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Fuler Equation Errors

Abstract

Among the most important pieces of empirical evidence against the standard represen-
tative agent, consumption-based asset pricing paradigm are the formidable unconditional
Euler equation errors the model produces for cross-sections of asset returns. Here we ask
whether calibrated leading asset pricing models—specifically developed to address empiri-
cal puzzles associated with the standard paradigm—explain the mispricing of the standard
consumption-based model when evaluated on cross-sections of asset returns. We find that,
in many cases, they do not. We present several results. First, we show that if the true
pricing kernel that sets the unconditional Euler equation errors to zero is jointly lognormally
distributed with aggregate consumption and returns, such a kernel will not rationalize the
magnitude of the pricing errors generated by the standard model, particularly when the
curvature of utility is high. Second, we show that leading asset pricing models also do not
explain the significant mispricing of the standard paradigm for plausibly calibrated sets of
asset returns, even though in those models the pricing kernel, returns, and consumption are
not jointly lognormally distributed. Third, in contrast to the above results, we provide one
example of a limited participation/incomplete markets model capable of explaining larger
pricing errors for the standard model; but we also find many examples of such models, in
which the consumption of marginal assetholders behaves quite differently from per capita
aggregate consumption, that do not explain the large Euler equation errors of the standard

representative agent model.
JEL: G12, G10.



1 Introduction

Among the most important pieces of empirical evidence against the standard representative
agent, consumption-based asset pricing paradigm are the formidable unconditional Euler
equation errors the model produces for cross-sections of asset returns. Such Euler equation
errors, or pricing errors (terms we use interchangeably), are especially large for cross-sections
that include a broad stock market index return, a short term Treasury bill rate, and the
size and book-market sorted portfolio returns emphasized by Fama and French (1992,1993).
The large unconditional pricing equation errors of the standard model have been stressed
elsewhere as an indication of the model’s empirical difficulties, e.g., Mankiw and Shapiro
(1986), Breeden, Gibbons, and Litzenberger (1989), Campbell (1996), Cochrane (1996), and
Lettau and Ludvigson (2001). We present further evidence on the size of these errors here.

The standard model, as we define it, assumes that agents have unrestricted access to
financial markets, that assets can be priced using the Euler equations of a representative-
consumer maximizing the discounted value of power utility functions, and that the pricing
kernel M, or stochastic discount factor, is equal to the marginal rate of substitution in

consumption. This model takes the form
E My Ripi] =1, My =0 (Cea/Cr) 7, (1)

where the first equality is the Euler equation, R;,; denotes the gross return on any tradable
asset, (41 is per capita aggregate consumption, 7 is the coefficient of relative risk-aversion
and 0 is a subjective time-discount factor. For any model, the Euler equation error of a
tradable asset is the difference between E [M; 1R, 1] and unity.

In much of theoretical asset pricing, Euler equations give the equilibrium prices of tradable
assets, consequently the empirical errors in this equation are a fundamental measure of how
well any model explains asset returns. It is perhaps surprising, then, that little research has
been devoted to investigating whether leading asset pricing models can help us understand
the significant mispricing of the standard model when confronted with cross-sections of stock
returns. After all, such models were developed with the express purpose of explaining the
empirical limitations of the standard model. Instead, theoretical research has proceeded by
focusing on well known “puzzles” generated by the standard model, for example, the equity
premium puzzle, the risk-free rate puzzle, and the time-series predictability of excess stock
market returns.

In this paper, we argue that large empirical Euler equation errors constitute a puzzle for
the standard consumption-based asset pricing model that is at least as damning as these
other, more well known, conundrums. We employ the empirical facts on Euler equation

errors to evaluate some leading asset pricing models that were specifically developed to



address puzzles associated with the standard paradigm (1). This is of interest because the
underlying assumption in each of these leading models is that, by discarding the standard
pricing kernel in favor of the true kernel implied by the model, an econometrician would be
better able to model asset pricing data. In particular, if leading asset pricing models are
true, then in these models using (1) to price assets should generate large unconditional asset
pricing errors, as in the data.

We find that this is not always the case. Often, in leading asset pricing models, parameters
of a standard representative agent “pricing kernel” based on (1) can be found that imply the
standard model has virtually identical unconditional pricing implications as the true model
that prices assets correctly. Thus, an econometrician who observed data generated from any
of these leading models would fail to reject the standard consumption-based model in tests
of its unconditional moment restrictions, let alone replicate the sizable unconditional Euler
equation errors found when fitting (1) to historical data.!

We note that the literature has already demonstrated a set of theoretical propositions
showing that any observed joint process of aggregate consumption and returns can be an
equilibrium outcome if the second moments of the cross-sectional distribution of consump-
tion growth and asset returns covary in the right way (Constantinides and Duffie (1996)).
Such existence proofs, important in their own right, are not the focus of this paper. Instead,
we ask whether particular calibrated economies of leading asset pricing models are quan-
titatively capable of matching the large pricing equation errors generated by the standard
consumption-based model when fitted to historical data. This is important because it re-
mains unclear whether fully specified models built on primitives of tastes, technology, and
underlying shocks, and calibrated to accord with the data in plausible ways, can in practice
generate the joint behavior of aggregate consumption and asset returns that we observe in
the data.

Our analysis uses simulated data from several leading asset pricing models: the represen-
tative agent external habit-persistence paradigms of (i) Campbell and Cochrane (1999) and
(ii) Menzly, Santos, and Veronesi (2004), (iii) the representative agent long-run risk model
based on recursive preferences of Bansal and Yaron (2004), and (iv) the limited participation
model of Guvenen (2003). Each is an explicitly parameterized economic model calibrated

to accord with the data, and each has proven remarkably successful in explaining a range of

'Note that these findings are not a statement about the “power” of empirical Euler equation errors to
reject alternative models, just as evidence that most business cycle models fail to explain a large equity
premium and a low and stable risk-free rate is not a statement about the power of key asset pricing moments
to reject alternative business cycle models. The interesting finding is not that the alternative models we
study have similar properties along this dimension, but rather that they all fail in the same way to explain

the significant mispricing of the standard model.



asset pricing phenomena that the standard model is unable to explain.

Our focus on Euler equations is intentional, since they represent the set of theoretical
restrictions from which all asset pricing implications follow. Kocherlakota (1996) emphasizes
the importance of Euler equation errors for understanding the central empirical puzzles of
the standard consumption-based model, which he illustrates using annual data on aggregate
consumption and asset returns. Formal econometric tests of conditional Euler equations
using aggregate consumption data lead to rejections of the standard representative agent,
consumption-based asset pricing model, even when no bounds are placed on the coefficient of
relative risk aversion or the rate of time preference (Hansen and Singleton (1982); Ferson and
Constantinides (1991); Hansen and Jagannathan (1991)). Similarly, we stress here that the
quarterly pricing errors for the unconditional Euler equations associated with cross-sections
of asset returns are large when fitting aggregate data to (1), even when the parameters §
and v are left unrestricted and chosen to minimize those errors. Such Euler equation errors
place additional testable restrictions on asset pricing models: not only must such models
have zero pricing errors when the pricing kernel is correctly specified according to the model,
they must also produce large pricing errors when the pricing kernel is incorrectly specified
using power utility and aggregate consumption.

Our main findings are as follows:

First, we consider the case in which consumption in (1) is mismeasured, perhaps because
per capita aggregate consumption is a poor measure of individual assetholder consump-
tion, or the consumption of stockholders as an aggregate. We show that if the true pricing
kernel based on assetholder consumption is jointly lognormally distributed with aggregate
consumption and returns, then estimation of (1) using per capita aggregate consumption
produces biased estimates of the assetholder’s subjective discount factor and risk aversion
parameters, but does not rationalize the magnitude of the pricing errors generated by the
standard model, particularly when ~ is large.

Second, we use simulated data from each of the leading asset pricing models mentioned
above to study the extent to which these models explain the mispricing of the standard
model. We show that some of these models can explain why an econometrician obtains
implausibly high estimates of § and v when freely fitting aggregate data to (1). But, none
can explain the large unconditional Euler equation errors associated with such estimates

for plausibly calibrated sets of asset returns.? Indeed, the asset pricing models we consider

2Campbell and Cochrane (2000) evaluate the pricing errors of the standard consumption-based model
implied by the habit model of Campbell and Cochrane (1999), by looking at the pricing errors for the most
miaspriced portfolio. Their results suggest that there is scope for mispricing, but do not imply significant
mispricing for the sets of stock portfolios we calibrate our models to match. Our approach differs from theirs

in that we do not analyze the most mispriced portfolio (which can look nothing like the stock portfolios



counterfactually imply that values of ¢ and v can be found for which (1) satisfies the uncon-
ditional Euler equation restrictions just as well as the true pricing kernel, implying that the
standard model generates negligible pricing errors for cross-sections of asset returns.

Third, in contrast to the above results, we provide one example of an incomplete mar-
kets/limited participation model that can rationalize larger pricing errors for the standard
model, as long as the joint distribution of aggregate consumption, individual assetholder con-
sumption, and stock returns takes a particular non-normal form. But we also find—within
the class of distributions we consider—that many models with non-normal distribution spec-
ifications will not explain mispricing of the standard model, since in many cases the use of
(1) to price assets merely distorts the estimated preference parameters but not the pricing
errors.

We emphasize that this paper is not a criticism of existing asset pricing theory. In-
stead, we seek a diagnostic for understanding the directions in which future research may
be fruitfully applied by providing a different perspective on whether leading paradigms fully
rationalize the joint behavior of asset prices and aggregate quantities that is central to the
empirical failure of the standard model. We also add to the literature by outlining the econo-
metric consequences, for estimation and testing of unconditional Euler equations, of fitting
the standard pricing kernel (1) to data when the true pricing kernel that generated the data
is derived from some other model. Finally, we stress that our results do not imply that no
model can be made consistent with the testable restrictions we focus on here. Our point
is that many models written down today appear inconsistent with these restrictions and do
not explain the mispricing of the standard consumption-based model.

The rest of this paper is organized as follows. The next section lays out the empirical
Euler equation facts using post-war U.S. data on per capita aggregate consumption and
returns. Section 3 studies the implications of various economic theories for the same Euler
equation errors we measure in the data, beginning with a simple example in which the
true pricing kernel is jointly lognormally distributed with aggregate consumption growth
and asset returns. Next, we investigate the extent to which the four leading asset pricing
models mentioned above are capable of explaining the empirical facts. Our main findings are
shown to be robust to time-aggregation of aggregate consumption data, to the introduction
of limited participation in the representative agent models, and to the use of small samples
to compute pricing errors. Finally, we explore the pricing implications of a number of

simple incomplete markets/limited participation models in which assetholder consumption

observed in historical data), but instead generate specific cross-sections of traded assets in the models to
match the properties of cross-sections in the data by directly relying on the models’ own baseline calibrations
of asset returns, or by employing calibrations which deliver spreads in risk-premia commensurate with those

in our historical data set.



is permitted to behave quite differently from per capita aggregate consumption. Section 4

concludes.

2 Euler Equation Errors: Empirical Facts

The standard consumption based model, as defined above,assumes a representative-consumer

with constant relative risk aversion (CRRA) preferences over consumption given by

= -1
t=0

At each date, agents maximize (2) subject to an accumulation equation for wealth. Agents
have unrestricted access to financial markets and face no borrowing or short-sales constraints.
The asset pricing model comes from the first-order conditions for optimal consumption choice,

which imply that for any traded asset indexed by 7, with a gross return at time t+1 of R{ 1

Crot\ 7
5(;;) R,

Here FE; is the conditional expectation operator, conditional on time ¢ information. The mar-

the following Euler equation holds:

E, =1. (3)

ginal rate of substitution in consumption, M, = § (Cyy1/Cy)" 7, is the stochastic discount
factor, or pricing kernel in this model. By the law of iterated expectations, equation (3) also
implies a corresponding unconditional Euler equation taking the form (1), which we focus
on from here on.

We focus our attention on the unconditional Euler equation errors for cross-sections
of asset returns that include a broad stock market index return (measured as the CRSP
value-weighted price index return and denoted R;), a short term Treasury bill rate (mea-
sured as the three-month Treasury bill rate and denoted R/ ), and six size and book-market
sorted portfolio returns available from Kenneth French’s Dartmouth web site. These returns
are value-weighted portfolio returns of common stock sorted into two size (market equity)
quantiles and three book value-market value quantiles. We use equity returns on size and
book-to-market sorted portfolios because Fama and French (1992) show that these two char-
acteristics provide a “simple and powerful characterization” of the cross-section of average
stock returns, and absorb the roles of leverage, earnings-to-price ratio and many other factors
governing cross-sectional variation in average stock returns. These returns are denoted as
a vector RFF = (R!, ...R%)’. We analyze the pricing errors for the eight assets RS, R/, RFF
as a group, as well as for the set of two assets comprised of only R; and R{ . The latter is

of interest because the standard model’s inability to explain properties of these two returns



has been central to the development of a consensus that the model is flawed. In addition,
almost all asset pricing models seek to match the empirical properties of these two returns,
whereas fewer generate implications for larger cross-sections of securities.

There are two ways to present the pricing errors implied by the standard consumption-

based model. One is to focus on the Euler equations of raw returns:

Ciiq
6(5) R,

Another is to focus on the Euler equation errors for excess returns:

(G1) (ma-ni)

For both Euler equations above, we refer to the difference between an estimate of the left-

E

1=0 j=s,f1,..6. (4)

E =0 j=s1,..,6. (5)

hand-side and zero as the unconditional Fuler equation error, or alternatively the pricing
error, for the jth asset return. If the standard model is true then these errors should be zero
for any traded asset, given some values of the parameters J and ~.

Regardless of whether the Euler equations are stated in terms of excess or raw returns,
we choose the parameters  and v to minimize a weighted sum of squared pricing errors, an
application of Generalized Method of Moments (GMM, Hansen (1982)):

min gr (7,0) = wy (7,6) Wwr (v,0), (6)

d,y

where W is the identity matrix and wy (7, d) is the vector of average pricing errors for each

asset, with jth element w;z(7,d) given either by

C, ; ,
wJT<7) = ij Z ( t+1> (Ri+1 - R{+1) ) J=S, 17 76

in the case of excess returns, or

1 d 5 Ct+l J .
ij ’Ya T Z Rt+1 7 J= 87f717"'a6

in the case of raw returns. Let ¢ and ~ denote the arg min gr (7, d).

We use the identity weighting matrix because these it preserves the structure of the
original test assets, which are based on economically interesting characteristics and deliver
a wide spread in cross-sectional average returns. Use of alternate matrixes that re-weight
the Euler equations amount to minimizing the pricing errors for re-weighted portfolios of
the original test assets and destroy this structure. It should be noted, however, that other

weighting matrixes such as the optimal weighting matrix of Hansen (1982) and the second

6



moment matrix of Hansen and Jagannathan (1997) produce similar results although they
are not reported in what follows.

The estimation uses quarterly, per capita data on nondurables and services expenditures
measured in 1996 dollars as a measure of consumption C;, in addition to the return data
mentioned above.® Returns are deflated by the implicit price deflator corresponding to the
measure of consumption C;. The data span the period from the fourth quarter of 1951 to
the fourth quarter of 2002. A detailed description of the data is provided in the Appendix.

Figure 1 displays the square root of the average squared Euler equation errors (RMSE)
for the excess returns in (5) over a range of values of 7. The solid line plots the case where
the single excess return Rj ; — R{ 41 is priced; the dotted line plots the case for the seven
returns returns 7, | — R} 4 and RFF — R! +1- To give a sense of how large pricing errors are
relative to the returns being priced, we plot RMSE/RMSR, where RMSR is the square root
of the cross-sectional average of the squared mean returns of the assets under consideration.

Two aspects of Figure 1 warrant emphasis. First, notice that in the case of the single
excess return on the aggregate stock market, R} | — R{ 41 (solid line), the RMSE is itself just
the pricing error (5), where this error is computed as the sample mean of the expression in
square brackets in (5), scaled by the value of § that minimizes an equally weighted average
of Euler equation errors for 17 and Rf . The solid line shows that the pricing error (5) for the
excess return on the aggregate stock market cannot be driven to zero, or indeed even to a
small number, for any value of 7. The lowest pricing error is 5.2% per annum, which occurs
at v = 117. The figure displays this error as a fraction of the average excess stock market
return, and is shown to be almost 60 percent of the average annual CRSP excess return. At
other values of v this error rises precipitously and reaches several times the average annual
stock market return when v is outside the ranges displayed in Figure 1. Thus, there is no
value of 7 that sets the pricing error (5) to zero.!

Second, the dashed line in Figure 1 shows that the root mean-squared pricing errors
for the seven asset case R} ; — R! L REF — R! 41 is also large. As a fraction of the square
root of the average squared excess returns being priced, the minimum RMSE is about 60%,
about the same as that for the single excess return R} ;| — Rf +1, and this occurs at v = 118.
At other values of v the RMSE rises precipitously, just as it does for the single asset case.
Therefore, the degree of mispricing in the standard model is about the same regardless of
whether we consider the single excess return on the market or a larger cross-section of excess

stock market returns.’

3We exclude shoes and clothing expenditure from this series since they are partly durable and should not
be included in a measure of the service flow of consumption.

*Note that (5) is a nonlinear function of . Thus, there is not necessarily a solution.

°In computing the pricing errors above, we use the standard timing convention that end-of-period returns



Next we report the Euler equation errors in (4) for raw returns. Table 1 shows that when
¢ and +y are chosen to minimize (6) for R;, , and Rl .1 alone, the RMSE is 2.7% per annum, a
magnitude that is 48% of the square root of the average squared returns on these two assets.
Since there are just two moments in this case, this again means that there are no values of
d and v that set the two pricing errors to zero. When § and v are chosen to minimize (6)
for the eight asset returns Ry |, R! .1, RFF the RMSE is 3.05% per annum, a magnitude
that is 33% of the square root of the average squared returns on the eight assets. Notice
that the estimates & and ~ (which are left unrestricted) are close to 1.4 and 90, respectively,
regardless of which set of test assets are used. The final two columns of Table 1 report the
results of statistical tests of the model, discussed below.

Why are the pricing errors so large? The lower panel of Table 1 provides a partial answer:
a significant part of the unconditional Euler equation errors generated by the standard model
are associated with recessions, periods in which per capita aggregate consumption growth
is steeply negative. For example, if we remove the data points associated with the smallest
six observations on consumption growth, the RMSE is 0.73% per annum or 13% of the root
mean squared returns for R; ; and Rf +1, and 1.94% per annum or 21 percent of the root
mean squared returns on the eight asset returns Rf,;, R/, ;, RFF. Table 2 identifies these
six observations as they are located throughout the sample. Each occur in the depths of
recessions in the 1950s, 1970s, early 1960s, 1980s and 1990s, as identified by the National
Bureau of Economic Research. In these periods, aggregate per capita consumption growth
is steeply negative but the aggregate stock return and Treasury-bill rate is, more often than
not, steeply positive. This result echoes the findings in Ferson and Merrick (1987) who report
less evidence against the standard consumption-based model in non-recession periods. Since
the product of the marginal rate of substitution and the gross asset return must be unity
on average, such negative comovement (positive comovement between M, ; and returns)

contributes to large pricing errors.® One can also reduce the pricing errors by using annual

dated in quarter ¢ should be paired with consumption growth measured from ¢ — 1 to ¢. If, instead, returns
at t are paired with consumption growth from ¢ to ¢t + 1, a value for 7 can be found that sets the pricing
error to zero for the single excess return R® — Rf. By contrast, the choice of timing convention has very
little affect on the RMSE for the set of seven excess returns R* — RY, RF'F — R/. We use the former timing
convention as it is standard empirical practice in estimation of Euler equations. We stress, however, that
the timing convention itself is not important for the comparisons with theoretical models that follow, since

those models always produce zero pricing errors regardless of which timing convention is used.
6Eliminating the recession periods, however, results in preference parameter estimates that are even more

extreme than they are in the full sample; for example v, > 300. Therefore, if one’s criterion for success is
reasonable preference parameter estimates, then the standard model does worse when the recession periods
are removed than when they are included. If v is restricted to be less than 100 in the sample without
recessions, the pricing errors move up considerably. For example, in the two asset case the RMSE moves up
to 1.94% from 0.73%.



returns and year-over-year consumption growth.” This procedure averages out the worst
quarters for consumption growth instead of removing them. Either procedure eliminates a
substantial proportion of the cyclical variation in consumption. For example, on a quarterly
basis the largest declines in consumption are about six times as large at an annual rate as
those on a year-over-year basis. This explains why Kocherlakota (1996), who focuses on
annual data, is able to locate parameter values for 6 and ~ that exactly satisfy the Euler
equations (4) for a stock return and Treasury-bill rate.

Of course, these quarterly recession episodes are not outliers to be ignored, but significant
economic events to be explained. Indeed, we argue that such Euler equation errors—driven
by periods of important economic change—are among the most damning pieces of evidence
against the standard model. An important question is why the standard model performs so
poorly in recessions relative to other times.

Although not reported above, we note that the pricing error of the Euler equation asso-
ciated with the CRSP stock market return is always positive, implying a positive “alpha”
in the expected return-beta representation of the model.® This says that unconditional risk
premia are too high to be explained by the stock market’s covariance with the marginal
rate of substitution of aggregate consumption, a familiar result from the equity premium
literature. The high alphas generated by the standard consumption-based model constitute

one of the most remarked-upon failures in the history of asset pricing theory.

2.1 Sampling Error and Tests for Joint Normality

We can use GMM distribution theory to ask whether the estimated pricing errors wr (7, d)
are jointly different from zero, that is larger than what would be implied by sampling error
alone. When there are more moments than parameters to be estimated, such an assessment
can be interpreted as a test of overidentifying restrictions. The last two columns of Table
1 report p—values from chi-squared tests of the model’s overidentifying restrictions for es-
timation of the eight Euler equations in (4). Although the results presented so far have
used the identity weighting matrix, the last column in Table 1 presents the p—values from
the same statistical test using an estimate of the optimal GMM weighting matrix (Hansen
(1982)). The results from either weighting matrix are the same: we may strongly reject the

hypothesis that the Euler equation errors are jointly statistically indistinguishable from zero;

"Jagannathan and Wang (2004) study the ability of a linearized version of the standard model to explain
a large cross-section of asset returns using forth quarter over fourth quarter consumption growth and annual
asset returns. They find more support for the model when year-over-year growth rates are restricted to the

fourth quarter.
8The alpha in the expected return-beta representation is equal to the pricing error, scaled by 1/E [M,];

see Cochrane (2005) for an exposition.



the p—values for this test are less than 0.0001.
For the two-asset case, the model is just-identified, so the overidentifying tests above are

not applicable. But note that the expectation in (5) is estimated using the sample means of

C, - s
erp1 =10 < gtrl) ( t+1 R{—H) )

Ciy1
Cy

possible to compute the sampling variation in the sample mean of e; 1, given as 02 = ¢2/T,

which are excess returns discounted by the pricing kernel ¢ < ) ! . Fixing ¢ and ~, it is
where o, is the sample standard deviation of ¢, and T is the sample size.” Not surprisingly,
the sampling error of the mean of e, is quite large when evaluated at the optimal values
of 0 = 1.4 and v = 117: a confidence interval formed by plus and minus two standard errors
is (—0.55%,11%) as a percent per annum. This large range, which includes zero, arises
partly for the same reason that it is difficult to estimate the equity premium accurately:
excess returns are highly volatile. But it is also because the data force a very high value
for v in an attempt to fit the equity premium. Such a high value of v generates extreme
volatility in the pricing kernel, making discounted returns even harder to estimate precisely
than nondiscounted returns. Unless one views v = 117 as plausible, however, such wide
standard error bands for mean discounted returns merely provide further evidence of the
model’s empirical limitations, which even at v = 117 leaves a pricing error that is more than
half of the average annual stock return. If instead we restrict the value of risk aversion to
lie in the range 0 < v < 89, the pricing errors are always statistically different from zero
at the five percent level of significance. In short, when 7 is as high as 117, the sample
mean of e, is statistically insignificant not because the pricing errors are small-indeed they
are economically large-but rather because discounted returns are so extremely noisy when
v =117.

For the case of raw returns and only two assets R{,; and R{ 41, we ask—given sampling
error—how likely is it that we would observe the pricing errors we observe under the null
hypothesis that the standard model is true and the Euler equations are exactly satisfied in

population?!® Models that postulate joint lognormality for consumption and asset returns

9We also calculated standard errors for the mean of e;y; using a nonparameteric correction for serial
correlation. Since ey is close to serially uncorrelated, this correction has little affect on the error bands.

For the case of raw returns and only two assets Rf,, and R{ 11, we have an exactly identified GMM
system, so sampling error could in principle be assessed by conducting a block bootstrap simulation of the
raw data. This approach is inappropriate for the application here, however, because such a procedure would
effectively treat the low consumption growth periods in our sample as outliers, in the sense that a nontrivial
fraction of the simulated samples would exclude those observations. But as we have argued above, these
episodes of low or negative consumption growth—the hallmark of recessions—are not outliers to be ignored,

but significant economic events to be explained.
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are null models of this form, since in this case values for § and ~ always exist for which
the population Euler equations of any two asset returns are exactly satisfied. Consequently,
only sampling error in the estimated Euler equations could cause non-zero pricing errors for
two asset returns. To address the question just raised, we suppose the data were generated
by the standard CRRA representative agent model, with returns and consumption jointly
lognormally distributed, and ask how likely is it that we would find results like those reported
in Table 1, in a sample of the size we have.

Consider a simple model where AlnCy,; ~ i.i.d.N(u,0?), and preferences are of the
CRRA form with (for example) § = 0.99 and v = 2. Since the log difference in consumption
is i.i.d. and normally distributed, the return to a risky asset that pays consumption, C}, as
its dividend is also normally distributed, as is risk-free rate. The equilibrium returns have an
analytical solution in this case, and can be solved from the (exactly satisfied) Euler equations.
Using this model, we simulate 1000 artificial samples of consumption data equal to the size
our quarterly data set (204), with x4 and o set to match their respective sample estimates.
Using the analytical solutions for returns we use the simulated data for consumption growth
to obtain corresponding simulated data for returns. Finally, we use these simulated data to
solve for the values of § and ~ that minimize the empirical Euler equation errors for the risky
and risk-free asset return and store the absolute value of those errors. The 95% centered
confidence for these errors, in percent annum, is found to be (9.5 107!, 7.0 107?) for the
risky return and (1.3 1071, 6.5 107?) for the risk-free return. These findings suggest that it
is extremely unlikely that we would find results like those reported in Table 1, in a sample
of the size we have, if this simple version of the standard CRRA representative agent model,
where consumption and returns are jointly lognormally distributed, were true.

Given these results, it is natural to assess whether joint lognormality is a plausible de-
scription of our consumption and return data, once we take into account sampling error. We
do so by performing formal statistical tests of the data based on multivariate skewness and
kurtosis for the vector Y; = [log (Ciy1/Ct) log (R;,4) ,log (R{ )}/ We also perform joint

normality tests for the larger set of variables

X, = [1og (Ci1/Cy) ,log (Ry,) ,log (R{) Jog (Ry) ..., log (R?)} '

Normality tests for the larger cross-section will help inform the results in the next section in
which models that assume joint lognormality are studied.!!

Statistical tests based on multivariate skewness and kurtosis provide strong evidence
against joint normality. For Y; multivariate skewness is estimated to be 1.54 and multivariate

excess kurtosis is 4.64, with p—values for the null hypothesis that these statistics are equal to

U'Multivariate skewness and kurtosis statistics are computed following Mardia (1970). Let x; be a p-

dimensional random variable with mean p and variance-covariance matrix V of sample size 7. Multivariate
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those of a multivariate normal distribution less than 0.0001. Similarly for X;, multivariate
skewness is 4.65 and multivariate kurtosis is 35.93, and the statistical rejections of normality
are even stronger. The same conclusion arises from examining quantile-quantile plots (QQ
plots) for the vector time-series Y, and X;, given in Figure 3. This figure plots the sample
quantiles for the data against those that would arise under the null of joint lognormality,
along with pointwise standard errors bands.!? The QQ plots show substantial departures
from normality: a large number of quantiles lie far outside the standard error bands for joint

normality.

3 Euler Equation Errors: The Theories

How capable are asset pricing theories of explaining the large pricing errors of the standard
model? In this section, we address this question by considering a number of distinct asset
pricing models. We begin with a simple model of limited participation/incomplete markets
model in which the true pricing kernel based on assetholder consumption is jointly lognor-
mally distributed with aggregate consumption and returns. Although the empirical results
reported above suggest that any model that implies aggregate consumption and returns
are jointly lognormally distributed will be unable to match the data, studying a lognormal
model is instructive for considering how the use of a mismeasured pricing kernel (for exam-
ple because per capita aggregate consumption is used in place of stockholder consumption)
might distort parameters compared to pricing errors. Next we evaluate the Euler equa-
tion errors generated by leading asset pricing models in which the log pricing kernel and
returns are not generally lognormally distributed. As mentioned, these include the external
habit-formation models of Campbell and Cochrane (1999) and Menzly, Santos, and Veronesi
(2004), the long-run risk model of Bansal and Yaron (2004), and the limited participation

model of Guvenen (2003). Finally, we present a number of additional results for simple lim-

skewness S and (excess) kurtosis K and asymptotic distributions are given by

T T 1/2
1 . TS
5 - (Tzzzgts) 1S rmipins
t=1 s=1
T

1 ) VTK

=Y g —pp+2) —— ~ N (0,1),
T ; 8p(p+2)

K

where g5 = (x — ﬂ)’vfl(xs — ft) and i and V are sample estimates of pand V. S and K are zero if x is
jointly normally distributed. If x is univariate S and K are equivalent to the standard univariate definitions

of skewness and kurtosis.
12Pointwise standard error bands are computed by simulating from the multivariate normal distribution

with length equal to the size of our data set.
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ited participation/incomplete markets models in which assetholder consumption, aggregate

consumption and asset returns are not jointly lognormally distributed.

3.1 A Limited Participation/Incomplete Markets Model With Joint

Lognormality

We investigate the affect on parameter estimates and pricing errors of estimating (1) on
aggregate consumption data when the return data were generated from a model with limited
stock market participation or incomplete markets. For this purpose, a model of limited
stock market participation is isomorphic to that of incomplete markets since what matters
is the common implication that the consumption of the marginal assetholder may behave
differently from per capita aggregate consumption.'® Thus, one can interpret the example in
this section as an illustration of the influence of measurement error on empirically observed
pricing errors. In this case, stockholder consumption corresponds to correctly measured
consumption for which the model holds exactly, and aggregate consumption is an error-
ridden empirical measure of true consumption.

As a benchmark case in this section, we assume aggregate consumption, stockholder or
individual consumption, and asset returns are jointly lognormally distributed. Later we
consider asset pricing models in which the joint distribution is permitted to deviate from
lognormality. For the rest of the paper, we use lowercase letters to denote log variables, e.g.,
Aciy1 =1og (Cryr /Cy)

Denote the marginal rate of substitution (MRS) of an individual asset-holder as

% -
M =6 (il) , 7
t+1 CtZ ( )

where C! is the consumption of assetholder 4, § is the subjective time discount factor of
this assetholder, and ~ is the coefficient of relative risk aversion. If agents have unrestricted

access to financial markets, then M/, ; correctly prices any traded asset return, implying that
E[M R =1 j=1..,N (8)

for N asset returns.
We can interpret the MRS, M;} 1, either as that of a representative stockholder in a

limited participation setting (C? is then the consumption of a representative assetholder), or

13With limited stock market participation, the set of Euler equations of stockholder consumption imply that
a representative stockholder’s marginal rate of substitution is a valid stochastic discount factor. Similarly,
with incomplete consumption insurance the set of Euler equations of household consumption imply that any

household’s marginal rate of substitution is a valid stochastic discount factor.
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as that of an individual assetholder in an incomplete markets setting (C? is the consumption
of any marginal assetholder, e.g., Constantinides and Duffie (1996)). It functions as the
stochastic discount factor in this model. The risk-free rate is defined as a one-period riskless
bond, R, = 1/E, [M},,].

Now denote the misspecified “MRS,” for some parameters . and 7., that would be

computed if an econometrician erroneously used per capita aggregate consumption, C; in

. C 1 7'Yc
Mg, = 6. (é—i> . (9)

For any asset return indexed by j, the pricing error associated with the true MRS, M}, ,, is

place of C?

by construction zero, but the pricing error associated with the erroneous MRS, My, is not

necessarily zero and is denoted PE?, where (dropping the time subscripts for brevity)
PE' = E[M°R'] — 1. (10)

Throughout this paper, when we refer to pricing errors, we mean the pricing error generated
for any asset by erroneously using the “pricing kernel” M¢ in place of the true pricing kernel,
since only the former are potentially nonzero if the model is true.

Under joint lognormality of C;,1/C} and