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Using Samples of Unequal Length in Generalized Method of

Moments Estimation

Abstract

Many applications in financial economics use data series with different starting or ending dates.

This paper describes an estimation method, based on the generalized method of moments (GMM),

which makes use of all available data for each moment condition. We introduce two asymptotically

equivalent estimators that are consistent, asymptotically normal, and more efficient asymptotically

than standard GMM. We illustrate these estimators in an application to mutual fund performance

evaluation. Both estimators are extended to general patterns of missing data, and shown to be more

efficient than estimators that ignore intervals of the data, and thus more efficient than standard

GMM.



Introduction

Many applications in financial economics involve data series that have different starting dates, or,

more rarely, different ending dates. Settings where some data series are available over a much shorter

time frame than others include estimation and testing using international data, and performance

evaluation of mutual funds. These problems represent only the most extreme examples of differences

in data length. More broadly, aggregate stock return data may be available over a longer time frame

than macroeconomic data, cash flow and earnings data, term structure data, or options data.

When data are missing as described above, common practice is to take the intersection of the

sample periods over which the data are observed. The intersection then becomes the sample period

for the study and the rest of the data are ignored. This paper introduces an alternative, based on

the generalized method of moments (GMM), that allows the researcher to make use of all of the

data available for each moment condition.1 We show, moreover, that our method is more efficient

than standard GMM, and more efficient than introducing the data from the longer series in a

“naive” way.

The problem of unequal sample lengths in financial time series was first addressed by Stambaugh

(1997).2 Stambaugh derives a maximum likelihood and a Bayesian estimator for the mean and

the variance of a joint normal distribution, assuming returns are homoscedastic and independently

distributed, in a setting where some return series start at a later date than others. Little and Rubin

(2002) also derive maximum likelihood estimators when a portion of the data is missing (generally

in non-economic applications), but their approach is similarly dependent on the specifics of the

data generating process. In contrast, our approach, because it is based on GMM, does not require

the data generating process to be normal. It can be used for dependent, stationary processes, and

it permits estimation of parameters that are related to the observed functions in non-linear ways.3

As shown in Cochrane (2001), many common estimation techniques used in finance can be seen as

1Burguete, Gallant, and Souza (1982) and Hansen (1982) describe the GMM estimator and derive its asymptotic
properties. Hansen and Singleton (1982) derive implications for estimation and testing of financial models; Brandt
(1999) derives implications for the estimation of optimal portfolio and consumption choice. See Newey and McFadden
(1994) for a survey of recent work on GMM and related estimators.

2Pastor and Stambaugh (2002a, 2002b) derive Bayesian posteriors for means and variances of mutual fund returns
using samples of unequal length, under the assumption of normality and identically and independently distributed
returns. Storesletten, Telmer, and Yaron (2004) combine a time series of macro-economic variables dating back to
1930 with the shorter Panel Study of Income Dynamics to estimate the relationship between cross-sectional variance
and recessions.

3Another strand of literature considers the problem of n independent individuals observed at up to T time periods,
where some individuals drop out of the study (see, e.g., Robins and Rotnitsky (1995)). The independence across
individuals and the fact that asymptotics are derived as n, rather than T , approaches infinity differentiates this
problem from the one considered here.
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special cases of GMM. Assumptions required for the consistency and asymptotic normality of the

standard GMM estimator are also required here. In particular, we adopt the mixing assumption

of White and Domowitz (1984) as a means of limiting the temporal dependence of the underlying

stochastic process.4

Because our method is based on GMM, the results we derive are asymptotic. Developing an

asymptotic approach to a problem of missing data may at first seem strange. After all, asymptotics

involve taking the sample size to infinity, which seems in opposition to the notion of missing data.

We argue, however, that it is no more strange than applying asymptotics in the usual setting, where

samples have the same length. In such cases, the number of data points is, of course, finite, so the

asymptotic distribution must be treated as an approximation to the true sampling distribution of

the parameters. Our asymptotic distribution can be thought of as an approximation in exactly the

same way.

So that this approximation is reasonable, care must be taken to insure that the missing data

problem does not become trivial as the sample size becomes large. For this reason, we develop

an asymptotic theory that keeps the fraction of missing data fixed as the sample size approaches

infinity. To be precise, if T denotes the length of the longer sample, we say that λT is the length

of the shorter sample, for 0 < λ ≤ 1. We hold λ constant, as T approaches infinity. This approach

has a parallel in the simulated method of moments estimation technique (see Duffie and Singleton

(1993)), where the length of the simulated series divided by the length of the observed series is

assumed to be constant as the both series lengths approach infinity.

Our initial setting supposes that some moment conditions are observed over the full data set

while others are observed over a data set that has the same ending date but a later starting date

(we later generalize this to other patterns of missing data). The two sets of moment conditions may

depend on the same or different underlying parameters. We develop two asymptotically equivalent

estimators that make use of all of the data. While general, these estimators are straightforward to

implement, as we show by illustrating our procedures in an estimation of mutual fund performance

(Section 5), and have natural and intuitive interpretations.

The first estimator (which we call the adjusted-moment estimator) uses full sample averages

to estimate the moments for which full-sample data are available, and short sample averages to

estimate moments for which only short-sample data are available. Then the moments for which

4Under stationarity, mixing is a slightly stronger condition than ergodicity. Intuitively, mixing requires that
autocovariances vanish as the lag length increases, but sufficiently slowly to allow processes with memories much
longer than finite ARMA processes.
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only the short sample is available are “adjusted” using coefficients from a regression of the short-

sample moments on the full-sample moments. This is reminiscent of an adjustment that appears in

Stambaugh (1997) and Little and Rubin (2002) but here operates in a more general context. The

second estimator, (which we call the over-identified estimator) uses the extra data available from the

full sample as a new set of moment conditions. This estimator was suggested by Stambaugh (1997)

and, in the linear context of that paper, turns out to be identical to our adjusted-moment estimator

(and the maximum-likelihood estimator proposed in that paper). In the more general context of

our paper, the two estimators are equivalent asymptotically but typically differ in finite samples.

Singleton (2004) proposes an extension of the estimator in Stambaugh (1997) that is similar to

our over-identified estimator, but does not formally show asymptotic normality or efficiency over

standard GMM. We build on this work by showing that both of our estimators are consistent and

asymptotically normal, and that both are asymptotically more efficient than standard GMM.

Our approach can be extended to many other patterns of missing data. One pattern of interest

is the case where there are more than two starting dates but all series end at the same date

(this case satisfies a condition that Little and Rubin (2002) call monotonicity). This pattern is

analyzed in detail in a maximum likelihood setting for independent and identically distributed

normal observations by Little and Rubin, and by Stambaugh (1997). Both of our estimators can be

extended not only to this case, but further, to cases where the series do not satisfy monotonicity.

The extension works for an arbitrary number of ending dates and starting dates. It is also possible to

have data missing in the middle of the sample. Despite the general nature of this problem, it is still

possible to prove that the adjusted-moment and the over-identified estimators are asymptotically

equivalent, though different in finite samples. Each preserves key properties of its counterpart

when there are only two starting dates. Moreover, we show that it is always more efficient to “add”

an interval of data, even if some series are not observed over the interval. By implication, these

generalized estimators are also more efficient than standard GMM.

The organization of the paper is as follows. The first section develops the asymptotic theory

that will be the basis for the consistency and asymptotic normality proofs. The key result in

this section is that sample averages (scaled appropriately) taken over disjoint intervals of data are

independent as the number of data points in each interval approaches infinity. This result clearly

holds when observations are independent. Even when there is dependence the result holds, provided

that the process satisfies a mixing condition in the sense of White and Domowitz (1984). Intuitively,

mixing insures that autocovariances are small at arbitrarily long lags. As the number of data points
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approaches infinity, the data from one partial sum that is “near” the data from the other partial

sum becomes negligible in the overall average, implying that the partial sums are independent.

With this result as background, the second section defines four estimators in a setting where

data are missing at the beginning of the sample for some of the moment conditions. The first of

these estimators is the standard GMM estimator (we call it “short”). The second of these estimators

combines the long and short data in a naive way (we call it “long”). The third and the fourth are

the adjusted-moment and the over-identified estimator mentioned above. All four estimators are

shown to be consistent and asymptotically normal under standard assumptions. Moreover, for

each estimator, the efficient weighting matrix is the inverse of the variance-covariance matrix of the

moments, just as in standard GMM.

The third section shows that the adjusted-moment estimator and the over-identified estimator

are asymptotically equivalent. They are both more efficient than the short estimator (standard

GMM), and more efficient than the long estimator (which takes into account the additional data

in a naive way). The long estimator is not necessarily more efficient than the short estimator;

thus including the additional data in a naive way could cause the efficiency of the estimators

to deteriorate rather than improve. Fortunately, the adjusted-moment and the over-identified

estimator are just as easy to compute as the short and long estimator. Finally, this section shows

that in finite samples, the adjusted-moment and the over-identified estimators generally differ.

The fourth section investigates a special case in which the original system is exactly identified,

and some variables can be identified by the long-sample data alone. In this case, it is possible to

gain additional intuition about the forms of the adjusted-moment and over-identified estimators,

and to estimate the size of the efficiency gain from using the adjusted-moment or the over-identified

estimator. For simplicity, moments for which the full sample is available are assumed to depend on

a subset of the parameters θ1, while moments for which only the short sample is available depend on

θ2 as well as, possibly, θ1. Asymptotic standard errors for θ1 are a fraction
√
λ of their values under

standard GMM; thus the percent decrease is 1 −
√
λ. For θ2, 1 −

√
λ represents an upper bound

on the percent decrease. The actual decrease depends on the correlation between the moment

conditions, and the extent to which θ1 influences the moments for which only the short sample is

available.

The fifth section illustrates our methods by estimating mutual fund performance relative to a

conditional factor models. The mutual fund data is from Elton, Gruber, and Blake (1996), and

begins in 1977. In contrast, data on factors and on information variables is available starting in
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1927. Using the stochastic discount factor formulation of factor models (e.g. Cochrane (2001)), we

show that including the longer data allows for substantially more precise estimates of mutual fund

performance than using the shorter data alone.

The sixth section extends the analysis to the general case, where there can be an arbitrary

number of starting dates, ending dates, and data can be missing in the middle of the sample. Data

interval endpoints are identified by points in time at which data for at least one sample moment

starts or ends. Asymptotic theory is developed assuming that the ratios of these various data

intervals remain constant as the sample size grows large. Both the adjusted-moment and over-

identified estimators are extended in this more general setting in natural ways. The over-identified

estimator is obtained by treating the sample moments for each data interval as separate sample

moments in the GMM estimation. The adjusted-moment estimator is defined inductively: the

moments used when a data interval is added are obtained by taking the moments used without

that interval and adding an adjustment term that uses the data in the added interval. It is shown

that these extensions to the two estimators, while different in finite samples, are asymptotically

equivalent, and moreover, that adding an additional data interval, even though not observed for all

moments, improves efficiency. The sixth section concludes.

1 Large sample theory for sums covering different sample periods

This section develops the asymptotic theory necessary for establishing properties of our estimators.

The assumptions are standard (see, e.g. White and Domowitz (1984)). The principle new result

is contained in Theorem 1.1: that partial sums taken over disjoint intervals are asymptotically

independent and normally distributed.

Let {xt}∞t=−∞ denote a p-component stochastic process defined over an underlying probability

space (Ω,F , P ). Let F b
a ≡ σ(xt; a ≤ t ≤ b), the Borel σ-algebra of events generated by xa, . . . , xb.

Consider a function f : Rp ×Θ→ Rl for Θ, a compact subset of Rq. The function f provides the

restrictions that determine θ based on the observations of xt. In what follows we make standard

assumptions on {xt} and f in order to guarantee consistency and asymptotic normality of the

estimates. Particularly useful is a notion of dependence known as mixing.

Following White and Domowitz (1984), define

α (F ,G) ≡ sup
{F∈F ,G∈G}

|P (FG)− P (F )P (G)|
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for σ-algebras F and G, and
α(s) ≡ sup

t
α
(
F t
−∞,F∞t+s

)
.

The process {xt} is said to be α-mixing if α(s) → 0 as s → ∞. As White and Domowitz (1984)

discuss, α-mixing guarantees that autocovariances vanish at at arbitrarily long lags. Mixing is a

convenient assumption because it allows a trade-off between the speed at which α(s) approaches

zero and the conditions required on {xt}. In particular, a process is said to be α-mixing of size

r/(r − 1) for r > 1 if for some κ > r/(r − 1), α(s) is O(s−κ). We assume that {xt} is mixing:

Assumption 1 {xt}∞t=−∞ is α-mixing of size r
r−1 for r > 1, and stationary.

Assumption 2 guarantees that f(xt, θ) is also mixing.

Assumption 2 f(·, θ) is measurable for all θ ∈ Θ.

The following assumption specifies the sense in which f(xt, θ) determines θ given observations on

xt.

Assumption 3 There exists a unique θ0 ∈ Θ such that E [f(xt, θ0)] = 0.

The next assumptions form the basis for the consistency and asymptotic normality results of esti-

mators based on partial sums of f(xt, θ).

Assumption 4 There exists ∆ ∈ R such that E
(∣
∣fi(xt, θ0)

2r
∣
∣
)
< ∆, i = 1, . . . , l.

Assumption 5 f(xt, θ) is continuous in θ. There exists a measurable function H(xt) ∈ Rl such

that |fi(xt, θ)| ≤ Hi(xt) for all θ ∈ Θ and such that E|Hi(xt)|r+δ ≤ ∆ < ∞, for some δ > 0 and

all i = 1, . . . , l.

Assumptions 4 and 5 illustrate the usefulness of the definition of mixing. As White and Domowitz

(1984) explain, the greater is r, the more dependence is allowed for the process xt, but the stronger

are the required conditions on the function f . For example, if xt is independent then α(s) = 0 for

all s, and hence we can set r = 1. If xt follows an ARMA process, r can be taken to be arbitrarily

close to 1.

White and Domowitz (1984) prove the following:

Lemma 1.1 Assumptions 1 and 2 imply that {f(xt, θ)}∞t=−∞ is α−mixing of size r/(r − 1) and

stationary.
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Following Hansen (1982), define the l × l matrix R(τ) = E
[
f(x0, θ0)f(x−τ , θ0)>

]
and let

S =
∞∑

τ=−∞
R(τ) = R(0) +

∞∑

τ=1

(R(τ) +R(τ)>). (1)

Lemma 1.1 implies that this sum converges, because α-mixing combined with stationarity implies

that the series is ergodic (see White (1994, Proposition 3.44)). Define

gT (θ) =
1

T

T∑

t=1

f(xt, θ)

for θ ∈ Θ, and

wt = f(xt, θ0).

The following lemma establishes that partial sums taken over disjoint intervals are asymptotically

independent. This is stronger than showing that the partial sums of have zero covariance asymp-

totically.

Lemma 1.2 Let F ∈ F0
−∞. Let µ be a 1× l vector, and let c be a scalar. Then Assumptions 1–3

and 5 imply that

lim
T→∞

P
((√

TµgT (θ0) < c
)

F
)

= lim
T→∞

P
(√

TµgT (θ0) < c
)

P (F ).

Proof For any integer T ,

√
TgT (θ0) =

1√
T

b
√
T c
∑

t=1

wt +
1√
T

T∑

t=b
√
T c+1

wt,

where b
√
T c is the largest integer less than the square root of T . Assumptions 1–3, and 5 imply

that

1√
T

b
√
T c
∑

t=1

wt =
b
√
T c√
T

1

b
√
T c

b
√
T c
∑

t=1

wt →a.s. 0

as T →∞, by Theorem 2.3 of White and Domowitz (1984). Because

1√
T

T∑

t=b
√
T c+1

wt ∈ F∞√T ,

∣
∣
∣
∣
∣
∣

P








1√
T

T∑

t=b
√
T c+1

µwt < c



F



− P




1√
T

T∑

t=b
√
T c+1

µwt < c



P (F )

∣
∣
∣
∣
∣
∣

< α(
√
T ).
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1 (1− λ)T + 1 T

| | |
| |
︸ ︷︷ ︸

λT
︸ ︷︷ ︸

T

Figure 1: Notation for data missing at the start of the sample

By Lemma 1.1, wt is α-mixing. Therefore α(
√
T ) goes to 0 as T →∞. By the Slutsky theorem,

lim
T→∞

P
((√

TµgT (θ0) < c
)

F
)

= lim
T→∞

P








1√
T

T∑

t=b
√
T c+1

µwt < c



F





= lim
T→∞

P




1√
T

T∑

t=b
√
T c+1

µwt < c



P (F )

= lim
T→∞

P
(√

TµgT (θ0) < c
)

P (F ),

where the second line follows from Lemma 1.1, and the last line follows from a repeated application

of the Slutsky Theorem.

Let λ be a rational number between 0 and 1, and define n0 to be the smallest positive integer

n such that nλ is an integer. We consider partial sums of f of length λT and (1 − λ)T for T a

multiple of n0. For T a multiple of n0, define

g(1−λ)T (θ) =
1

(1− λ)T

(1−λ)T
∑

t=1

f(xt, θ) (2)

gλT (θ) =
1

λT

T∑

t=(1−λ)T+1

f(xt, θ). (3)

Sums of f are indexed by the length of the sample. This is a slight abuse of notation because the

subscript λT does not refer to the sum taken over observations 1, . . . , λT . Figure 1 illustrates the

notation. The subscripts λT , (1 − λ)T and T can be understood as referring to intervals of the

data rather than the ending point of the sample.

The following theorem is the main result of this section. For the remainder of the paper, we let

T approach infinity along the subsequence of integer multiples of n0.
5

5Alternatively, we could define partial sums of length λn0T
′ and (1−λ)n0T

′ for any integer T ′. The results would
be identical, but the notation would be more cumbersome.
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Theorem 1.1 Assumptions 1–5 imply that as T →∞,

√
T

( √

(1− λ)g(1−λ)T (θ0)√
λgλT (θ0)

)

→d N

(

0,

[
S 0
0 S

])

. (4)

Proof Assumptions 1–4 imply that

√

(1− λ)Tg(1−λ)T (θ0)→d N(0, S) (5)

and
√
λTgλT (θ0)→d N(0, S) (6)

by Theorem 2.4 of White and Domowitz (1984). Stationarity of xt (Assumption 1) implies that

random variables f(x−(1−λ)T+1, θ), . . . , f(xλT , θ) have the same joint distribution as random vari-

ables f(x1, θ), . . . , f(xT , θ). Thus partial sums taken over f(x−(1−λ)T+1, θ), . . . , f(xλT , θ) have the

same distribution as the corresponding partial sums taken over f(x1, θ), . . . , f(xT , θ). Define

g̃λT (θ) =
1

λT

λT∑

t=1

f(xt, θ)

g̃(1−λ)T (θ) =
1

(1− λ)T

(1−λ)T−1
∑

t=0

f(x−t, θ).

It suffices to prove the results for g̃λT and g̃(1−λ)T .

Let N (c) denote the cumulative distribution function of the standard normal distribution eval-

uated at c. Let µ1 and µ2 be 1× l vectors such that µ1µ
>
1 = µ2µ

>
2 = 1. By Lemma 1.2,

lim
T→∞

P
(

µ1

√

(1− λ)TS−1g̃(1−λ)T (θ0) < c1, µ2

√
λTS−1g̃λT (θ0) < c2

)

=

lim
T→∞

P
(

µ1

√

(1− λ)TS−1g(1−λ)T (θ0) < c1

)

lim
T→∞

(

µ2

√
λTS−1g̃λT (θ0) < c2

)

= N (c1)N (c2)

for scalars a and b. This shows g̃λT (θ0) and g̃(1−λ)T (θ0) are asymptotically independent, and

therefore that gλT (θ0) and g(1−λ)T (θ0) are asymptotically independent. The result follows from (5)

and (6).

2 Consistency and asymptotic normality of estimators

In many applications, it happens that data is missing for the early part of the sample period

for some moment conditions (see Stambaugh (1997) for an application to international data and

Section 5 of this paper for an application to mutual funds). In the notation of Section 1, some
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elements of the vector xt are observed for dates 1, . . . , T , while others are observed only for the last

fraction λ of the sample, namely dates (1− λ)T + 1, . . . T . In this section, we introduce estimators

that are consistent and asymptotically normal in this setting.

Without loss of generality, partition the elements of xt so that xt = [x>1t x
>
2t]
>, where data on

x1t ∈ Rp1 is assumed to be available for the full sample, and data on x2t ∈ Rp2 is assumed to be

available for the last λT dates of the sample. Similarly, partition the elements of f into those that

depend only on x1t and those that depend on both x1t and x2t: f(xt, θ) = [f1(x1t, θ)
> f2(xt, θ)

>]>,

where f1 : Rp1 ×Θ→ Rl1 , and f2 : Rp ×Θ→ Rl2 . Analogously, let

g1T (θ) =
1

T

T∑

t=1

f1(xt, θ),

g1,(1−λ)T (θ) =
1

(1− λ)T

(1−λ)T
∑

t=1

f1(xt, θ),

g1,λT (θ) =
1

λT

T∑

t=(1−λ)T+1

f1(xt, θ),

and

g2,λT (θ) =
1

λT

T∑

t=(1−λ)T+1

f2(xt, θ).

It is useful to define partitions of the matrix S that correspond to the partitions of f and g. Let

Rij(τ) be the li × lj matrix

Rij(τ) = E
[

fi(x0, θ0)fj(x−τ , θ0)
>
]

, i, j = 1, 2,

and define

Sij =
∞∑

τ=−∞
Rij(τ).

Then

S =

[
S11 S12

S21 S22

]

.

It is also useful to define the matrix of coefficients from a regression of the second series on the

first. This is the l2 × l1 matrix

B21 = S21S
−1
11 .

The residual variance from this regression will be denoted Σ, where

Σ = S22 − S21S
−1
11 S12. (7)

10



We consider four estimators, distinguished by their moment conditions. In what follows, we

will emphasize the case where the weighting matrix converges almost surely to the inverse of the

variance-covariance matrix of the moments. Define

hST (θ) =
[

g1,λT (θ)
> g2,λT (θ)

>
]>

(8)

hLT (θ) =
[

g1,T (θ)
> g2,λT (θ)

>
]>

(9)

hAT (θ) =

[

g1,T (θ)
>
(

g2,λT (θ) + B̂21,λT (1− λ)(g1,(1−λ)T (θ)− g1,λT (θ))
)>
]>

(10)

hIT (θ) =
[

g1,(1−λ)T (θ)
> g1,λT (θ)

> g2,λT (θ)
>
]>

, (11)

where B̂21,λT is an l2 × l1 matrix such that B̂21,λT →a.s. B21. Let

θ̂ST = argminθ h
S
T (θ)

>WS
T h

S
T (θ). (12)

The estimator θ̂ST corresponds to the standard GMM. Observations on x1t for t = 1, . . . , (1 − λ)T

are discarded. Let

θ̂LT = argminθ h
L
T (θ)

>WL
T h

L
T (θ). (13)

The estimator θ̂LT corresponds to incorporating all of the data in the most straightforward way. Let

θ̂AT = argminθ h
A
T (θ)

>WA
T h

A
T (θ) (14)

and

θ̂IT = argminθ h
I
T (θ)

>W I
T h

I
T (θ) (15)

Estimators θ̂AT and θ̂IT are less straightforward, but, as we will argue, superior ways of including

the long data. Note that, because

g1,T = (1− λ)g1,(1−λ)T + λg1,λT ,

the second component of (10) can be rewritten as

hA2,T = g2,λT + B̂21,λT (g1,T − g1,λT ). (16)

Equation (16) illustrates the role of the longer sample in helping to estimate the second set of

moment conditions. Consider for example the case where g1 and g2 are univariate. If g1 is below

average in the second part of the sample, and if g1 and g2 are positively correlated, g2 is also likely

to be below average. Thus the estimate of E[f2(x0, θ)] should be adjusted upward relative to g2. We
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call θ̂AT the “adjusted moment” estimator, because it involves adjusting the second set of moments.

We refer to θ̂IT as the “over-identified” estimator, because it involves adding an additional moment

condition. As we will show, θ̂IT has the same asymptotic properties as θ̂AT . In order to present

theorems that apply to all the estimators, we use the notation θ̂kT to denote a member of the class

of estimators defined above, and similarly for W k.

Theorem 2.1 Assumptions 1–5 imply that as T →∞,
√
λThkT (θ0)→d N(0, Sk),

where

SS = S (17)

SL =

[
λS11 λS12

λS21 S22

]

(18)

SA =

[
SA11 SA12
SA21 SA22

]

=

[
λS11 λS12

λS21 S22 − (1− λ)S21S
−1
11 S12

]

(19)

SI =





λ
1−λS11 0 0

0 S11 S12

0 S21 S22



 . (20)

Proof Equation (17) follows from Theorem 1.1. We show (19); the proofs of (18) and (20) are

similar. In what follows, the argument θ0 is suppressed and convergence is in the sense of almost

surely.

Stationarity implies that SA11 = λS11. By Theorem 1.1,

lim
T→∞

E
[√

λT
(
λgi,λT + (1− λ)gi,(1−λ)T

)√
λT
(
gj,(1−λ)T − gj,λT )

)>
]

= lim
T→∞

(

−E
[√

λTλgi,λT
√
λTg>j,λT

]

+ E
[√

λT (1− λ)gi,(1−λT )

√
λTg>j,(1−λ)T

])

= λSij − λSij = 0 (21)

for i, j = 1, 2. Therefore,

SA12 = lim
T→∞

E
[√

λT
(
λg1,λT + (1− λ)g1,(1−λ)T

)√
λT
(
g2,λT +B21(1− λ)(g1,(1−λ)T − g1,λT )

)>
]

= lim
T→∞

E
[√

λT
(
λg1,λT + (1− λ)g1,(1−λ)T

)√
λTg>2,λT

]

= lim
T→∞

E
[√

λTλg1,λT

√
λTg>2,λT

]

= λS12.

12



The second line follows from (21) and the third and fourth lines follow from Theorem 1.1. Using

similar reasoning,

SA22 = lim
T→∞

E
[√

λTg2,λT

√
λTg>2,λT

]

− 2 lim
T→∞

(1− λ)E
[√

λTg2,λT

√
λTg>1,λT

]

B>21

+ lim
T→∞

B21(1− λ)2E
[√

λT (g1,(1−λ)T − g1,λT )
√
λT (g1,(1−λ)T − g1,λT )

>
]

B>21

= S22 − 2(1− λ)S21S
−1
11 S12 + (1− λ)2

(
λ

1− λ
+ 1

)

S21S
−1
11 S12

= S22 − (1− λ)S21S
−1
11 S12,

which completes the derivation of (19).

To establish consistency, we require the following condition on the weighting matrices.

Assumption 6 For k ∈ {S,L,A, I}, the weighting matrix W k
λT converges almost surely to a

positive-definite matrix W k.

Theorem 2.2 establishes consistency of the estimators.

Theorem 2.2 Assumptions 1–6 imply that as T →∞, θ̂kT →a.s. θ0 for k ∈ {S,L,A, I}.

Proof White and Domowitz (1984) show that under these assumptions

|gλT (θ)− Ef(xt, θ)| →a.s. 0

|g(1−λ)T (θ)− Ef(xt, θ)| →a.s. 0

as T →∞ uniformly in θ ∈ Θ. By the continuous mapping theorem,

hkT (θ)
>W k

Th
k
T (θ)→a.s. E[f(xt, θ)]

>W kE[f(xt, θ)]

for k ∈ {S,L,A}, and

hIT (θ)
>W I

T h
I
T (θ)→a.s. E[f1(x1t, θ)

> f(xt, θ)
>]>W IE

[
f1(x1t, θ)
f(xt, θ)

]

uniformly in θ. The result then follows from Amemiya (1985, Theorem 4.1.1).

Three remaining assumptions allow us to establish asymptotic normality of the estimators:

Assumption 7 θ0 lies in the interior of Θ.

Assumption 8 f(x, θ) is continuously differentiable in θ.

13



Assumption 9 There exists a measurable matrix-valued function Ĥ(xt) ∈ Rl×q such that | ∂fi
∂θj

(xt, θ)| <
Ĥ(xt)(i,j) for all θ in the interior of Θ and such that for some δ > 0, E|Ĥ(xt)(i,j)|r+δ ≤ ∆ < ∞
for all i = 1, . . . , l, j = 1, . . . q.

Define D0,i = E
[
(∂fi/∂θ)|θ0

]
and D0 = [D>0,1, D>0,2]

>. Let

Dk
0 = D0 k ∈ {S,L,A} (22)

DI0 =
[

D>0,1 D
>
0,1 D

>
0,2

]>
. (23)

The following theorem establishes asymptotic normality.

Theorem 2.3 Assumptions 1–9 imply

√
λT (θ̂kT − θ0)→d N

(

0,
(

(Dk
0)
>W kDk

0

)−1 (

(Dk
0)
>W kSkW kDk

0

)(

(Dk
0)
>W kDk

0

)−1
)

.

Proof Define

Dk
T (θ) =

∂hkT
∂θ

(θ)

for θ in the interior of Θ. For T sufficiently large, θ̂kT lies in the interior of Θ. By the mean value

theorem, there exists a θ̃k in the segment between θ0 and θ̂kT such that

hkT (θ̂
k
T )− hkT (θ0) = Dk

T (θ̃
k)(θ̂kT − θ0).

Pre-multiplying by Dk
T (θ̂

k
T )
>W k

T :

Dk
T (θ̂

k
T )
>W k

T

(

hkT (θ̂
k
T )− hkT (θ0)

)

= Dk
T (θ̂

k
T )
>W k

TD
k
T (θ̃

k)(θ̂kT − θ0).

By the first-order condition of the optimization problem,

Dk
T (θ̂

k
T )
>W k

TD
k
T (θ̃

k)(θ̂kT − θ0) = −Dk
T (θ̂

k
T )
>W k

Th
k
T (θ0).

The assumptions and Theorem 2.3 of White and Domowitz (1984) imply that

Dk
T (θ)→a.s. E

[
∂f

∂θ
(xt, θ)

]

for k ∈ {S,L,A}, and
DIT (θ)→a.s. E

[ ∂f1
∂θ

(x1t, θ)
∂f
∂θ
(xt, θ)

]

14



uniformly in θ. Therefore by Theorem 2.2 and Assumptions 7 and 8, Amemiya (1985, Theorem

4.1.5) implies

Dk
T (θ̂

k
T )→a.s. D

k
0 (24)

Dk
T (θ̃

k)→a.s. D
k
0 (25)

W k
T →a.s. W

k. (26)

The result follows from the Slutsky Theorem.

As in Hansen (1982) choosing the weighting matrix that is a consistent estimator of the inverse

variance-covariance matrix is efficient for a given set of moment conditions.

Theorem 2.4 Suppose W k
λT →a.s. Wk = (Sk)−1. Then Assumptions 1–5 and 7-9

√
λT (θ̂kT − θ0)→d N

(

0,

(

(Dk
0)
>
(

Sk
)−1

(Dk
0)

)−1
)

. (27)

Moreover, this choice of W k is efficient for each estimator.

3 Comparison

The previous section defined four estimators: the “short” estimator, which corresponds to stan-

dard GMM; the “long” estimator, which makes use of the full sample in a naive way; and the

adjusted-moment and over-identified estimators, which make use of the full sample in a slightly

more complicated way than “long”. These four estimators were shown to be consistent and asymp-

totically normal. This section compares the asymptotic efficiency of these estimators.

The first result is that the over-identified estimator and the adjusted-moment estimator have

identical asymptotic properties when the optional weighting matrix is used.

Theorem 3.1 Assume W I
T →a.s.

(
SI
)−1

and WA
T →a.s.

(
SA
)−1
. Assumptions 1–5 and 7–9 imply

that the asymptotic distribution of
√
λT θ̂IT is identical to that of

√
λT θ̂AT .

Proof It suffices to compare the asymptotic variances as the mean of both asymptotic distributions

is
√
λTθ0. In the case of the over-identified estimator, the inverse of the asymptotic variance of

√
λT θ̂IT equals

(DI)>
(
SI
)−1

DI =
1− λ

λ
D>0,1S

−1
11 D0,1 +D>0,1S

−1
11 D0,1 +D>0

[
B>21Σ

−1B21 −B>21Σ−1

−Σ−1B21 Σ−1

]

D0

=
1

λ
D>0,1S

−1
11 D0,1 +D>0

[
B>21Σ

−1B21 −B>21Σ−1

−Σ−1B21 Σ−1

]

D0, (28)
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where Σ is defined by (7). This follows from Theorem 2.4 and Lemma A.3.

It follows from the distribution of the adjusted moment estimator (27) and Lemma A.3 that

the inverse of the variance of
√
λT θ̂AT equals

D>0
(
SA
)−1

D0 =
1

λ
D>0,1S

−1
11 D0,1 +D>0

[
B>21Σ

−1B21 −B>21Σ−1

−Σ−1B21 Σ−1

]

D0,

which equals (28). Thus the estimators are asymptotically equivalent.

Theorem 3.1 shows that asymptotically, the distributions of the two estimators are the same.

However, the interpretation of the over-identified estimator is different from the adjusted-moment

estimator. Rather than adjusting the second set of moments based on the covariance with the first,

the over-identified estimator turns the early data into a new moment condition.

Now we ask whether there is indeed an efficiency gain from using the longer sample. Are the

adjusted-moment estimator and the over-identified estimator indeed more efficient than the short

estimator?

Theorem 3.2 Assume 1–5 and 7–9 then

(1) If W k
λT →a.s. (Sk)−1, for k ∈ S,A, I, the estimators θ̂AT and θ̂IT are asymptotically more

efficient than θ̂ST .

(2) If W k
λT →a.s. W

k for W k positive definite, and such that WA = WS almost surely, θ̂AT is more

efficient than θ̂ST .

Proof We first prove statement (1) for θ̂AT . By Theorem 2.4 and Lemma A.2, it suffices to show

that S − SA is positive semi-definite. Note

S − SA = (1− λ)

[
S11 S12

S21 S21S
−1
11 S12

]

.

For any l × 1 vector v = [v>1 , v
>
2 ]
>,

v>(S − SA)v = (1− λ)
(

v>1 S11v1 + v>1 S12v2 + v>2 S21v1 + v>2 S21S
−1
11 S12v2

)

= (1− λ)
(

v>1 S
>
11S

−1
11 S11v1 + v>1 S11S

−1
11 S12v2 + v>2 S

>
12S

−1
11 S11v1 + v2S

>
12S

−1
11 S12v2

)

= (1− λ)(S11v1 + S12v2)
>S−1

11 (S11v1 + S12v2) ≥ 0

because S−1
11 is positive-semi-definite and λ < 1. Therefore S − SA is positive semi-definite and, as

a consequence, θ̂AT is more efficient than θ̂ST . The statement for θ̂IT then follows from Theorem 3.1.
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To prove statement (2), define

U = WADA0
(

(DA0 )>WADA0
)−1

. (29)

Because the weighting matrix is assumed to be the same for both estimators,

U = WSDS0
(

(DS0 )
>WSDS0

)−1
.

By Theorem 2.3, proving (2) is equivalent to showing U>SU − U>SAU is positive semi-definite.

But for any vector v,

v>(U>SU − U>SAU)v = (Uv)>(S − SA)Uv > 0

because S − SA is positive semi-definite. Therefore θ̂AT is more efficient then θ̂ST when W S = WA.

Note that statement (2) of Theorem 3.2 does not make sense for the over-identified estimator θ̂IT

because θ̂IT has l1 more moment conditions than θ̂AT and θ̂ST . It is not possible to keep the weighting

matrices the same.

Theorem 3.2 shows that introducing the extra data from the longer series reduces the variance

of the estimates relative to using the shorter series alone. It is also interesting to ask whether the

estimator is more efficient than the one that would result from using the longer sample in a more

“naive” way, namely using the longer data series to estimate the first set of moment conditions, and

the shorter series to estimate the second. In the terminology of Section 1 this involves comparing

θ̂AT with the estimator θ̂LT .

Theorem 3.3 Assume 1–5 and 7–9 then

(1) If W k
λT →a.s. (Sk)−1, for k ∈ L,A, I, the estimators θ̂AT and θ̂IT are asymptotically more

efficient than θ̂LT .

(2) If W k
λT →a.s. W

k for W k positive definite, and such that WA = WL almost surely, θ̂AT is more

efficient than θ̂LT .

Proof As in Theorem 3.2, it suffices to show that

SL − SA =

[
0 0

0 (1− λ)S21S
−1
11 S12

]
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is positive semi-definite. Note that for any vector v = [v>1 , v
>
2 ]
>,

v>(SL − SA)v = (1− λ)(S12v2)
>S−1

11 S12v2 ≥ 0

because λ < 1 and S11 is positive semi-definite. Lemma A.2 then implies that θ̂AT is more efficient

than θ̂LT . By Theorem 3.1, θ̂IT is also more efficient then θ̂LT . This proves (1).

To show the second statement, define U analogously to (29):

U = WLDL0
(

(DL0 )
>WLDL0

)−1
,

and note that WA = WL. Because SL − SA is positive semi-definite, for any vector c,

v>(U>SLU − U>SAU)v = (Uv)>(SL − SA)Uv > 0.

By Theorem 2.3, θ̂AT is more efficient then θ̂LT when WA = WL. This proves (2).

Surprisingly, θ̂LT is not necessarily more efficient than θ̂ST . Efficiency would require that

SL − S = (1− λ)

[
S11 S12

S21 0

]

be positive semi-definite. However, if the covariances between the first and second set of moment

conditions are nonzero, this may not be the case. Thus it is not sufficient to simply use the first

part of the sample, it must be combined with the second part of the sample in precisely the right

way to produce a gain in efficiency.

We further explore the relation between these estimators by looking at the first order conditions.

For the purpose of this discussion, we assume W I
T =

(
SI
)−1

, WA
T =

(
SA
)−1

, and B̂21,λT = B21.

Differentiating (15) with respect to θ yields

0 =
1− λ

λ
g>1,(1−λ)TS

−1
11

∂g1,(1−λ)T

∂θ
+ g>1,λTS

−1
11

∂g1,λT

∂θ

+
[

g>1,λT g>2,λT
] [ B>21Σ

−1B21 −B>21Σ−1

−Σ−1B21 Σ−1

]( ∂g1,λT
∂θ

∂g2,λT
∂θ

)

=
1− λ

λ
g>1,(1−λ)TS

−1
11

∂g1,(1−λ)T

∂θ
+ g>1,λTS

−1
11

∂g1,λT

∂θ

+ (g2,λT −B21g1,λT )
>Σ−1 ∂

∂θ
(g2,λT −B21g1,λT ) . (30)

Equation (30) is the first-order condition that determines the over-identified estimator θ̂IT . By

contrast, the first order condition associated with (14) is

1

λ
g>1,TS

−1
11

∂g1,T

∂θ
+
[

g>1,T h>2,T
] [ B>21Σ

−1B21 −B>21Σ−1

−Σ−1B21 Σ−1

]( ∂g1,T
∂θ

∂h2,T

∂θ

)

= 0,
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which reduces to

0 =
1

λ
g>1,TS

−1
11

∂g1,T

∂θ
+ (B21g1,T − h2,T )

>Σ−1 ∂

∂θ
(B21g1,T − h2,T )

=
1

λ
g>1,TS

−1
11

∂g1,T

∂θ
+ (B21g1,λT − g2,λT )

>Σ−1 ∂

∂θ
(B21g1,λT − g2,λT ) . (31)

Equation (31) is the first-order condition that determines the adjusted-moment estimator θ̂AT . Ac-

cording to Theorem 3.1, these two first order conditions must be equivalent as T → ∞. Indeed

they are, because

lim
T→∞

∂g1,(1−λ)T

∂θ

∣
∣
∣
∣
θ̂IT

= lim
T→∞

∂g1,λT

∂θ

∣
∣
∣
∣
θ̂IT

= lim
T→∞

∂g1,T

∂θ

∣
∣
∣
∣
θ̂AT

= D0,1,

and

1− λ

λ
g>1,(1−λ)TS

−1
11 D0,1 + g>1,λTS

−1
11 D0,1 =

1

λ

(

(1− λ)g>1,(1−λ)T + λg>1,λT
)

S−1
11 D0,1

=
1

λ
g>1,TS

−1
11 D0.

In finite samples however, they will generally be equivalent only when

∂g1,(1−λ)T

∂θ
=
∂g1,λT

∂θ
,

which occurs, for example, when the moment conditions are linear. This corresponds to the case

examined by Stambaugh (1997) in a maximum likelihood context.

4 A special case

This section examines a special case of the set-up of Section 2. We assume the system is exactly

identified, and that the variables can be decomposed into θ = [θ>1 θ>2 ]
>, where f1 is a function of

θ1 alone. In this setting, we can draw additional conclusions about the first-order conditions of the

adjusted-moment and over-identified estimators, and we can quantify the gains from including the

longer sample.

Let l1 be the length of θ1, and l2 = q − l1 the length of θ2. For convenience assume that

W I
T =

(
SI
)−1

and B̂21,T = B21. Because

∂g1,(1−λ)T

∂θ2
≡ ∂g1,λT

∂θ2
≡ ∂g1T

∂θ2
≡ 0,

and because Σ−1 ∂
∂θ

(B21g1,λT − g2,λT ) is invertible, the first order conditions for the over-identified

estimator θ̂IT reduce to

g2,λT −B21g1,λT = 0 (32)
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for θ2, and thus
1− λ

λ
g>1,(1−λ)TS

−1
11

∂g1,(1−λ)T

∂θ1
+ g>1,λTS

−1
11

∂g1,λT

∂θ1
= 0 (33)

for θ1. In comparison, the first order conditions for the adjusted-moment estimator θ̂AT reduce to

(32) for θ2 but to g1,T = 0 for θ1. This is no surprise. When the adjusted-moment estimator is

exactly identified, the first-order conditions must be equivalent to setting g1,T equal to zero, and

h2,T equal to zero. When g1,T = 0, h2,T is equivalent to the left-hand side of (32).

We have shown that in the case considered here, the adjusted-moment estimator gives the same

estimate for θ1 as simply using the full sample. The over-identified estimator gives a possibly

different estimate, one that depends on the point in time in which the second series begins. While

this dependence is possibly unattractive, (33) nonetheless has an interpretation: it is a weighted

average of the moment conditions from the first part and the second part of the sample, where the

weights are proportional to the derivatives, and thus to the amount of information contained in

each part of the sample.

We now quantify the effects of using the adjusted-moment estimator or the over-identified

estimator on the standard errors for θ. In the special case where the system is exactly identified

and f1 depends on θ1, the derivative matrix D0 is invertible and takes the form

D0 =

(
D0,1

D0,2

)

=

[
d11 0
d21 d22

]

,

for an l1 × l1 invertible matrix d11, an l2 × l1 matrix d21 and an l2 × l2 invertible matrix d22. The

matrix d11 gives the derivatives of f1 with respect to θ1, d21 gives the derivatives of f2 with respect

to θ1, and d22 gives the derivatives of f2 with respect to θ2.

The inverse of D0 takes the form

D−1
0 =

[
d−1

11 0

−d−1
22 d21d

−1
11 d−1

22

]

.

Therefore the first diagonal block of
(
D>0 S

−1D0

)−1
equals d−1

11 S11(d
−1
11 )

>. Similarly, the first block

of
(

D>0
(
SA
)−1

D0

)−1
can be written as6

d−1
11 S

A
11(d

−1
11 )

> = λd−1
11 S11(d

−1
11 )

>.

This shows that asymptotic standard errors for the estimates of θ1 shrink by a factor of 1 −
√
λ

when the adjusted-moment estimator is used rather than the short estimator. Because the over-

identified estimator is asymptotically equivalent to the adjusted-moment estimator, the shrinkage

is the same.
6Recall that DA0 = D0.
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It is more interesting to look at the effect on the standard errors of the second set of parameters

θ2. The second diagonal block of
(

D>0
(
SA
)−1

D0

)−1
reduces to

(

D>0
(
SA
)−1

D0

)−1

22
= d−1

22

[
d21d

−1
11 S

A
11 − SA21

] (
SA11
)−1 [

d21d
−1
11 S

A
11 − SA21

]
(d−1

22 )
>

+ d−1
22

[

SA22 − SA21
(
SA11
)−1

SA12
]

(d−1
22 )

>. (34)

Thus the variance for the second set of variables can be decomposed into two parts. The first

part represents the effect of the first moment conditions on the second variables. The second part

represents the variance due only to the residual variance of the second set of moment conditions:

SA22 − SA21
(
SA11
)−1

SA12 is the variance-covariance matrix of the second set of moment conditions

conditional on the first. The second diagonal block of
(
D>0 SD0

)−1

22
, which gives the standard errors

for θ2 under standard GMM, has an analogous decomposition.

Adding the new data reduces the first term in (34), just as it reduces the asymptotic variance

of θ1:

[
d21d

−1
11 S

A
11 − SA21

] (
SA11
)−1 [

d21d
−1
11 S

A
11 − SA21

]
= λ

[
d21d

−1
11 S11 − S21

]
S−1

11

[
d21d

−1
11 S11 − S21

]
.

However the second term in (34) does not change with the addition of new data, not surprisingly

because it represents the variance of the second moment conditions conditional on the value of the

first:

SA22 − SA21
(
SA11
)−1

SA12 = S22 − S21S
−1
11 S12.

Thus the decrease in the standard errors depends on the extent to which the first term dominates

the second term. For example, when the second set of moments are perfectly correlated with the

first set, the residual variance is zero,

S22 − S21S
−1
11 S12 = 0, (35)

and the standard errors for θ2 also shrink by a factor of 1 −
√
λ. At the other extreme, suppose

that f2 tells you nothing about θ2, i.e. d21 = 0 (θ1 does not enter into f2) and S21 = S>12 = 0 (the

moment conditions are independent). Then the inclusion of the longer series leads to no shrinkage

in the asymptotic variance of θ2.

Of course, even if the two sets of moment conditions are independent (S21 = S>12 = 0), the

sampling variance of θ2 may still fall because the sampling variance of θ1 is reduced. As long

as d21 6= 0, the first term in (34) is nonzero and there is an effect on the standard errors of θ2.
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Similarly, even if there is no impact of θ1 on the second set of moment conditions (d21 = 0) the first

set of moment conditions help to estimate θ2 if the covariance between the two moment conditions

is nonzero.

5 An illustration with mutual fund data

This section briefly illustrates our methods in an application to mutual fund performance evaluation.

Section 5.1 describes the model for normal returns; mutual fund skill is defined relative to this

model. Section 5.2 describes the data, Section 5.3 the moment conditions used in the estimation,

and Section 5.4 the results.

5.1 Conditional factor model

We start by assuming a conditional beta pricing model of the form

Et[rt+1] = Et[rp,t+1]
>βt, (36)

where βt is a column vector equal to

βt = Vart(rp,t+1)
−1Covt(rp,t+1, rt+1),

and rp,t+1 is a Kx1 column vector of returns on zero-cost benchmark portfolios. In what follows,

we will denote excess returns using lower-case r; gross returns will be denoted R. Shanken (1990)

discusses estimation and testing of conditional factor models. Ferson and Schadt (1996) discuss the

importance of measuring mutual fund performance relative to conditional factor models as opposed

to unconditional models.

As shown in Cochrane (2001), (36) is equivalent to specifying a conditional stochastic discount

factor (SDF) model in which the SDF is linear in rp with coefficients that are elements of the time-t

information set. Let Zt denote the variable, or vector of variables, in the investor’s information set

at time t. Then the linear specification implies

Mt+1 = a(Zt) + b(Zt)
>rp,t+1. (37)

Any return Rt+1 that is correctly priced by the SDF, Mt+1, satisfies

Et[Rt+1Mt+1] = 1, (38)

where Et is taken to mean the expectation conditional on the value of Zt. Following Cochrane

(2001) and Lettau and Ludvigson (2001), we make the further assumption that the coefficients are
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linear functions of Zt, and, for notational convenience, we assume a single information variable.7

With these assumptions, the stochastic discount factor associated with the conditional factor model

is given by

Mt+1 = a0 + a1Zt + (b0 + b1Zt)
>rp,t+1. (39)

Let Rf,t+1 denote the riskfree rate of return. Because Rf,t+1 is known at time t,

Et[Mt+1] =
1

Rf,t+1
. (40)

Zero-cost portfolios, or returns in excess of the riskfree rate satisfy

Et[rt+1Mt+1] = 0. (41)

Condition (41) and the specification (39) imply that for any asset with return rt+1,

Et[rt+1] = −
(b0 + b1Zt)

Et[Mt+1]

>
Covt(rp,t+1, rt+1). (42)

Because Mt+1 must price the reference assets correctly, (42) holds for the reference assets, and

(b0 + b1Zt)

Et[Mt+1]

>
= −Et[rp,t+1]

>Vart(rp,t+1)
−1. (43)

Substituting (43) in to (42) produces (36). Thus specifying the stochastic discount factor as (39)

implies a conditional beta pricing model.

Now consider the return on a fund ri,t+1 and suppose that this return can be described by

Et[ri,t+1] = αi + Et[rp,t+1]
>βi,t+1, (44)

where αi represents abnormal performance relative to the conditional factor model described in

(36).8 It follows that mutual fund returns must satisfy

Et [Mt+1(ri,t+1 − αi)] = 0. (45)

Using the linear specification for the SDF in (39), we obtain the following:

Et

[

(a0 + a1Zt + (b0 + b1Zt)
>rp,t+1)(ri,t+1 − αi)

]

= 0. (46)

7The linearity assumption can be easily relaxed by allowing the coefficients to be polynomials in the information
variable. Likewise, it is easy to relax the assumption of a single information variable.

8It is also possible to allow αi to be a function of the information variable, so performance itself is conditional.
Lynch, Wachter, and Boudry (2004) empirically investigate conditional performance using the estimators proposed
in the present paper.
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Equation (46) applied to fund returns, (38) applied to the riskfree rate, and (41) applied to

the factor returns form the basis for our estimation. We also consider performance relative to an

unconditional factor model:

E[rt+1] = E[rp,t+1]
>β,

with

β = Var(rp,t+1)
−1Cov(rp,t+1, rt+1).

In this case, the equivalent stochastic discount factor is given by

Mt+1 = a+ b>rp,t+1,

and unconditional versions of (38) (applied to the riskfree rate) and (41) (applied to factor returns)

are used in the estimation.

5.2 Data

In our implementation, we focus on the case where the information variable is equal to the dividend-

yield.9 We consider a model for benchmark returns with four factors: the excess market return, the

book-to-market return (HML), the small minus big market capitalization return (SMB), and the

return on a momentum factor (UMD). The role of the first three factors in explaining the cross-

section of returns is demonstrated by Fama and French (1993), while the last factor is introduced

by Carhart (1997) who demonstrates its importance in mutual fund performance evaluation. The

riskfree rate and returns on these factors can be found on the website of Ken French. Descriptions

of the construction of these portfolios can be found in Fama and French (1993), and on the website.

The data used to construct the information variable, the 12-month dividend yield on the value-

weighted NYSE, come from CRSP. The data are available starting in January 1927.

The mutual fund data are from Elton, Gruber, and Blake (1996). Their sample consists of

monthly returns on the 188 common stock funds in the 1977 edition of Wiesenberger’s Investment

Companies that have total net assets of $15 million or more and that are not restricted. The data

run from January 1977 through until December 1993. Four fund type groups are constructed using

the Wiesenberger style categories, with our classifications always consistent with those employed

by Elton, Gruber and Blake and Ferson and Schadt (1996). Three of the four fund types are

the Wiesenberger categories: maximum capital gain, growth, and growth and income. The fourth

9The dividend-yield is used because, for theoretical reasons, it would be expected to contain information about
future returns (Campbell and Shiller (1988)), and because it has been shown to predict future returns in the data
(Fama and French (1989)).
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group includes all other funds in our sample and is referred to as miscellaneous. For disappearing

funds, returns are included through until disappearance so the fund-type returns do not suffer from

survivor conditioning. Funds are reclassified at the start of each year based on their category at

that time.

5.3 Moment conditions

Following Hansen and Singleton (1982), we use of the law of iterated expectations to estimate the

2(K + 1) SDF parameters of the conditional model. The moment conditions are

E[
(

(a0 + a1Zt) + (b0 + b1Zt)
>rp,t+1

)[ Rf,t+1

rp,t+1

]

⊗
[

1
Zt

]

−
[
1
0

]

⊗
[

1
Zt

]

] = 0. (47)

These must hold if the SDF in (39) correctly prices the riskfree return and the zero-cost factor port-

folio returns. As Hansen and Singleton show, these moment conditions are obtained by multiplying

both sides of (38) and (41) by 1 and by Zt and using the law of iterated expectations. Because

there are 2(K + 1) moment conditions, the system is exactly identified. To estimate fund-type

performance, (46) is used with excess fund-type returns. Applying the law of iterated expectations

to (46) results in

E[(ri,t+1 − αi)
(

(a0 + a1Zt) + (b0 + b1Zt)
>rp,t+1

)

] = 0. (48)

Because there is a single moment condition and a single parameter, fund-type performance is also

exactly identified.10

Because the fund data begin in January 1977, but the factor return and dividend-yield data

begin in January 1927, the setting is that of Section 2. Moreover, because the moment conditions

(47) exactly identify the SDF parameters and (48) exactly identifies the fund parameters, the results

of Section 4 also apply. Let rN denote the N × 1 vector of returns on fund styles, (in our analysis,

N = 4), and let αN denote the N × 1 vector of outperformance parameters αi. In the notation

of the previous sections, x1,t+1 = [r>p,t+1 Zt]
>, x2,t+1 = rN,t+1, θ1 = [a0 a1 b

>
0 b>1 ]

>, and θ2 = αN .

Define

f1(x1,t+1, θ1) =

[
Rf,t+1

rp,t+1

](

(a0 + a1Zt) + (b0 + b1Zt)
>rp,t+1

)

⊗
[

1
Zt

]

−
[
1
0

]

⊗
[

1
Zt

]

(49)

f2(xt+1, θ) = (rN,t+1 − αN )
(

(a0 + a1Zt) + (b0 + b1Zt)
>rp,t+1

)

, (50)

10The stochastic discount factor parameters can be over-identified by multiplying by nonlinear functions of Zt in
(47). Likewise, multiplying the term inside the expectation in (48) by functions of Zt would over-identify the fund
parameter αi. For simplicity, we consider only the exactly identified systems here.
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where ⊗ denotes the Kronecker product. Recall that xt = [x>1t x
>
2t]
> and θ = [θ>1 θ>2 ]

>. To estimate

the unconditional SDF, (49) and (50) are replaced by

f1(x1,t+1, θ1) =

[
Rf,t+1

rp,t+1

](

a+ b>rp,t+1

)

−
[
1
0

]

f2(x2,t+1, θ) = (rN,t+1 − αN )
(

a+ b>rp,t+1

)

.

Let Ŝij,λT (θ̃) be the Newey and West (1987) estimator of Sij that uses the short sample, 6 lags

and parameter estimate θ̃. If θ̃ is a consistent estimate of θ0, the results of Newey and West imply

that Ŝij,λT (θ̃) is a consistent estimator of Sij . The moments for the adjusted-moment estimator

can then be defined by (10), with f1 and f2 defined as above, and with B̂21,λT given by

B̂21,λT (θ̃) = Ŝ21,λT (θ̃)
(

Ŝ11,λT (θ̃)
)−1

. (51)

To obtain a consistent estimate θ̃, we first estimate the system via standard GMM. We then use this

first-stage estimate to obtain B̂21,λT (θ̃) for use in the second stage. Second stage adjusted-moment

estimates are reported.

The over-identified estimator is given by (11). To completely specify this estimator, it is nec-

essary to specify a consistent estimator for SI , which is then used as the inverse of the weighting

matrix. The identity matrix is used to obtain first-stage over-identified estimates; these estimates

become the inputs θ̃ into the Newey-West estimator of SI to obtain the second-stage estimate.

Then the second-stage estimates are used to obtain third-stage over-identified estimates. This

procedure is repeated until convergence.

When calculating standard errors for the over-identified or adjusted-moment estimations, Newey-

West evaluated at the parameter estimates for that iteration are used. For the short estimation,

standard errors are calculated two ways: using Newey-West evaluated at the parameter estimates

reported for the over-identified estimation and for the adjusted-moment estimation. Doing so al-

lows the efficiency gains from using the adjusted-moment or over-identified estimators instead of

the short estimator to be quantified more easily.

5.4 Results

Table 1 reports abnormal performance estimates for the Carhart (1997) four-factor model. Panel

A reports the abnormal performance parameter (α) for each fund type when the factor model is

conditional, while Panel B reports α for each fund type when the factor model is unconditional.

There are five columns in the table. The first column reports the estimates and standard errors
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using the adjusted-moment method and the second the over-identified method. The third column

reports the results using standard GMM (short method). As discussed above, standard errors for

the short method are evaluated at parameter estimates from the longer sample. One standard error

uses the Newey-West technique evaluated at the adjusted-moment estimates, while the other uses

the Newey-West technique evaluated at the over-identified estimates. The last column averages the

percent reduction in the standard error due to using the adjusted-moment estimator rather than

short and the over-identified estimator rather than short.

Panels A and B show that the estimates of performance differ little between the adjusted-

moment, over-identified, and short methods, and between the conditional and unconditional models.

Point estimates for performance of growth funds are higher than the estimates for other types of

funds. However, the individual estimates are not significantly different from zero. The standard

errors differ markedly between the methods that use the full sample and standard GMM. For

example, under the conditional model, the α on growth funds is estimated to be .06% per month

for all three methods. For the short method, the standard error is 0.23. In contrast, when the

adjusted-moment or over-identified method is used, the standard error falls to 0.12, a reduction

of 48%. The reduction for the miscellaneous category is 28%, while the reductions for maximal

capital gain and growth and income are 48% and 49% respectively. For performance relative to the

unconditional model, the reductions are qualitatively similar.

Table 2 reports SDF estimates. Panel A reports results for the conditional model; Panel B

reports results for the unconditional model. The organization is the same as in Table 1, except that

the last column, % reduction, is omitted. As the table shows, estimates of the SDF parameters are

similar for the adjusted-moment and over-identified estimators, but different for the short estimator.

Clearly, inference about these parameters is altered when the data set is expanded to include all the

available observations. Many studies of stock returns use the longer data when possible (see, e.g.

Kandel and Stambaugh (1996)); our method allows the advantages of using the longer data to be

retained, even in a setting where the estimation involves data not observed for the whole interval.

As noted in Section 4, standard errors on parameters that can be estimated from the full data set

fall by 1 −
√
λ. In this example, λ = 204/804. Thus the standard errors on the SDF parameters

fall by 49.6%.

Table 1 shows that the standard errors on the mutual fund parameters fall substantially, often by

nearly as much as the standard errors on the SDF parameters. The standard errors on the mutual

fund parameters fall for two reasons, as explained in Section 4. First, moment conditions identifying
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Table 1: Fund-type performance relative to the Carhart 4-factor model

Estimates of the abnormal performance parameter α when the SDF model is conditional (Panel A), and when it is

unconditional (Panel B), for each of the four fund types. The factors are the excess return on the market portfolio

and the returns on the SMB, HML, and momentum (UMD) portfolios. Abnormal performance parameters calculated

using the adjusted-moment method (AM), over-identified method (OI), and standard GMM (Short), are reported.

Standard errors for Short are calculated using AM or OI estimates. % Reduction is the average percent reduction in

standard error due to using AM and OI rather than their Short counterparts. Data are monthly, beginning in 1927

and ending in 1993. Short sample data cover the period 1977 to 1993. Newey-West standard errors calculated with

6 lags are in parentheses. Returns are in % per month.

AM OI Short % Reduction
(se) (se) (AM se) (OI se)

Panel A: Conditional Abnormal Performance

αmcg -0.04 -0.04 -0.05
(0.14) (0.13) (0.26) (0.25) 48.1

αgrow 0.06 0.06 0.06
(0.12) (0.12) (0.23) (0.23) 48.3

αg&i -0.04 -0.04 -0.04
(0.10) (0.10) (0.20) (0.19) 48.7

αmisc 0.04 0.01 -0.01
(0.11) (0.12) (0.16) (0.16) 27.7

Panel B: Unconditional Abnormal Performance

αmcg -0.04 -0.04 -0.04
(0.11) (0.11) (0.20) (0.20) 46.9

αgrow 0.05 0.05 0.04
(0.10) (0.10) (0.18) (0.18) 47.2

αg&i -0.04 -0.05 -0.05
(0.08) (0.09) (0.16) (0.16) 48.0

αmisc 0.03 0.02 0.00
(0.12) (0.12) (0.15) (0.15) 18.9
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Table 2: Stochastic discount factor estimates for the Carhart 4-factor model

Estimates of SDF parameters when the SDF model is conditional (Panel A), and when it is unconditional (Panel B).

The factors are the excess return on the market portfolio and the returns on the SMB, HML, and momentum (UMD)

portfolios. SDF parameters calculated using the Adjusted Moment method (AM), Over-Identified method (OI), and

standard GMM (Short), are reported. Standard errors for Short are calculated using AM or OI estimates. In all

cases, the % reduction in standard errors is 49.6%. Data are monthly, beginning in 1927 and ending in 1993. Short

sample data cover the period 1977 to 1993. Newey-West standard errors calculated with 6 lags are in parentheses.

AM OI Short
(se) (se) (AM se) (OI se)

Panel A: SDF Parameters, Conditional Model

a0 1.11 1.10 1.20
(0.03) (0.03) (0.05) (0.05)

a1 -0.01 -0.01 0.09
(0.01) (0.01) (0.02) (0.02)

b0,MKT -1.79 -1.56 -4.38
(0.96) (0.93) (1.91) (1.85)

b1,MKT -0.20 0.01 -2.69
(0.37) (0.37) (0.74) (0.73)

b0,SMB -2.49 -1.69 -4.62
(1.32) (1.30) (2.62) (2.57)

b1,SMB -0.52 -0.42 -3.06
(0.31) (0.31) (0.62) (0.62)

b0,HML -5.20 -5.40 -13.92
(1.52) (1.49) (3.02) (2.95)

b1,HML 0.55 0.64 -2.04
(0.38) (0.38) (0.76) (0.75)

b0,UMD -9.00 -8.44 -9.59
(1.36) (1.32) (2.70) (2.61)

b1,UMD 0.90 1.08 -0.72
(0.42) (0.41) (0.83) (0.82)

Panel B: SDF Parameters, Unconditional Model

a 1.09 1.09 1.17
(0.02) (0.02) (0.04) (0.04)

bMKT -2.60 -2.59 -4.28
(0.83) (0.83) (1.66) (1.65)

bSMB -1.86 -1.78 -4.44
(1.12) (1.12) (2.23) (2.22)

bHML -5.86 -5.41 -13.28
(1.25) (1.26) (2.49) (2.50)

bUMD -7.02 -6.82 -9.33
(0.99) (0.99) (1.96) (1.96)
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performance are correlated with moment conditions identifying the SDF. Our estimators make use

of this correlation to lower the variance on the conditions identifying the mutual fund parameters,

even though no extra data on mutual funds are used. Second, the SDF parameters appear in both

sets of moment conditions. When the additional data are used, more precise estimates of these

parameters enter into the conditions for abnormal performance. In the notation of Section 4, both

S21 6= 0 and d21 6= 0. The standard errors on the fund parameters could fall by at most 49.6%, the

percent reduction in the SDF standard errors. The fact that the reductions reported in Table 1 are

close to this indicates that the effects of introducing the longer sample can be large.

6 Extensions

The previous sections considered cases where there were two relevant sample periods: a “short”

sample period over which all data are observed, and a “long” sample period over which only some

of the data are observed. This section extends the methods to cases where there are more than two

different sample periods. In order to extend the estimators of Section 2, it is necessary to prove

a theorem analogous to Theorem 1.1 for the case where the data of length T is divided into more

than two blocks. Let η1, η2, . . . , ηn denote rational numbers such that
∑n

k=1 ηk = 1. Let n0 be the

smallest integer such that the product with ηj is an integer, for all j. As above, we will restrict

attention to values T that are a multiple of n0. Define the following partial sums of g:

gη1T (θ) =
1

η1T

η1T∑

t=1

f(xt, θ) (52)

gηjT (θ) =
1

ηjT

(η1+···+ηj)T∑

t=(η1+···+ηj−1)T+1

f(xt, θ), j = 2, . . . , n. (53)

Theorem 6.1 Define gη1T as in (52) and gηjT as in (53) for j = 2, . . . , n. Assumptions 1–5 imply

√
T








√
η1gη1T (θ0)√
η2gη2T (θ0)
...√

ηngηnT (θ0)







→d N







0,








S 0 . . . 0
0 S . . . 0

0 0
. . . 0

0 0 0 S















(54)

as T →∞.

Proof We proceed by induction. The case for n = 1 follows from standard results (e.g. White and

Domowitz (1984, Theorem 2.4)). Suppose (54) holds for n − 1. Because xt is stationary, we can
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−(η1 + · · ·+ ηn−1)T + 1 − (η2 + · · ·+ ηn−1)T + 1 1 ηnT

| | | |

Figure 2: Numbering scheme used in the proof of Theorem 6.1
.

define a new set of partial sums g̃ with the same joint distribution as the partial sums g. Let

g̃ηnT (θ0) =
1

ηnT

ηnT∑

t=1

f(xt, θ),

while

g̃ηjT (θ0) =

−(ηj+1+...ηn−1)T
∑

−(ηj+...ηn−1)T+1

f(xt, θ), j = 1, . . . , n− 1.

As Figure 2 illustrates, the start data of new “sample” is −(η1 + · · · + ηn−1)T + 1 while the end

date is ηnT . Then g̃η1T (θ0), . . . , g̃ηnT (θ0) have the same joint distribution as gη1T (θ0), . . . , gηnT (θ0).

By Lemma 1.2, for any 1× l vectors µ1, . . . , µn such that µjµ
>
j = 1, and scalars c1, . . . , cn,

lim
T→∞

P
(√

ηnTµnS
−1g̃ηnT (θ0) < cn,

√

ηn−1Tµn−1S
−1g̃ηn−1T (θ0) < cn−1, . . . ,

√

η1Tµ1S
−1g̃η1T (θ0) < c1

)

=

lim
T→∞

P
(√

ηnTµnS
−1g̃ηT (θ0) < cn

)

×

lim
T→∞

P
(√

ηn−1Tµn−1S
−1g̃ηn−1T (θ0) < cn−1, . . . ,

√

η1Tµ1S
−1g̃η1T (θ0) < c1

)

.

The result then follows from the induction assumption and asymptotic normality of
√
ηnTgηnT .

6.1 Extending the Over-Identified Estimator

An advantage of the over-identified estimator is that it is has a transparent extension to samples

where there is a more general pattern of missing data. Theorem 6.1 gives the joint distribution of

partial sums of g. We now use this result to extend the over-identified estimator.

As before, we consider the situation where not all moments are observed over the whole sample.

Here, however, we allow for an arbitrary number of missing “blocks” of data, and they can occur

anywhere in the sample, rather than simply at the beginning. Our asymptotic results will keep

the size of these missing blocks of data proportional to the size of the overall sample, so that the

missing data problem does not become trivial, just as in the case where there were data missing at

the start of the sample.

Consider intervals of the data defined by points in time where at least one sample moment

starts or ends. Say these points in time divide the sample up into disjoint intervals 1, . . . , n. These
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intervals can be weakly ordered by how many of the sample moments are observed over that interval.

That is, π1 sample moments are observed over the first segment, π2 ≤ π1 over the second segment,

etc. Let λ1 denote the ratio of the length of the first region (the region over which the greatest

number of moments are observed) to the length of the entire sample, λ2 the ratio of the length of

the second region to the length of the entire sample, etc. Then λ1, . . . , λn can be thought of in the

same way as η1, . . . , ηn in the previous section, except that while the ηs are labeled according to

their order in the sample, the λs are labeled according to how many data moments are observed

over that segment. Note that
∑n

i=1 λi = 1.

Define points t1, . . . tn so that the first data segment begins at t1 + 1, the second data segment

at t2 + 1, etc. Then

gλjT (θ) =
1

λjT

tj+λjT∑

t=tj+1

f(xt, θ), j = 1, . . . , n.

For the case described in Section 2, the first segment consist of points (1 − λ)T + 1 to T . All

moments were observed over this segment. The second segment consists of points 1 to (1 − λ)T .

Only a subset of moments are observed over these points. In this example, t1 = (1 − λ)T , t2 = 0,

λ1 = λ, and λ2 = (1− λ). We adopt the same notational convention as in Section 2: λjT will refer

to the length of the segment between tj + 1 and tj + λjT , and the segment itself.

Finally, let φi denote the set of data series that are observed in data segment λi. Define

fφj (xt, θ) =
(

fi1(xt, θ), . . . , fiπj (xt, θ)
)>

,

where {i1, . . . , iπj} ∈ φj and i1 < · · · < iπj . Then fφj are the components of f observed over the

segment λjT . Similarly, define the πj × q matrix

D0,φj = E

[

∂fφj
∂θ

∣
∣
∣
∣
θ0

]

=
(

D>0,i1 , . . . , D
>
0,iπj

)>
,

the πj × 1 vector

gφj ,λjT (θ) =
1

λjT

tj+λjT∑

t=tj+1

fφj (xt, θ),

and the πj × πj matrices

Rφj (τ) = E
[

fφj (x0, θ0)fφj (x−τ , θ0)
>
]

and

Sφj =
∞∑

τ=−∞
Rφj (τ).
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The extended over-identified estimator, for the case where there are n blocks of data and the

total data length is T , has moment conditions

hInT (θ) =
[

gφ1,λ1T (θ)
>, gφ2,λ2T (θ)

>, . . . , gφn,λnT (θ)
>
]>

, (55)

for θ ∈ Θ. The In superscript refers to the fact that these are moment conditions for the over-

identified estimator, and that there are n non-overlapping intervals. The T subscript refers to the

fact that the data length is T .11 As in Section 2,
√
ThInT (θ) is asymptotically normally distributed.

The following is analogous to Theorem 2.1.

Theorem 6.2 Assumptions 1–5 imply

√
ThInT (θ0)→d N

(
0, SIn

)
,

where

SIn =








1
λ1
Sφ1 0 . . . 0

0 1
λ2
Sφ2 . . . 0

0 0
. . . 0

0 0 0 1
λn
Sφn








(56)

as T →∞.

The extended over-identified estimator takes (55) as moment conditions. In principle, any

weighting matrix can be used, but we will emphasize the case when the weighting matrix converges

almost surely to (56). Define

θ̂InT = argminθ h
In
T (θ)>W In

T hInT (θ). (57)

Not surprisingly, the same consistency and asymptotic efficiency results go through for the extended

over-identified estimator as for the original over-identified estimator. Here, we repeat the results

but omit the proofs, which follow along the same lines as the corresponding proofs in Section 2.

Assumption 10 The weighting matrix W In
T converges almost surely to a positive-definite matrix

W In .

Theorem 6.3 Assumptions 1-5 and 10 imply that as T →∞, θ̂InT →a.s. θ0.

11This notation does not, of course, completely define the over-identified estimator. For that, one would need the
points at which the data intervals begin, t1, . . . , tn. These points in turn depend in a complicated way on λ1, . . . , λn
and T .
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Define

DIn0 =
[

D>0,φ1
D>0,φ2

. . . D>0,φn

]>
.

Note that Assumptions 1–5 imply that

DIn0 = lim
T→∞

∂hInT
∂θ

∣
∣
∣
∣
∣
θ0

.

Theorem 6.4 Assumptions 1–5, and 7–10 imply that as T →∞,
√
T (θ̂InT − θ0)→d N

(

0,
(

(DIn0 )>W InDIn0

)−1 (

(DIn0 )>W InSInW InDIn0

)(

(DIn0 )>W InDIn0

)−1
)

.

Theorem 6.5 Suppose W In
T →a.s. W

In = (SIn)−1. Assumptions 1–5 and 7–10 imply

√
T (θ̂InT − θ0)→d N

(

0,
(

(DIn0 )>
(
SIn

)−1
(DIn0 )

)−1
)

. (58)

Moreover, this choice of W In is efficient given the moment conditions (55).

The extended over-identified estimator reduces to the over-identified estimator considered in Sec-

tion 2 when there is a single block of data. Section 6.3 gives examples where there are multiple

blocks of data.

We now prove a result analogous to Theorem 3.2. That theorem showed that including the data

segment for which some data were missing improved efficiency relative to standard GMM. Here we

show that including a new data segment improves efficiency relative to the estimator that includes

all data but this segment. Without loss of generality, we consider the full over-identified estimator

relative to the over-identified estimator defined over the first n− 1 blocks of data.

Theorem 6.6 Assume W In
T →

(
SIn

)−1
and W

In−1

(1−λn)T →
(
SIn−1

)−1
. Assumptions 1–5 and 7–9

imply θ̂InT is asymptotically more efficient than θ̂
In−1

(1−λn)T .

Proof It suffices to compare the asymptotic variance of
√
T θ̂InT with

√
T θ̂

In−1

(1−λn)T . By Theorem 6.5,

E

[

(1− λn)T
(

θ̂
In−1

(1−λn)T − θ0

)(

θ̂
In−1

(1−λn)T − θ0

)>
]

=
(

(D
In−1

0 )>
(
SIn−1

)−1
(D

In−1

0 )
)−1

,

where

SIn−1 =









1−λn
λ1

Sφ1 0 . . . 0

0 1−λn
λ2

Sφ2 . . . 0

0 0
. . . 0

0 0 0 1−λn
λn−1

Sφn−1









,
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because data segment λj occupies a fraction λk/(1− λn) of the data segment (1− λn)T (note that

λj < 1− λn because
∑n−1

j=1 λj = 1− λn). Therefore,

E

[

T
(

θ̂
In−1

(1−λn)T − θ0

)(

θ̂
In−1

(1−λn)T − θ0

)>
]

=
1

1− λn

(

(D
In−1

0 )>
(
SIn−1

)−1
(D

In−1

0 )
)−1

(59)

=









(D
In−1

0 )>








1
λ1
Sφ1 0 . . . 0

0 1
λ2
Sφ2 . . . 0

0 0
. . . 0

0 0 0 1
λn−1

Sφn−1








−1

(D
In−1

0 )









−1

.

By (59) and Lemma A.1, it suffices to show that

(DIn0 )>
(
SIn

)−1
(DIn0 )− 1

1− λn
(D

In−1

0 )>
(
SIn−1

)−1
(D

In−1

0 )

is positive semi-definite. Applying (59), we have

SIn =

[ 1
1−λnS

In−1 0

0 1
λn
Sφn

]

and

DIn = [(DIn−1)> D>0,φn ]
>.

Therefore

(DIn0 )>
(
SIn

)−1
(DIn0 )− (1− λn)(D

In−1

0 )>
(
SIn−1

)−1
(D

In−1

0 ) = λnD
>
0,φnS

−1
φn
D0,φn , (60)

which is positive semi-definite.

6.2 Extending the Adjusted-Moment Estimator

This section shows that the adjusted-moment estimator can also be extended to the case where

there is are series of n lengths, where n is greater than 2. In fact, it is possible to define an

adjusted-moment estimator that is asymptotically equivalent to the over-identified estimator, just

as in the case where there were two blocks of data. Rather than a formulation (55), the extended

adjusted-moment estimator is defined by induction.

An advantage of the adjusted moment estimator over the over-identified estimator was described

in Section 3. When the model is exactly identified, and there is a set of series that have data

throughout the sample period that depend on a subset of the parameters, the adjusted-moment

estimator gives the same estimate for those parameters as simply using the long sample.
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Consider the same set-up as in Section 6.1. To simplify notation, we consider a slightly less

general problem than in Section 6.1. We require that all series have a segment in common, in

other words, π1 = l and φ1 = {1, . . . , l}. Of course, this segment could be a small portion of

the total data available. To inductively define the adjusted-moment estimator, we first give a

definition of the adjusted-moment estimator when all series are observed for all the data. This is

standard GMM. Then we assume that the adjusted-moment estimator has been defined over the

first n − 1 intervals of data, and extend the adjusted moment estimator to all n intervals of data.

This procedure can be used to construct the adjusted-moment estimator over the same patterns

of missing data as for the over-identified estimator (assuming that all data has been observed over

at least one segment), provided that one starts the construction with the segment over which all

the data has been observed (of length λ1T ), and then proceeds to the segment where π2 < π1 = l

moment conditions have been observed, and so forth. While the induction approach may appear

somewhat cumbersome, the procedure is quite straightforward, as demonstrated by the examples

in Section 6.3.

We begin by defining the adjusted-moment estimator when there is a single data segment and

no missing data. This is the standard GMM estimator:

hA1
λ1T

= gλ1T . (61)

As in the previous section, the subscript on h denotes the data region over which h is measured.

The superscript refers to the fact that it is the adjusted-moment estimator, while the subscript on

A refers to the number of blocks of data. It follows from standard arguments that

E
[

hA1
λ1T

(θ0)
]

= E [f(xt, θ0)] = 0,

and that

hA1
λ1T

(θ)→a.s. E[f(xt, θ)]

as T →∞. Assume by induction that

h
An−1

(1−λn)T (θ)→a.s. E[f(xt, θ)], (62)

and that

E

[

(1− λn)T
(

h
An−1

(1−λn)T (θ0)
)(

h
An−1

(1−λn)T (θ0)
)>
]

→a.s. S
An−1 , (63)

for some symmetric, positive-definite matrix SAn−1 . Finally, assume that h
An−1

(1−λn)T (θ0) is a linear

combination of gφ1(θ0), . . . , gφn−1(θ0) with non-random coefficients that do not depend on T . That
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is

h
An−1

(1−λn)T (θ0) = Mn−1[gφ1(θ0)
>, . . . , gφn−1(θ0)

>]>. (64)

This allows Theorem 6.1 to be applied. Note that (62) implies that there is a one-to-one corre-

spondence between moment conditions in the adjusted-moment estimator, and moment conditions

fi.

Let h
An−1

φn,(1−λn)T (θ) denote the πn components of h
An−1

(1−λn)T (θ) that converge to E [fφn(xt, θ)].

These are the elements of h
An−1

φn,(1−λn)T (θ) corresponding to moments observed over the new data

length. We define the adjusted-moment estimator for n intervals as the residual from a regression of

the previous adjusted-moment estimator on the difference between the components of the previous

adjusted-moment estimator for which the new data is available, and the sample average over the

new segment of data. Define

BAn−1 = lim
T→∞

E

[

Th
An−1

(1−λn)T (θ0)
(

h
An−1

φn,(1−λn)T (θ0)− gφn,(1−λn)T (θ0)
)>
]

×

E

[

T
(

h
An−1

φn,(1−λn)T (θ0)− gφn,(1−λn)T (θ0)
)(

h
An−1

φn,(1−λn)T (θ0)− gφn,(1−λn)T (θ0)
)>
]−1

. (65)

BAn−1 is the l × πn matrix of asymptotic regression coefficients from a regression of the (n− 1)st

adjusted-moment estimator on h
An−1

φn,(1−λn)T (θ0) − gφn,λnT (θ0), appropriately scaled by the square

root of the sample length. In practice, BAj can be replaced by a sample estimate B̂
Aj
T such that

B̂
Aj
T →a.s. B

Aj as T →∞.12 Finally define the nth adjusted-moment estimator as

hAnT (θ) = h
An−1

(1−λn)T (θ)−BAn−1

(

h
An−1

φn,(1−λn)T (θ)− gφn,λnT (θ)
)

. (66)

When evaluated at θ0, h
An
T is a regression residual. This completes the definition of the adjusted-

moment estimator.

We now verify that the induction hypotheses (62)–(64) are valid for n. These are necessary to

define (66).13 Because

h
An−1

φn,(1−λn)T (θ)− gφn,λnT (θ)→a.s. E [fφn(xt, θ)]− E [fφn(xt, θ)] = 0,

12In that case, (64) would be replaced by the requirement that

h
An−1

(1−λn)T (θ0) =Mn−1,T [gφ1(θ0)
>
, . . . , gφn−1

(θ0)
>]>,

where limT Mn−1,T →a.s. Mn−1. None of the arguments would change.
13Equation (62) insures a one-to-one correspondence between moment conditions and components of hAn . Equa-

tion (64) insures that
√
Th

An−1

(1−λn)T and
√
Tgφn,(1−λn) have an asymptotic distribution that is well-defined (by Theo-

rem 6.1). This implies that BAn−1 is well-defined. Equation (63) will be useful later in determining the asymptotic
distribution of the adjusted-moment estimator.
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(62) is satisfied for n. To show (63) for n, note first that Theorem 6.1 implies

lim
T→∞

E
[

Tgφn,λnT (θ0)h
An−1

φn,(1−λ)T (θ0)
>
]

= 0.

Because hAnT (θ0) is a regression residual, (66) implies

lim
T→∞

E
[

ThAnT (θ0)h
An
T (θ0)

>
]

=
1

(1− λn)
SAn−1 −BAn−1

[
1

λn
Sφn +

1

(1− λn)
S
An−1

φn

]
(
BAn−1

)>
,

(67)

where

S
An−1

φn
= lim

T→∞
E
[

Th
An−1

φn,(1−λn)T (θ0)h
An−1

φn,(1−λn)T (θ0)
>
]

.

Clearly (67) is well-defined and symmetric. It is positive definite because φn is a strict subset of

{1, . . . , l}, so not all the variance in h
An−1

(1−λn)T can be explained by h
An−1

φn,(1−λn)T . Finally, (64) follows

from the form of (66).

It may not be immediately clear that this estimator reduces to the one defined in Section 2

when there are only two blocks of data. In fact, it does reduce to the previously-defined adjusted-

moment estimator. As stated in Section 6.1, λ1 = λ and λ2 = (1 − λ). We also have φ1 = {1, 2},
and φ2 = {1}. The moment conditions for the first adjusted-moment estimator are the same as in

standard GMM:

hA1
λ1T

= gλT .

It follows from (66) that

hA2
T = hA1

λ1T
−BA1

(

hA1
1,λ1T

− gφ2,λ2T

)

= gλT −BA1
(
g1,λT − g1,(1−λ)T

)
.

By (65),

BA1 = lim
T→∞

E
[

TgλT (g1,λT − g1,(1−λ)T )
>
] (

E
[

T (g1,λT − g1,(1−λ)T )(g1,λT − g1,(1−λ)T )
>
])−1

=
1

λ

(
S11

S21

)[(
1

1− λ
+

1

λ

)

S11

]−1

=

(
(1− λ)I
(1− λ)B21

)

,

where we have suppressed the argument θ0 in the first line. Therefore, the moment conditions for

the adjusted-moment estimator equal

hA2
T =

(
g1,λT + (1− λ)

(
g1,(1−λ)T − g1,λT

)

g2,λT + (1− λ)B21(g1,(1−λ)T − g1,λT )

)

, (68)
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which are the same moment conditions as those given in Section 2.14

The usual asymptotic results hold for the extended adjusted-moment estimator. The following

lemma is helpful:

Lemma 6.1 Assumptions 1–5 imply

√
T

(

h
An−1

(1−λn)T (θ0)

gφn,λnT (θ0)

)

→d N

(

0,

[ 1
1−λnS

An−1 0

0 1
λn
Sφn

])

.

Proof It follows from (64) and Theorem 6.1 that
√
Th

An−1

(1−λn)T (θ0) and
√
Tgφn,λnT (θ0) are asymp-

totically independent, and that each are asymptotically normally distributed. The form of the

asymptotic variance follows from (63) and Theorem 6.1.

This lemma implies that the sample moment conditions for the nth adjusted-moment estimator,

scaled by
√
T are asymptotically normally distributed. Equation (66) implies an inductive equation

for the variance.

Theorem 6.7 Assumptions 1–5 imply

√
ThAnT (θ0)→d N

(
0, SAn

)
,

where SAn is defined inductively as

SAn =
1

1− λn
SAn−1 −BAn−1

[
1

λn
Sφn +

1

1− λn
S
An−1

φn

]
(
BAn−1

)>
, (69)

with

SA1 = S. (70)

As with the extended over-identified estimator, any positive definite weighting matrix can be

used with moment conditions hAnT to produce a consistent estimator. As usual, we will emphasize

the case when the weighting matrix converges almost surely to SAn . Define

θ̂AnT = argminθ h
An
T (θ)>WAn

T hAnT (θ), (71)

where WAn
T satisfies Assumption 11:

Assumption 11 The weighting matrix WAn
T converges almost surely to a positive-definite matrix

WAn.
14Here we make use of the equation g1T = λg1,λ1T + (1− λ)g1,(1−λ)T .
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Consistency for the extended adjusted moment estimator follows from the fact that

hAnT (θ)→a.s. E [f(xt, θ)]

(proved above by induction) and the arguments of Section 2.

Theorem 6.8 Assumptions 1-5, and 11 imply that as T →∞, θ̂An →a.s. θ0.

Similarly, it is possible to show that the estimator is asymptotically normally distributed:

Theorem 6.9 Assumptions 1-5, 7–9 and 11 imply that as T →∞,
√
T (θ̂AnT − θ0)→d N

(

0,
(

D>0 W
AnD0

)−1 (

D>0 W
AnSAnWAnD0

)(

D>0 W
AnD0

)−1
)

.

Proof We show by induction on n that

∂hAnT
∂θ

(θ0)→a.s. E

[

∂f

∂θ
(xt, θ)

∣
∣
∣
∣
θ0

]

≡ D0. (72)

By definition, and White and Domowitz (1984, Theorem 2.3) it follows that

∂hA1
λ1T

∂θ
(θ0) =

∂gλ1T

∂θ
(θ0)→a.s. D0.

Assume (72) holds for n− 1. By (66),

hAnT (θ) = h
An−1

(1−λn)T (θ)−BAn−1

(

h
An−1

φn,(1−λn)T (θ)− gφn,λnT (θ)
)

. (73)

Applying White and Domowitz (1984, Theorem 2.3) again, it follows that

∂gφn,λnT
∂θ

(θ)→a.s. D0.

Taking limits on both sides of (73) and using the induction hypothesis produces the desired result.

The rest of the proof follows along the same lines as that of Theorem 2.3 in Section 2.

Lastly, given moments hAnT , the most efficient asymptotic weighting matrix is the inverse of the

variance of these moments.

Theorem 6.10 Suppose WAn
T →a.s. W

An = (SAn)−1. Assumptions 1–5 and 7–9 imply that

√
T (θ̂AnT − θ0)

a∼ N

(

0,
(

D>0
(
SAn

)−1
D0

)−1
)

. (74)

Moreover, this choice of WAn is efficient given the moment conditions (55).
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While the extended adjusted-moment estimator appears completely different from the extended

over-identified estimator, they are asymptotically equivalent.

Theorem 6.11 Assume that WAn
T →

(
SAn

)−1
and W In

T →
(
SIn

)−1
. For any integer n, as-

sumptions 1–5 and 7–9 imply that the extended adjusted-moment estimator (71) is asymptotically

equivalent to the extended over-identified estimator (57).

A full proof is given in the Appendix. The structure of the proof is similar to that of Theorem 3.1.

The preceding theorems show that it suffices to compare the asymptotic variances. Then matrix

partition results are used to relate the inverse of the asymptotic variance for the over-identified

estimator to the asymptotic variance of the adjusted-moment estimator.

Intuitively, the reason for the equivalence is that both estimators insure that each additional

segment reduces the variance in the most efficient way. The variance reduction is easier to see in

the case of the over-identified estimator, where each additional segment introduces a new moment

condition. The efficient weighting matrix, along with a standard “diversification” argument insures

that the new estimator will have a smaller variance than the old estimator. For the adjusted-

moment estimator, each step of the further reduces the variance of the moment conditions, because

the new moment conditions are defined as regression residuals from the previous step. As regression

residuals, they must have smaller variance than the variable on the right-hand side of the regression

– the previous moment conditions.

Theorem 6.11 shows that the extended adjusted moment estimator is asymptotically equivalent

to the extended over-identified estimator. By Theorem 6.6, we can conclude that adding a block

of data always increases efficiency for the adjusted-moment estimator.

Corollary 6.1 Assume that WAn
T →

(
SAn

)−1
and W

An−1

(1−λn)T →
(
SAn−1

)−1
. Assumptions 1–5 and

7–9 imply
√
T θ̂AnT is asymptotically more efficient than

√
T θ̂

An−1

(1−λn)T .

Defining the adjusted-moment estimator as a regression residual has some appealing properties;

it facilitates the proof of equivalence for the over-identified estimator, and it demonstrates clearly

the reduction in variance. In other respects, it may appear counterintuitive. In the next section,

we compute three examples of the adjusted-moment estimator and show that indeed, they have an

interpretation that is equally appealing as in the case where only one data block is missing.

6.3 Examples

This section computes explicit estimators for three examples of missing data patterns. The first

example is like that explored in Section 2, except here data is missing at both ends of the sample
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for one of the series, rather than just at the beginning. The second example is where there are three

different starting dates, but all data have the same ending dates. This case is treated in Stambaugh

(1997) in a maximum-likelihood setting, and applied to international data. This example shows

that our methods can be easily applied to this setting as well. Given the form of the estimators for

examples 1 and 2, one could easily combine the reasoning and put together an example where the

data have both different starting and ending dates, but that the available data are “nested” (e.g.

there are three series, the first of which is observed for the full sample, the second is observed for

a subset of the dates, and the third is observed for a subset of the dates for which the second is

observed). Little and Rubin (2002) refer to this condition as monotonicity, and derive a maximum

likelihood estimator under normality and independent, identically distributed observations.

The last example is a case where the series have different starting dates and different ending

dates, but that the series that start later also end later. This example illustrates the power of our

generalization above, as its form for the adjusted-moment estimator is non-obvious.

In all of these cases, we derive both the over-identified estimator and the adjusted-moment

estimator. For the over-identified estimator, we derive both the moment conditions, the optimal

matrix, and the form of DI0 . For the adjusted-moment matrix, the derivative of the moments

always equals D0 asymptotically. The optimal weighting matrix is the inverse of the variance of

the moments, which can be computed from (69). If the original problem is exactly identified, it will

remain so with the adjusted-moment estimator. Also, the extended adjusted-moment estimator

will be consistent, and efficient relative to the estimator that uses a shorter length of data, for any

choice of positive-definite weighting matrix.

6.3.1 Data missing at both ends

The first example is similar to the case in Section 2, except that data from the second set of series

is missing not only at the beginning of the sample, but also at the end.15 Figure 3 illustrates this

pattern of missing data. As in Section 2, group the moment conditions observed for the full data

set into a vector f1(x1t, θ), and moment conditions only observed for the middle segment into a

vector f2(xt, θ). This situation would occur if the series for which data is missing at the start of the

sample also is updated less frequently. We use g1,·(θ) to denote partial sums of f1(x1t, θ) and g2,·(θ)

to denote partial sums of f2(xt, θ), where · will represent the length of the segment over which the

15If the observations were independent, then this case is clearly identical to that described in Section 2 because
the data points could be rearranged without effecting the joint distribution. Under dependence, this does not follow
immediately.
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λ2T λ1T λ3T| | | |
λ1T| |

Figure 3: Illustration of Example 1. Example 1 explicitly calculates the extended estimators for
data missing at both ends. The notation above the horizontal lines refers to the length of each
segment as a function of the sample size T .

observation is taken. The notation for sub-matrices of S and D0 follows the same conventions as

in Section 2.

As shown in Figure 3, λ1 is the length of the middle segment divided by the total data length.

Without loss of generality, we assume λ2 is the length of the first segment of missing data divided

by the total length (we could also have set λ2 equal to the length of the second segment of missing

data divided by the total data length). The moment conditions for the over-identified estimator

hI3T are

hI3T (θ) =
[

g1,λ1T (θ)
> g2,λ1T (θ)

> g1,λ2T (θ)
> g1,λ3T (θ)

>
]>

.

Then the results in Section 6.1 imply that
√
ThI3T (θ) has asymptotic variance16

SI3 =








1
λ1
S11

1
λ1
S12 0 0

1
λ1
S21

1
λ1
S22 0 0

0 0 1
λ2
S11 0

0 0 0 1
λ3
S11







.

The extended over-identified estimator with efficient weighting matrix is therefore

θ̂I3 = argminθ h
I3
T (θ)>W I3

T hI3T (θ), W I3
T →a.s.

(
SI3
)−1

for W I3
T positive definite. The asymptotic distribution is given by

√
T (θ̂I3T − θ0)→d N

(

0,
(

(DI30 )>
(
SI3
)−1

(DI30 )
)−1

)

,

where

DI3 =
[

D>0,1 D
>
0,2 D

>
0,1 D

>
0,1

]>
.

We now describe the extended adjusted-moment estimator. The moment conditions for the first

adjusted-moment estimator are the same as in standard GMM:

hA1
λ1T

= gλ1T . (75)

16The asymptotic variance does not take exactly the same form as SI in Section 2. The reason for the discrepancy is
that SI was defined as the asymptotic variance of the moment conditions scaled by

√
λT , while SI3 is the asymptotic

variance of the moment conditions scaled by
√
T .

43



Substituting (75) into (66) yields the adjusted-moment estimator that includes the λ2 block:

hA2

(λ1+λ2)T = gλ1T −BA1 (g1,λ1T − g1,λ2T ) , (76)

where

BA1 = lim
T→∞

E
[

(λ1 + λ2)Tgλ1T (g1,λ1T − g1,λ2T )
>
] (

E
[

(λ1 + λ2)T (g1,λ1T − g1,λ2T ) (g1,λ1T − g1,λ2T )
>
])−1

=
λ2

λ1 + λ2

(
I
B21

)

,

where we have suppressed the θ0 argument in the first line. Substituting into (76) produces

hA2

(λ1+λ2)T =

(
g1,(λ1+λ2)T

g2,λ1T + λ2
λ1+λ2

B21 (g1,λ2T − g1,λ1T )

)

, (77)

which is the same estimator described in Section 2, except that the length of the sample is taken

to be (λ1 + λ2)T rather than T .17

To construct the full adjusted-moment estimator for this case, we apply (66) again:

hA3
T = hA2

(λ1+λ2)T −BA2

(

hA2

1,(λ1+λ2)T − g1,λ3T

)

, (79)

where

BA2 = lim
T→∞

E

[

ThA2

(λ1+λ2)T

(

hA2

1,(λ1+λ2)T − g1,λ3T

)>
]

×
(

E

[

T
(

hA2

(λ1+λ2)T − g1,λ3T

)(

hA2

1,(λ1+λ2)T − g1,λ3T

)>
])−1

(80)

= lim
T→∞

E
[

ThA2

(λ1+λ2)T

(
g1,(λ1+λ2)T − g1,λ3T

)>
] (

E
[

T
(
g1,(λ1+λ2)T − g1,λ3T

) (
g1,(λ1+λ2)T − g1,λ3T

)>
])−1

.

It follows from Theorem 6.1 that

lim
T→∞

E
[

T
(
g1,(λ1+λ2)T − g1,λ3T

) (
g1,(λ1+λ2)T − g1,λ3T

)>
]

=

(
1

λ3
+

1

λ1 + λ2

)

S11. (81)

Using (77) and the same argument,

lim
T→∞

E
[

ThA2

1,(λ1+λ2)T

(
g1,(λ1+λ2)T − g1,λ3T

)>
]

=
1

λ1 + λ2
S11. (82)

17Here and in the following computations, we make use of the equation

g1,(λ1+λ2)T =
λ1

λ1 + λ2
g1,λ1T +

λ2

λ1 + λ2
g1,λ2T . (78)
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Finally, Theorem 6.1 and the same reasoning used to show (21) that

lim
T→∞

E
[

ThA2

2,(λ1+λ2)T

(
g1,(λ1+λ2)T − g1,λ3T

)>
]

= lim
T→∞

E
[

ThA2

2,(λ1+λ2)T g>1,(λ1+λ2)T

]

=
1

λ1 + λ2
S21, (83)

where we have continued to suppressed the argument θ0. Combining (81), (82), and (83), and

rearranging,

BA2 = λ3

(
I
B21

)

.

Substituting into (79) and rearranging produces18

hA3
T =

(
g1,T

g2,λ1T + (λ2 + λ3)B21

(
λ2

λ2+λ3
g1,λ2T + λ3

λ2+λ3
g1,λ3T − g1,λ1T

)

)

.

Several features of this extended adjusted-moment estimator are worth noting. First, the moment

condition for the series observed for the full data set is the same as if these series were estimated

independently of the second set of moments. The basic adjusted-moment estimator described in

Section 2) also had this property, and, as we argued in Section 3 this may be a reason to prefer

the adjusted-moment estimator over the over-identified estimator. Second, the adjustment to the

moments of the second series is the same as if the intervals λ2 and λ3 were contiguous rather than

separated by λ1. For our asymptotic results, it does not matter whether the blocks defined by

starting and ending points are contiguous.

6.3.2 Data missing in a monotonic pattern

The second example represents a problem dealt with in detail in a maximum likelihood context by

Little and Rubin (2002) and Stambaugh (1997). Here, the data series all end at the same point,

but may start from more than two different points. This may occur, for example, if one is using

international data as in the study by Stambaugh. Figure 4 illustrates the missing data pattern in

this case. For ease of notation, we illustrate the extended over-identified and extended adjusted-

moment estimators for the case where there are three starting dates. Extending the method further

to more than three starting dates is straightforward.

18Here and in the following example, we use the fact that λ1 + λ2 + λ3 = 1, and that

g1,T = (λ1 + λ2)g1,(λ1+λ2)T + λ3g2,λ3T

= λ1g1,λ1T + λ2g1,λ2T + λ3g2,λ3T .
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λ3T λ2T λ1T| | | |
λ2T λ1T| | |

λ1T| |

Figure 4: Illustration of Example 2. Example 2 explicitly calculates the extended estimators for
data missing in a monotonic pattern. The notation above the horizontal lines refers to the length
of each segment as a function of the sample size T .

As shown in Figure 4, λ1 is the length of the final segment divided by the total data length.

This is because all series are observed for the segment of length λ1T . A subset of these series are

also observed for the middle segment: this has length λ2T . A smaller subset is also observed for

the first segment, of length λ3T = (1−λ1−λ2)T . Following the notational convention of Section 2

and the previous example, we group the moment conditions observed for the full data set into

a vector f1(x1t, θ), the moment conditions observed for the last two data intervals into a vector

f2(x1t, x2t, θ), and the moment conditions observed only for the last data segment into a vector

f3(x1t, x2t, x3t, θ). The notation for sub-vectors of g and submatrices of D0 and S follows the same

convention as in the previous example.

The moment conditions for the over-identified estimator hI3T are

hI3T (θ) =
[

g1,λ1T (θ)
> g2,λ1T (θ)

> g3,λ1T (θ)
> g1,λ2T (θ)

> g2,λ2T (θ)
>g1,λ3T (θ)

>
]

.

The results of Section 6.1 imply that
√
ThI3T has asymptotic variance

SI3 =












1
λ1
S11

1
λ1
S12

1
λ1
S13 0 0 0

1
λ1
S21

1
λ1
S22

1
λ1
S23 0 0 0

1
λ1
S31

1
λ1
S32

1
λ1
S33 0 0 0

0 0 0 1
λ2
S11

1
λ2
S12 0

0 0 0 1
λ2
S21

1
λ2
S22 0

0 0 0 0 0 1
λ3
S11












.

In this example the extended over-identified estimator is therefore

θ̂I3T = argminθ h
I3
T (θ)>W I3

T hI3T (θ),

for W I3
T positive definite and W I3

T →a.s.

(
SI3
)−1

. The estimator has asymptotic distribution

√
T (θ̂I3T − θ0)→d N

(

0,
(

(DI30 )>
(
SI3
)−1

(DI30 )
)−1

)

,
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where

DI3 =
[

D>0,1 D
>
0,2 D

>
0,3 D>0,1 D

>
0,2 D

>
0,1

]>
.

We now describe the extended adjusted-moment estimator. The first step is the same as stan-

dard GMM for the three series:

hA1
λ1T

=





g1,λ1T

g2,λ1T

g3,λ1T



 .

The second step is the same as the second step in the example above. However, here two sets of

series are observed for the longer sample, g1 and g2. Therefore

BA1 =
λ2

λ1 + λ2

(
I
B3·12

)

and

hA2

(λ1+λ2)T =







g1,(λ1+λ2)T

g2,(λ1+λ2)T

g3,λ1T + λ2
λ1+λ2

B3·12

(
g1,λ2T − g1,λ1T

g2,λ2T − g2,λ1T

)






, (84)

where B3·12 are the coefficients from a multivariate regression on the third set of series on the first

two:

B3·12 = [S31 S32]

[
S11 S12

S21 S22

]−1

.

In the third step, we add the segment of length λ3T . Then

hA3
T = hA2

(λ1+λ2)T −BA2

(

hA2

1,(λ1+λ2)T − g1,λ3T

)

, (85)

where the expression for BA2 is given by (80). It follows from Theorem 6.1 that

lim
T→∞

E

[

T
(

hA2

1,(λ1+λ2)T
− g1,λ3T

)(

hA2

1,(λ1+λ2)T − g1,λ3T

)>
]−1

=

(
1

λ3
+

1

λ1 + λ2

)

S11.

Similar reasoning shows that

lim
T→∞

E

[

ThA2

j,(λ1+λ2)T

(

hA2

1,(λ1+λ2)T − g1,λ3T

)>
]

=
1

λ1 + λ2
Sj1, j = 1, 2, 3,

where we have made use of (21) for j = 3. Substituting into (85), and applying footnote 18 results

in

hA3
T =







g1T

g2,(λ1+λ2)T + λ3B21(g1,λ3T − g1,(λ1+λ2)T )

g3,λ1T + λ2
λ1+λ2

B3·12

(
g1,λ2T − g1,λ1T

g2,λ2T − g2,λ1T

)

+ λ3B31

(
g1,λ3T − g1,(λ1+λ2)T

)






,

where B31 = S31S
−1
11 .
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Note that the moment conditions for the data series observed for the full data set are the same

as if these series were estimated independently of the second and third set of moments. Indeed, the

moment conditions for the data series observed for both λ1 and λ2 are the same as if these series

were estimated (using the adjusted-moment estimator) without the third set of moments. Thus

the principle advantage of the adjusted-moment estimator for two starting dates is retained and

extended in this example with multiple starting dates.

In constructing this estimator, we have assumed that all the missing data occurs at the beginning

of the sample. However, the estimator would take the same form if the missing data were at the

end. Indeed, as the previous section shows, it suffices to have the data observed for the third set

of series be nested in the data observed for the second set, which is nested in the data observed for

the first set. In other words, data could be missing at both ends of the sample. In this case, the

adjusted-moment estimator would take the same form as above.

6.3.3 Data missing in a non-monotonic pattern

Our last example represents a case not handled in the maximum likelihood settings of Little and

Rubin (2002) and Stambaugh (1997). In this example, there are two sets of moments. These

moments have different starting dates and different ending dates, as in the first example. However,

the series that ends earlier also starts earlier, so neither series is observed for the full length. Figure 5

illustrates the pattern of missing data in this example.

λ2T λ1T| | |
λ1T λ3T| | |

Figure 5: Illustration of Example 3. Example 3 explicitly calculates the extended estimators for
data missing in a non-monotonic pattern. The notation above the horizontal lines refers to the
length of each segment as a function of the sample size T .

We refer to the length of the middle data segment as λ1T because all data are observed over this

segment. We could let λ2T denote the length of the first or the last data segment. Without loss of

generality, we let it refer to the length of the first segment. We let λ3T = (1 − λ1 − λ2)T denote

the length of the final segment. Following the notation convention of Section 2 and the previous

examples, we group the moment conditions observed for the first two intervals into a vector f1(x1t, θ)

and the moment conditions observed for the last two intervals into a vector f2(x2t, θ). The notation

for sub-vectors of g and submatrices of D0 and S follows the same convention as in the previous
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example.

The moment conditions for the over-identified estimator hI3T are

hI3T (θ) =
[

g1,λ1T (θ)
> g2,λ1T (θ)

> g1,λ2T (θ)
> g2,λ3T (θ)

>
]>

.

Then the results in Section 6.1 imply that
√
ThI3T (θ) has asymptotic variance

SI3 =








1
λ1
S11

1
λ1
S12 0 0

1
λ1
S21

1
λ1
S22 0 0

0 0 1
λ2
S11 0

0 0 0 1
λ3
S22







.

The extended over-identified estimator is therefore

θ̂I3T = argminθ h
I3
T (θ)>W I3

T hI3T (θ)

for W I3
T positive definite and W I3

T →a.s.

(
SI3
)−1

. The asymptotic distribution is

√
T (θ̂I3T − θ0)→d N

(

0,
(

(DI30 )>
(
SI3
)−1

(DI30 )
)−1

)

,

where

DI3 =
[

D>0,1 D
>
0,2 D

>
0,1 D

>
0,2

]>
.

We now describe the adjusted-moment estimator. The first two steps in constructing the

adjusted-moment estimator are identical to those in the first example. Therefore we can write

hA2

(λ1+λ2)T =

(
g1,(λ1+λ2)T

g2,λ1T + λ2
λ1+λ2

B21 (g1,λ2T − g1,λ1T )

)

. (86)

We have

hA3
T = hA2

(λ1+λ2)T −BA2

(

hA2

2,(λ1+λ2)T − g2,λ3T

)

, (87)

where

BA2 = lim
T→∞

E

[

ThA2

(λ1+λ2)T

(

hA2

2,(λ1+λ2)T − g2,λ3T

)>
]

× E

([

T
(

hA2

2,(λ1+λ2)T − g2,λ3T

)(

hA2

2,(λ1+λ2)T
− g2,λ3T

)>
])−1

,

where we have suppressed the argument θ0. Define

γ =
λ2

λ1 + λ2

λ3

λ1 + λ3
.
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Standard arguments (given in the Appendix) show that

BA2 =
λ3

λ1 + λ3

(
λ1

λ1+λ2
S12

S22 − λ2
λ1+λ2

S21S
−1
11 S12

)

S−1
22 (I − γB21B12)

−1 . (88)

Given BA2 , (87) gives the moments for the adjusted-moment estimator. The first component

is as follows:

hA3
1T = g1,(λ1+λ2)T+

λ1

λ1 + λ2

λ3

λ1 + λ3
B12 (I − γB21B12)

−1

(

g2,λ3T − g2,λ1T −
λ2

λ1 + λ2
B21(g1,λ2T − g1,λ1T )

)

,

(89)

while more extensive matrix algebra results in the following expression for the second component:

hA3
2T = g2,(λ1+λ3)T+

λ1

λ1 + λ3

λ2

λ1 + λ2
(I − γB21B12)

−1 B21

(

g1,λ2T − g1,λ1T −
λ3

λ1 + λ3
B12(g2,λ3T − g2,λ1T )

)

.

(90)

Because

B12 (I − γB21B12)
−1 = (I − γB12B21)

−1 B12, (91)

these expressions are symmetric.19

At first glance, the adjustments implicit in (89) and (90) do not seem as intuitive as their

counterparts in Section 2, or, for that matter, in Sections 6.3.1 and 6.3.2. However, there is a

reason for the apparently strange form. It follows from (92) and (78) that (89) can be rewritten as

hA3
1T =

λ2

λ1 + λ2
g1,λ2T +

λ1

λ1 + λ2
g1,λ1T+

λ1

λ1 + λ2

λ3

λ1 + λ3
B12

( ∞∑

m=0

(γB21B12)
m

)(

g2,λ3T − g2,λ1T −
λ2

λ1 + λ2
B21(g1,λ2T − g1,λ1T )

)

. (93)

It is instructive to expand out the infinite sum explicitly:

hA3
1T =

λ2

λ1 + λ2
g1,λ2T +

λ1

λ1 + λ2
g1,λ1T +

λ1

λ1 + λ2

λ3

λ1 + λ3
B12(g2,λ3T − g2,λ1T )

− λ1

λ1 + λ2

λ3

λ1 + λ3
B12

λ2

λ1 + λ2
B21(g1,λ2T − g1,λ1T )

+
λ1

λ1 + λ2

λ3

λ1 + λ3
B12

λ2

λ1 + λ2
B21

λ3

λ1 + λ3
B12(g2,λ3T − g2,λ1T )− . . . (94)

19Equation (91) can be shown by noting that

(I − γB21B12)
−1 =

∞∑

m=0

γ
m(B21B12)

m
. (92)
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The first two terms are partial sums of g over the data segment of length λ2T and the data segment

of length λ1T , weighted appropriately. The third term is the adjustment to g1,λ1T , given that g2

is observed over the longer data segment (precisely, the segment of length (λ1 + λ3)T ). This is

the same adjustment as in Section 2, except here it is the first rather than the second series that

is being adjusted. Because g1,λ1T is weighted by λ1/(λ1 + λ2), the adjustment also receives this

weight. Note that there is no adjustment to g1,λ2T because the second data series is not observed

over the period of length λ2T .

One possibility would be to stop with the third term. However, the resulting estimator would be

inefficient relative to the generalized adjusted-moment estimator. Instead, the extended adjusted-

moment estimator has additional terms. The reason is that the adjustment, λ3
λ1+λ3

B12(g2,λ3T −
g2,λ1T ), must itself be adjusted to reflect the fact that the first set of series is observed over the

data segment of length λ2T . More precisely, − λ3
λ1+λ3

B12g2,λ1T must be adjusted. This is the reason

for the fourth term. But then this must also be adjusted, and so forth. Repeating this argument

results in the telescoping matrix series (94), which, by (92), converges to the extended adjusted-

moment estimator (89). A symmetric explanation holds for (90). Thus even in this complicated

problem, the adjusted-moment estimator produces moments that have intuitive appeal.

7 Conclusion

This paper has introduced two estimators that extend the generalized method of moments of

Hansen (1982) to cases where moment conditions are observed over different sample periods. Most

estimation procedures, when confronted with data series that are of unequal length, require the

researcher to truncate the data so that all series are observed over the same interval. This paper

has provided an alternative that allows the researcher to use all the data available for each moment

condition.

Under assumptions of mixing and stationarity, we demonstrated consistency, asymptotic nor-

mality, and efficiency over standard GMM. Our base case assumed that the two series had the same

end date but different start dates. We then generalized our results to cases where the start date

and the end date may differ over multiple series. In all cases, using all the data produces more

efficient estimates. Interestingly, this gain in efficiency is not only present for the parameters that

enter into the moment conditions observed over the longer data. As long as there is some inter-

action between the moment conditions observed over the long data and the series observed over

the short data there is an efficiency gain for all the parameters. This interaction can be through
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covariances between the moment conditions, or through the fact that some parameters appear in

both the long-sample and short-sample moment conditions. In an application of our methods to

estimation of mutual fund abnormal performance, we show that the effect on standard errors can

be substantial.

Our two estimators are as straightforward to implement as standard GMM and have intuitive

interpretations. The adjusted-moment estimator calculates moments using all the data available

for each series, and then adjusts the moments available over the shorter series using regression

coefficients from a regression of the short-series moments on the long-series moments. The over-

identified estimator uses the non-overlapping data to form additional moment conditions. These

two estimators are equivalent asymptotically, and superior to standard GMM, but differ in finite

samples. We leave the question of which estimator has superior finite-sample properties to future

work.
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Appendix A

Lemma A.1 Assume m×m matrices U1 and U2 are invertible. If U1−U2 is positive semi-definite,

then U−1
2 − U−1

1 is also positive semi-definite.

Proof See Goldberger (1964, Chapter 2.7).

Lemma A.2 Assume m×m matrices U1 and U2 are invertible. If U1−U2 is positive semi-definite,

then for any conforming matrix M , (M>U−1
1 M)−1 − (M>U−1

2 M)−1 is also positive semi-definite.

Proof Assume U1−U2 is positive semi-definite. By Lemma A.1, U−1
2 −U−1

1 is positive semi-definite.

For any vector v and matrix M ,

(Mv)>(U−1
2 − U−1

1 )(Mv) ≥ 0.

Therefore

v>M>(U−1
2 − U−1

1 )Mv ≥ 0

which shows M>(U−1
2 − U−1

1 )M is positive semi-definite. Applying Lemma A.1 a second time

shows that (M>U−1
1 M)−1 − (M>U−1

2 M)−1 is positive semi-definite as required.

Lemma A.3 Let

S =

[
S11 S12

S21 S22

]

be a symmetric invertible matrix. Then

S−1 =

[
S−1

11 +B>21Σ
−1B21 −B>21Σ−1

−Σ−1B21 Σ−1

]

, (95)

where Σ is defined by (7). Moreover, if S̄ is defined as

S̄ =

[
λS11 λS12

λS21 S22 − (1− λ)S21S
−1
11 S12

]

,

with λ 6= 0, then

S̄−1 =

[
1
λ
S−1

11 +B>21Σ
−1B12 −B>21Σ−1

−Σ−1B12 Σ−1

]

. (96)

Proof The first statement follows from the expression for the matrix inverse (see e.g. Green (1997,

Chapter 2)). Applying the same formula to S̄ results in

S̄−1 =

[
S̄−1

11 + B̄>21Σ̄
−1B̄21 −B̄>21Σ̄−1

−Σ̄−1B̄12 Σ̄−1

]

,
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where

B̄21 = S̄21

(
S̄11

)−1
= S21S

−1
11 = B21,

and

Σ̄ = S̄22 − S̄21S̄
−1
11 S̄12

= S22 − (1− λ)S21S
−1
11 S12 − λS21S

−1
11 S12 = Σ.

Therefore (96) holds.

Proof of Theorem 6.11:

By Theorem 6.10, it suffices to show that the asymptotic variance of
√
T θ̂InT is the same as the

asymptotic variance of
√
T θ̂AnT . The proof is by induction on n. For n = 1,

θI1λ1T
= θA1

λ1T

because they both equal the standard GMM estimator over data of length λ1T . We assume by

induction that

D>0
(
SAn−1

)−1
D0 =

(

D
In−1

0

)> (
SIn−1

)−1
D
In−1

0 .

Without loss of generality, let φn = {1, . . . , πn}. That is, the first πn moment conditions are

observed over data region λn. By (60) it suffices to show

D>0
(
SAn

)−1
D0 − (1− λn)D

>
0

(
SAn−1

)−1
D0 = λnD

>
0,φnS

−1
φn
D0,φn .

Equivalently, it suffices to show

(
SAn

)−1
= (1− λn)

(
SAn−1

)−1
+ λn

[
S−1
φn

0

0 0

]

. (97)

We use the formula for the inverse of a partitioned matrix (Lemma A.3). Let −φn denote

the set of data series not observed over λn, i.e. the complement of φn. The assumption that

φn = {1, . . . , πn} implies that SAn can be written as

SAn =

[

SAnφn
SAnφn,−φn

SAn−φn,φn SAn−φn

]

,

where

SAn−φn = E
[

T hAn−φn,T (θ0)h
An
−φn,T (θ0)

>
]

,
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SAn−φn,φn = E
[

ThAn−φn,T (θ0)h
An
φn,T

(θ0)
>
]

,

and SAnφn,−φn =
(

SAn−φn,φn

)>
. Note that under this ordering,

BAn−1 =
1

1− λn

(

S
An−1

φn

S
An−1

−φn,φn

)[
1

λn
Sφn +

1

1− λn
S
An−1

φn

]−1

.

Analogously to B21 in Section 2, define

BAn21 = SAn−φn,φn

(

SAnφn

)−1
(98)

B
An−1

21 = S
An−1

−φn,φn

(

S
An−1

φn

)−1
. (99)

(100)

Analogously to Σ in Section 2, define

ΣAn = SAn−φn,−φn − SAn−φn,φn

(

SAnφn

)−1
SAnφn,−φn (101)

ΣAn−1 = S
An−1

−φn,−φn − S
An−1

−φn,φn

(

S
An−1

φn

)−1
S
An−1

φn,−φn . (102)

By Lemma A.3, (97) holds if and only if

(

SAnφn

)−1
= (1− λn)

(

S
An−1

φn

)−1
+ λn (Sφn)

−1 (103)

BAn21 = B
An−1

21 (104)

ΣAn =
1

1− λn
ΣAn−1 . (105)

We first show (103). Equation (69) implies

SAnφn
=

1

1− λn
S
An−1

φn
− 1

1− λn
S
An−1

φn

[
1

λn
Sφn +

1

1− λn
S
An−1

φn

]−1 1

1− λn
S
An−1

φn
.

Pre-multiplying by (1− λn)
(

S
An−1

φn

)−1
yields

(1− λn)
(

S
An−1

φn

)−1
SAnφn

= I −
[
1

λn
Sφn +

1

1− λn
S
An−1

φn

]−1 1

1− λn
S
An−1

φn

=

[
1

λn
Sφn +

1

1− λn
S
An−1

φn

]−1 1

λn
Sφn .

Taking inverses yields

1

1− λn

(

SAnφn

)−1
S
An−1

φn
= λn (Sφn)

−1

[
1

λn
Sφn +

1

1− λn
S
An−1

φn

]

= I +
λn

1− λn
(Sφn)

−1 S
An−1

φn
.
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Post-multiplying by (1− λn)
(

S
An−1

φn

)−1
yields (103).

We now show (104). By (69),

SAn−φn,φn =
1

1− λn
S
An−1

−φn,φn −
1

1− λn
S
An−1

−φn,φn

[
1

λn
Sφn +

1

1− λn
S
An−1

φn

]−1 1

1− λn
S
An−1

φn
.

Post-multiplying by
(

SAnφn

)−1
and applying (103) produces

BAn21 = SAn−φn,φn

(

SAnφn

)−1
=

1

1− λn
S
An−1

−φn,φn

[

(1− λn)
(

S
An−1

φn

)−1
+ λnS

−1
φn

]

− 1

1− λn
S
An−1

−φn,φn

[
1

λn
Sφn +

1

1− λn
S
An−1

φn

]−1 1

1− λn
S
An−1

φn

[

(1− λn)
(

S
An−1

φn

)−1
+ λnS

−1
φn

]

.

Expanding out the first term on the right hand side and multiplying through by S
An−1

φn
in the

second term produces

BAn21 = B
An−1

21 +
λn

1− λn
S
An−1

−φn,φnS
−1
φn

− 1

1− λn
S
An−1

−φn,φn

[
1

λn
Sφn +

1

1− λn
S
An−1

φn

]−1 [

I +
λn

1− λn
S
An−1

φn
S−1
φn

]

.

Factoring out λnS
−1
φn

in the last term yields (104).

Lastly, we show (105). Equation (69) implies

SAn−φn,−φn =
1

1− λn
S
An−1

−φn,−φn −
1

1− λn
S
An−1

−φn,φn

[
1

λn
Sφn +

1

1− λn
S
An−1

φn

]−1 1

1− λn
S
An−1

φn,−φn . (106)

By (104),

SAn−φn,φn

(

SAnφn

)−1
SAnφn,−φn = BAn21 S

An
φn

(

BAn21

)>

= B
An−1

21 SAnφn

(

B
An−1

21

)>
.

Therefore,

SAn−φn,φn

(

SAnφn

)−1
SAnφn,−φn = S

An−1

−φn,φn

(

S
An−1

φn

)−1
[

(1− λn)
(

S
An−1

φn

)−1
+ λnS

−1
φn

]−1 (

S
An−1

φn

)−1
S
An−1

φn,−φn

= S
An−1

−φn,φn

[

(1− λn)Sφn + λnS
An−1

φn

]−1
Sφn

(

S
An−1

φn

)−1
S
An−1

φn,−φn . (107)

Substituting in (106) and (107) into (101),

ΣAn =
1

1− λn
S
An−1

−φn,−φn−

1

1− λn
S
An−1

−φn,φn

[
1

λn
Sφn +

1

1− λn
S
An−1

φn

]−1 [ 1

1− λn
I +

1

λn
Sφn

(

S
An−1

φn

)−1
]

S
An−1

φn,−φn .
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Which implies

ΣAn =
1

1− λn
S
An−1

−φn,−φn −

1

1− λn
S
An−1

−φn,φn

[
1

λn
Sφn +

1

1− λn
S
An−1

φn

]−1 [ 1

1− λn
S
An−1

φn
+

1

λn
Sφn

](

S
An−1

φn

)−1
S
An−1

φn,−φn

=
1

1− λn
S
An−1

−φn,−φn −
1

1− λn
S
An−1

−φn,φn

(

S
An−1

φn

)−1
S
An−1

φn,−φn

=
1

1− λn
ΣAn−1 ,

which shows (105).

Proof that BA2 in Section 6.3.3 is equal to (88):

From Theorem 6.1 and (86), it follows that

lim
T→∞

E

[

T
(

hA2

2,(λ1+λ2)T − g2,λ3T

)(

hA2

2,(λ1+λ2)T − g2,λ3T

)>
]

=

(
1

λ3
+

1

λ1

)

S22 +

(
λ2

λ1 + λ2

)2( 1

λ2
+

1

λ1

)

B21S11B
>
21 −

1

λ1

λ2

λ1 + λ2

(

S21B
>
21 +B21S12

)

=

(
1

λ3
+

1

λ1

)

S22 −
1

λ1

λ2

λ1 + λ2
S21S

−1
11 S12, (108)

and

lim
T→∞

E

[

ThA2

1,(λ1+λ2)T

(

hA2

2,(λ1+λ2)T
− g2,λ3T

)>
]

= lim
T→∞

E

[

Tg1,(λ1+λ2)T

(

hA2

2,(λ1+λ2)T

)>
]

=
1

λ1 + λ2
S12. (109)

where we have applied the reasoning of (21). (109) multiplied by the inverse of (108) equals the

first component of BA2 . The second component equals

lim
T→∞

E

[

ThA2

2,(λ1+λ2)T

(

hA2

2,(λ1+λ2)T − g2,λ3T

)>
]

= lim
T→∞

E

[

ThA2

2,(λ1+λ2)

(

hA2

2,(λ1+λ2)T

)>
]

=
1

λ1

(

S22 −
λ2

λ1 + λ2
S21S

−1
11 S12

)

, (110)

multiplied by the inverse of (108). The resulting expression for BA2 can be simplified considerably.

The inverse of (108) equals

((
1

λ3
+

1

λ1

)

S22 −
1

λ1

λ2

λ1 + λ2
S21S

−1
11 S12

)−1

= S−1
22

(
I − γS21S

−1
11 S12S

−1
22

)−1 λ1λ3

λ1 + λ3

= S−1
22 (I − γB21B12)

−1 λ1λ3

λ1 + λ3
, (111)
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where B12 = S12S
−1
22 . Therefore,

BA2 =
λ3

λ1 + λ3

(
λ1

λ1+λ2
S12

S22 − λ2
λ1+λ2

S21S
−1
11 S12

)

S−1
22 (I − γB21B12)

−1 .
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