
 1

GARCH 101: An Introduction to the Use of ARCH/GARCH models in Applied 
Econometrics 
 

Robert Engle 
 
 
 
Robert Engle is the Michael Armellino Professor of Finance,  Stern School of 
Business, New York University, New York, New York, and Chancellor’s 
Associates  Professor of Economics, University of California at San Diego, La 
Jolla, California. 

 
ABSTRACT 

 
ARCH and GARCH models have become important tools in the analysis of 
time series data, particularly in financial applications.  These models are 
especially useful when the goal of the study is to analyze and forecast 
volatility.  This paper gives the motivation behind the simplest GARCH 
model and illustrates its usefulness in examining portfolio risk.  Extensions 
are briefly discussed.   
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 The great workhorse of applied econometrics is the least squares 

model.  This is natural because applied econometricians are typically called 

upon to determine how much one variable will change in response to a 

change in some other variable.  Increasingly however, econometricians are 

being asked to forecast and analyze the size of the errors of the model.  In 

this case the questions are about volatility and the standard tools have 

become the ARCH/GARCH models.   

 The basic version of the least squares model assumes that, the 

expected value of all error terms when squared, is the same at any given 

point.  This assumption is called homoskedasticity and it is this assumption 

that is the focus of ARCH/GARCH models.  Data in which the variances of 

the error terms are  not equal, in which the error terms may reasonably be 

expected to be larger for some points or ranges of the data than for others, are 

said to suffer from heteroskedasticity. .    The standard warning is that in the 

presence of heteroskedasticity, the regression coefficients for an ordinary 

least squares regression are still unbiased, but the standard errors and 

confidence intervals estimated by conventional procedures will be too narrow, 

giving a false sense of precision. Instead of considering this as a problem to 

be corrected, ARCH and GARCH models treat heteroskedasticity as a 

variance to be modeled.  As a result, not only are the deficiencies of least 
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squares corrected, but a prediction is computed for the variance of each error 

term.  This turns out often to be of interest particularly in finance. 

 The warnings about heteroskedasticity have usually been applied only 

to cross sectional models, not to time series models. For example, if one 

looked at the cross-section relationship between income and consumption in 

household data, one might expect to find that the consumption of low-income 

households is more closely tied to income than that of high-income 

households, because the dollars of savings or deficit by poor households are 

likely to be much smaller in absolute value than high income households.    

In a cross-section regression of household consumption on income, the error 

terms seem likely to be systematically larger in absolute value for high-

income than for low-income households, and the assumption of 

homoskedasticity seems implausible. In contrast, if one looked at an 

aggregate time series consumption function, comparing national income to 

consumption, it seems more plausible to assume that the variance of the 

error terms doesn’t change much over time. 

A recent development in estimation of standard errors, known as 

“robust standard errors,” has also reduced the concern over 

heteroskedasticity. If the sample size is large, then robust standard errors 

give quite a good estimate of standard errors even with heteroskedasticity. If 

the sample is small, the need for a heteroskedasticity correction that doesn’t 
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affect the coefficients, and  only asymptotically corrects the standard errors, 

can be debated.   

 However, sometimes the natural question facing the applied 

econometrician is the accuracy of the predictions of his model.  Thus the key 

issue is the variance of the error terms and what makes them large. This 

question often arises in financial applications where the dependent variable 

is the return on an asset or portfolio and the variance of the return 

represents the risk level of those returns. These are time series applications, 

but it is nonetheless likely that heteroskedasticity is an issue. Even a cursory 

look at financial data suggests that some time periods are riskier than others; 

that is, the expected value of the magnitude of error terms at some times is 

greater than at others. Moreover, these risky times are not scattered 

randomly across quarterly or annual data. Instead, there is a degree of 

autocorrelation in the riskiness of financial returns. Financial analysts, 

looking at plots of daily returns such as in Figure 1, notice that the amplitude 

of the returns varies over time and describe this as “volatility clustering.”  

The ARCH and GARCH models, which stand for autoregressive conditional 

heteroskedasticity and generalized autoregressive conditional 

heteroskedasticity, are designed to deal with just this set of issues.  They 

have become widespread tools for dealing with  time series heteroskedastic 

models. The goal of such models is to provide a volatility measure – like a 
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standard deviation -- that can be used in financial decisions concerning risk 

analysis, portfolio selection and derivative pricing. 

 

ARCH/GARCH Models 

 

 Because this paper will focus on financial applications, we will use 

financial notation.  Let the dependent variable be labeled tr , which could be 

the return on an asset or portfolio. The mean value m and the variance h will 

be defined relative to a past information set.  Then, the return r in the 

present will be equal to the mean value of r (that is, the expected value of r 

based on past information) plus the standard deviation of r (that is, the 

square root of the variance) times the error term for the present period. 

 The econometric challenge is to specify how the information is used to 

forecast the mean and variance of the return, conditional on the past 

information.   While many specifications have been considered for the mean 

return and have been used in efforts to forecast future returns, virtually no 

methods were available before the introduction of ARCH models.  The 

primary descriptive tool was the rolling standard deviation.  This is the 

standard deviation calculated using a fixed number of the most recent 

observations.  For example, this could be calculated every day using the most 

recent month (22 days) of data.  It is convenient to think of this as the first 

ARCH model; it assumes that the variance of tomorrow’s return is an equally 
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weighted average of the squared residuals from the last 22 days. The 

assumption of equal weights seems unattractive as one would think that the 

more recent events would be more relevant and therefore should have higher 

weights.  Furthermore the assumption of zero weights for observations more 

than one month old, is also unattractive.  The ARCH model proposed by 

Engle(1982) let these weights be parameters to be estimated.  Thus the model 

allowed the data to determine the best weights to use in forecasting the 

variance.   

 A useful generalization of this model is the GARCH   parameterization 

introduced by Bollerslev(1986). This model is also a weighted average of past 

squared residuals but it has declining weights which never go completely to 

zero.  It gives parsimonious models which are easy to estimate and even in its 

simplest form, has proven surprisingly successful in predicting conditional 

variances.  The most widely used GARCH specification, asserts that the best 

predictor of the variance in the next period is a weighted average of the long 

run average variance, the variance predicted for this period and the new 

information this period which is the most recent squared residual.  Such an 

updating rule is a simple description of adaptive or learning behavior and can 

be thought of as Bayesian updating.   

 

 Consider the trader who knows the long run average daily standard 

deviation of the S&P500 is 1%, that the forecast he made yesterday was 2% 
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and the unexpected return observed today is 3%.  Obviously this is a high 

volatility period and today is especially volatile suggesting that the forecast 

for tomorrow could be even higher.  However  the fact that the long term 

average is only 1% might lead him to lower the forecast.  The best strategy 

depends upon the dependence between days.  If these three numbers are each 

squared and weighted equally, then the new forecast would be 

( ) 3/94116.2 ++= .   However, rather than weighting these equally, it is 

generally found for daily data that weights such as those in the empirical 

example of (.02,.9,.08) are much more accurate.  Hence the forecast is 

9*08.4*9.1*02.08.2 ++= . 

 To be precise, we can use ht to define the variance  of the residuals of a 

regression tttt hmr ε+= .   In this definition the variance of ε  is one.  The 

GARCH  model for variance looks like this:  

 ( )2 2
1t t t t t t th r m h h hω α β ω α ε β+ = + − + = + +  

The econometrician must estimate the constants βαω ,, ;  updating simply 

requires knowing the previous forecast h and residual. The weights are 

),,1( αββα −−  and the long run average variance is ( )βαω −−1/ .   It 

should be noted that this only works if 1<+ βα , and only really makes sense 

if the weights are positive requiring 0, 0, 0α β ω> > > .  

 The GARCH model that has been described is typically called the 

GARCH(1,1) model.  The (1,1) in parentheses is a standard notation in which 
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the first number refers to how many autoregressive lags or ARCH terms 

appear in the equation, while the second number refers to how many moving 

average lags are specified which here is often called the number of GARCH 

terms.  Sometimes models with more than one lag are needed to find good 

variance forecasts. 

 Although this model is directly set up to forecast for just one period, it 

turns out that based on the one period forecast a two period forecast can be 

made. Ultimately by repeating this step,  long horizon forecasts can be 

constructed.  For the GARCH(1,1) the two step forecast is a little closer to the 

long run average variance than the one step forecast and ultimately, the 

distant horizon forecast is the same for all time periods as long as 1<+ βα .  

This is just the unconditional variance.   Thus the GARCH models are mean 

reverting and conditionally heteroskedastic but have a constant 

unconditional variance. 

 I turn now to the question of how the econometrician can possibly 

estimate an equation like the GARCH(1,1) when the only variable on which 

there are data is tr .  The simple answer is to use Maximum Likelihood by 

substituting ht for 2σ  in the normal likelihood and then maximize with 

respect to the parameters.  An even simpler answer is to use software such as 

EViews, SAS, GAUSS, TSP, Matlab, RATS and many others where there 

exist already packaged programs to do this.   
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 But the process is not really mysterious.  For any set of parameters 

βαω ,, , and a starting estimate for the variance of the first observation, 

which is often taken to be the observed variance of the residuals, it is easy to 

calculate the variance forecast for the second observation.  The GARCH 

updating formula takes the weighted average of the unconditional variance, 

the squared residual for the first observation and the starting variance and 

estimates the variance of the second observation.  This is input into the 

forecast of the third variance and so forth.  Eventually, an entire time series 

of variance forecasts is constructed.  Ideally, this series is large when the 

residuals are large and small when they are small.  The likelihood function 

provides a systematic way to adjust the parameters βαω ,,  to give the best 

fit.  

 Of course, it is entirely possible that the true variance process is 

different from the one specified by the econometrician.  In order to detect 

this, a variety of diagnostic tests are available.  The simplest is to construct 

the series of { }tε  which are supposed to have constant mean and variance if 

the model is correctly specified.  Various tests such as tests for 

autocorrelation in the squares are able to detect model failures.  Often a 

Ljung Box test with 15 lagged autocorrelations is used. 
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A Value at Risk Example 

 

 Applications of the ARCH/GARCH approach are widespread in 

situations where the volatility of returns is a central issue. Many banks and 

other financial institutions use the concept of “Value at Risk” as a way to 

measure the risks faced by their portfolios. The 1% Value at Risk is defined 

as the number of dollars that one can be 99 percent certain exceeds any 

losses for the next day. Statisticians call this a 1% quantile because 1% of the 

outcomes are worse and 99% are better.  Let’s use the GARCH (1,1) tools to 

estimate the 1 percent Value at Risk of a $1,000,000 portfolio on March 23, 

2000.  This portfolio consists of 50 percent Nasdaq, 30 percent Dow Jones, 

and 20 percent long bonds1. This date is chosen to be just before the big 

market slide at the end of March and April. It is a time of high volatility and 

great anxiety.   

First, we construct the hypothetical historical portfolio. (All 

calculations in this example were done with the EViews software program.)  

Figure 1 shows the pattern of returns of the Nasdaq, Dow Jones, bonds and 

the composite portfolio leading up to the terminal date. Each of these series 

appears to show the signs of ARCH effects in that the amplitude of the 

returns varies over time.  In the case of the equities, it is clear that this has 

increased substantially in the latter part of the sample period.  Visually, 

                                                           
1 The long bond is a 10 year constant maturity treasury bond.  The portfolio has constant proportions of 
wealth in each asset which would entail some rebalancing over time. 
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NASDAQ is even more extreme.  In Table 1, we present some illustrative 

statistics for each of these three investments separately, and for the portfolio 

as a whole in the final column.   From the daily Standard Deviation we see 

that the NASDAQ is the most volatile and interest rates the least volatile of 

the assets.  The Portfolio is less volatile than either of the equity series even 

though it is 80% equity- yet another illustration of the benefits of 

diversification.  All the assets show evidence of fat tails since the kurtosis 

exceeds 3 which is the Normal value, and evidence of negative skewness 

which means that the left tail is particularly extreme. 

The portfolio shows substantial evidence of ARCH effects as judged by 

the autocorrelations of the squared residuals in Table 2.  The first order 

autocorrelation is .210 and they gradually decline to.083 after 15 lags.  These 

are not large but they are very significant.  They are also all positive which is 

uncommon in most economic time series, and yet is an implication of the 

GARCH(1,1) model. Standard software allows a test of the hypothesis that 

there is no autocorrelation (and hence no ARCH).  The test p-values shown in 

the last column are all zero to four places, resoundingly rejecting the “no 

ARCH” hypothsis.   

Then we forecast the standard deviation of the portfolio and its 1 

percent quantile. We carry out this calculation over several different time 

frames: the entire 10 years of the sample up to March 23, 2000; the year 

before March 23, 2000; and from January 1, 2000 to March 23, 2000. 
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Consider first the quantiles of the historical portfolio at these three 

different time horizons.  To do this calculation, one simply sorts the returns 

and finds the 1% worst case.  Over the full ten-year sample, the 1 percent 

quantile times $1,000,000 produces a value at risk of $22,477.  Over the last 

year the calculation produces a value at risk of $24, 653 – somewhat higher, 

but not enormously so. However, if the first quantile is calculated based on 

the data from January 1, 2000 to March 23, 2000, the value at risk is 

$35,159.  Thus, the level of risk apparently has increased dramatically over 

the last quarter of the sample.  Each of these numbers is the appropriate 

Value at Risk if the next day is equally likely to be the same as the days in 

the given sample period.  This assumption is more likely to be true for the 

shorter period than the long one. 

 The basic GARCH(1,1) results are given in Table 3 below. This table 

lists the dependent variable, PORT, the sample period, indicates that it took 

the algorithm 16 iterations to maximize the likelihood function, and 

computed standard errors using the robust method of Bollerslev-Wooldridge.  

The three coefficients in the variance equation are listed as C the intercept, 

ARCH(1) the first lag of the squared return and GARCH(1), the first lag of 

the conditional variance.   Notice that the coefficients sum up to a number 

less than one which is required in order to have a mean reverting variance 

process.  Since the sum is very close to one, this process only mean reverts 
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slowly.  Standard Errors, Z-statistics (which are simply the ratio of 

coefficients and standard errors), and p-values complete the table. 

 The standardized residuals are examined for autocorrelation in Table 

4. Clearly, the autocorrelation is dramatically reduced from that observed in 

the portfolio returns themselves.  Applying the same test for autocorrelation, 

we now find the p-values are about .5 or more indicating that we can accept 

the hypothesis of “no residual ARCH”. 

 The forecast standard deviation for the next day is 0.0146, which is 

almost double the average standard deviation of .0083 presented in the last 

column of Table 1.  If the residuals were normally distributed, then this 

would be multiplied by 2.327 because 1% of a normal random variable lies 

below 2.327 standard deviations below the mean.  The normal Value at 

Risk=$33,977.  As it turns out, the standardized residuals, which are the 

estimated values of { }tε ,  are not very close to a normal.  They have a 1% 

quantile of 2.844,  which reflects the fat tails of the asset price distribution.    

The estimated 1% VaR is $39,996.  Notice how much this Value at Risk has 

risen to reflect the increased risk in 2000. 

 Finally the Value at Risk can be computed based solely on estimation 

of the quantile of the forecast distribution.  This has recently been proposed 

by Engle and Manganelli(2000) adapting the quantile regression methods of 

Koenker and Basset(1978) and Koenker and Basset(2001) in this symposium.  
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Application of their method to this data set delivers a Value at Risk= 

$38,228. 

 What did happen on March 24, 2000 and subsequently?  The portfolio 

lost more than $1000 on the 24 and MORE THAN $3000 on the 27.  The 

biggest hit was $67,000 on April 14.  We all know that NASDAQ declined 

substantially over the next year.  The Dow was much less affected and bond 

prices increased as the Fed lowered interest rates.  Figure 2 plots the Value 

at Risk estimated each day using this methodology within the sample period 

and the losses that occurred the next day.  There are about 1% of times the 

Value at Risk is exceeded as is expected since this is in-sample.  Figure 3 

plots the same graph for the next year and a quarter during which the equity 

market tanks and the bond yields fall.  The parameters are not reestimated, 

but the formula is simply updated each day.  The computed Value at Risk 

rises substantially from the $40,000 initial figure as the volatility rises in 

April.  Then the losses decline so that the Value at Risk is well above the 

realized losses.  Toward the end of the period, the losses approach the Value 

at Risk again but at a lower level.  In this year and a quarter, the value at 

risk is exceeded only once, thus this is actually a slightly conservative 

estimate of the risk.  It is not easy to determine whether a particular Value 

at Risk number is correct although statistical tests can be formulated for this 

in the same way they are formulated for volatilities.  See Engle and 

Manganelli(2001) for a Dynamic Quantile Test.   
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Extensions and Modifications of GARCH  

 

 The GARCH(1,1) is the simplest and most robust of the family of 

volatility models.  However, the model can be extended and modified in many 

ways.  I will briefly mention three modifications although the number of 

volatility models that can be found in the literature is now quite 

extraordinary.  

 The GARCH (1,1) model can be generalized to a GARCH(p,q) model; 

that is, a model with additional lag terms.  Such higher order models are 

often useful when a long span of data is used, like several decades of daily 

data or a year of hourly data.  With additional lags, such models allow both 

fast and slow decay of information.  A particular specification of the 

GARCH(2,2) by Engle and Lee(1999), sometimes called the component model, 

is a useful starting point to this approach.  

 ARCH/GARCH models thus far have ignored information on the 

direction of returns; only the magnitude matters.  However there is very 

convincing evidence that this is not generally the case.  Particularly for broad 

based equity indices and bond market indices, it appears that  market 

declines forecast higher volatility than comparable market increases.  There 

is now a variety of asymmetric GARCH models including the EGARCH model 

of Nelson(1991),  the TARCH model – threshhold ARCH -- attributed to  
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Zakoian(1993) and Glosten Jaganathan and Runkle (1993), and a collection  

and comparison by Engle and Ng(1993) 

 The goal of volatility analysis must ultimately be to explain the causes 

of volatility.  While time series structure is valuable for forecasting, it does 

not satisfy our need to explain volatility.  The estimation strategy introduced 

for ARCH/GARCH models can be directly applied if there are  predetermined 

or exogenous variables.  Thus we can think of the estimation problem for the 

variance just as we do for the mean.  We can carry out specification searches 

and hypothesis tests to find the best formulation.    Thus far, attempts to find 

the ultimate cause of volatility are not very satisfactory.  Obviously volatility 

is a response to news which must be a surprise.  However the timing of the 

news may not be a surprise and gives rise to predictable components of 

volatility such as economic announcements.  It is also possible to see how the 

amplitude of news events is influenced by other news events.  For example 

the amplitude of return movements on the US stock market may respond to 

the volatility observed earlier in the day in Asian markets as well as to the 

volatility observed in the US on the previous day.  Engle and Ito(199 ) call 

these heat wave and meteor shower effects.   

 

 A similar issue arises when examining several assets in the same 

market.  Does the volatility of one influence the volatility of another?  In 

particular, the volatility of a individual stock is clearly influenced by the 
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volatility of the market as a whole.  This is a natural implication of the 

CAPM.  It also appears that there is time variation in idiosyncratic volatility.  

See for example Engle, Ng and Rothschild(1994).   

 

 This discussion opens the door to multivariate modeling where not 

only the volatilities but also the correlations are to be investigated.  There are 

now a large number of multivariate ARCH models to choose from.  These 

turn out often to be difficult to estimate and to have large numbers of 

parameters.   Research is continuing to examine new classes of multivariate 

models which are more convenient for fitting large covariance matrices.  This 

is relevant for systems of equations such as vector autoregressions and for 

portfolio problems where possibly thousands of assets are to be analyzed. 

 

 

 

Conclusion 

 

 ARCH and GARCH models have been applied to a wide range of time 

series analyses but applications in finance have been particularly successful 

and have been the focus of this introduction.   Financial decisions are 

generally based upon the tradeoff between risk and return;  the econometric 

analysis of risk is therefore an integral part of asset pricing, portfolio 
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optimization, option pricing and risk management.  This paper has presented 

a careful example of risk measurement which could be the input to a variety 

of economic decisions.   The analysis of ARCH and GARCH models and their 

many extensions provides a statistical stage on which many theories of asset 

pricing and portfolio analysis can be exhibited and tested. 
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Nasdaq,Dow Jones, and Bond Returns 

Figure 1 
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Table 1 

Portfolio Data 

Sample: 3/23/1990 3/23/2000 
     
 NASDAQ DOW JONES RATE PORTFOLIO 
     

 Mean  0.0009  0.0005  0.0001  0.0007 
 Std. Dev.  0.0115  0.0090  0.0073  0.0083 
 Skewness -0.5310 -0.3593 -0.2031 -0.4738 
 Kurtosis  7.4936  8.3288  4.9579  7.0026 

 

Table 2 

Autocorrelations of Squared Portfolio Returns 

Sample:  
3/23/1990 3/23/2000 
 

 AC   Q-Stat  Prob 
1 0.210 115.07 0.000
2 0.183 202.64 0.000
3 0.116 237.59 0.000
4 0.082 255.13 0.000
5 0.122 294.11 0.000
6 0.163 363.85 0.000
7 0.090 384.95 0.000
8 0.099 410.77 0.000
9 0.081 427.88 0.000

10 0.081 445.03 0.000
11 0.069 457.68 0.000
12 0.080 474.29 0.000
13 0.076 489.42 0.000
14 0.074 503.99 0.000
15 0.083 521.98 0.000
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Table 3 

GARCH(1,1) 

Dependent Variable: PORT 
Sample(adjusted): 3/26/1990 3/23/2000 
Convergence achieved after 16 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 

     
        Variance Equation 

VARIABLE COEF ST. ERR Z-STAT P-VALUE 
C 1.40E-06 4.48E-07 3.1210 0.0018

ARCH(1) 0.0772 0.0179 4.3046 0.0000
GARCH(1) 0.9046 0.0196 46.1474 0.0000

     
 

 

Table 4 

Autocorrelations of Squared Standardized Residuals 

 AC   Q-Stat  Prob 
1 0.005 0.0589 0.808
2 0.039 4.0240 0.134
3 -0.011 4.3367 0.227
4 -0.017 5.0981 0.277
5 0.002 5.1046 0.403
6 0.009 5.3228 0.503
7 -0.015 5.8836 0.553
8 -0.013 6.3272 0.611
9 -0.024 7.8169 0.553

10 -0.006 7.9043 0.638
11 -0.023 9.3163 0.593
12 -0.013 9.7897 0.634
13 -0.003 9.8110 0.709
14 0.009 10.038 0.759
15 -0.012 10.444 0.791
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Value at Risk and Portfolio Losses 

In-Sample 

 



 23

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

2000:04 2000:07 2000:10 2001:01 2001:04

LOSS VAR
 

Figure 3 

Value at Risk and Portfolio Losses 

Out of Sample 



 24

References 

 

Bollerslev, Tim, 1986, Generalized Autoregressive Conditional 

Heteroskedasticity, Journal of Econometrics, 31, 307-327. 

 

Bollerslev, Tim and Wooldridge, Jeffrey M., 1992, Quasi-Maximum 

Likelihood Estimation and Inference in Dynamic Models with Time-

Varying Covariances, Econometric Reviews, 11(2), 143-172. 

 

Engle, Robert F., 1982, Autoregressive Conditional Heteroscedasticity with 

Estimates of the Variance of United Kingdom Inflation, Econometrica, 

50(4), 987-1007. 

 

Engle, Robert F., and Manganelli, Simone, 1999, CAViaR: Conditional 

Autoregressive Value at Risk by Regression Quantiles, University of 

California, San Diego, Department of Economics Working Paper 99-20. 

 

Engle, Robert F., and Mezrich, Joseph, 1996, GARCH for Groups, RISK, 9(8), 

36-40. 

 

Engle, Robert F., and Ng, Victor, 1993, Measuring and Testing the Impact of 

News on Volatility, Journal of Finance, 48, 1749-1778.  



 25

 
Glosten, Lawrence R., Jagannathan, Ravi and Runkle, David E., 1993, On 

the Relation between the Expected Value and the Volatility of the 
Nominal Excess Returns on Stocks, Journal of Finance, 48(5), 1779-
1801. 

 
Koenker, R. and G. Bassett (1978), Regression Quantiles, Econometrica, 46: 

33-50 
 
Nelson, Daniel B., 1991, Conditional Heteroscedasticity in Asset Returns: A 

New Approach, Econometrica, 59(2), 347-370. 
 
R. Rabemananjara, J. M. Zakoian Threshold Arch Models and Asymmetries 

in Volatility,1993,  Journal of Applied Econometrics, Vol. 8, No. 1. 
(Jan. - Mar., 1993), pp. 31-49 


