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Abstract

The paper develops a general equilibrium stochastic growth model
of a multi-sector economy subject to i.i.d. taste shocks. Each sector
produces one good, and each firm has a linear production technology
and faces a quadratic capital adjustment cost. The model contains a
standard intertemporal capital asset pricing theory of consumption
and portfolio demands with dynamically complete and frictionless
markets and a standard g-theory of investment under uncertainty.
We show that the equilibrium stochastic investment opportunity set
is driven by the relative shares of firms’ nominal capital stocks, and
the equilibrium dynamics of the state vector is driven by firms’ rela-
tive investment intensities. Key implications of the model include: (i)
the expected equity returns are endogenously predictable both over
time and in the cross-section; and (ii) the “value anomaly” arises in a
rational expectations equilibrium due to a negative (positive) hedging
demand for value (growth) stocks against the risk of cross-sectional
dispersion of firms’ nominal capital stocks.



1 Introduction

There is growing empirical evidence that (i) equity returns are predictable
over time based on lagged variables including short term interest rates, term
spreads, stock volatility dividend yields, and book-to-market ratios; and (ii)
expected equity returns are cross-sectionally different not only because of
cross-sectional differences in market risk (covariance or beta with respect to
the market return), but also because of cross-sectional differences in firm
characteristics such as earnings-to-price ratios or book-to-market ratio (the
value effect), firm size (the size effect).! These findings are often viewed as
“anomalies” because they are inconsistent with standard intuitions derived
from traditional asset pricing theories. Although a growing minority of fi-
nancial researchers have resorted to explanations based on irrational behavior
(due to either psychological illusions and/or agency problems) and limits to
arbitrage (due to some form of market frictions and/or incompleteness), it
is far from clear that these empirical findings are inconsistent with a ratio-
nal expectations equilibrium in an economy with frictionless and dynamically
complete markets. One plausible (rational) explanation is advanced by Fama
and French (1992, 1993, and 1996) who posit that, in addition to the aggre-
gate risk factor that drives the market return, there are at least two other
risk factors, proxied by the size and the book-to-market ratio of a common
stock, that are priced in equilibrium. Although it appears to be a reasonable
description of the factor structure of equity risk premiums (with respect to
which a number of anomalies disappear), the model does not make explicit
how the risk factors emerge from a fully specified general equilibrium model
and why they vary over time and cross-sectionally in a predictable manner.

The purpose of this paper is to develop some intuitions on how time-series
and cross-sectional variations of expected returns may arise in a general equi-
librium setting, through the lens of a multi-sector continuous-time stochastic
growth model with commodity price or demand uncertainty. At the partial
equilibrium level, the model contains a version of the standard intertempo-
ral model of consumption and portfolio demands a.k.a. Merton (1973) with
dynamically complete and frictionless markets and a version of the standard
g-theory of investment a.k.a. Tobin (1969) with convex adjustment costs.
At the general equilibrium level, the model may be viewed as a multi-sector
extension of Brock and Mirman (1972). The general equilibrium aspect of

!For a complete survey of these and other empirical findings, see Schwert (2002).



the model allows us to identify the state vector driving the stochastic evolu-
tion of the investment opportunity set as the relative shares of firms’ capital
stocks.

In standard one-sector growth models, cyclic variation in risk premium
and other endogenous variables can be generated endogenously by produc-
tion shocks impinging on a decreasing-return-to-scale production technology
(see, e.g., Brock and Mirman (1972) and Prescott and Mehra (1980)). In our
model, the cyclic variation is induced by cross-sectional dispersion of taste
shocks or commodity price shocks impinging on a convex capital adjustment
cost associated with each linear technology. To see how this works, con-
sider the symmetric case in which (i) firms have the same profit rates and
adjustment costs; and (ii) taste shocks have same the volatility and same
pair-wise correlations, but the correlation is not perfect; and (iii) initially all
firms have the same level of capital stocks, same level of investment intensity
and therefore the same equity market shares and the same expected returns.
Now suppose that commodity 7 produced by sector j receives a positive price
shock (due to a positive taste shock, say) relative to other commodities. Be-
cause commodity j is now relatively more expensive, firms in sector j will
have a higher market price or market share relative to firms in other sectors.
This is possible in equilibrium only if the expected return for firms in sector
j is also higher (which induces a higher portfolio demand for firms in sector
j to clear the equity markets). From the perspective of those firms in sector
J, higher expected returns imply higher costs of capital, which in turn imply
lower investment /capital ratios. This is possible only if firms in sector j have
lower Tobin’s q. Thus, there is a positive association between the expected
return and the book-to-market ratio (interpreted as an empirical proxy for
the inverse of Tobin’s q). The cross-sectional dispersion does not disappear
immediately because firms can only adjust their capital stocks gradually due
to the presence of a convex capital adjustment cost. This leads to time-series
predictability of expected returns in horizons commensurate with the dou-
bling times associated with the firms’ capital adjustment costs. If the demand
shocks are perfectly correlated, then there is no cross-sectional dispersion in
relative capital stocks, relative market shares, and relative expected returns.
Consequently there is also no time-series variation and predictability in ex-
pected returns (there is, however, constant endogenous growth).

This work is complimentary to a recent paper by Gomes, Kogan, and
Zhang (2001) (henceforth GKZ), who show how cross-sectional variations in
expected equity returns may be attributed to cross-sectional variations in



firms’ “assets in place” and their “growth options”, which are interpreted as
the size and book-to-market factors. In our model, expected equity returns
are shown to co-vary directly with the size (i.e., either the market capital-
ization or the capital stock) and book-to-market ratio (inverse of Tobin’s q)
in the cross-section. Both models are general equilibrium in nature in the
sense that consumption and portfolio choices are affected by the aggregate
level of investment and production/investment decisions are in turn affected
by aggregate consumption growth, and both goods and equity markets must
clear. However, the structures of the two models are very different. First, in
GKZ, the economy-wide state variable is exogenously specified and enters the
model as a systematic component of the production shock. Time-variation
and predictability of expected returns are driven by this systematic factor,
which is assumed to be mean-reverting. In our model, there is no predictable
external shocks. The dynamics of the state vector are endogenously deter-
mined in a rational expectations equilibrium. Second, in GKZ, the output
function is concave and the investment cost is linear but irreversible. In my
model, the output function is linear and the investment cost is quadratic but
reversible.

A key prediction of the model is that the so-called “value anomaly”,
namely, value stocks earn an abnormal positive return (positive alpha) over
and above the risk premium associated with their market risk, arises endoge-
nously in a rational expectations equilibrium of our model due to a negative
(positive) hedging demand for value (growth) stocks against the risk of cross-
sectional dispersion of firms’ capital stocks. In the context of our model,
therefore, the “value anomaly” does not represent an arbitrage opportunity
because it arises from underlying economic fundamentals. In an interest-
ing empirical study that captures much of the same spirit, Brennan, Wang,
and Xia (2002) use the bond yields and inflation data to back out the im-
plied stochastic investment opportunity set, and construct two self-financing
portfolios that track the innovations in the implied stochastic investment op-
portunity set. They find that the expected returns earned from these two
tracking portfolios eliminate the “abnormal” returns almost entirely when
they replace the size and book-to-market factors in the Fama-French regres-
sions and does a better job in explaining industry portfolios than the Fama-
French three-factor model. In contrast, Gomes, Kogan, and Zhang (2001)
and Berk, Green, and Naik (1999) show that the “value anomaly” is not
an intrinsic feature of their models, and argue that the observed empirical
regularity associated with the “value anomaly” is due to mis-measurement
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of market betas.

The rest of the paper is organized as follows. In Section 2, we describe
the model and the general equilibrium restrictions. The state vector that
drives the equilibrium stochastic investment opportunity set is identified and
its equilibrium dynamics is derived. In Section 3, we solve numerically for
a rational expectations equilibrium in a two-sector economy under realistic
parameter values. We use the explicit solution to illustrate key properties
of the model, highlighting in particular the time-series and cross-sectional
predictability of expected equity returns and the “value anomaly”. Section 4
concludes.

2 The Model

The economy consists of NV industrial sectors, each of which is populated by a
continuum of identical, competitive, and value-maximizing firms. Each firm
uses a linear quadratic production technology to produce a unique consump-
tion good, which can be either reinvested as capital for the firm or paid out
as dividend and consumed by the owners of the firm. There is also a contin-
uum of identical, competitive, utility-maximizing consumers. Each consumer
owns an equity share of each firm, and consumes her share of the dividends.

For simplicity, we will assume that the economy consists of a single com-
petitive (representative) consumer /investor, and each industrial sector con-
sists of a single competitive (representative) firm.

Let T'y = (r4, 4, 0¢) be the investment opportunity set at time ¢, where
ry is the instantaneous return on a riskless asset, y; is the N x 1 vector of
instantaneous expected returns for the equity claims to the N firms, and
ooy is the N x N instantaneous variance-covariance matrix of the equity
returns. In choosing optimal policies, both the representative investor and
the representative firms take I'; as given. Since I'; is not known a priori,
optimal policies depend on the expectation on the future evolution of I';. A
rational expectations equilibrium is one in which the future evolution of I’
is correctly anticipated.

In the rest of the section, we proceed to specify the individual optimiza-
tion problems, followed by a discussion on how to solve for individual policies
and the investment opportunity set in a rational expectations equilibrium.



2.1 Consumption and Portfolio Demand

The demand side of the economy is a version of Merton (1973)’s intertem-
poral asset pricing model, except that the investment opportunity set I'
is to be endogenously determined. Taking I'; as given, the representative
consumer/investor solves

J(ka C) = max K [/ e Pt U(Ct) dt ‘ ko = ka CO = <:| s (]—)
ct,at:t>0 0
subject to
dky = [ay (e — ro)ke + reky — ¢] dt + aj0,d By, 2)

where, B; is a N x 1 vector of standard independent Brownian motions,
p > 0 is the subjective discount rate, and at time ¢, k; is the total wealth, a,
is N x 1 vector of portfolio holdings (shares of total wealth invested in risky
equity claims), and ¢, is the aggregate consumption. Throughout the paper,
we assume that the period utility is u(c) = %, where 1 — v is the constant
coefficient of relative risk aversion.

2.2 Production and Investment

For each j =1,2,..., N, firm j solves

kj(bj,g):maxE[/ my 2 ds bg:bf,gozg], (3)
Ig:tZO 0
subject to the capital accumulation equation:

db] = I} dt + bj¢] dB,, (4)

where &/ is a 1 x N row vector of volatility loadings to the N Brownian
shocks, 2] is the firm’s dividend payout, m; is the pricing kernel, given by
dmt /
— = —rydt — Nyd B, (5)
my
and Ay = o; ' (s — ;). Firms’ dividend policies are directly determined by
their investment policies, through
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where 7/ is the net profit rate and o/ is the doubling time for firm j. The
first term on the right hand side of equation (6) represents the linear output
function, and the third term the quadratic capital adjustment cost.

2.3 The



where 2/ is given by (6). The individual maximization problems defined in
Sections 2.1 and 2.2 are the decentralization of the central planner’s problem
under the new numeraire.

~ While 5{, 1 < j < N, may be viewed as real capital stocks, the variables
bl, 1 < j < N, may be loosely referred to as nominal capital stocks. By the
same token, while ff , 1 < j < N, may be viewed as real capital expenditures
I, 1 < j < N, may be viewed as nominal capital expenditures.

2.4 The Rational Expectations Equilibrium

The rational expectations equilibrium of the model is characterized in two
steps. First, in Propositions 1-3, we characterize partial equilibrium restric-
tions between the investment opportunity set and the optimal policies, and
derive the endogenous dynamics for the economy-wide state vector. Second,
in Proposition 4, we impose market clearing conditions that jointly determine
the equilibrium prices and quantities.

In order to solve for the rational expectations equilibrium, we need to
guess correctly the state vector and its equilibrium dynamics. To this end, let
by be the vector of capital stocks for the N firms (sectors) in the equilibrium,
and let (; be a (N — 1) x 1 vector, defined by

1<i<N-1.

SV

b
7

Ct N’
t
As a side effect of solving the rational expectations equilibrium, we will be
able to verify that (i) (; is the state vector that drives the equilibrium invest-
ment opportunity set, i.e., 7, = 7((), e = (), and oy = 0(¢); and (ii) ¢
is an autonomous (N — 1)-dimensional Markov process, i.e.,

dct = ,[['t dt-i—&t dBt, (12)

where 1 = 1(¢;) is a (N —1) x 1 vector and 6; = 6((;) is a (N —1) x N matrix.
Intuitively, the equilibrium dynamics of the state vector (; is determined
as follows: being perfectly competitive, each firm j treats b, or (; as an
exogenous state vector, and treats its own capital stock ¥’ as an endogenous
state variable controlled by its investment policy; in equilibrium, we must
haveBZzb{oer:gﬁN,forlg‘v’jgN.



Proposition 1 (Optimal Policies) Suppose that vy = (), e = p(G),
and oy = o0((;), where ¢ is given by (12). Then the representative con-
sumer/investor’s optimal consumption and portfolio problem is solved with
the indirect utility function given by J(k,¢) = h(¢)"! %, and the represen-
tative firms’ optimal investment problems are solved with firm equity values
given (¥, ¢) = ¢ (), 1< j < N.

Furthermore,

1. The optimal consumption policy is given by
¢ = h(G) ke, (13)

where h(C) is the aggregate consumption/wealth ratio, and its functional
form depends on the functional forms of r(¢), pu(C), o(¢), i(¢), and
(¢).-

2. The optimal portfolio policy is given by

af =a*(¢) = a +af, (14)
where a and af’ are respectively the myopic and hedging demands,
given by

at = (fftoé)l‘l_(u; SRR S P 1;?’"‘. (15)
3. The optimal investment policies are given by
I7 =T(G)b, 1<j <N, (16)

where 17(¢) = M, ¢’ (C) is the average q for firm j, and its functional

oJ

form depends on the functional forms of r(C), (<), o(¢), n#(¢), and
(¢)-

Proof: See Appendix A.

Proposition 2 (State Dynamics) If a rational expectations equilibrium
exists with ry = r(¢), e = (), and oy = o((;), where ¢ is given by
(12), then:

ilo= [P -1V - (¢ -eMev] d, (17)
o = (¢-¢Nd. (18)



In other words,
d¢}
¢

Proof: At the optimal investment policies, firms’ capital stocks
evolve according to

= |U(G) —IV(G) — (¢ — €M) eV | dt + (€ —€V)dB,. (19)

av] :
— =PG)dt+¢ dB, 1<j<N.
t
In equilibrium, we must have Ctj = %, 1 <Vj < N. Equa-
t
tions (17)—(18) follow immediately from Ito’s lemma.

Proposition 3 (Investment Opportunity Set) If a rational expectations
equilibrium exists with the aggregate consumption/wealth ratio given by h(Q)
and firms’ average q given by ¢°(¢), 1 < j < N, then

Aqi(Q)
qi(Ct)
o = £+ W, (21)

pp = [ZY(G) +T(¢)] +

N
+ 3 ewiie | (20)
j=1

where 7! = Zk—f =gl —T'— %i(]li)Q is the optimal dividend /price ratio, and A

and W are given by (36) and (44), respectively.
Furthermore, the equilibrium riskfree rate solves:

_ P AA 11— Y
Ty = ~ 2(1_7) ~ [h(Ct) h (Ct)]: (22)

where h' (¢) is determined by the first and second order derivatives of h(¢)
(see equation (42)).

Proof: By definition, for each i,

dk R .
= (MZ - Zk_> dt + o'dB,, (23)
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where o is the i row of ;. From the firm’s optimization prob-
lem, we have k' = ¢*(¢)b". Ito’s lemma implies that

dki (17 = 0logd . . Ag
=%+ LI+ ) dt
(5 + 2 2t e+

Ko\ b

(24)

Matching terms between equations (23) and (24), we obtain
N
ol = &4+ W, (or o =¢+WE),
7j=1

) Z*i ]*z Az N ) o,
W= EE e
j=1

Finally, equation (22) is obtained by substituting the optimal con-
sumption and portfolio policies into the Bellman equation (34).

Equations (20)—(21) characterize the cost of risky capital faced by firms,
and equation (22) characterizes the cost of riskless capital faced by both the
representative consumer and the firms. The proof of Proposition 3 shows
that how they are backed out from the optimality conditions of the represen-
tative consumer and the representative firms in terms of the indirect utility
functions.

We are now ready to close the loop. For notational simplicity, let (N =1
(however, (; still denotes the (N — 1) x 1 vector of capital ratios).

Proposition 4 (Rational Expectations Equilibrium) If there ezists a
set of functions (h(¢);¢?(¢) : 1 < j < N) such that for V¢ € RY ™!,

_ . CsoN2]
s oot -4 ()¢
h = Fia—— , (25)
ijlqagj
o= L8 i, (26)
Zj:lq]@

where a* is given by (14), then there exists a rational expectations equilibrium.
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Proof: Noting that, in equilibrium, k = Ejvzl ki = Ejvzl @b, we
can see easily that equation (25) follows from the market clearing
condition in the goods market: ¢* = Z;VZI z*, and equation (26)
follows from the market clearing conditions in the asset markets:
a =8 1<j<N.

Equations (25)—(26) characterize a fixed-point problem: on the one hand,
the set of functions [h(¢);¢?(¢) : 1 < j < N] are implicit functionals of a*(¢).
On the other hand, elements of ¢* are implicit functionals of [r(¢), u(¢), o(¢)]
(Proposition 1), which in turn are implicit functionals of [h(¢);¢?(¢) : 1
j < N] (Proposition 3). Although Proposition 4 is not a formal proof for the
existence and uniqueness of a rational expectations equilibrium, it establishes
an operational procedure for computing the rational expectations equilibrium
— if it exists.

2.5 ICAPM

It is well known since Merton (1973) that if the investment opportunity set
is stochastic, then the one-factor conditional CAPM need not hold. This is
because a stochastic investment opportunity may induce a hedging demand,
which need not be perfectly correlated with the market portfolio.

In our model, the investment opportunity set is stochastic, and its equi-
librium dynamics is endogenously determined. The cross-sectional restriction
on individual equity returns can be derived as a corollary of Propositions 1
and 2:

o — 1y = (1 = 7)or0l(a; — af'), (27)
where aff = —(I+W,)'"'A, Iis the N x N identity matrix and A isa N x 1
vector defined by

J

dlogh il
Slog 07" 1<j<N-1, A ;:le (28)

Let puf = a py = e+ (1 - Y)a! oy0!(af — all) denote the expected market

return, and 5g' = % the conditional beta of equity 7 with respect to the
t Ot01Qy
market. Then we can write

,Ug — Ty = /\gﬁg (/LI - Tt), (29)
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where

j 1 H
1— 01040y
%

OJtUtat

A= — (30)
1 — 9 otoias

Py ! %
a; 0t0,Qy

When the hedging demands are zero, i.e., af = 0 and A{ = 1, so that
equation (29) recovers the one-factor conditional CAPM. In general, however,
the hedging demands are non-zero, and X # 1, 1 < j < N. This generates a
systematic deviation from the one-factor CAPM. The “abnormal” differential
return over and above the risk premium associated with the market return
is given by ' ' '

of = (N = 1)B (5 — o), (31)

which can be computed explicitly once the model has been solved.

3 Numerical Solution and Illustrations

In this section, we characterize some key properties of the rational expecta-
tions equilibrium, by numerically solving the fixed-point problem: (25)—(26),
together with (13), (14), (16), (20), (21), and (22). The numerical problem is
complicated by the fact that equations (14), (20), (21), and (22) involve the
first and second derivatives of h(¢) and ¢/(¢), 1 < j < N. To get around this
problem, we adopt an approximation which allows us to obtain the solution
state by state through a simple iterative procedure.

To illustrate the idea, let us recall that the partial derivatives of h(()
and ¢/(¢), 1 < j < N, are captured by the N x 1 vector A and the N x N
matrix W, which are defined by (28) and (44), respectively. An individual
consumer/investor who holds the belief

AZOle, and WZONXN, (32)
adopts a myopic portfolio policy (a = 0) and a myopic consumption policy

(b = 0). Hence (32) may be characterized as myopic belief. Tt is easy to
show that the myopic belief is inconsistent with the rational expectations

13



equilibrium: under the myopic belief, the fixed-point problem reduces to

7

h = ﬁ: '[7?“ (@ (¢ +1)

= Ll 20dq
- qJCJ
Z;-Vzl qici
where : a* = (551)_1(:“ - T)
: s —
: (¢ 1)
J — __ N 7 _
1% - q] + 20!-7(]] y 0= fa
oo P )€ =) 17,
gt 2(1—7) v

It is easy to verify that the solution A(¢) and ¢?(¢), 1 < j < N must be
state-dependent, thus contradicting the myopic belief.

We assume that agents and firms are rational, in that they try to forecast
the state-dependence of h(¢) and ¢/({), 1 < j < N in the best way they
can. They believe that A # Oyx; and W # Onxn, and that in general even
A and W themselves are state-dependent. To solve the model, however, we
will adopt an approximation that is equivalent to assuming that agents and
firms hold the following expectations:

dlog A OlogW
810g§ - ONX(N—l)’ Wgc - 0N><N><(N—1)a (33)

that is, A and W are locally constant, or equivalently, log h(¢) and log ¢’ (¢),
1 < 7 < N, are locally linear in log (. The resulting solution is therefore
referred to as the “linear rational expectations equilibrium” (L.R.E.E.). Op-
erationally, equation (33) means that in each state of the world ¢ and its
immediate vicinity, agents and firms expect a constant A and a constant W
in computing their optimal policies. The equilibrium values of A and W
are determined through the principle of rational expectations: after h(¢) and
¢’(¢), 1 < j < N, have been computed from market clearing conditions at
¢ and its immediate vicinity, their partial derivatives can be computed and
must be consistent with prior expectations on A and W. Thus, on top of
the fixed-point problem that determines h(¢) and ¢’(¢), 1 < j < N, there is
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another fixed-point problem that determines A and W .2

As an illustration, consider a two-sector economy with the following base-
line parameterization: 7! = 72 = 10%, o' = o? = 7(years), &' = (18.4%,0),
&2 =1(0,18.4%), 1 — v = 3.3, p = 5%. Under this parameterization, the two
sectors (representative firms) have the same net profit rates, are subject to
demand shocks with the same volatility, and the demand shocks are uncor-
related. These parameter values are roughly consistent with those calibrated
by Friend and Blume (1975): if W were Oy, the volatilities of for individ-
ual sectors would be given by /&7¢7 = 18.4%, j = 1,2, and if in addition
the two firms had equal market shares, the volatility of the market return
would be o* = 18.4%/\/5 = 13% With a relative risk aversion of 1 —~ = 3.3,
the aggregate equity premium would be (1 — ) x 0*? = 5.58%.

Figure 1 plots some key features of the L.R.E.E. solution. Reading from
left to right, the horizontal axis is the share of the capital stock for firm 1, or
X = %C, rather than ( = Ib’—; so that the plots reflect the symmetric nature
of the two sectors. The eight panels are:

(a) Riskfree rate r(¢);

z*1+z*2

(b) Aggregate consumption/wealth ratio h(¢) = Z75;

(c) Expected equity returns: solid line for p'(¢) and dashed line for p?(¢);
(d) Average q: solid line for ¢'(¢) and dashed line for ¢*(¢);

(e) Sharpe ratios: solid line for A'(¢) and dashed line for A%({);

(f) Dividend /price ratios: solid line for Z!(¢), and dashed line for Z?(¢);
(g) Market shares: solid line for a*!({) and dashed line for a*?(¢);

(h) Investment/capital ratios: solid line for I'(¢) and dashed line for I%(¢).

The solution indicates that there is a long-run steady state distribution for
the relative share of the capital stocks, centered around & = 0.5, or ( = 1.
In particular, Panel (h) implies that the economy wide state variable ¢ is

2Starting from the myopic expectations (32), which is subsumed by the linear expecta-
tions (33), the iteration over A and W mimics a price-discovery process in a decentralized
market place in which rational agents and firms adopt more rational policies over time as
they learn from past prices and of course past mistakes (initially when there is no price
history, they act myopically).
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mean-reverting around its long-run mean ¢ = 1: the drift of log( is given by
IY(¢) — T2(¢) (see equation (19)), which is negative when ¢ > ¢ and positive
when ¢ < (. This endogenously mean-reverting behavior is a key feature of
the model. The intuition is as follows. Suppose that initially the economy
is at ( = ( = 1. Now, suppose firm 1 receives a positive shock and firm 2
receives a negative shock (or a smaller positive shock) so that ¢ > 1. Since
the shocks are permanent, firm 1 will generate more cash flows than firm 2
now and in future expectations if firms do not change their production plans.
This means that firm 1 must be more valuable than firm 2, i.e., a! > a? [see
Panel (g)]. In equilibrium, a higher portfolio demand for firm 1 is possible
only if ' > p? [see Panel (c)]. The higher cost of capital for firm 1 forces
it to scale back investment intensity, i.e., I' < I?, which implies that, in
expectation, the capital stock of firm 1 grows slower than that of firm 2,
thereby pushing the ratio ¢ back toward the long-run mean ¢ = 1.

Ignoring the last term in the square bracket in equation (20), which is
typically small, the expected return for each firm is roughly the sum of
the dividend/price ratio (“current income”) and the investment/capital ratio
(“expected growth”). That is, 4/ ~ 2= + L. A firm is a “value stock” if
“current income” contributes more than “expected growth” to its expected
return, and a “growth stock” if “expected growth” contributes more than
“current income” to its expected return. According to this definition, we
can identify firm 1 as the value stock when ( > 1, and firm 2 as the value
stock when ¢ < 1. Panel (d) shows that this characterization of the value
and growth stocks is consistent with the Fama-French definition that a value
stock has a higher book-to-market ratio than a growth stock.

Two interesting asset pricing implications are apparent in Figure 1. First,
in each state of the world, the expected return [Panel (c¢)] and the Tobin’s
q [Panel (d)] are inversely related. This implies that, cross-sectionally, value
stocks earn higher expected returns than growth stocks. Second, the riskfree
rate is very flat near the long-run mean [see Panel (a)], which means that
it has a low volatility even though the primitive shocks of the economy are
quite volatile.

As a comparison, Figure 2 plots the same set of features for the “my-
opic solution”, i.e., the equilibrium reached when agents and firms have the
myopic expectations (32) — without iterating over A and W. We can see
that in many respect, the two solutions are qualitatively similar. Indeed, the
general description of the L.R.E.E. solution in the preceding paragraphs is
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equally applicable to the myopic solution. In particular, the value stock earns
a higher expected return. The quantitative differences of the two solutions
are highlighted by plotting them side by side in Figure 3. which has the
same layout as Figures 1 and 2 except that only firm 1 is shown in Panels
(c)—(g) (firm 2 is just the mirror image), and that Panel (h) plots the welfare
function scaled by (b' + b?)7.

Although it may not be apparent in Figure 3, a key difference between the
myopic solution and the L.R.E.E. solution pertains to the “value anomaly”:
there is no “value anomaly” under myopic expectations, and there is under
the L.R.E.E. expectations. In the myopic solution, the one-factor conditional
CAPM holds exactly, thus the value stock earns a higher expected return only
because it has a higher market beta.?

In contrast, the “value anomaly” exists in the L.R.E.E. solution, as a risk
compensation associated with the need to hedge against a stochastic invest-
ment opportunity set — just as Merton has predicted, or more fundamentally
to hedge against the stochastic dispersion of the firms’ capital stocks. To see
this, let us compute the hedging demand for the symmetric two-sector case.

_  Odlogq! _  Ologgq® — Ologh
Let w, = — aloggq( , Wy = — alogqu y and 6 = BIOEC' Then
_(1-wm wq . 4]
It follows that
, 1 )
H -1
=—I+W)"7"A= —— .
4 ( * ) 1-— w1 — Wo ( o )

Under the given parameters, the L.R.E.E. solution implies w; > 0, wy > 0,
and 1—w;—wy > 0,5 > 0when ¢ > 1, and 6 < 0 when ¢ < 1. Thus, a®! < 0
when ¢ > 1 and a®? < 0 when ¢ < 1. In other words, the hedging demand
for the value stock is positive, which implies that the value stock should
earn an “abnormal” return over and above the risk premium associated with

3Gomes, Kogan, and Zhang (2001) find themselves in exactly the same situation. The
one-factor CAPM holds in GKZ and in our model under the myopic expectations for a
completely different reason. In GKZ, the one-factor CAPM holds because both the market
risk and the aggregate consumption risk are driven by the same systematic production
shock, which means that the hedging demand is also perfectly correlated with the market
risk. In our model under the myopic expectations, the one-factor CAPM holds because
there is no hedging demand.
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its market risk. The expected “abnormal return”, given by equation (31), is
plotted in Figure 4. We see that the HML strategy (long high book-to-market
namely value stock and short low book-to-market namely growth stock) earns
a positive “abnormal return”, which increases with the dispersion of the
capital stocks. When the relative share is % = 56.5%, which is a standard
deviation away from the long-run mean,* the “abnormal return” is about 6
basis points. At % = 80%, which is about five standard deviations from
the long-run mean, the “abnormal return” is about 38 basis points. About
one third of the “abnormal return” comes from the long position in the value

stock and the rest comes from the short position in the growth stock.

4 Conclusion

In this paper, we have demonstrated that a positive value premium (high
book-to-market stocks earn higher expected returns and a positive “abnor-
mal return” for the HML strategy (long high book-to-market and short low
book-to-market) can arise endogenously in a general equilibrium model. Our
model has its obvious limitations. First, the model abstracts away from any
production shocks. Second, the model abstracts away from labor supply and
demand decisions. These simplifying assumptions are adopted so that the
effect of demand shocks can be more easily analyzed and highlighted. A more
realistic model that relaxes these assumptions is of obvious interest but will
be left to future research.

4‘% = ...+ (1 —=x)(&' - £?)dB. Thus, the standard deviation of x at the long-run

mean is about (1 —0.5) x 13% = 6.5%.
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Figure 1: The L.R.E.E. Solution
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Figure 2: The Myopic Solution
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Figure 3: Comparing the Myopic and Ration Solutions

at=m?=10%, 0! =a? =7, =€ =184%,1—-~v=3.3, p=0.05

w
w o N

(a): r (%)

o m
DDO 00000000000 ODD

O

Bl

N

=
ST

(©): u* (%)

1c
R

<><><><> NO0opgpgooo O]
. . <>\>
0.4 0.6 0.8

)

DD’

R

©
~

o
w

(e): Lambda®

60BN
988 888888 & ]
GouHto” .
0.4 0.6 0.8
| i
of
§ao®° *
pngg%@ | |
0.4 0.6 0.8
. . w’)
DDUIJ
9000@99888
il
0:4 0:6 0.8

b/(b1+b?)

o oo
)

(b): h (%)

(204

£l
o ¢ L.R.E.E. |
O Myopic

| O

[ o c_]]

0080000000000000006aRF
m}

u]

o oo h

2 0.4 0.6 0.8

- 3
o o
W@gooooooooooooooogﬁw
N o]

m} m}

a m]
qnnﬂﬂunﬂp

0.2 0.4 0.6 0.8

b/(b*+b?)



(44

Abnormal Return (%)

0.1

0.05

-0.05

-0.15

-0.25

0.2

Figure 4: Abnormal Return due to Hedging Demand

l=m?=10%,a' =a? =7, =2 =184%,1 -~y =3.3, p=0.05

0.3 0.4 0.5 0.6 0.7 0.8
bl/(b+b?)



A Optimal Consumption, Portfolio, and In-
vestment Decisions

A.1 Consumption and Portfolio Decisions

To solve the investor’s problem, we conjecture that the value function can
be written as

o0 %
Vi= e J(k, ()= max E [/ e ds | by =k, ¢ = g] .
Cs,a5:8>1 0 Y
The Bellman equation reads
%
0 = max % —pJ +[d(p—r)k+rk— ] Jy (34)

1 1
+ §k2a'aa'aJkk + i Je + 5 Trace (66" Jeer]) + ka'o6" Ty

Conjecture that the indirect utility function is given by J(k,() = qb(()’:i
The Bellman equation reduces to

0 = max [i—p+7[ (u—r)+r—3]

a ~vJ k
20—y dod'a+ ﬁ + %L'J&'alog ¢] : )
2 ¢ a¢
where A is the infinitesimal generator of (, given by
N— 52
A= z_: — + Trace [oa acac’} (36)

First order condition with respect to ¢ implies ¢* = h(¢)k, where h(¢)" 1 =
#(¢). First order condition with respect to a implies

a* = a"(¢) +a"(¢), (37)

where a™ and a! are, respectively, the myopic and hedging components of
the portfolio demand, given by

o 1A oo ) Hu—
S = (38)
a(¢) = —0 16 'algf”. (39)
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Substituting the optimal policies into the Bellman equation, we obtain
h(¢) = K" + h"(C). (40)

where h™ and h¥ represent, respectively, the myopic and hedging compo-
nents of consumption demand, given by

A(Q)A(Q)

Mo TP — , 41
IL—v Ly © 2(1=17) )
7 Ologh = ydlogh  dlogh Anr1

H _
PO = T e M e Tae 0 T T m et

(42)

The hedging components of the portfolio and consumption demands arise
because of the state-dependence of the aggregate consumption/wealth ratio

h(Q)-

A.2 Investment Decisions

Conjecture that the value function for firm 4 is given by myk?, and k! =
q'(¢;)b'. Then the Bellman equation for firm i reads:

Zi+ i
kb

N e i ) N o,
r (€ +) WIE)A| + “2—? +E> WhY| | (43)
j=1

j=1

0 = max
Ii

where 27 is given by equation (6), and W; is a N x N matrix defined by, for
1<i<N,

_ Ologg’
~ Olog (¥’

ij

N-1
1<j<N=1; WV =3 W9 (44)
j=1

Since the last three terms on the right hand side of equation (43) depend
only on the economy wide state vector (, the first order condition with respect
to I/ implies '

() -1

I =
ad
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