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Abstract

The Valuation of Caps, Floors and Swaptions in a
Multi-Factor Spot-Rate Model.

We build a multi-factor, no-arbitrage model of the term structure of spot interest rates.
The stochastic factors are the short-term interest rate and the premia of the futures rates
over the short-term interest rate. In the three-factor version of the model, for example,
the first factor is the three-month LIBOR, the second factor is the premium of the first
futures LIBOR over spot LIBOR, and the third factor is the incremental premium of the
second futures over the first. The model provides an extension of the lognormal interest
rate model of Black and Karasinski (1991) to multiple factors, each of which can exhibit
mean-reversion.

The method is computationally efficient for several reasons. First, we suggest calibrating
the model to LIBOR futures prices, which enables us to can satisfy the no-arbitrage condi-
tion without resorting to iterative methods. Second, we modify and implement the binomial
approximation methodology of Nelson and Ramaswamy (1990) and Ho, Stapleton and Sub-
rahmanyam (1995) to compute a multi-period tree of rates with the no-arbitrage property.
The method uses a recombining two or three-dimensional binomial lattice of interest rates
that minimizes the number of states and term structures over time. In addition to these
computational advantages, a key feature of the model is that it is consistent with the ob-
served term structure of futures rates as well as the term structure of volatilities implied by
the prices of interest rate caps and floors. We use the model to price European-style and
Bermudan-style swaptions and yield-spread options.

To implement the methodology, we first calibrate the model to the caplet implied-volatility
curve on a given day, and then use the model to price European-style swaptions. We
find that the two-factor model, where the LIBOR mean reverts rapidly to a slowly mean-
reverting second factor, overprices the swaptions relative to market quotations. However,
introducing a third factor significantly reduces the overpricing. The calibrated model is used
to price Bermudan-style swaptions and yield-spread options. Then, we re-calibrate the two-
factor model simultaneously to caplet and swaption prices and use the model output to
price Bermudan-style swaptions.
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1 Introduction

Satisfactory models exist for the pricing of interest-rate dependent derivatives in a single-
factor context, where interest rates of various maturities are perfectly correlated. For exam-
ple, assuming that the short-term interest rate follows a mean-reverting process, Jamshidian
(1989) prices options on coupon bonds using an extension of the Vasicek (1977) model. Also,
assuming a lognormal process, Black, Derman and Toy (1990) and Black and Karasinski
(1991) use a binomial tree of interest rates to price interest-rate derivatives. However, these
models, by definition, are not capable of accurately pricing derivatives, such as swaptions
and yield-spread options, whose payoffs are sensitive to the shape as well as the level of
the term structure. In principle, these options require at least a two-factor model of the
interest rate process for pricing and hedging.'

One promising approach, used extensively in recent work, has been to build no-arbitrage,
multi-factor forward-rate models of the Heath, Jarrow and Morton (1992) (HJM) type. In
practical applications, these usually take the form of the London Interbank Offer Rate (LI-
BOR) based market model of Brace, Gatarek and Musiela, (1997) (BGM) and Miltersen,
Sandmann and Sondermann (1997) (MSS). However, this forward-rate approach has some
drawbacks for the pricing of swaptions and American-style claims. Most tractable applica-
tions require restrictive assumptions on the volatility structure of the forward rates to ensure
that the Markov property is satisfied, and for the resulting model to be computable for re-
alistic examples. Hence, while in principle, the forward-rate approach provides a solution,
in practice, it is difficult to implement except for certain special cases.?

In this paper, we present an alternative, spot-rate model in which LIBOR follows a process
with a stochastic central tendency. This is in line with the term structure models pio-
neered by Hull and White (1994), Jegadeesh and Pennacci (1997), Balduzzi, Das and Foresi
(1998)and reviewed by Dai and Singleton (2000). However, we assume that the process
for LIBOR is lognormal under the risk neutral measure. We then derive the no-arbitrage
restrictions for such a model. Since we assume that the LIBOR rate is lognormal and
mean-reverting, our model can also be seen as a multi-factor extension of the Black and

1For a critique of existing methods for the valuation of swaptions, see Longstaff, Santa-Clara and Schwartz
(2001). Of course, one-factor models are adequate for the valuation of European-style options on the short-
term interest rate, such as interest-rate caps and floors.

’Ritchken and Sankasubramanian (1995) identify necessary and sufficient conditions on the volatility
structure required in order to capture the path dependence in a single state variable. Li, Ritchken and
Sankasubramanian (1995) implement this one factor, two state-variable model and price American-style
interest rate claims. Alternatively, the pricing of American-style and Bermudan-style claims requires an
approximation of the early exercise decision, as detailed in Anderson (2000) and discussed in Anderson and
Andreasen (2001).
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Karasinski (1991) (BK) model. We illustrate the model using realistic examples with a large
number of time periods. We show that it is easy to calibrate the model to the observed cap
and swaption prices as well as to the current term structure of futures rates. In the two-
factor case, the computational efficiency is achieved through the use of a two-dimensional
recombining lattice of interest rates.?

Since recent models for the pricing of Bermudan-style and exotic options have taken the
BGM-MSS market model approach, it is important to distinguish our model from this
class of models. The main difference is the assumption of lognormal LIBORs. In the
market model, LIBOR is assumed to be lognormal under the 7'+ 1 period forward measure.
It is not lognormal under the period-by-period risk neutral measure. In our model, as
in BK, it is assumed that LIBOR is lognormal under the period-by-period risk neutral
measure. Hence, out-of-the-money caplets and swaptions will have different prices in our
model than in the market model, even when the models are calibrated to the same market
data.* A second difference arises in the pricing of Bermudan-style claims. In order to
price these claims we require the process for the spot rate. In our model this is directly
modelled. However, in the market model, the spot rate process has to be derived from
the forward rate process. In doing this, simplifying assumptions are usually made, which
will produce pricing differences. Further, it is clear from the work of Rebonato (1999) and
Longstaff, Santa-Clara and Schwartz (2001) that the pricing of swaptions in the market
model requires an exogenous specification of the correlation matrix of forward rates. The
important difference in our model is that the correlation of forward rates is restricted by the
parameters of the stochastic central tendency model of the spot LIBOR. Hence, we would
again expect different prices of swaptions in our spot-rate model.

In the calibration of the model, we take as given the prices (or equivalently, the implied
volatilities) of European-style interest rate caplets. The problem, as in Black, Derman and
Toy (1990) and Black and Karasinski (1991), is to price European-style, Bermudan-style
and American-style swaptions, as well as more complex instruments such as yield-spread
options, given the prices of the caplets. We also introduce an alternative calibration, where
the model is fitted to both caplets and European-style swaptions. This version of the model
is also used to price Bermudan-style swaptions.

The computational method introduced to approximate the model builds on previous work
by Nelson and Ramaswamy (1990) and Ho, Stapleton and Subrahmanyam (1995) (HSS).

3 Also, since the model is calibrated to the given term structure of futures rates, we avoid the use of
iterative methods normally used to calibrate models to the current term structure

4This could be an advantage of our model, since market quotes for out-of-the-money caplets suggest that
the LIBOR market model assumptions are not consistent with the data. Recent work on forward rate models
has made alternative assumptions in order to try to capture the smile.
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Nelson and Ramaswamy approximate a single-variable diffusion with a “simple” binomial
tree, i.e., a binomial tree with the recombining node property. HSS extend this method to
multiple, correlated variables in the case of log-normal diffusion processes. In the context of
a two-factor interest rate model, preservation of the no-arbitrage condition in a simple bi-
variate tree requires a further modification of this methodology. In our model, expectations
of subsequent spot rates are determined by the futures rate. In a modification of the
HSS method, we capture this dependence, and hence the no-arbitrage property, in a non-
exploding tree structure, by allowing the probabilities of moving up or down to depend
upon the outcomes of both the spot and the futures LIBOR.

The outline of the paper is as follows. Section 2 reviews the literature on term-structure
models and their relationship to the model developed here. Section 3 presents the multi-
factor model, derives its no-arbitrage properties, and discusses its input requirements. Sec-
tion 4 derives the methodology for approximating the multi-dimensional diffusion process
for the spot LIBOR. Section 5 presents examples of the output of the two-factor model and
discusses the computational efficiency of the methodology. In section 6 we show how the
model can be calibrated to cap/floor and/or swaption implied volatilities. We then illus-
trate how the model can be used to value Bermudan-style swaptions and discuss possible
extensions to other interest rate derivatives. Section 7 concludes with a discussion of the
remaining issues of empirical parameter estimation, and possible extensions of the research.

2 Term-structure Models

In early attempts to value interest rate options, Brennan and Schwartz (1979) and Courta-
don (1982) derive equilibrium models of the term structure along the lines of the Vasicek
(1977) model. However, since the contribution of Ho and Lee (1986), it has been recognized
that interest rate dependent claims can be priced within a no-arbitrage model. Hull and
White (1994), for example, develop an extended Vasicek model in which interest rates, un-
der the risk-neutral measure, are Gaussian, and exactly match the current term structure.
Black, Derman and Toy (1990) and Black and Karasinski (1991) (BK) develop lognormal
diffusion models for the short rate that have the same no-arbitrage property. The model
developed in this paper is a multifactor extension of the BK model, where the short rate
follows a lognormal process with a stochastic central tendency. The lognormal models of
Black, Derman and Toy (1990) and Black and Karasinski (1991) are perhaps closest to the
model developed in this paper. These papers derive recombining, binomial lattices which
match yield volatilities and cap-floor volatilities respectively. In a sense, our model can be
viewed as a multi-factor extension of the Black and Karasinski model. In their model, the
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local (conditional) volatilities and the mean reversion of the short rate are given, in addi-
tion to the current term structure of zero-coupon bond prices. They build a recombining
binomial tree of rates, consistent with this market information, using a technique whereby
the length of the time period is changed to accommodate mean reversion and changing
local volatilities. Unfortunately, as pointed out by Amin (1991), this “trick” only works,
in general, for a one-factor model. In this paper, we therefore employ the changing proba-
bility technique of Nelson and Ramaswamy (1990), extended to multiple variables by HSS.
We are thus able to generalise the Black-Karasinski model to two or more factors, while
maintaining the recombining property.

In a no-arbitrage framework, HJM model the evolution of forward rates for various matu-
rities. A similar approach has recently been used in the "market model” of Brace, Gatarek
and Musiela, (1997) (BGM) and Miltersen, Sandmann and Sondermann (1997) (MSS).
These papers, like this one, model the LIBOR interest rate. Since spot rates and forward
rates are closely related, our modelling approach can be compared to these papers. How-
ever, in contrast to these reduced-form models where the behaviour of forward rates is
exogenous, our model is a structural-type model, where only the behaviour of the short
(LIBOR) rate and the premia of the first two futures rates are exogenous. Although it
is possible to develop multifactor-forward rate models in the HJM framework, these often
require restrictive assumptions to guarantee the Markov property, and the use of Monte-
Carlo simulation. The advantage of our methodology is that it is implementable in seconds,
for general volatility structure assumptions. In some senses, forward-rate models can be
regarded also as spot-rate models. However, except in the case of Gaussian interest rates,
the relationship between the forward-rate process and the spot-rate process is complex. We
directly build a no-arbitrage, multifactor spot rate model which has the Markov property.
The model is then directly applied to the valuation of American-style and Bermudan-style
interest rate derivatives.

A related paper is Heath (1998), who starts with the term structure of futures rates and
then builds a no-arbitrage process for the term structure of futures rates. Having gener-
ated futures rates at each point in time, Heath proposes using a convexity adjustment to
derive forward rates and bond prices. This methodology potentially avoids the non-Markov
property characteristic of many forward-rate models. We also use futures LIBOR and in
particular we use the property that the futures LIBOR is the expectation of the future spot
rate under the risk-neutral measure. This enables us to calibrate our spot-rate model easily
to the current term structure of futures prices.

A number of authors, including Hull and White (1994), Jegedeesh and Penachi, Balduzzi,
Das and Foresi (1998) and Stapleton and Subrahmanyam (2001), have developed two-factor
term-structure models where the second factor is a shock to the conditional mean of the
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spot rate.’ Hull and White propose a general class of two-factor models where the short rate
mean reverts to a deterministic mean, although they only implement certain special cases of
the class, where the term structure of volatility is restricted. Our incremental contribution
is to implement a multi-factor model of the Hull-White type, but with a general volatility
stucture, in a lognormal setting.

One recent paper that deals with the pricing of American-style and Bermudan-style swap-
tions is by Longstaff, Santa-Clara and Schwartz (2001). Their paper emphasizes the impor-
tance of including multiple factors in a pricing model for these claims. Our results support
their conclusion. While our implementation only allows for two or three factors, we are
able to price the contingent claims in a much faster, more efficient way, without resort-
ing to the use of Monte-Carlo simulation.® The current state-of-the-art on the pricing of
American-style and Bermudan-style swaptions in the LIBOR market model is summarised
in Andersen (2000). Various approximations have been proposed to circumvent the non-
Markov nature of the short-rate process. Andersen compares a number of methods and
suggests the computation of a lower bound for the price of a Bermudan-style swaption
based on a restricted factor model assumption, used for the purpose of taking the early
exercise decision. Andersen and Andreasen (2001) test whether the number of factors has a
significant impact on Bermudan-style swaption prices when the model is calibrated to the
price of European-style swaptions. They find very small effects, both in the case of the Hull
and White (1994) Gaussian model and in the case of the LIBOR market model.

Our paper is also related to two recent contributions of Rebonato (1999) and Sidenius
(2000). These papers discuss methods of calibrating multi-factor LIBOR market models to
both the cap implied volatilities and the prices of European-style swaptions. Our approach
provides an alternative calibration methodology. The difference in the case of spot rate
models, is that the correlation of the forward rates in the term structure is determined
endogenously in these models. In the forward rate models, the calibration is to the pricing
of interest rate options and an exogenously given correlation matrix.

°In a recent paper, Dai and Singleton (2000) explore the properties of affine term structure models,
within which broad category they consider a class of models with a ’stochastic central tendency’ such as
that of Balduzzi, Das and Foresi (1998). The models proposed by Hull and White (1994) and Stapleton and
Subrahmanyam (2001) are similar.

5Monte-Carlo simulation is an alternative approach to the problem of valuing options in multi-factor
models. Both methods (recombining trees and Monte-carlo simulation) create their own inaccuracies due to
their different ways of approximating the true distribution.
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3 The Multi-Factor Model

In this section, we describe our multi-factor model and investigate the implications of the
no-arbitrage conditions for the model. We first discuss briefly the general approach in the
lemmas and propositions that follow. Since our approach involves the calibration of the
model using observable futures rates, we first establish the linkage between the spot and
futures rates. The key to developing such a link is the observation that in an arbitrage-
free economy, futures prices are the expectation, under the risk-neutral measure, of the
future spot prices. The other relationship we use is the expression for the mean of the spot
interest rate process, based on the assumption of lognormality of the spot interest rate.
These restrictions allow us to re-formulate the spot rate process in terms of futures rates.
Having specified the spot-rate process, we then derive the process for the one-period and
two-period ahead futures rates, using similar methods.

The logic of the argument is as follows. First, we show, in Lemma 1, that the futures rate
is the expectation, under the risk-neutral measure, of the future spot interest rate. Since
the spot rate is lognormally distributed, the futures rate can be related to the mean and
variance of the (log) spot interest rate. Second, in Lemma 2, the spot interest rate process is
expressed in terms of observable parameters by taking the expectation and substituting for
the futures rate expressed as the mean of the spot interest rate. Third, in Lemma, 3, a cross-
sectional relation is derived between futures and spot rates. These results are combined in
Proposition 1 with the requirement that forward bond prices are the expectation, under the
risk-neutral measure of the future bond prices. Proposition 1 summarises the no-arbitrage
requirements of the model.

3.1 No-arbitrage properties of the model

As several authors have noted, one way of introducing a second factor into a spot-rate model
of the term structure is to assume that the conditional mean of the spot short-term interest
rate is stochastic. Further factors may be added by then assuming that the conditional
mean of the second and subsequent factors are also modelled with stochastic conditional
means.” In this paper, we take a similar approach. We assume that the logarithm of
the short-term interest rate follows a discrete process with a stochastic conditional mean.
In order to avoid complexity of notation, we present the model with three factors. We
also consider a restricted two-factor version of the model which is more practical from an

"See, for example, Hull and White (1994), Balduzzi, Das and Foresi (1998), and Jegadeesh and Pennacchi
(1996), as well as the synthesis by Dai and Singleton (2000).
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implementation viewpoint and which will be used extensively in the section on calibration
of the model.

We define the short-term, m-year interest rate, on a LIBOR basis as r; = [(1/ By t4m)—1]/m,
where m is a fixed maturity of the short rate and By, is the price of a m-year, zero-
coupon bond at time ¢. We then assume that, under the (daily) risk-neutral measure, this
rate follows the process:®

In(ry) —In(ry 1) =6, —bIn(ry 1) + In(m 1) + &4, (1)

where
In(my) — In(mp—1) = O, — cIn(m—1) + In(zy) + 14,

and
In(z;) — In(z4—1) = 0, — d In(z¢—1) + nt,

and e, 14, and 7y are possibly correlated, normal, random variables. 7 is a shock to the
conditional mean of the short-rate process, z; is a further shock to the mean of the m; process,
0yr,, O, and 0, are time-dependent constants. b, c and d are the mean reversion coefficients
of r and 7 and z respectively. The mean and the unconditional standard deviation of the
logarithm of the factors, r;, m; and z; are u,,, oy, tir,, Ox,, and pu,,, o, respectively. We
assume that the trading interval is one day, and that the LIBOR follows the process in (1)
under the daily (rather than the continuous) risk-neutral measure. From here on, we refer
to this “daily” risk-neutral measure as simply the risk-neutral measure. We also assume,
without loss of generality, that F(m;) = 1 and E(z;) = 1, where the expectation is again
taken under the risk-neutral measure.”

8The multi-factor version of the model, with slightly changed notation to accommodate n + 1 factors, is
as follows:

ln(rt) — ln(rt_l) = 6., —bo ln(rt_l) + ln(yl,t_l) + €o,t,
In(yi,e) —In(yr1e—1) = Oyy, — b1 In(yr,e—1) +1n(y2,e) +e1,e,
In(yn,t) =In(ynt-1) = Oy, —bn In(yn,e—1) +ent—1

The conditional mean of each factor is stochastic, and is driven by the subsequent factor in an embedded
fashion.
9Note that the assumed process in equation (1) is the discrete form of the process

dln(r) = [0y, — bln(r) + In(m)]dt + o (t)dz1 (2)
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The model in equation (1) is attractive because the second and third factors m and z are
closely related to the futures rate, which is observable. In fact, as we shall show in Appendix
A, the futures LIBOR is the expectation of r; under the risk-neutral measure. Hence, the
model lends itself to calibration given market inputs. To see this, we first derive some of
the implications of the process assumed in equation (1), in a no-arbitrage economy.

We now state and prove a result that is central to the paper. The result is not new, since a
similar result is derived by Sundaresan (1991), and used by MSS (1997) and BGM (1997).
However, since it is crucial to the model developed in this paper, we include the proof in
Appendix A. The lemma states that, given the definition of the LIBOR futures contract,
the futures LIBOR is the expected value of the spot rate, under the risk-neutral measure.

Lemma 1 (Futures LIBOR) In a no-arbitrage economy, the time-t futures LIBOR, for
delivery at T, is the expected value, under the risk-neutral measure, of the time-T spot
LIBOR, i.e.

fi,r = E(rr)

Also, if rp is lognormally distributed under the risk-neutral measure, then:

var[In(rg)]

In(fyr) = Ei[In(rr)] + > ;

where the operator “var” refers to the variance under the risk-neutral measure.

Proof
See Appendix A.

Lemma 1 allows us to substitute the futures rate directly for the expected value of the
LIBOR in the process assumed for the spot rate. In particular, the futures rate has a zero

where
dIn(r) = [0, — cIn(xw)]dt + o (t)dz2

and
dn(z) = [0., —d In(2)]dt + 0. (t)dzs

In the above equations, d In(r) is the change in the logarithm of the short rate, and o, (t) is the instan-
taneous volatility of the short rate. The second and third factors, = and z, themselves follow a diffusion
process with means 6., . mean reversions ¢ and d and instantaneous volatilities o (t), o.(t), and dz1, dz»
and dz3 are standard Brownian motions. If the short rate follows the process in equation (2), it is lognormal
over any discrete time period. The model above, restricted to two factors, is one of the cases considered by
Hull and White (1994). Note that the continuous-time process is defined under the continuous risk-neutral
measure which is slightly different from the “daily” measure used in this paper.



The Valuation of Caps, Floors and Swaptions 9

drift, under the risk-neutral measure. We now use this result to solve for the constant
parameters in our interest rate process in (1), i.e., to determine the constants 6,,, 6,,, and
... We have:

Lemma 2 (Spot-LIBOR Process) Suppose that the short-term interest rate follows the
process in equation (1), under the risk-neutral measure, in a no-arbitrage economy. Then,
since for = Eo(re), Vt, the short rate process can be specified as

In(ry) — In(for) = ar, + [In(ri—1) — In(fo—1)](1 — b) + In(m—1) + & (3)
where
In(my) = ar, + In(m1)(1 — ¢) + In(zp1) + v,
and
In(2t) = az, +In(z-1)(1 = d) +m,
with ) ) )
o —0p, . re—1 Oy
a, = — +(1 b)—2 + —5
and ) ) )
— O O-ﬂ't—l O-Zt—l
=Tt (] —
a'n—t 2 + ( c) 2 + 2 9
g 2
— Zt 1 _ t—1
(67 9 + ( d) 9
Proof

See Appendix B.

The result in Lemma 2 is important for the implementation of the model developed in this
paper, since it defines the parameters of the three-factor interest rate process in terms of
potentially observable quantities. The process for the LIBOR depends upon the current
futures rates and the volatilities of the LIBOR and of the premium factors. Lemma 2
implies that if the no-arbitrage condition is to be satisfied, the drift of the spot rate process
has to reflect the futures LIBOR at time 0 and the volatilities. This is analogous to the
no-arbitrage requirement in the HJM model, where the absence of arbitrage implies that
the drift of the forward rate depends on the volatility of the forward rates. In our spot rate
lognormal model, the volatilities of the spot rate and of the premium factor play a similar
role.
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However, the condition used in Lemma 2, that Ey(r;) = fos, is necessary, but not suffi-
cient, for “no-arbitrage” in our spot-futures model. The no-arbitrage requirement is much
stronger. From Lemma, 1, no-arbitrage requires that the futures LIBOR equals the expected
spot rate at each date and in each state. We then have the following:

Lemma 3 (Futures-LIBOR Process) Given that the conditions of Lemma 2 are satis-
fied, the no-arbitrage condition implies

In(fre+1) — In(foer1) = gy, + [In(re) —In(fo,)](1 — b) + In(m) (4)
where
Qf,, ., = Oy +varg(ln(rygq)]/2.
and
In(frir2) —In(forr2) = ajg, + Mn(re) — In(fo,s)](1 - b)? (5)
+ In(m)[(1 —0) 4+ (1 — ¢)] + In(z)
where
Cfpyn = Oryyy + (1 - b)aTtH + apy, + Va’rt[ln(rtﬁ-?)]/z
Proof

See Appendix C.

Lemma 3 shows that, in a no-arbitrage economy where the spot rate follows (3), the first
futures contract has a rate that follows a two-factor process. The futures rate moves with
changes in the spot rate, and in response to the premium factor, 7. The futures rate is also
affected by the degree of mean reversion in the short rate process. We can interpret the
volatility of the premium factor as the part of the volatility of the first futures rate that is
not explained by the spot rate.”

107t is natural to concentrate on the first futures rate, i.e., the futures for delivery at time ¢ + 1, since in
our spot-rate model, the first futures rate is the expected value of the subsequent spot rate, r;+1. However,
it is possible to solve the time-series model for the kth futures rate, to obtain:

In(fi k) — In(foesr) = gy, + [I(re) = In(fo,)](1 — b)* + ViAss

where V; is a weighted sum of the innovations in the premium factor, and A, is a constant. Hence the kth
futures LIBOR also follows a two-factor process similar to that followed by the first futures LIBOR.
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So far, we have concentrated on the implications of the no-arbitrage condition for the spot-
rate process and for futures rates. However, any term-structure model must also satisfy
the condition that, under the risk-neutral measure, forward bond prices must equal the
expected values of the subsequent period’s bond price. This condition is therefore included
in the following proposition that summarises the no-arbitrage conditions of our model.

Proposition 1 (No-Arbitrage Properties of the Model) Suppose that the LIBOR rate,
r¢ follows the process:

In(ry) —In(ry 1) =6, —bIn(ry 1) + In(m 1) + &4,

where
In(7¢) — In(m—1) = O, — cIn(m—1) + 14,

and
In(z;) — In(z4—1) = 0, — d In(z¢—1) + mt,

under the risk-neutral measure, with F(m) = 1 and E(z)=1, Vt, and e, vy, and 0 are
independently distributed, normal variables. Then, if the model is arbitrage free:

1. the spot-LIBOR process can be written as:
In(ry) — In(for) = o, + [In(ri—1) — In(fo—1)](1 — b) + In(m—1) + &,
2. the process for the 1-period futures-LIBOR can be written as:
In(fii+1) — In(fout1) = apyy + [In(ry) —In(foe)](1 — b) + In(my),
3. the process for the 2-period futures-LIBOR can be written as:

In(feer2) — In(forre) = ayf, + [In(re) — In(fo)](1 — b)?
+ ln(7rt)[(1 — b) + (1 — C)] + ln(zt)

4. zero-coupon bond prices are given by the relation:

Bs,t = Bs,s—l—lEs(Bs—l—l,t)a 0<s<t<T.
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Proof

Parts 1, 2 and 3 of the proposition follow from Lemmas 2, 3. As shown by Pliska (1997),
Part 4 is a requirement of any no-arbitrage model. O

Proposition 1 summarises the conditions that have to be met for the spot-futures model to
be arbitrage-free. Also, as noted above, the further implication of Lemma 1, is that the
futures rate is a martingale, under the risk-neutral measure. Hence, we can easily calibrate
the model to the given term structure of futures rates, and thereby guarantee that the
no-arbitrage property holds.

Finally, for completeness, we should note that the process followed by the spot and futures
rates in this model can be written in difference form:-

Corollary 1 (The Multi-Variate Spot-Futures Process) The multi-variate process for
the spot-LIBOR and the one-period and two-period ahead futures-LIBOR can be written as:

Aln(ry) = oy, —bn(r—y) +In(m—y) + &
Aln(fr41) = a'ft,l + [In(ry) — In(ry—1)](1 — b) + In(m) — In(m—1),
Aln(fri42) = o/fm + [In(ry) — In(re—1)](1 — b)2
+ [n(m) — In(m)][(1 = b) + (1 = )] + 2141 — 2,

for some constants ., o/, and o/, .
T T fia fe,2

Proof

Write equation (3) for 7,41 and for r; and subtract the second equation from the first. Then
the first part of the corollary follows with

;"t = Qpyyy — Oy — (1 - b) ln(fO,t) + (1 - b) ln(fO,tfl)'

Similarly, write equation (4) for f;y142 and for f;;;; and subtract the second equation
from the first. Similarly, taking the first differnce of the equation for the two-period ahead,
the corollary follows. a

(%

The first part of the corollary shows that the spot rate follows a one dimensional mean-
reverting process. The second part shows that the 1-period futures rate follows a two-
dimensional process, depending partly on the change in the spot rate and partly on the
change in the premium factor. The third part shows that the 2-period futures rate follows
a three-dimensional process, depending partly on the change in the spot rate and partly on
the change in the first and second premium factors.
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3.2 Regression Properties of the Model

The two-factor model of the term structure described above has the characteristic that
the conditional mean of the short rate is stochastic, as does the Hull and White (1994)
model. Since the futures rate directly depends on the conditional mean, there is an imper-
fect correlation between the short rate and the futures rate. In this section, we establish
the regression properties of the model, using the covariances of the short rate and premium
process. These properties are required as inputs for the construction of a binomial approxi-
mation model of the term structure. In the following proposition, we denote the covariance
of the logarithm of the short rate and the premium factor as oy, r,. The process assumed
in Lemma 2 has the following properties:

Proposition 2 (Multiple Regression Properties) Assume that

In(ry) — In(fos) = @, + [In(re—1) — In(fo—1)](1 — b) +In(m—1) + &

where
In(my) = ar, + In(m—1)(1 — ¢) + In(z—1) + v,

and
In(m;) = az, + In(z—1)(1 — d) + 1y,

with Eo(m¢) =1 and Eo(2r,, Vi.

Then,

1. the multiple regression

+ v, In(m 1) + & (6)

Tt Te—1
In|{—| =a,, +6-1n
lfo,t] e lfo,tl

has coefficients
2 2 2
art = (_Urt + IBTtO—T‘tfl + ’yrto—ﬂ'tfl)/Q

57% = (1 - b)a
Yre = L,

2. the multiple regression

In(m) = ar, + Br,In(mi—1) + Yr,In(2e-1) + 11 (7)
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has coefficients

2 2 2
aﬂ't = [_O—ﬂ't + IBWto—Trt,1 + fyﬂ'to—ztfl]/Q
/Bwt = (1 - C)a
Yoo = 1,
3. the regression
ln(Zt) = Oy + /thln(zt—l) + Nt (8)
has coefficients
azt = [_Uzt + IBZtO—zt_l]/2’
Bz = (1 - d)v
4. the conditional variances of In(ry) and In(m;) are given by
Va'rt—l(gt) = O—Zt - (1 - b)203t71 - 0—721171 - 2(1 - b)o—rtfl,ﬂ'tfl’
Va’rt—l(yt) = 0—72'(',5 - (1 - 0)20—72”—1 - O—zt_l - 2(1 - C)O—thlﬂrtfl’

Va"rtfl('r’t) = O-gt - (]‘ - d)20-2t717
where o denotes the annualized covariance of the logarithms of the short rate and
the premium factor.

Proof
See Appendix D.

Note that we require the multiple regression coefficients in order to build the binomial
approximation of the multi-variate process, using our modification of the method of Ho,
Stapleton and Subrahmanyam (1995). From the proposition, the  coefficients simply
reflect the mean-reversion of the short rate, and the premium factors. The 7 coefficients
are all unity, reflecting the one-to-one relationship between m, the futures premium factor
and the expected spot rate and the relationship between z; and the expected value of the
premium factor. The « coefficients reflect the drift of the lognormal distribution, which
depends on the variances of the variables. Part 4 of the Proposition gives an expression for
the conditional variance of the logarithm of the short rate, the first premium factor and the
second premium factor.
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3.3 An Economic Interpretation of the Factors

In order to build the two-factor version of the model outlined above, we need the parameters
of the premium process, as well as those for the short rate process itself. The result in
Proposition 2, part 4 gives the relationship of the conditional volatility of the short rate
to the unconditional volatilities of the short rate, the volatility of the first premium factor,
and the mean reversion of the short rate. We assume that the unconditional volatilities of
the short rate are given, for example, observable from caplet/floorlet volatilities, and that
the mean reversion is also given. The premium process, 7, on the other hand, determines
the extent to which the first futures rate differs from the spot rate in the model. Note that
it is the first futures rate that is relevant, since it is this futures rate that determines the
expectation of the subsequent spot rate, in the model. Since the first premium factor is not
directly observable, we need to be able to estimate the mean and volatility of the premium
factor from the behavior of futures rates. In order to discuss this, we first establish the
following general result:

Lemma 4 Assume that

In(r¢) —In(fot) = ar, + [In(re—1) — In(fo,—1)](1 = b) + In(m—1) + &

where
In(m) = pi, = In(mp—1 — por, ) (1 =€) + In(z—1) + 14,
with Ey(my) = 1, Vt, then the conditional volatility of m; is given by

or(t) = [02(t) — (1 - b)20?(1)]?

T

where © = Ey(ry1) and varg_q[In(z;)] = o2 (t).

Proof
See Appendix E.

Lemma 4 relates the volatility of the premium factor to the volatility of the conditional
expectation of the short rate. To apply this in the current context, we first assume that
the short rate follows the process assumed in the lemma under the risk-neutral process. We
then use the fact that the unconditional expectation of the ¢t 4+ 1 th rate is f;1 = E¢(riy1),
i.e., the first futures (or forward) rate is the expected value of the next period spot rate.
This implication of no-arbitrage leads to
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Infen = pireyy + [Inre =, ](1 = 0) +Inmo1 (1 =€) + w4 + 07 (8) /2. (9)

It follows that the conditional logarithmic variance of the first futures rate is given by the
relationship

o3(t) = (1 )2(t) + o2(1). (10)

Hence, the volatility of the premium factor is potentially observable from the volatility of
the first futures rate. This, in turn, could be estimated empirically or implied from the
prices of options on the LIBOR futures rate. A similar argument can be used to derive the
volatility of the second premium factor from the second futures rate.

4 The Multivariate-Binomial Approximation of the Process

In order to implement the model with a binomial approximation, we need to construct a
recombining lattice for the spot rate, r;, and the futures rate, f;;11. A number of methods
have been suggested in the literature. For example, Hull and White (1994) use a trinomial
tree, but they assume a special case of non-time-dependent volatility, which is not realistic,
in general. Amin (1991) and Black and Karasinski (1991) redefine the time interval between
points on the grid to cope with changing local volatility. However, as noted by Amin (1991),
this technique only works in the univariate case, or when the volatility functions and mean
reversions are the same for each variable. In his multivariate implementation, Amin (1991)
assumes time-independent volatilities. Nelson and Ramaswamy (1990) use a transformation
of the process and state-dependent probabilities, to approximate a univariate diffusion. In
an extension to multivariate diffusions, and in the special case, relevant here, of lognormal
diffusions, Ho, Stapleton and Subrahmanyam (1995) use the regression properties of the
multivariate diffusion to compute the appropriate probabilities of up-moves on the multi-
variate binomial tree. This allows them to capture both the time series and cross-sectional
properties of the process. In this section we use a modification of their methodology.

4.1 The HSS approximation

Here we describe our approach for the case of the two-factor implementation of the model.
The method we use for building a bivariate-binomial lattice, representing a discrete approx-
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imation of the process in equation (2), is to construct two separate recombining binomial
trees for the short-term interest rate and the futures-premium factors. The no-arbitrage
property and the covariance characteristics of the model are then captured by choosing the
conditional probabilities at each node of the tree. The recombining nature of the bivariate
tree is illustrated in Figure 1 for a two-period example and in Figure 2 for a three-period
example. As shown in the figures, there are two possible outcomes emanating from each
node. However, since the tree is required to recombine, it does not result in an explosive
state space.

We now outline our method for approximating the two-factor process interest rate process,
described above. We use three types of inputs: first, the unconditional means of the short-
term rate, Ey(ry), t =1,...,T, second, the volatilities of €, i.e., the conditional volatility of
the short rate, given the previous short rate and the previous futures rate, denoted by o, (t),
and the conditional volatilities of the premium, denoted by o(t), and third, estimates of the
mean reversion of the short rate, b, and the mean reversion, of the premium factor, c. The
process in (3) is then approximated using an adaptation of the methodology described in
Ho, Stapleton and Subrahmanyam (1995) (HSS). HSS show how to construct a multiperiod
multivariate-binomial approximation to a joint-lognormal distribution of M variables with
a recombining binomial lattice. However, in the present case, we need to modify the proce-
dure, allowing the expected value of the interest rate variable to depend upon the premium
factor. That is, we need to model the two variables r; and 7y, where r; depends upon ;1.
Furthermore, in the present context, we need to implement a multiperiod process for the
evolution of the interest rate, whereas HSS only implement a two-period example of their
method. In this section, these modifications and the resulting multiperiod algorithm are
presented in detail.

We divide the total time period into 7" periods of equal length of m years, where m is the
maturity period, in years, of the short-term interest rate. Over each of the periods from ¢
to t 4+ 1, we denote the number of binomial time steps, termed the binomial density, by n; .
Note that, in the HSS method, n; can vary with ¢ allowing the binomial tree to have a finer
density, if required for accurate pricing, over a specified period. This might be required, for
example, if the option exercise price changes between two dates, increasing the likelihood
of the option being exercised, or for pricing barrier options.

We use the following result, adapted from HSS:
Proposition 3 (Approximation of a Two-factor Lagged Diffusion Process) Suppose
that X3,Y; follows a joint lognormal process, where Ey(X;) = 1, Ey(Y;) = 1 Vt, and where

Ei 1(xy) =ap +bri1 +yr1
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Ey 1 (yt) = ay +cy; 1.

Let the conditional logarithmic standard deviation of Z; be o,(t) for Z = (X,Y). If Z; is
approzimated by a log-binomial distribution with binomial density Ny = Ny_1 +mny and if the
proportionate up and down movements, u,, and d,, are given by

2
1+ exp(20.(t)/1/m)

Uy, = 2—dy

d,, =

and the conditional probability of an up-move at node r of the lattice is given by

0 = Ei_1(z) + (Ni—1 — r)In(uy,) — (ny + ) In(dy,)
* ni[n(uz,) —In(dz,)]

then the unconditional mean and conditional volatility of the approxzimated process approach
their true values, i.e., Fo(Z;) — 1 and 6,, — 0,, as n — 0.

Proof

If Eo(Z;) =1, Vt, then we obtain the result as a special case of HSS(1995), Theorem 1.0

4.2 Computing the nodal values

In this section, we first describe how the vectors of the short-term rates and the premium
factor are computed. We approximate the process for the short-term interest rate, ry, with
a binomial process, i.e., moves up or down from its expected value, by the multiplicative
factors d,, and u,,. Following HSS, equation (7), these are given by

2
1+ exp(20, () /1/14)

Up, = 2—d,.

d,, =

We then build a separate tree of the futures premium factor 7. The up-factors and down-
factors in this case are given by
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2
1+ exp(20.(t)\/1/n4)

Up, = 2—dg,.

de, =

At node j at time ¢, the interest rates r; and premium factors m; are calculated from the
equations

riy = ubM Il By(ry), (11)
ﬂ—t,j = U’7(T]tVt - ) dgrt ?
j = 0717"'7Nt7

where Ny = 3, n;. In general, there are N; + 1 nodes, i.e., states of r, and m, since both
binomial trees are recombining. Hence, there are (N; + 1)? states after ¢ time steps.

4.3 Computing the conditional probabilities

In general, as in Hull and White (1994), the covariance of the two approximated diffusions
may be captured by varying the conditional probabilities in the binomial process. Since the
trees of the rates and the futures premium are both recombining, the time-series properties
of each variable must also be captured by adjusting the conditional probabilities of moving
up or down the tree, as in HSS and in Nelson and Ramaswamy (1990). Since, increments in
the premium variable are independent of r;, this is the simplest variable to deal with. Using
the results of Proposition 2, we compute the conditional probability using HSS, equation
(10). In this case the probability of a up-move, given that m,_; is at node j, is

~ap + BryInmyj — (Neo1 — j)Inug, — (5 + ne)lndy,

An, =

(12)

n¢ (Inug, — Indy,)
where

Bﬂ't = (1 - C)
a7rt = (_0-72& + Bﬂto-?'rtfl)/Q
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and where b is the coefficient of mean reversion of 7, and 0'72rt is the unconditional logarithmic
variance of 7 over the period (0 — ¢t).

The key step in the computation is to fix the conditional probability of an up-movement in
the rate r;, given the outcome of r,_1, the mean reversion of r, and the value of the premium
factor m;_1. In discussing the multiperiod, multi-factor case, HSS present the formula for
the conditional probability when a variable z2 depends upon z; and a contemporaneous
variable, y2. Again using the regression properties derived in Proposition 2, and adjusting
HSS, equation (13) to the present case, we compute the probability

o+ By In(ry_1j/E(ri—1)) + vr Inm_1j — (Ny—1 — j)Inug, — (5 + ny)Ind,,

= 13
e ny(Inuy, — Ind,,) (13)
where
IBT't = (1 - b)
Yre = 1
aT‘t = [_Uzt + Brto-zt_l + 71"150-72(,5]/2'

Then, by Proposition 3, the process converges to a process with the given mean and variance
inputs.

4.4 The multiperiod algorithm

HSS(1995) provide the equations for the computation of the nodal values of the variables,
and the associated conditional probabilities, in the case of two periods ¢t and ¢+ 1. Efficient
implementation requires the following procedure for the building of the T" period tree. The
method is based on forward induction. First, compute the tree for the case where t=1.
This gives the nodal values of the variables and the conditional probabilities, for the first
two periods. Then, treat the first two periods as one new period, but with a binomial
density equal to the sum of the first two binomial densities. The computations are carried
out for period three nodal values and conditional probabilities. Note that the equations
for the up-movements and down-movements of the variables always require the conditional
volatilities of the variables in order to compute the vectors of nodal values. The following
steps are implemented:

1. Using equation (11), compute the [n; x 1] dimensional vectors of the nodal outcomes
of r1, m with inputs o,(1), E(r1), or(1), E(m1) and binomial density ni. Also, compute



The Valuation of Caps, Floors and Swaptions 21

the [(n1 + n2) x 1] dimensional vectors 7o, 7y using inputs 0,(2), E(r2), 0(2), E(m2) and
binomial density no. Assume the probability of an up-move in ry is 0.5 and then compute the
conditional probabilities ¢, using equation (12 ) with t=1. Then, compute the conditional
probabilities g,, ¢r,, using equations (12) and (13), with ¢t=2.

2. Using equation (11), compute the [(N2 + m3) x 1] dimensional vectors rz, w3 using
inputs o,(3), E(r3), 0-(3), E(r3) and binomial density, n3. Then, compute the conditional
probabilities ¢4, ¢r, using equations (12) and (13) with ¢=3.

3. Continue the procedure until the final period T

In implementing the above procedure, we first complete step 1, using t =1 and ¢t = 2, and
with the given binomial densities ny and ns. To effect step 2, we then redefine the period
from ¢ = 0 to £ = 2 as period 1 and the period 3 as period 2 and re-run the procedure
with a binomial densities n] = n1 + ny and nj = n3. This algorithm allows the multiperiod
lattice to be built by repeated application of equations (11), (12) and (13).

4.5 A summary of the approximation method

We will summarize the methodology by using a two-period and a three-period example.
Figure 1 shows the recombining nodes for the two-factor process in the two-period case.
The interest rate goes up to r1 9 or down to ry; at ¢ = 1. The futures premium factor goes
up to m o or down to 71 at ¢ = 1, with probability ¢.,. In the second period, there are just
three nodes of the interest rate tree, together with three possible premium factor values.
There are nine possible states, and the probability of an o value materialising is g,,. Note
that this probability depends on the level of the premium factor and of the interest rate at
time ¢ = 1. The recombining property of the lattice, which is crucial for its computability,
is emphasised in Figure 2, where we show the process for the interest rate over periods ¢t = 2
and t = 3. After two periods, there are three interest rate states and nine states representing
all the possible combinations of the interest rate and premium factor. The interest rate then
goes to four possible states at time ¢ = 3 and there are sixteen states representing all the
possible combinations of rates and premium factor. Note that the probability of reaching
an interest rate at £ = 3 depends on both the interest rate and the premium factor at ¢ = 2.
These are the probabilities that allow the no-arbitrage property of the model to be fulfilled.
In the model, the term structure at time ¢ is determined by the two factors, one representing
the short rate and the premium factor. Thus, with a binomial density of n = 1, there are
(t + 1)? term structures generated by the binomial approximation, at time ¢.
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5 The Two-Factor Model: Examples of Inputs and Outputs

This section documents the results from several numerical examples based on the two-factor
term structure model described in previous sections. First, we show that a two-factor term
structure model can be implemented in a speedy and efficient manner. then we present the
output from running a forty-eight quarter model, including the pricing of European-style,
Bermudan-style and American-style swaptions.

In the numerical examples that follow, we choose a period length of three months. This is
convenient for two reasons. First, we can model three-month LIBOR and then compute the
corresponding maturity bond prices up to a given horizon without the added complexity
of overlapping periods. Also, it enables the computational time to be reduced compared
to a daily time interval model. However, changing the time interval does introduce one
approximation. Theoretically, we need to use futures prices from contracts that are marked-
to-market at the same periodicity as the time interval in the model; otherwise, lemma 1
does not strictly apply. However, only daily marked-to-market prices are widely available.
In calibrating the three-month period model to market data, a convexity adjustment may
be required to adjust futures prices from a daily to a quarterly marked-to-market basis. In
practice, this adjustment is likely to be very small, especially compared with the problems
of obtaining long-maturity futures prices.!'!

5.1 Computing Time

Apart from the accuracy of the model, the most important feature of the methodology for
implementing a two-factor model proposed in this paper is the computation time. It goes
without saying that with two stochastic factors rather than one, the computation time can
easily increase dramatically. In Table 1, we illustrate the efficiency of our model by showing
the time taken to compute the zero-coupon bond prices and option prices. With a binomial
density of one, the 48-period model takes 4.8 seconds and the 72-period model takes 17.2
seconds. Doubling the number of periods increases the computer time by a factor of six.
There is clearly a trade-off between the number of periods, the binomial density of each
period, and the computation time for the model. This is illustrated by the second line in
the table, showing the effect of using a binomial density of two. Again the computation
time increases more than proportionately as the density increases. The time taken for the

"The difference between daily and three-monthly marked-to-market futures LIBOR is probably less than
one basis point. For long maturities, lack of liquid futures contracts means that we have to estimate forward
rates and apply a convexity adjustment. In this case the convexity adjustment is far more significant. See
Gupta and Subrahmanyam (2000), for empirical estimates.
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24-period model, when the binomial density is two, is roughly the same as that for the
48-period model with a density of one.

6 Calibration of the Model to Cap and Swaption Volatilities

There are several different ways in which the two-factor version of the model can be cali-
brated to market prices of interest-rate caplets and or swaptions. In this section we illustrate
two alternative calibration methods, using actual market data from one particular day. In
both methods, we assume that the model parameters are stable through time and that the
local volatilities are constant. The two methods of calibration proceed by solving for the
model parameters that best fit the observed data. They are:

1. A calibration of the two-factor version of the model, using only the observed caplet
volatilities .

2. A calibration of the two-factor model using both the observed caplet volatilities and
the European-style swaption volatilities quoted on the same day.

6.1 Market Data Used in the Calibration Exercise

The data on the prices of US$ caplets were collected for the calender years 1999 and 2000.
On almost all days, the data reveal a term-structure of volatility for at-the-money caplets
that is hump-shaped. The alternative methods of calibration are illustrated using data from
a particular day, July 18, 2000. For example, for the date chosen for the calibration, the
caplet quotes, in terms of Black volatilities, were as shown in Table 2. The futures LIBOR
rates on the same day are shown in Table 3. The futures rates are derived by interpolation
from LIBOR prices on the same day. On that day, the futures curve was rising quite steeply,
from around 7% to nearly 8%. Using this information, we estimated the at-the-money caplet
quotes, from 12-months to 84-months maturity. These are shown in the second column of
Table 4 and reveal an inverted U-shaped curve.'?

Swaptions (European-style options to enter swaps) are quoted for at-the-money contracts
for various maturities and for annual underlying swap tenors. As an example, the swaption

12This is typical of the data. We repeated the exercise for a previous date: 24, November, 1999. The only
difference on that date was that the volatility curve had a slightly higher peak, the curve rising from 13.1%
to a peak of 18.6% before falling to 16.0%
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price quote matrix for July 18, 2000 is reproduced as Table 5, for swap maturities of 1-
year up to 5-years. Note that the swaption volatilities show a hump-shape similar to the
caplets, but the hump is somewhat less pronounced. Also, the swaption volatilities are
generally lower than the corresponding caplet volatilities, perhaps due to the lack of perfect
correlation between forward rates.

6.2 Method 1: Calibration of the Two-Factor Model to Caplet Volatilities

In the first method, we calibrate the model to the caplet volatilities by running the model
with the given values of the four parameters; o,, b, o, and c¢. These are the (constant)
local volatility of the LIBOR, the mean reversion of LIBOR, the (constant) local volatility
of the futures premium factor, and the mean reversion of the futures premium factor. We
assume that we require the model to price the caplets accurately, when it is run for a large
value of the binomial density, n. After testing for the convergence of caplet prices, we used
Richardson extrapolation to predict the price of each caplet for n — oo, given the prices
for n = 3 and n = 4.3 The parameters that best fit the caplet prices, quoted as Black
volatilities, in Table 4, are as follows: o, = 0.099, b = 1.7, 0, = 0.025, and ¢ = 0.13. All
parameters are annualized.'* The caplet prices produced by the two-factor model are shown
in the third column of Table 4. The root mean square error (RMSE) from comparing the
model values to market quotes is 0.21%."?

An interesting question to answer is the following. Given the calibration of the two-factor
model to the market caplet prices, how well does the model perform in predicting the market
swaption volatility matrix? In a sense, this is a test (although only carried out with one
day’s data) of the cross-sectional performance of the model. The swaptions with maturities
from one to five years, on swaps with a tenor of one to five years, were priced using the
two-factor model, and then quoted as Black volatilities. The results are shown in Table 6.
The results show clearly that the model, when calibrated to the caplet prices, overprices
the European-style swaptions.'® The RMSE for the swaptions is 1.67%. The overpricing is

13Richardson extrapolation can be used because the caplet prices converge uniformly from below (as shown
by tests using n =1 to n = 8. For a discussion of Richardson approximation, see Schmidt (1968)

'On a quarterly basis therefore the mean reversion of LIBOR is 0.425 and the mean reversion of the
second factor is 0.0325.

'5Tn a recent empirical study of two-factor term-structure models Dai and Singleton (2000) note that
evidence suggests that the short rate mean reverts relatively rapidly to a “stochastic tendency” that itself
mean reverts slowly to a long run value. This is consistent with the results of the calibration reported here.
It can be shown that the model used here is a lognormal version of the “stochastic tendency” class of models.

5This is consistent with the results of Longstaff, Santa-Clara and Schwartz (2000) who find that a “string”
model calibrated to swaption prices underprices interest-rate caps.
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greatest for the short-maturity options and for the options on relatively short-tenor swaps.
The model is relatively accurate when pricing the long-maturity options on long-tenor swaps.
For example, for those swaptions where the sum of the option maturity and tenor exceed
seven years, the average misspricing is 0.44%. The only swaptions that are underpriced by
the two-factor model are the five-year maturity options on the four-year and five-year tenor
swaps.

6.3 The Effect of Adding a Third Factor

We now calibrate the three-factor version of the model, in order to check whether the
mispricing of the swaptions can be reduced by adding a third factor. After a series of
experiments it became apparent that the optimal way to introduce the third factor is to
assume a white noise process for this factor. Hence, we tried various values for the volatility
0, with a mean reversion of 100%. In this extreme case, the caplet volatilities are unaffected
by adding a white noise third factor. Hence, the calibration process is straightforward. The
third factor, in effect, partially ezplains the second factor. We are thus able to vary the
z volatility, to best fit the swaption volatility matrix, while leaving the caplet volatilities
unaffected.

The model parameters which minimise the swaption volatility RMSE, while keeping the
caplet RMSE at its previous minimised value of 0.21%, are o, = 0.099, b = 1.7, o, = 0.092,
c = 0.13, 0, = 0.07, and d = 4. The resulting swaption volatilities are shown in Table
7. Note that the introduction of the third factor reduces all the swaption volatilities.
However, the effect is smaller for the swaptions with longer underlying maturities. The
overall RMSE is reduced to 0.98%. Also, on average the errors are approximately zero.
However some systematic biases remain. In particular, the short maturity (12-month)
swaptions are overpriced and the long maturity (60-month) swaptions are now underpriced
by the model. Also, the increased accuracy for the swaptions comes at the expence of a
considerable increase in computing time.

6.4 The Pricing of Bermudan-Style Swaptions and Yield-Spread Options

We now use the calibrated model to price two contracts: a Bermudan-style swaption and
a Bermudan-style yield-spread option. The results, along with the prices of comparable
European-style options are shown in Tables 8 and 9 respectively. The Bermudan-style
swaption is a payer swaption on a swap with a final maturity of six years, and a strike rate
of 6.5%, 7.0%, or 7.5%. The two-factor model, with a binomial density of n = 2, gives a
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price of 414 basis points for the Bermudan-style swaption, exerciseable annually at 6.5%.
This compares with the price of 365 basis points for the comparable one-year European-style
option on a five-year swap. However, these prices are somewhat understated for the two-
factor model, as shown by the results in the second panel of Table 8, where the model values
are given for n = 3. The Bermudan swaption price of 421 indicates that a more accurate
estimate using Richardson extrapolation is 428 basis points.!” We can now investigate
the effect of adding a third factor in the model. As noted above, the third factor reduces
European-style swaption prices, due to the de-correlation effect on the forward rates. The
Bermudan prices are also lower. Using Richardson extrapolation, the best estimate of the
Bermudan from the three-factor model is 385 basis points, 43 points less than the two-factor
price. The five-year European option is worth 342 basis points, 35 points less than in the
two-factor case.'®

A second application of the model is to price options on the difference between two interest
rates. These options are generally known as yield-spread options. In Table 9, we show the
results of using our model to price options on the spread between the four-year and the
one-year rate. The options are either European-style options with a maturity of five years
or Bermudan-style options, exerciseable annually up to a final maturity of five years. The
options have a strike price of either 0% or 0.5%. The results in Table 9 show that the
valuation is sensitive to both the binomial density (n) and the number of factors. To take
account of the binomial density effect we again use Richardson extrapolation. The two-
factor model then gives a European price of 20.0 basis points and the three-factor model
gives a lower price of 17.6 basis points. Yield spreads are particularly sensitive to the exact
model of the interest rate process, so it is not surprising that prices of options on spreads
are highly sensitive to the number of factors. The Bermudan-style yield-spread options are
somewhat less sensitive to the number of factors in the model. Again, using the Richardson
extrapolation prices, the 0% strike option has a price of 30.8 basis points in the two-factor
model and 30.0 in the three-factor model. As expected, the out of the money (strike rate

1"The Richardson extrapolation estimate is given by

Vin=o0) = V(n=2)+2[V(n=3)—-V(n=2)]
= 421 +2(7)
= 435

!8The Richardson extrapolation estimates are given by

= 389 +2(—2) =385
and = 356+ 2(—7) =342
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of 0.50%) Bermudan is somewhat more sensitive to the number of factors.

6.5 Method 2: Calibration of the Two-Factor Model to Caplet and Swap-
tion Volatilities

The calibration of the two-factor model to caplet volatilities above leads to an overvaluation
of swaptions. In this section we calibrate the model to both caplets and swaption volatilities,
with differing weights placed on the two data sets. In this calibration we use a two-factor
model with a binomial density of n = 2. We price the swaptions, observe the errors
compared to the market swaption quotes, and then change the four parameters of the model
to minimise the RMSE of the swaption and the caplet prices, with a weight of 0.75 was
placed on the caplet RMSE and 0.25 on the swaption RMSE. The result of this procedure
is the choice of o, = 0.098, b = 2.65, o, = 0.1225, and ¢ = 0.087.

The caplet volatilities produced by this parameterisation of the model are shown in column
4 of Table 4. The RMSE for the caplets is 0.87%, compared to 0.21% in the previous
calibration to the caplets alone. The short to medium term maturity caplets are overpriced
by this model. The swaption volatility matrix which this resulted in is shown in Table 10.
The RMSE for the swaption volatilities is 0.65%. The model obviously fits the swaptions
better than in the previous calibration. However, the short-maturity swaptions are still
overpriced by the model. The long-maturity (60 month) swaptions are slightly underpriced
by the model. However, all the swaptions with maturities over 48 months or more are priced
within at most 0.50% of the market volatility.

We now re-price a Bermudan-style swaption on a six-year underlying swap using the two-
factor model calibrated to the Kuropean swaption prices. As before, the Bermudan-style
option has the feature that it is exercisable at the end of each year up to the option maturity
in year five. The European-style swaptions are one-year options on one-year to five-year
swaps. Note that the model uses twenty-four quarterly time periods, to cover the six-year
life of the underlying coupon bond. Table 11 shows the values of European and Bermudan
swaptions at differing depths-in-the-money. Table 11 shows that the Bermudan option is
worth considerably more than the European one-year option on a five-year swap. Comparing
the results in Table 11 with those in the first panel of Table 8 shows that calibration of
the model to the swaptions and the caplets (Table 11) has only a marginal effect on the
Bermudan-style swaption price, in fact only 7 basis points. This suggests that the two-factor
model calibrated to caplets alone does a fairly good job of pricing the Bermudan-style claim.
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7 Conclusions

Spot-rate models of the term structure can be regarded as structural models, while forward
rate models are reduced form models. While forward-rate models of the general HIM type
are useful for the pricing of European-style claims on interest rates, these models encounter
some problems both with the valuation of European-style swaptions, and with the pricing
of Bermudan-style claims. In order to price European-style swaptions, a forward rate model
requires the exogenous specification of the forward rate correlation matrix. In contrast, in
the structural term structure models in the literature, the correlation of forward rates is
implicit in the models themselves. Further, the valuation of Bermudan-style claims within a
forward rate model requires the derivation of a process for the spot rates which is, in general,
non-Markov and complex. While various methods have been suggested to overcome these
problems, it appears that a more natural approach is to directly model the spot rate process.

In this paper we have presented a model of the term structure of interest rates which can be
regarded as a multi-factor extension of the Black-Karasinski lognormal-rate model. As in
that model, we assume that the short-term LIBOR follows a lognormal process. However,
in our model, a second factor determines the stochastic conditional mean of the short rate.
The third and subsequent factors determine the conditional mean of the previous factor in
a nested fashion. This model lends itself to an intuitively appealing interpretation in terms
of futures rates. The first factor is identified with the spot rate, the second factor with the
premium of the first futures rate over the spot, and the third factor with the premium of
the second futures rate over first futures rate. We have shown that, by calibrating to the
current term structure of futures rates, the model can be made arbitrage-free in the sense
of Ho and Lee (1986) and Pliska (1997).

The model has been implemented by using the multivariate-binomial tree approach of Ho,
Stapleton and Subrahmanyam (1995), using a recombining tree, in multiple dimensions,
which has a non-exploding number of nodes. The no-arbitrage property, that the expected
value of the spot rate under the risk-neutral measure is the one-period-ahead futures rate,
is captured by adjusting the conditional probabilities of moving up the tree. Richardson
extrapolation is used to increase the accuracy of the option prices.

In an illustrative example, the two-factor version of the model was calibrated both to caplet
and to a combination of caplet and swaption price data. The model calibrated to caplet
prices, under the assumption of constant local volatilities and mean reversion coefficients,
over-priced the swaptions. This is consistent with previous results reported in Rebonato
and Cooper (1995) and Longstaff, Santa-Clara and Schwartz (2000). Our limited evidence
suggests that a two-factor model with uncorrelated errors, calibrated to caplet prices, cannot
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correctly price European-style swaptions. However, introducing a third, white noise, factor
considerably reduces the pricing errors.

We then applied the two-factor model to the valuation of Bermudan-style payer swaptions.
The model was also applied to the valuation of a variety of exotic options on interest rates,
such as options on yield spreads. The model is particularly well suited to the valuation of
Bermudan-style claims, since it directly models the spot-rate process. This is in contrast
to many forward rate models where the implicit spot-rate process is non-Markov. As a
consequence, the exercise decision is often difficult to capture in those models.

Our finding that the two-factor model, with uncorrelated errors, fails to accurately fit both
the caplet and swaption prices, suggests two possible extensions of our two-factor model.
First, as suggested here, we could add a third factor, which itself explains the stochastic
mean of the second factor. Preliminary results show that the swaption pricing errors can
be considerably reduced in such a model, especially when the mean reversion of the second
factor is low. A further avenue for future research is to explore the effects of correlated
errors. Such a model could help to capture the relatively low correlation of the spot and
forward rates, which could again explain the swaption prices.

A possible further extension of the model would apply to the pricing of credit derivatives
or derivatives on tax-exempt fixed income securities. In the case of credit derivatives, for
instance, the pricing of options on defaultable bonds, for example, would ideally require the
modelling of a two-factor risk-free rate process and a credit spread. Given the efficiency
of the two-factor model presented here, it should be possible to approximate such a three-
factor model, at least for a limited number of time periods. This is a subject for further
research.
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Table 1: Computing Time for Bond and Option Pricing (seconds)

Number of Periods 8 12 24 48 72

Binomial Density 1 0.1 02 09 48 172
Binomial Density 2 0.2 06 5.0 28.0 1029
Binomial Density 3 0.6 1.7 148 87.0 -

The table shows the time taken to compute all the zero-bond prices, swaption prices, given the tree
of rates for different levels of the binomial density, i.e., the number of time steps per period, for
different numbers of periods. The computer speed is 550 MHZ, and the processor is Pentium III.



The Valuation of Caps, Floors and Swaptions

Table 2: Caplet Volatility Matrix on July 18, 2000 (%)

Strike Rate

Maturity 5.0% 5.5% 6.0% 6.5% 7.0% 8.0%
3 15.86 14.86 13.86 11.33 8.80 9.73

12 19.03 16.60 14.86 13.74 12.63 12.73

18 19.60 17.15 15.67 15.15 14.63 14.39

36 18.01 16.50 16.00 16.00 16.00 16.30

60 16.80 15.80 14.80 14.80 14.80 15.00

84 16.10 15.10 14.30 14.30 14.30 14.30
120 15.80 14.90 13.90 13.85 13.80 13.80

34

1. The Table shows the mid-market quotes (Black implied volatilities) for US$ caplets, for dif-
ferent strike rates, quoted on July 18, 2000 in per cent.

2. Source: Sanwa International plc.

Table 3: Interpolated Futures Rates on July 18, 2000 (%)

Maturity Year Jan April July Oct
2000 7.02
2001 698 T7.11 7.14 7.18
2002 716 T7.15 7.16 7.19
2003 718 718 720 7.25
2004 725 726 7.29 7.36
2005 736 737 741 747
2006 748 749 7.52 7.59
2007 760 T7.61 7.64 7.70
2008 TTL T2 7760 7.82
2009 782 T7.83 7.87 793
2010 7.94  7.95

1. The futures rates are derived by interpolation between adjacent contracts from Eurodollar

futures prices. Futures rates are defined as 100-futures price in per cent.

2. Source: Bloomberg.
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Table 4 : At-the-money Caplet Black Volatilities on July 18, 2000 (%)

Maturity Market Vols Model 1 Vols Model 2 Vols

3 8.80 9.3 9.8
12 12.63 12.7 14.3
18 14.63 14.6 15.4
36 16.00 15.9 15.7
60 14.80 15.1 15.0
84 14.30 13.9 14.1
RMSE(%) 0.21 0.87

1. Column 2 shows the prices of European-style caplets, quoted as Black implied volatilities.

2. Column 3 shows the corresponding prices produced by the two-factor model with parameter
values o, = 0.099, b = 1.7, 0, = 0.092, and ¢ = 0.13. The model prices are estimated by
Richardson extrapolation, using a binomial density of n = 3 and n = 4.

3. Column 4 shows the corresponding prices produced by the two-factor model with parameter
values o, = 0.098, b = 2.65, 0, = 0.1225, and ¢ = 0.087. The model prices are computed
using a binomial density of n = 2.

Table 5: Market Swaption Black Volatility Quotes on July 18, 2000 (%)

Option  Swap Maturity
Maturity 12 24 36 48 60

12 13.29 13.80 13.70 13.60 13.50
24 14.98 14.49 14.10 13.90 13.70
36 15.00 14.50 14.10 13.82 13.70
48 14.90 14.30 13.90 13.69 13.50
60 14.70 14.20 13.90 13.60 13.30
84 13.20 12.60 12.20 12.00 11.80

1. Prices of European-style at-the-money US $§ swaptions quoted as Black implied volatilities on
July 18, 2000 in per cent.

2. Source: Sanwa International plc.
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Table 6 : Two-Factor Model Swaption Volatilities for July 18, 2000 ($)

Option  Swap Maturity

Maturity 12 24 36 48 60
12 1542  16.60  16.61 16.11  15.48
(2.13)  (2.80)  (2.91) (2.51) (1.98)
24 16.84  16.96  16.46 15.76  15.05
(1.86)  (2.47)  (2.36) (1.86)  (1.35)
36 16.69 1644 1582 15.07  14.33
(1.69)  (1.94)  (1.72) (1.25) (0.63)
48 16.12 1570  15.04 1431  13.59
(1.22)  (1.40)  (1.14) (0.62) (0.09)
60 15.40  14.96  14.30 1357  12.86

(0.70)  (0.76)  (0.40) (-0.03) (-0.44)

1. Prices of European-style swaptions quoted as Black implied volatilities in per cent. All swap-
tion prices are computed using Richardson extrapolation, given model prices computed using
the two-factor model with binomial densities n = 2 and n = 3.

2. The numbers in brackets are the differences between the model prices and the market quotes
(i.e. model prices minus market quotes), where the market quotes are shown in Table 5.

3. The model optimal parameters are chosen to mimise the errors from fitting the model to cap
volatility quotes. The parameter values are o, = 0.099, b = 1.7, o, = 0.092, and ¢ = 0.13.

4. The RMSE for the swaption volatilities is 1.67%.
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Table 7 : Three-Factor Model Swaption Volatilities for July 18, 2000 (%)

Option Swap  Maturity

Maturity 12 24 36 48 60
12 1468 1585  15.84 1544  14.90
(1.39)  (2.05)  (2.14) (1.84) (1.40)
24 1524 1544 1501 1445 13.86
(0.26)  (0.95)  (0.91) (0.55) (0.16)
36 14.90 1480 1429 1370  13.12
(-0.10)  (0.30)  (0.19) (-0.12) (-0.58)
48 1436 1415  13.63  13.06  12.49
(-0.50)  (-0.20)  (-0.30) (-0.60) (-1.00)
60 13.83 1354  13.04 1248 11.95

(-0.87)  (-0.66)  (-0.86) (-1.12) (-1.35)

1. Prices of European-style swaptions quoted as Black implied volatilities in per cent. All swap-
tion prices are computed using Richardson extrapolation, given model prices computed using
the three-factor model with binomial densities n = 2 and n = 3.

2. The numbers in brackets are the differences between the model prices and the market quotes
(themselves shown in Table 5).

3. The model parameters are o, = 0.099, b = 1.7, 0, = 0.092, ¢ = 0.13, and o, = 0.07.
4. The RMSE for the swaption volatilities is 0.98%
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Table 8: European and Bermudan Swaption Prices: Model Calibrated to
Caplet Volatilities on July 18, 2000 (Basis Points)

European
Strike One year option on (years) Bermudan
Rate 1 2 3 4 ) 6
2 Factor 6.5% 80 158 231 300 365 414
n =2 7.5% 28 62 92 119 142 220
8.5% 6 17 26 34 39 115
2 Factor 6.5% 82 161 235 304 371 421
n =23 7.5% 30 65 96 122 145 228
8.5% 8 19 30 36 41 122
2 Factor 6.5% 84 164 239 308 377 428
RE 7.5% 32 68 100 125 148 236
8.5% 10 21 34 38 43 129
3 Factor 6.5% 77 151 221 289 356 389
n =2 7.5% 24 53 79 103 126 187
8.5% 4 11 17 22 26 84
3 Factor 6.5% 78 154 223 287 349 387
n =23 75% 27 57 83 106 126 190
8.5% 5 14 21 26 30 90
3 Factor 6.5% 79 157 225 285 342 385
RE 7.5% 30 61 87 109 126 193
8.5% 6 17 25 30 34 96

1. The above table shows the values of European and Bermurdan payer swaptions (in basis
points) at differing depths in-the-money, when the two-factor model is calibrated to the caplet
and futures data in Tables 2 and 3. The European swaptions are 1-year options on 1-year
to 5-year swaps. The Bermudan swaption is exercisable yearly for 5 years on a swap that
terminates at the end of year 6.

2. The model parameters are o, = 0.099, b = 1.7, o, = 0.092, ¢ = 0.13 in the case of the
two-factor model and o, = 0.099, b = 1.7, 0, = 0.092, ¢ = 0.13 and ¢, = 0.07 in the case of
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the three-factor model.

3. RE refers to the estimate made by Richardson Extrapolation using the n = 2 and n = 3
estimates.
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Table 9 : Valuation of Bermudan and European Yield Spread Options: Model
Calibrated to Caplet Volatilities on July 18, 2000 (Basis Points)

European Bermudan
2-Factor Model
Strike (%) 0 0.50 0 0.50
n =2 20.0 3.2 32.3 6.1
n=3 20.0 2.8 31.6 5.2
n=4 20.0 2.5 31.2 4.7
RE 20.0 2.3 30.8 4.1
3-Factor Model
Strike (%) 0 0.50 0 0.50
n=2 20.2 2.9 32.3 5.4
n=3 18.9 2.7 31.0 5.1
RE 17.6 2.4 29.7 4.7

1. The table shows the price (in basis points) of European-style and Bermudan-style call options
on the spread between the four-year and the one-year zero-coupon bond yields.

2. Prices are estimated using binomial densities of of n = 2,3,4. RE refers to the estimate made
by Richardson Extrapolation using the n = 3 and n = 4 estimates in the case of the two-factor
model, and using the n = 2 and n = 3 estimates in the case of the three-factor model.

3. The model parameters are o, = 0.099, b = 1.7, o, = 0.092, ¢ = 0.13 in the case of the
two-factor model and o, = 0.099, b = 1.7, o, = 0.092, ¢ = 0.13and o, = 0.07 in the case of
the three-factor model.
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Table 10 : Two-Factor Model Calibrated to Cap and Swaption Volatilities for
July 18, 2000 (%)

Option Swap  Maturity
Maturity 12 24 36 48 60
12 13.84 14.96 15.11 14.88 14.49
(0.55) (1.16) (1.41) (1.28 )  (0.99)
24 14.98 15.28 15.10 14.71 14.25
(0.00 )  (0.79) (1.00 ) (0.81) (0.55)
36 15.02 15.04 14.73 14.28 13.79
(0.02) (0.54) (0.63 ) (0.46 )  (0.09)
48 14.74 14.63 14.26 13.79 13.30
(-0.16 )  (0.33) (0.36 ) (0.10) (-0.20 )
60 14.34 14.17 13.77 13.29 12.80
(-0.36 ) (-0.03) (-0.13) (-0.31) (-0.50)

1. Prices of European-style swaptions quoted as Black implied volatilities in per cent. All swap-
tion prices are computed using the two-factor model with a binomial density of n = 2. The
model parameters are chosen to minimise the difference between caplet and swaption volatil-
ities, with a weight of 0.75 on caplets and 0.25 on swaptions. The best fit parameters are
or = 0.098, b = 2.65, o, = 0.1225, and ¢ = 0.087.

2. In brackets are the differences between the model prices and the market quotes (as shown in

Table 5) in per cent.

3. The RMSE of the swaption volatilities is 0.65%.
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Table 11: Swaption Prices Calibrated to Market Volatilities on July 18, 2000
(Basis Points)

European
Strike One year option on (years) Bermudan
Rate 1 2 3 4 ) 6
2 factor  6.5% 79 156 228 296 363 407
7.5% 28 59 87 113 136 211
8.5% 6 15 23 30 36 107

1. The above table shows the values (in basis points) of European-style and Bermurdan-style
payer swaptions at differing depths in-the-money, when the two-factor model is calibrated to
both the caplets and swaption data in Tables 2 and 5. The European swaptions are 1-year
options on 1-year to 5-year swaps. The Bermudan swaption is exercisable yearly for 5 on a
swap with final maturity at year 6.

2. The 2-factor model is the model where the current short rate is 7%, the futures rate curve
is described in Table 3, the conditional short-rate volatility of 9.8%, with a coefficient of
mean reversion of the short rate of 265%, and volatility of the premium at 12.25% with 8.7%
coefficient of mean reversion. The model uses a binomial density of n = 2.
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Appendices

A  Proof of Lemma 1

The price of the futures LIBOR contract is by definition

Fir=1—fir (14)

and its price at maturity is
Frr=1—frr=1-rr. (15)

From Cox, Ingersoll and Ross (1981), the futures price Fi 7 is the value, at time ¢, of an

asset that pays
1-— rT

Vr (16)

Biiy1Biyigi2--Bro1r

at time T, where the time period from ¢ to ¢t 4+ 1 is one day. In a no-arbitrage economy,
there exists a risk-neutral measure, under which the time-¢ value of the payoff is

Fyr = Ey(Vr By g1 Biyi,i42---Br—1.1)- (17)
Substituting (16) in (17), and simplifying then yields
Ft,T = Et(l - ’I"T) =1- Et('f'T). (18)

Combining (18) with (14) yields the first statement in the lemma. The second statement
in the lemma follows from the assumption of the lognormal process for rr and the moment
generating function of the normal distribution. a

B Proof of Lemma 2

Taking the unconditional expectation of equation (1),
Hry — Pory_y = ort - b/.l,«t71 + Mgy

My — Mgy = 97rt — Clgy 4 + Hzp_q-
Hzy = Hzpy = ozt - dNZt_l-
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Then, substituting for 6,,, 6, and @,,in (1) yields
ln('rt) — Hry = [ln(’rt—l) - /“Lrt—l](l - b) + ln("rt—l) — Hm_y TEL

In(m) — por, = [In(me—1) = por, , J(1 =€) + In(2e—1) — pzy, + 11
In(zt) — pizy = [In(2¢-1) = prz,_,J(1 = d) + 1y

44

Since ry, m and z; are lognormally distributed, it follows from the moment generating

function of the normal distribution that

Ey(ry) = eXP(Mm+03t/2)
Eo(m) = exp(pr, +02,/2)
Eo(z) = exp(us, +02,/2)

Lemma 1 then implies:

In[fo.] = In[Eo(re)] = pr, + 07,/2,

and using E(my) = 1, E(z) = 1, we have
In[Ey(m)] = 0 = pir, + 0%, /2,

In[Ey(2)] =0 = ps, + 02, /2.

Substitution for p,, pr,, and p,,and then yields the statement in the lemma.

C Proof of Lemma 3

From lemma 1, the no-arbitrage condition implies

frae1 = Ei(reg1)
in all states and for all ¢. From the lognormality of r., 1,

2
Ei(ri11) = exp{Ey[In(r¢11)] + @}-

Hence, the no-arbitrage condition requires

ot +1)>

ln(ft,t-i-l) = Et[ln(’l"t+1)] + 5
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But, taking the expectation of equation (3), for ryy; yields:

EyIn(ri1)] = In(foi41) + aryy + (1 = 0)[In(ry) — In(fo)] + In. (20)

Hence, substituting (20) into (19) yields:

o(t+1)2

In(fep+1) = (foer1) + ey + (1= 0){In(re) — In(fo,)] +Inme + ——

The lemma follows with

o(t+1)?

—

This establishes the first part of the lemma. A similar argument can be used to prove the
second part of the lemma.

Ofy = Qryyy T

O
D Proof of Proposition 2
First, we derive the following covariances from equation (3)
Orep1,me (1- b)U” + ormes
Oryme = ( 0)0-72& 1 (1 - b)( )UTt 1,Tt—1 + COV({;‘t,Vt)
Omey1,me — ( )072&’
Ory,me—1 — ( )UT‘t Lm—1 T th )
Org1,mp = ( C)Urt 1,T—1
Now, from the multiple regression
r T
In|——| = oy, + Br, In = + Yr In(me-1) + €t (21)
Jo fou—1

the regression coefficients are

2
B . Urtﬂ”t—lgm_l — Ory,mp—1O0rp_1,mp—1
Tt — 2 2 _ 2 I
O—Tt—lo—ﬂ't—l (Urtflﬂftfl)
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Ore,ric1Oprp_1 — Orgri—1Orp_1,mi—n

o2 _ o2 1 (UT‘t—lﬂft—l)Z

Substituting the covariances and simplifying yields

Bre = (1—b)

and
Yo = 1.

From the lognormality of r; and 7 we can write equation (3) as

In(r;) = In[fo ] +07,/2 = {In(ri1) —ffor] + 07, /2}(1 —¢)
+ In(mq) — {O’?rt_l/Q} + &4

Re-arranging terms yields

|| = [~0% +0%(1—c)+02]/2
fozt

+ In lfzttlll (1 —c¢)+In(m—1) + &

Given (21), (22), and (23), we have «,, as stated in the Proposition.
Similarly, with Fy(7m;) = 1, we have
In(my) = ar, + In(m—1)(1 — ¢) + In(z—1) + v,

and

tr, = Bo[In(my)] — (1 O)[Bolln(re1)] + [Eolin(ze1)]

aﬂ't = [_0721't + (1 - 0)0—721'1571 + Ugtfl]/2‘

46
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For z; we have:
In(2;) = @z, + In(2-1)(1 — d) +

and
= Eo[In(z)] — (1 — d)[Eo[In(z;-1)]
aZt = [_Uzt + (1 - d)O'gtil]/Q.

Finally, the variance of e, given ¢, is

vary_1(g;) = varg {ln lil } — fytvaro {ln l -1 ] }
fort 0,t—1

— 2 varo[la(m1)] - By covlln(ry 1), In(m_1)]

or,

vary_1(g) = azt - (1- b)20'3t71 — 072”71 —2(1 =b)or, 1w s

E Proof of Lemma 4

Taking the conditional expectation of equation (3) at ¢
Et[ln(rt+1)] — ln(f(),t+1 = Oy, + [ln(rt) - ln(f(),t](]. - b) + ln(7rt).

Given z; = Fy(ry4+1) and using the lognormal property of 7441,

n(z;) = Efn(ri)] + o7 (t+1)/2
O’,%(t +1)/2 + In(fo,t+1 + [In(r¢) — In(fo,J(1 — b) + [In(m—1)](1 — ¢) + 1.

Hence
o2(t) = var,_1[In(z;)] = (1 — b)*var;_y[In(ry)] + vary_ [v]

N 02(t) = o7 (t) + (1 = b)*07 (1)

and the statement in the lemma follows. O
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Figure 1: A Recombining Two-factor Process for the Short-term Interest Rate

Two-period case
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t = 1 : 4 states t = 2 : 9 states

[1] The probability of moving, for example, to o given (71,9,71,0) is gr,, defined in Equation (11).
[2] The probability of moving, for example, to (m9,710) given r1o and m ¢ is gr,, defined in
Equation (10).
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Figure 2: A Recombining Two-factor Process for the Short-term Interest Rate
(Three-period case)
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[1] The probability of moving, for example, to 73 given (mg,r2,0) is ¢r,, defined in Equation (11).
[2] The probability of moving, for example, to (730,r3,1) given r3; and 7m0 is ¢r,, defined in
Equation (10).



