic Environment

Let us consider the following extension of the model presented in Section 5. There
is a unit measure of competitive banks (owned by investors), each endowed with a
quantity x̄ of capital. Marketmakers, on the other hand, are wealthless and have
limited-liability. At time zero, when the crash occurs, banks and marketmakers are
matched in pairs. The bank makes a take-it-or-leave-it offer to the marketmaker,
consisting in a loan size a ∈ [0, x̄], and a repayment Ra (in present value), to be
made after the crash. Suppose that the marketmaker accepts the contract. The
analysis of Section 5 shows that, in equilibrium, the marketmaker’s optimal strategy
is to spend all her capital between some time t1 and some time tm.19 At time tm,
the asset price jumps from p(t−m) to p(t+m) ≥ p(t−m). As a result of this upward jump,
the marketmaker intertemporal profit is

(

p(t+m)

p(t−m)
−R

)

a. (209)

The size p(t+m)/p(t−m) of the jump is implicitly a function of the aggregate market-
making capital x ∈ [0, x̄]. In this Appendix, I make this dependence explicit and
write (209) as

(

1 + F (x) −R
)

a, (210)

for some positive function F ( · ) of the aggregate marketmaking capital. I refer to
F (x) as the return on marketmaking capital. Of course, a bank profit is

(R− 1) a+ x̄. (211)

The analysis of Section 5 also shows that equilibrium social welfare is We(x) + x̄,
for some function of the aggregate marketmaking capital x ∈ [0, x̄]. The analysis of
this Appendix requires the following result, shown in Section F.3:

Lemma 3. If x̄ is small enough, then the function We ( respectively F ) is strictly
increasing (decreasing) on the interval [0, x̄].

19The precise timing is irrelevant as long as all the capital is spent during this time interval.
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It is also known that, if x is large enough, then We(x) is maximized and F (x) is
equal to zero. Numerical calculations suggest that, for x ∈ R+, these two functions
are weakly increasing and decreasing, respectively.

Perfect Capital Market

Since We(x) is an increasing function, the socially-optimal allocation of capital is
that marketmakers receive all the capital at time zero. This allocation is imple-
mented by the trading arrangement described in the previous Section. The bank
choose a loan size a ∈ [0, x̄] and a repayment R in order to maximize profit (211),
subject to the marketmaker’s limited liability

1 + F (x) −R ≥ 0. (212)

Clearly, it is optimal for the bank to offer R = 1 +F (x), which is the largest repay-
ment consistent with limited liability. Substituting this into the bank’s objective,
one defines an equilibrium as some x∗ ∈ [0, x̄] such that

x∗ ∈ argmax
a∈[0,x̄]

{

aF (x∗) + x̄

}

. (213)

Clearly, x∗ = x̄ is an equilibrium.

F.2 Moral Hazard

This subsection studies a simple capital market imperfection based on moral hazard.
It implies that subsidizing bank loans to marketmakers improves social welfare.

It is assumed that, if a marketmaker borrows a quantity a, she can either “be-
have” or “shirk.” If she behaves, she trades as described in Section 5 and makes
profit (210). If she shirks, she does not provide liquidity (she passively match buy-
ers and sellers) and steals a fraction φ ∈ (0, 1) of the capital initially borrowed.
The opportunity to steal reflects, for instance, difficulties to monitor and precisely
evaluate a marketmaker’s trading strategy during financial disruptions.

Second Best

Suppose that marketmakers borrow an aggregate quantity x ∈ [0, x̄]. If all market-
makers shirk, then social welfare is

We(0) + (1 − φ)x+ φx+ x̄− x = We(0) + x̄. (214)

The first term on the left-hand side reflects the fact that, when they shirk, mar-
ketmakers do not provide liquidity. The second term is the amount of capital
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that banks can recover after the crash. The third term is the amount of capital
stolen. The last term is the amount of capital which is not lent to marketmakers
at time zero. If, on the other hand, all marketmakers behave, then social welfare
is We(x) + x̄ ≥ We(0) + x̄. Hence, welfare is always improved when marketmakers
behave. Moreover, it can be assumed without loss of generality that marketmakers
behave when they are not allocated any capital (x = 0). This implies that, for
welfare analysis, one can restrict attention to situations in which all marketmakers
behave.

A feasible anonymous capital allocation is a loan size x ∈ [0, x̄] and a repay-
ment R ∈ R+. An allocation is feasible if it satisfies the marketmaker’s incentive
compatibility and the bank’s break-even constraint

(

1 + F (x)
)

x−Rx ≥ φx (215)

Rx ≥ x, (216)

respectively (incentive compatibility implies limited liability (212)). In particular,
any allocation (x,R) ∈ [0, x̄] × R+ such that x = 0 is feasible. The second-best
program is to choose a feasible allocation maximizing We(x), subject to (215) and
(216) . One can show easily

Proposition 10. If φ ∈
[

F (x̄), F (0)
]

, then the second-best program is solved by
R = 1 and x = F−1(φ).

In words, in this second-best allocation, a marketmaker makes the smallest repay-
ment consistent with a bank breaking even, and aggregate marketmaking capital is
the largest quantity consistent with a marketmaker behaving.

Implementation

The second best allocation is implemented by the market arrangement described
earlier. The bank makes a take-it-or-leave-it offer to the marketmaker, consisting in
a loan size a ∈ [0, x̄], and a repayment R ∈ R+, in order to maximize profit (R−1) a,
subject to the marketmaker’s incentive compatibility

(

1+F (x)−R
)

a ≥ φa. Clearly,
it is optimal for the bank to offer R = 1 + F (x)− φ, which is the largest repayment
consistent with the marketmaker behaving. After substituting this into the bank’s
objective, one can define an equilibrium as some x∗ ∈ [0, x̄] such that

x∗ ∈ arg max
a∈[0,x̄]

a
(

F (x∗) − φ
)

+ x̄. (217)

Clearly, if φ ∈ [F (x̄), F (0)], the second best x = F−1(φ) is an equilibrium.

Proposition 11. If φ ∈ [F (x̄), F (0)], there exists an equilibrium whose allocation
is a second-best allocation.
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A simple way to improve the equilibrium of Proposition 11 is to subsidize bank
loans. For instance, if a “government” levies lump-sum taxes in order to finance
a small subsidy ε > 0 per unit lent, then the equilibrium aggregate marketmaking
capital is F−1(φ− ε) > F−1(φ), and welfare is improved.

The government ability to enforce tax payments is crucial for that result. Assume
that agents choose to contribute to the subsidy. This improves aggregate welfare.
Then, it would be optimal for an individual agent not to contribute and to free-ride
on the welfare improvement.

F.3 Characterization of F ( · ) and We( · )
Let us consider the constrained optimal allocations with inventory bound M = m
studied in Section A. Welfare in such an allocation can be written W (m), for
some increasing function W ( · ). This allocation is implemented in a competitive
equilibrium in which time-zero aggregate marketmaking capital is set to

X(m) = λI(t
−
m)e−rtmm, (218)

and where the gross return on marketmaking capital is

G(m) =
λI(t

+
m)

λI(t
−
m)
, (219)

with

λI(t
+
m) =

1 − δ2
r

+
1

r

(

1 − δ1γd
r + ρ+ γ

)

e−rφ2(m) (220)

λI(t
−
m) = λ(t+m) − b(m) (221)

tm = ψ(m), (222)

where φi( · ), i ∈ {1, 2}, and ψ( · ) are defined in Lemma 2 and b( · ) is defined in
equation (114). For small m > 0, the derivative of λm(t−m) with respect to m is

(

δ2 −
δ1γd

r + ρ+ γ

)

(

e−rφ2(m) − e−(r+ρ)φ2(m)
)

φ′2(m)

+

(

δ2 −
δ1(r + ρ+ γd)

r + ρ+ γ

)

e(r+ρ)φ1(m)φ′1(m). (223)

Lemma 2 shows that φi(m) = α
√
m(1+o(m)) and that φ′i(m) = α(1+o(m))/(2

√
m),

for i ∈ {1, 2}, and for some α > 0. This, together with (223), implies λm(t−m) is an
increasing function for small m. Since ψ(m) is decreasing, this implies that X(m) is
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a strictly increasing continuous function of m, for small m. Similarly, since λI(t
+
m) is

an strictly decreasing function of m, G(m) is a strictly decreasing function for small
m. Therefore, for small x, one can define

We(x) ≡ W
(

X−1(x)
)

(224)

F (x) ≡ G
(

X−1(x)
)

, (225)

which concludes the proof.
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