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Abstract

This paper solves, in closed form, the optimal portfolio choice problem for an investor
with utility over consumption under mean-reverting returns. Previous solutions either re-
quire approximations, numerical methods, or the assumption that the investor does not
consume over his lifetime. This paper breaks the impasse by assuming that markets are
complete. The solution leads to a new understanding of hedging demand and of the be-
havior of the approximate log-linear solution. The portfolio allocation takes the form of a
weighted average and is shown to be analogous to duration for coupon bonds. Through this
analogy, the notion of investment horizon is extended to that of an investor who consumes
at multiple points in time.
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I Introduction

Recent empirical work demonstrates that stock returns are predictable by scaled-price measures.
For example, Campbell and Shiller (1988) and Fama and French (1989) demonstrate that the
dividend-price ratio predicts excess returns on the market. There is related evidence that stock
returns exhibit mean-reversion. Poterba and Summers (1988) demonstrate that the variance of
stock returns is reduced at longer horizons.

What are the consequences of predictability in returns for portfolio choice? A recent liter-
ature, beginning with Brennan, Schwartz and Lagnado (1997), Campbell and Viceira (1999),
and Kim and Omberg (1996), analyzes the consequences of this empirical fact for financial
decisions. Barberis (2000) generalizes the set-up to account for parameter uncertainty, while
Balduzzi and Lynch (1999) account for transaction costs. Brandt (1999) derives a portfolio rule
that is robust to distributional assumptions. Xia (2001) documents the effect of learning about
predictability.

These papers, with the exception of Campbell and Viceira (1999) and Kim and Omberg
(1996) solve the investor’s problem numerically. Campbell and Viceira assume an infinitely-
lived investor, and derive an approximate analytical solution. Kim and Omberg (1996) derive
an exact solution by specializing the problem to the case where the investor cannot consume
over his lifetime, and has utility over terminal wealth only.

This paper departs from the literature above by deriving an exact, closed-form solution for
portfolio weights when the investor has utility over consumption. In order to solve the problem
in closed form, it is necessary to assume that the predictor variable and the stock return
are perfectly negatively correlated. In this setting, the perfect negative correlation implies
that markets are complete. In the case of return predictability, perfect negative correlation is
realistic: Empirical studies have found this correlation to be close to -1. Moreover, even perfectly
correlated continuous-time processes are imperfectly correlated when measured in discrete time.
Thus assuming perfect negative correlation lends insight into the problem investors actually face.

Assuming utility over consumption allows the portfolio choice problem to be connected to
the decisions of investors in a way that assuming terminal wealth does not. A key property
emerging from the literature on predictability and portfolio choice is that for levels of risk
aversion exceeding those implied by logarithmic utility, the allocation to stocks increases with
the investment horizon. This result has received much attention because it redeems the popular,
but much criticized advice of investment professionals. While this result is well-understood
for the case of terminal wealth, it is not clear how to interpret it for the case of utility over
consumption. For example, when an investor is saving not only for retirement, but for education
and a house, previous results cannot be applied.

Intuitively, one would think that the more consumption is weighted toward the present, the

more the investor behaves as if he has a short horizon. One might also think of the investor



as saving for, say, three different future events, holding a separate portfolio for each one. The
analytical results in this paper make this intuition precise, and at the same time, demonstrate
its limits.

The solution has a novel economic interpretation. The portfolio allocation is shown to take
the form of a weighted average, where the averaged terms are stock allocations for investors
with utility over terminal wealth and the weights depend on the present discounted value of
consumption. This formula is shown to be analogous to the duration formula for coupon
bonds, which consists of a weighted average of the duration of the underlying zeros. The
analogy to coupon bonds is used to generalize the notion of horizon to the investor with utility
over consumption. Besides the central question of investment horizon, the formula also has
implications for the sign and the magnitude of hedging demand, the convergence of the solution
at long horizons, and discrepancies between the approximate solution of Campbell and Viceira
(1999) and the actual solution.

This paper is related to recent work by Liu (1999). Independently and concurrently, Liu
shows that the investor’s problem can be characterized by a series of ordinary differential equa-
tions under several sets of assumptions. This paper considers a case to which Liu’s assumptions
do not apply. Liu also provides an economic analysis, but focuses on the case of an investor
with utility over terminal wealth rather than consumption.

The organization of this paper is as follows. Section II defines the optimization problem,
both for utility over terminal wealth and over consumption, and lays out the assumptions on
asset returns. Section III solves the portfolio choice problem using the martingale method of
Cox and Huang (1989), Karatzas, Lehoczky, and Shreve (1987), and Pliska (1986). Section IV
gives an economic interpretation of the solution, while Section V discusses how the solution

might be extended to the case of incomplete markets.

II The Consumption and Portfolio Choice Problem under Mean-

Reverting Returns

This section lays out the assumptions on asset returns and states the optimization problem of
interest.
Let w; denote the standard, one-dimensional Brownian motion. Assume that the price S of

the risky security follows the process

d
(1) dSt = py dt + o dwy,
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and let
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where 7 is the riskless interest rate. The process X; determines the price of risk in the economy,
or the reward, in terms of expected return, of taking on a unit of risk. Assume that X; follows

an Ornstein-Uhlenbeck process:
(2) dXt = —Ax(Xt —X) dt—Udet.

The volatilities 0 and ox are assumed to be constant and strictly positive, and Ax is assumed to
be greater than or equal to 0. Note that the stock price and the state variable (X}) are perfectly
negatively correlated. To isolate the effects of time-variation in expected returns, the risk-free
rate is assumed to be constant and equal to » > 0, but this assumption can be relaxed. These
assumptions are like those in Kim and Omberg (1996), except that Kim and Omberg allow for
imperfect correlation, and thus incomplete markets. In the empirical applications of Campbell
and Viceira (1999) and Barberis (2000), X; is taken to be the dividend-price ratio. The model
is meant to capture the fact that the dividend-price ratio is strongly negatively correlated with
contemporaneous returns (Barberis finds a correlation of -0.93), but is positively correlated
with future returns. As shown in Appendix C, these assumptions imply that stock returns are
mean-reverting for realistic parameter values.

Merton (1971) considers a model that is analytically similar to the above, but he assumes
that X is perfectly positively correlated with S, so the interpretation is quite different. Merton
also solves for consumption and portfolio choice, but under the assumption that utility is
exponential and the time horizon infinite. In line with the more recent literature described
in the introduction, in what follows, the agent is assumed to have power utility and a finite
horizon. As shown in Section 5, the results can be extended to the infinite horizon case by
taking limits.

Two optimization problems are considered. In the first, the investor is assumed to care only
about wealth at some finite horizon T'. At each time, the investor allocates wealth between the
risky asset (a stock) and a riskless bond. It is assumed that there are no transaction costs,

and that continuous trading is possible. Let a; denote the allocation to the risky asset. The

Wy "
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= (o(pe — ) + 1) dt + o dwy.

investor solves:

(3) sup E

dW;
4 b —
(4) s.t W

In the second optimization problem, the investor cares about consumption between now
and time T. At each time, besides allocating wealth between assets, the investor also decides
what proportion of wealth to consume. The investor solves:

T 1—y
/ efptct_ dt
0 1—7v

(5) sup F/




(6) s.t. th = (at(ut - 7') + T)Wt dt + OttO'Wt dwt — C¢ dt
Wr > 0.

The first problem is that considered by Kim and Omberg (1996) and Brennan, Schwartz and
Lagnado (1997). The second problem is a continuous-time, finite horizon version of Campbell
and Viceira (1999). In both cases, vy is assumed to be greater than 1, i.e. investors have greater
risk aversion than that implied by log utility. This assumption insures that a solution to these
problems exist, and, as shown by the literature on the equity premium puzzle (see, e.g. Mehra
and Prescott (1985)), it is the empirically relevant case.

The precise form of (5) is assumed for notational simplicity. As will be clear in the derivation

that follows, introducing a bequest function involves no additional complications.

IIT An Exact Solution

The link between (3) and (5) is by no means apparent. In the first problem, the investor makes
an allocation decision, subject to a linear budget constraint. This does not imply that the first
problem is easy to solve. But it is less complicated than the second, in which the investor has
two decisions to make at each time, and the budget constraint is nonlinear.

Previous literature only reinforces the differences between these problems. The papers that
assume terminal wealth (e.g. Brennan, Schwartz, and Lagnado (1997), Kim and Omberg (1996))
do not even mention intermediate consumption, much less hint at how their results might be
generalized. Campbell and Viceira (1999) derive an approximate solution for the investor with
utility over consumption. They discuss in detail a special case for which their solution is exact,
namely the case where the investor has unit elasticity of intertemporal substitution. But this
special case is much less rich than the one considered here because the ratio of consumption
to wealth is nonstochastic. That is, the investor behaves myopically as far as the consumption
decision is concerned.!. More recently, Xia (2001) numerically compares the allocation for
utility over terminal wealth to that for utility over consumption. The analytical results below
confirm these results.

The assumption of complete markets turns out to be exactly what is needed to make the
consumption problem tractable and, at the same time, relate it to the terminal wealth problem.
This result is most easily seen using the martingale method of Cox and Huang (1989), Karatzas,
Lehoczky, and Shreve (1987), and Pliska (1986), and is laid out in Section III.A. Section III.B
solves for the investor’s wealth, as well as the consumption-wealth ratio; Section III.D uses the

results of the previous two to derive the formula for the optimal allocation

!Campbell and Viceira assume the utility function of Epstein and Zin (1989), a generalization of power utility
that allows the elasticity of intertemporal substitution to be separated from risk aversion.



A The Martingale Method

The martingale method relies on the existence of a state-price density ¢; with the convenient
property that:
Et[qssSs] = ¢Sy s>t

The process ¢; can be interpreted as a system of Arrow-Debreu prices. That is, the value of
¢: in each state gives the price per unit probability of a dollar in that state. The price of the
asset is given by the sum of its payoffs in each state, multiplied by the price of a dollar in that
state, times the probability of the state occurring.

No arbitrage and market completeness imply that ¢; exists and is unique. In addition,
under technical assumptions on the parameters, ¢; can be derived from the price processes (see
Harrison and Kreps (1979); and the textbook treatment of Duffie (1996)). Novikov’s condition

suffices:

(7) E (exp {% /OT X? dt}) < oo.

When (7) applies, ¢; is given by:

- Koo

t

Using the state-price density ¢, the dynamic optimization problem of Merton (1971) can
be recast as a static optimization problem. In particular, budget constraints (4) and (6) are

equivalent to the static budget constraints

(8) E[Wror] = Wy

) E [ /0 " by dt] — W,

respectively. Equations (8) and (9) express the idea that consumption in different states can
be regarded as separate goods. These equations state that the amount the investor allocates
to consumption in each state multiplied by the price of consumption in that state must equal
his total wealth. Proofs of this well-known result can be found in Cox and Huang (1991) and
Karatzas and Shreve (1998).

The investor’s optimal policies follow from setting the marginal utility of consumption (or
terminal wealth) equal to marginal cost, as determined by the static budget constraints above.
Strictly speaking, this is true as long as the solutions can first be shown to exist. This is done
in Appendix A. For (3),

_1

(10) Wr = (kér) 7.



For (5),
(11) ¢ = (Igy) v e ",

and terminal wealth is zero. The constants k and [ are Lagrange multipliers determined by
substituting the optimal policy into the appropriate static budget constraint.

The portfolio policy is derived from the need for wealth to finance the consumption plan (11).
Because markets are complete, any contingent payoff (satisfying certain regularity conditions)
can be financed by dynamically trading in the existing assets, in this case a stock and a riskless
bond. The first step to derive portfolio policies is to derive the process for the investor’s wealth

implied by (11). The value of wealth at time ¢ is as follows:

T
(12) W, = ¢, ' E, [/t psct ds] .

Equation (12) can also be interpreted as the present discounted value of future consumption,
where the discounting is accomplished by the state-price density.

Define a new variable
(13) Zy = (Ig) L.

By Ito’s Lemma,

dz,
(14) —- = (r+XP) di+ X, duy.

t
In order to solve the expectation (12), it is convenient to express W; as a function of the
variables X; and Z;. Because X; and Z; together form a strong Markov process, Xy and Z; are

all the investor needs to know to evaluate moments of Z; at time ¢. Therefore define
(15) G(Zt, X,t) = Wi

T 1.4 ,
(16) = ZiF |:/ Z7 e 7ds | Xt,Zt:| .
t

The second equation follows from substituting (13) and (11) into (12).
Now consider the investor with utility over terminal wealth. From (10), up to a constant,

wealth is equal to:?

19
(17) F(Zy, X4, t;T) = Z Ey [Z% | XtaZt:| .

2 Assuming both investors start with the same initial wealth W, the constant is given by
1—1
<l>}f = Ef0T¢t ve_gtdt

L
o)

k
Alternatively, initial wealth could be chosen for each investor so that the constant equals one.




Clearly there is nothing special about 7'; one could equally imagine an investor with utility over

wealth at time s < T'. For this investor, the wealth process equals
1
F(Zy, X1,t;8) = Zy By [ | Xt,Zt]

When the expectation is brought inside the integral sign in (12), W; becomes a sum of expres-

sions of the form (17), adjusted to take into account the rate of time preference:
T I
(18) G(ZtaXTat) = / F(ZtaXtat; S)e_;sds'
t

The terms inside the integral in (18) equal the value of consumption at each point in time.
Wealth is like a bond that pays consumption as its coupon; the total value of wealth is simply

the sum over all future consumption values.

B Optimal Wealth and the Consumption-Wealth Ratio

Determining the precise functional form of F' and G means solving the expectation (16). In the
case of mean-reverting returns, the expectation can be solved in closed form.

As the investor’s wealth is a tradeable asset it must obey a no-arbitrage condition. Namely,
the instantaneous expected return in excess of the riskfree rate must equal the market price of
risk times the instantaneous variance. A differential equation analogous to that used to price
bonds (and derived in the same manner, see e.g. Cox, Ingersoll, Ross (1985)) appears here.

From Ito’s lemma, the instantaneous expected return on the investor’s wealth equals

(19) LG + %—f + 27 e,

where LG =

last term in (

Go% +1082°X? — L& ZXox + G (-Ax(X — X)) + 9SZ(r + X?). The

) comes from the consumption coupon that is payed each period. No arbitrage

19
2
1

requires that
(20) LG + B—G + Z”e oG = (BGZtXt — a—Gax> X;.
G also obeys the boundary condition

G(Zp,Xp,T)=0.

This partial differential equation is solved by first “guessing” a general form for the solu-
tion. Equation (18) suggests that G can be written as an integral of functions F. Because
1 1

F(Zy, Xy, t5t) = Z?, it is reasonable to guess that F' equals Z? multiplied by a function of

X;. Finally, bond prices under an affine term structure can be expressed as exponentials of the



underlying state variables. Following the bond pricing literature, therefore, a reasonable guess

for the form of a solution for each “coupon” F is the exponential of a polynomial:
1
F(Z, X0, 6,T) = 2, " TVH(X,, T - 1),

where
H(X;,7) =exp {% (A1 (7)X7 /2 + Ao () Xy + A3(7‘))} .

From the relationship between G and F' described in (18), it is clear that

1 T—t
(21) G(Z, Xy t) = 2 e H(X,,7)dr.
0
Substituting (21) back into (20) and matching coefficients on X2, X, and the constant term
leads to a system of three differential equations in A;, As, and As. The method for solving
these equations is standard, and is discussed in Kim and Omberg (1996). The equation for A,

is known as a Riccatti equation and can be rewritten as

/T dA;
= ’T,
0 blA% + b2 Ay + b3

where
1—
(22) by = —1
5
(23) by = 2(7_10X—AX>
b
1 2

The solution for the integral can be found in integration tables. In Appendix B, it is shown
that when « > 1, b3 — 4b;b3 > 0. Defining

0 = /b2 — 4bbs,

the solution is given by

_ 1 -y 2(1 — 6797)
(25) Alr) = — =5 (b2 +0) (1~ 77
(26) Ay(7) = 11—y 4AxX(1 - 6—07/2)2

v 0[20 — (by +0)(1 — e=07)]

The explicit solution for Az is more complicated and can be found by integrating a polynomial
in A; and As:

1,

11— _
(27) A3(T) :/O inyAg—i- EO'XAl +Ax XAy + (1 —’Y)’f‘ — p.



As mentioned above, very similar equations arise when studying term structure models (e.g.
Cox, Ingersoll, Ross (1985) and Duffie and Kan (1996)) and in the portfolio choice model of Kim
and Omberg (1996). Recently, Liu (1999) and Schroder and Skiadas (1999) examine conditions
under which the portfolio choice problem reduces to solving a system of ordinary differential
equations. Appendix B demonstrates that G has the required derivatives for the equation for
wealth (15) and the portfolio rule (34) to be valid.

While the investor’s wealth depends on the variable Z;, the ratio of wealth to consumption

does not:

Tt
(28) V:—tt = /0 exp {% (Al(T)XtQ/2 + Ao(1) Xy + A3(T))} dr.
The analysis above allows the consumption wealth ratio to be expressed in closed form, using
parameters that are all external to the model. This ratio provides a mechanism to examine how
investors trade off between consumption and savings as a function of the state variable. The
consumption vs. savings decision is at least as important an aspect of the multiperiod problem
as the portfolio choice decision. Assuming utility over terminal wealth captures only the second

aspect of the problem. Assuming utility over consumption captures both.

C Indirect Utility

While the indirect utility function is not required as an intermediate step in the martingale
method, it is nonetheless an interesting quantity to compute. The indirect utility function can
be computed directly using dynamic programming, as discussed in Section V. Alternatively, it
can be derived from the results of the previous section, as shown below.

Cox and Huang (1989) show that the indirect utility function J(W}, X¢,t) and the function
for wealth G(Z;, Xy,t) are related via the following formula:

oJ 1 1

oW G LW Xnt) Z,

(29)

where G~ ! is defined implicitly by G (G (Z;, Xy, t), X4, t) = Z;. From (21) and W; = G(Z;, Xy, 1),

it follows that _
oJ " -
g =

Finally, the boundary condition J(Wp, X7, T) = W%_'y /(1 —~y) implies

i H(Xt,r)>7.

W1*’7 Tt Y
(30) J(WtaXtat) = 1 : v e*pt ( H(Xt’T)) .
- 0

The indirect utility function is an alternative way of summarizing future investment op-

portunities. As (30) shows, the indirect utility function and the wealth-consumption ratio

10



are closely related: In fact, the term in the indirect utility funtion involving X; is simply the
wealth-consumption ratio raised to the power .
How is indirect utility assuming consumption related to indirect utility assuming terminal

wealth? The indirect utility function (30) can be rewritten as:

1—y Y

T—t 1
BL)  J(Wy, Xi,t) = %ept ( /0 (exp {A1(7) X7 /2 + Az(7) X + A3(7)})7 dT)

By analogous reasoning, the indirect utility assuming terminal wealth is given by

w7
(32) Ilt——'y exp { A1 (1) X7 /2 + Ao(T) Xy + As(7) } .
In contrast to the equation for wealth, indirect utility for consumption is not a simple sum
of indirect utility for terminal wealth. Rather, for v > 1, a concave transformation is applied
to terms of the form (32). This concave transformation penalizes extreme values and rewards

consistency.

D Optimal Portfolio Allocation

Following the martingale method, the optimal portfolio rule is derived from (21), the equation
for optimal wealth. Alternatively, dynamic programming could be used with the investor’s
indirect utility (30). While the methods produce identical results, the former is more instructive.

In order for the portfolio rule to finance the consumption plan, changes in the portfolio
value must correspond one-to-one with changes in the value of future consumption. That is,
the diffusion terms must be equal. This consideration determines «, the allocation to the risky

asset:

oG oG
(33) OAtGO' = 8_ZZtXt - a—XO')(.

The right-hand side follows from applying Ito’s lemma to the function G, and from (2) and (14).
The left hand side is the dollar amount invested in the risky asset multiplied the volatility.

Rearranging,

(34) = 9GZ\ Xy (0G 1) ox

" \ozG) o \0xG) o
It follows immediately from (21) that g—gé = 1/v. Moreover, X; by definition equals the
Sharpe ratio (u; —r)/o. Therefore, the first term is the myopic allocation as defined in Merton
(1973), namely the allocation that investor would choose if he ignored changes in the investment

opportunity set. This can also be seen directly by setting ox to zero: when ox is zero, the
investment opportunity set is constant, and the second term disappears.

11



The second term, hedging demand is more complicated and interesting. Substituting in for

G from (21) leads to the equation

v = (15T) - e DX+ k)

oy \ o? o [T H(X,7) dr

The derivation of the investor’s allocation under terminal wealth is similar, and easier. The

allocation under terminal wealth equals:

L fpe—r ox
36 — — = (AT —t) Xy + A(T — t)) .
(36) ~(M30) - ZE (- 0%+ a( - )

Together, equations (28) and (35) solve the investor’s optimal consumption and portfolio

choice problem. The economic consequences of these equations are explored in Section IV.

IV Discussion

This section derives consequences of (35) and provides economic insight into the solution. Sec-
tion IV.A discusses how (35) can be expressed as a weighted average, and what the implications
of this form for the decision-making of investors. Section IV.B analyzes the sign of the hedging
demand term and links it to the behavior of the consumption-wealth ratio. Section IV.C com-
pares the solutions for terminal wealth and for consumption, and answers the question posed
in the introduction, how is horizon to be interpreted in the case of utility over consumption?
In addition, the convergence of the solution at long horizons is established. Section IV.D uses
the formula for the portfolio choice rule to understand where and why the log-linear solution

goes wrong.

A A Weighted Average Formula

At first glance, the difference between the allocation under terminal wealth and under con-
sumption (35) appears large indeed. While myopic demand is the same in both cases, hedging
demand is a linear function of X; under terminal wealth, but a much more complicated, nonlin-
ear function under consumption. However, a closer look reveals an intriguing relation. Hedging
demand in (35) take the form of a weighted average. The functions that are averaged equal
hedging demand in (36) for different values of the horizon. The weights depend on the functions
H.

To better understand this result, it is helpful to rewrite the portfolio allocation for the

investor with utility over consumption as follows:

61 = KT 2 (B2) - ZE )X+ Aat)] ar

o [ITPHX, ) dr Ly \ o® Yo

12



Note that the myopic term is also a weighted average, except in this case all the averaged terms
are equal.
What does the function H represent? From (28), the ratio of wealth to consumption equals
W, T—t

(38) = H(Xt,T) dr.
Ct 0

Thus H is the value, scaled by today’s consumption, of consumption in 7 periods. The weights
in (37) correspond to the value of future consumption in each period.

More will be said about the economics behind (37) in Section IV.C. However, an immediate
economic implication of (37) and (38) is that the investor with utility over consumption allocates
wealth as if saving for each consumption event separately. To each future consumption event,
the investor applies the terminal wealth analysis. Thus, it is correct to think of the investor as
holding separate accounts for, say, retirement and a house. The allocation in the overall portfolio
equals an average of the allocation in the “retirement” portfolio, the “house” portfolio, etc. The

average is weighted by the amount the investor has saved in each of the portfolios.

B Hedging Demand and the Consumption-Wealth Ratio

Before discussing horizon effects, it is necessary to establish whether mean reversion increases or
decreases the demand for stocks, relative to the case of constant investment opportunities. As
discussed in Section II1.D, the first term in the optimal allocation (35) gives the myopic demand,
or the percent the investor would allocate to stocks if investment opportunities were constant.
The key term in analyzing this question is therefore the second, hedging demand. Campbell and
Viceira (1999) and Balduzzi and Lynch (1999) demonstrate, for particular parameter values,
that hedging demand under utility for consumption is positive and is quite substantial. However,
there is no general result available, even for the approximate analytical solution of Campbell
and Viceira (1999).

While (35) may first appear complicated, it can be used to prove a result on hedging demand
that holds for any set of parameter values, such that X; is perfectly negatively correlated with

stock returns.

Property 1 For v > 1, mean reversion increases the demand for stocks whenever the risk
premium, e — T is greater than zero. Eguivalently, when v > 1 and the risk premium is

positive, hedging demand is positive.

In Appendix B, it is shown that A;(7) and Ay(7) are negative when v > 1. Property 1 follows
from this result, from the equation for the optimal allocation (35), and from the fact that X;
has the same sign as the risk premium.O

While a similar result holds in the terminal wealth case, it is more difficult to interpret

in economic terms. The intuition behind hedging demand, first given by Merton (1973) and

13



frequently repeated, is that the additional demand for stocks is used to hedge changes in the
investment opportunity set. More precisely, an increase in X; affects current consumption rel-
ative to wealth in two directions. By increasing investment opportunities, an increase in X;
allows the investor to afford more consumption. This is known as the income effect, and it
causes consumption to rise relative to current wealth. But there is also a substitution effect:
putting money aside is more powerful, the greater the investment opportunities. When v > 1,
the income effect dominates. Namely, the consumption-wealth ratio rises when investment op-
portunities are high and falls when investment opportunities are low. To keep consumption
stable, the investor must choose his portfolio to have more wealth in states with poorer invest-
ment opportunities. Finally, because stocks pay off when investment opportunities are poor,
the investor with v > 1 will hold more of them relative to the myopic case.

This analysis ties hedging demand to the consumption-wealth ratio. When hedging demand
is positive, the consumption-wealth ratio must be increasing in X;; when it is negative, the ratio

must be decreasing. This is what the next property shows.

Property 2 The consumption-wealth ratio is increasing in Xy when the risk premium is posi-

tive and v > 1.

The derivative of the ratio of wealth to consumption with respect to X; equals the negative of
hedging demand (see Equation 34). Thus, whenever hedging demand is positive, the wealth-
consumption ratio is falling in X; and the consumption-wealth ratio is rising in X;. O

Figures 1 and 2 plot hedging demand and the consumption-wealth ratio for v = 10, v = 4,
v =1, and horizons T equal to 30, 10, and 5 years. The parameters for these plots are given
in Table 1. Appendix D describes the details of this calibration. The integrals in (28) and
(35) are computed via 40-point Gauss-Legendre quadrature. As Properties 1 and 2 state, the
consumption-wealth ratio is increasing when X; > 0, and the hedging demand is also positive in
this case. For most values of X; < 0, the consumption-wealth ratio is decreasing, and hedging
demand is negative. This makes sense: for X; < 0, decreases in X; represent an increase in
the investment opportunity set, because the investor can short stocks. However, there is a
region below zero for which hedging demand is positive and the consumption-wealth ratio is
decreasing. Kim and Omberg (1996) report a similar result for utility over terminal wealth and
offer an explanation based on the asymmetry in the distribution for X;. When X; is below
zero, it must pass through zero to return to its long-run mean. In other words, for X; negative
but close to zero, increases may actually represent improvements in the investment opportunity
set.

Figure 2 shows that the consumption-wealth ratio is non-monotonic in y. The ratio for
v = 10 lies between that for v = 4 and v = 1. As explained by Campbell and Viceira (1999),

this effect arises from the fact that v acts as both the coefficient of relative risk aversion and
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the inverse of the elasticity of intertemporal substitution. It is also interesting to observe, in
Figure 1, the hedging demand is still quite high, even at v = 10. While myopic demand declines
at the rate of 1/7, hedging demand remains high, even when risk aversion is large.

Hedging demand is also related to indirect utility. Merton (1971) shows that oy is also

1 (e —r 927 27\ ! ox
@y == 7| T 2 5
y o OWoX \ow o

where J is the indirect utility function. It is straightforward to show that this equation, com-

characterized by

bined with (30) produces the same function for « as given by (35). Thus, hedging demand can
be interpreted as the investor’s attempts to hedge marginal (indirect) utility of wealth. That is,
the investor wants more wealth in states when the marginal utility is higher. This interpretation
is closely related to the one given above: the states with high marginal utility are none other

than those where the consumption-wealth ratio is low.

C What is the Meaning of the Investor’s Horizon?

This section addresses one of the central question raised in the introduction. How should the
investor’s horizon be interpreted when the investor has utility over consumption?

The relation between the investment horizon and allocation is addressed by Brennan,
Schwartz and Lagnado (1997), Barberis (2000), Brandt (1999), and Kim and Omberg (1996).

Kim and Omberg, whose approach is analytical, state the following result:

Property 3 For the investor with utility over terminal wealth and v > 1, the optimal allocation
increases with the investment horizon as long as the risk premium is positive. (Kim and Omberg,

1996)

Appendix B shows that % and % have negative sign when v > 1. Property 3 follows from
this and the equation for the optimal allocation (35). O

Property 3 has a nice ring to it; it states that investors with longer horizons should invest
more in stocks than investors with shorter horizons. This appears to fit with the advice of
investment professionals that allocation to stocks should increase with the investor’s horizon.

At closer inspection, however, Property 3 appears to be more of a mathematical curiosity
than a useful tool for investors. Actual investors do not consume all their wealth at a single date.
Even assuming that the account in question is a retirement account, the date of retirement is
not an appropriate measure of horizon. The horizon may in fact be much longer, and is clearly
should be determined by the timing of consumption after the investor enters retirement. If the
investor plans to dip into savings for major expenditures before retirement, the answer may be
still more inaccurate.

Figure 3 quantitatively compares the allocation assuming utility over consumption with the
allocation assuming utility over terminal wealth. The allocation for consumption and 7' = 30
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lies below the allocation for terminal wealth and 1" = 10 as long as the risk premium is positive.
The investor with utility over consumption and 7' = 30 has, in effect, a horizon of less than 10.
The allocation for consumption is typically less than half of that for terminal wealth.

While the discrepancy between the solutions are greater, the greater the value of T, it is
still large for all but the very smallest values of T. Figure 4 plots the allocation against the
horizon for utility over consumption and terminal wealth, and for X equal to its mean, and
one unconditional standard deviation above and below its long-term mean. Only for the very
shortest horizons are the allocations close at all.

Clearly a more general notion of horizon is needed. Fortunately the analogy to fixed income

developed in Sections III.A and III.B provides just such a notion. From (28), it follows that

L ' tH(Xt,'r)d'r.
ct 0
The investor’s wealth is analogous to a coupon bond that pays in units of consumption. The
value of wealth is simply the sum of the underlying “zeros”, namely bonds that pay optimal
consumption at each date. The natural measure of horizon for bonds is duration, which equals
the negative of the sensitivity of the bond to changes in the interest rate. Here, the appropriate
state variable is not the interest rate, but X;. The duration for wealth with respect to X; is
given by
oF 1

—XF = (A1(7)X; + As(1))

in the case of terminal wealth and
0G 1 [y VH(Xy,m)(AL(T) X + Ag(7)) dr

OXG fTitH(Xt,T)dT

0

in the case of consumption. Comparing with the portfolio allocation (35) demonstrates the

following;:

Property 4 Hedging demand equals the duration of the investor’s consumption stream with

respect to X;.

Property 3 and Figure 4 show that duration has the same properties one would expect.
Namely, the duration for the investor with terminal wealth increases monotonically with the
horizon. Moreover, the duration for the investor with utility over consumption equals the
weighted average of the duration of the underlying zeros, namely the values of consumption at
each future date.

Thus, the more consumption is weighted towards the present, the more the investor’s alloca-
tion is shrunk towards the myopic allocation, just like intermediate coupons shrink the duration

of a coupon-paying bond.? The further out consumption goes, the higher the duration of the

3Because the myopic allocation is the same at all horizons, it does not affect the horizon analysis. Therefore,
all the statements in the paragraph above can be said to apply equally to the allocation itself.
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consumption stream and the greater the allocation. Property 5 is a natural consequence of this

analogy.

Property 5 For the investor with utility over consumption and v > 1, the optimal allocation
increases with the investment horizon as long as py — r > 0 and X; is perfectly negatively

correlated with S;. Moreover, the solution always lies below that for terminal wealth.

It is useful to prove the second statement first. Every element in the average is less than

the allocation to terminal wealth at T, and thus the whole average is less. That is,

_JHX, 1) A () dT

(39) ~AT D) > = R e

and the same for As(7). To prove the first statement, note that the effect of “adding” more
consumption at the end of the horizon pulls up the overall average. Formally, the derivative of
— [H(Xy,7)A(1)/ [ H(X}, T) equals

. H(X,T-1) o JHX,m)A(r) dr
Sy PH(X, T) dr (AI(T ‘) JH(Xy,7)dr )

From (39), the derivative is always positive. O

Finally, the question of whether the results extend to infinite horizons is addressed. The
key question is whether the portfolio rule converges as the horizon approaches infinity. Barberis
(2000) notes this property in his numerical solution. From Figures 1 and 2, it is evident that
convergence also occurs in the model considered here. The plots for T' = 30 appear to be closer
to those for 7' = 10 than the plots for T' = 10 are to T' = 5. Moreover, in Figure 4, convergence
is noticeable even at 7' = 10. While the numerical result of Barberis is strongly suggestive, it
cannot demonstrate that convergence is guaranteed at all relevant parameter values. Based on
the closed-form solutions for the portfolio choice rule (35), it is possible to demonstrate just

such a result.

Property 6 As the investor’s lifetime approaches infinity, the allocation to stocks converges to

a finite limit.

The proof is contained in Appendix B. Besides its inherent interest, an additional benefit
of this result is that it allows the exact solution (35) to be compared to the approximate
infinite-horizon solution of Campbell and Viceira. This is done in the following section.

D Non-linearities in the Solution

Campbell and Viceira (1999) solve an infinite-horizon version of the intertemporal consumption
and portfolio choice problem by taking a log-linearized approximation of the budget constraint.
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Like the allocation for terminal wealth, (36), the allocation that Campbell and Viceira find
is linear. In the model of Campbell and Viceira, the linearity occurs as a direct result of the
approximation; it is “hard-wired” into the model.

The framework in this paper can be used to address the performance of the log-linear
approximation, and why it works well in some cases and not in others. Figure 1 demonstrates
that hedging demand (and therefore the overall allocation) is close to a linear function near X.
For large values of X hedging demand appears to flatten out. For these values, the allocation
to stocks is actually less sensitive to changes in the state variable than the analysis of Campbell
and Viceira (1999) would imply.

This finding is consistent with that of Campbell, Cocco, Gomes, Maenhout, and Viceira
(2001). Campbell et al. solve the infinite-horizon consumption problem numerically and find
that the exact, numerical solution flattens out for large values of X;. However, because their
analysis is purely numerical, Campbell et al. cannot shed light on why the discrepancy occurs.

In contrast, the exact, closed-form solution (35) can help to understand the discrepencies
between the log-linear and the actual solution. From (35), it follows that there are two ways
changes in X; can affect the portfolio rule. The first is directly, through A;(7)X; + Ao(7), just
as in the linear case. The second is indirectly, through changes in the weights H (X}, 7). This
first effect is what the change would be if the solution were actually linear, namely, if H (X}, T)

were a constant:

(40) doj™ _ 1 (1 o H(Xt,T)Alw)) _

dX; o v [H(X;,T)

This term is always positive because A;(7) < 0 when v > 1 (Appendix B).
However, H (X, 7) is not a constant in X;. The difference between the true derivative and
(40) equals
(41)
doy  dof®  ox [ ( [ H(X,,7) (A1 (T) X, +A2(T))>2 [ H(X, 1)(AL(1) X + As(7))?
dXy dXiy A2 [ H(Xy,T) [ H(Xy,T)

This term corresponds to the effect of changes in X; on the weights and is always negative
because the square is a convex function.

Figure 5 plots the “linear term”, (40), and the derivative itself (the sum of (40) and (41)) for
v = 10. The figure shows that (40) is nearly a constant, demonstrating that it indeed represents
a linear effect on changes on a;. However, the derivative itself slopes down dramatically. The
effect is more dramatic, the higher the value of T

The fixed income analogy of the previous section is also useful in understanding this dramatic
downward slope. The duration for coupon bonds decreases as the interest rate increases (see,
e.g. Campbell, Lo and MacKinlay, 1997, chap. 10). This is because increases in the interest
rate decrease the value of long-term bonds more than the value of short-term bonds. The bonds
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with the higher duration (long-term bonds) therefore receive less weight when interest rates fall.
As in the previous section, it is useful to think of H (X, 7) as the value of a bond paying in units
of consumption at horizon 7. Increases in X; cause the value of H(Xy, 7) to decrease more, the
greater the value of 7. The portfolio weight « is given by a weighted average of A;(7) X+ Aa(7),
where the weights are like the values of discount bonds. Thus (41) arises because increases in
X, decrease the weights on the terms with higher values of A;(7)X; + Aa(7).

V The Case of Incomplete Markets

It is easy to lose sight of where, in the above arguments, the assumption of complete markets
is required. In Section III the problem was solved by first solving for consumption and then
deriving the portfolio rules from the need to finance consumption. Such portfolio rules exist
because wealth satisfies (20), i.e. wealth is a martingale under the equivalent martingal measure.
As Pliska (1986) points out, the defining feature of complete markets is that any (well-behaved)
process that is a martingale under the equivalent martingale measure can be financed by trading
in the underlying securities. When markets are incomplete, this equivalence no longer holds.
Thus the set of consumption rules that can be financed is more difficult to describe, and the
technique of solving first for consumption is no longer valid.

To illustrate where the method fails, let w; is a two-dimensional Brownian motion. Following
convention, wy is a 2-by-1 vector, and o and ox are 1-by-2 vectors. The instantaneous volatility
of S is therefore voo!. By analogy, X; = (s —7)/Voo'. The instantaneous correlation between
the process for S; and that of X; equals oo’y / (Voo Voxa’). Any process 1, satisfying

(42) one = (e — 7).

is a valid price-of-risk process and, because this is a single equation in two unknowns, there
are infinitely many solutions. Each value for 7 corresponds to a different state-price density ¢,
where

9t = —rdt —n dt.

o)

By the same reasoning used to derive (20), the investor’s wealth satisfies:

oG 9G, , 9G
ot oz ox XN

1
(43) LG+ — + Z} e —rG = (—Z

with boundary condition G(Zr, X7, T) = 0.
It is tempting to choose 1 such that (42) is satified, and such that this equation can be

solved in closed form. For example,

n=0'(o0") " (e~ 1)
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is a natural choice. Under this choice of 7, the solution takes the same form as (21), where the
functions A; take slightly different, but nonetheless tractable forms.

Because this solution solves (43), it is a solution to the investor’s static optimization problem.
However, it does not correspond to the solution to the dynamic problem because there is no

portfolio rule to finance it. The portfolio rule a; must satisfy

oG oG
(44) atGO' = a—ZZt’/]t — a—XO')(.

This is a system of two equations in one unknown. A solution exist only if one of the equations
equals a constant times the other, that is, if the variables are perfectly correlated. When there
is a single asset, state-variable risk and market risk cannot be perfectly hedged at the same
time.

There is a choice for 7 such that the two-dimensional system (44) can be reduced to one

dimension. Choose

(45) n=0'(00) " (w —1) +v,
where )
oG (0G )\ _
V= X (8_ZZ) (ox —ox0o'(0d’) o).

(45) represents the unique choice of 7 that solves (42), such that (44) can be reduced to one

dimension. The equation for o becomes

_0GZpr 0Goxs
- 0ZG oo 0Z oo’

(677

He and Pearson (1991) demonstrate rigorously that the static problem is equivalent to the
dynamic problem under this choice for 7.

This fix is less helpful than it first appears. When (45) is substituted into the differential
equation for G, The solution can no longer take the form of (21). In fact, the problem under
incomplete markets is much harder to solve. 4

Can further progress be made in the incomplete markets case using the dynamic program-
ming approach? The dynamic programming approach (like the martingale approach extended
using the equations above) delivers a closed-form solution for the case of terminal wealth. But,
as above, it is not possible to extend the solution to the case of consumption. The solution
to the intertemporal problem by dynamic programming requires solving a nonlinear partial

differential equation for the value function J. The differential equation is derived by Merton

4The case of utility over terminal wealth encounters no such difficulties, because the solution is the exponential
of a quadratic function of X}, rather than the integral of such functions.
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This equation has a solution of the form (30) if and only if (aa’X)2 = (ox0'y)(00’), namely, if
markets are complete.®

This result is not surprising. In this setting, the dynamic problem (solveable by dynamic
programming) is equivalent to the the static problem (solveable by the martingale method).
Thus the portfolio and consumption policies must be the same, nomatter which method is
applied. Morever, Section C demonstrates that the indirect utility function can be derived
from the wealth function and vica-versa. Thus a closed-form solution for indirect utility can be
easily transformed into a closed-form solution for investor’s wealth.

Despite the lack of a closed-form solution, equation (43) does show that the conclusions
above are robust to small amounts of market incompleteness. While a thorough examination of
this issue is beyond the scope of this paper, some informal conclusions can be drawn. Because
V'v and oxv are smooth functions of the correlation, and because, and 'v = ov = 0, (43) can
be rewritten so that the coefficients are smooth functions of the correlation. Thus, for values
of the correlation sufficiently close to -1, the solutions will be close to the solution for complete

markets, and the intuition developed in the preceding sections will still apply.

VI Conclusion

This paper demonstrates that, under mean reversion and complete markets, the multiperiod
consumption and portfolio allocation problem can be solved in closed form. This question has
interested the literature for some time: there are papers that solve the problem for terminal
wealth, give numerical solutions for consumption, or derive approximate analytical solutions.
But a closed-form solution as eluded the literature.

As has been shown, the solution is more than a complicated formula. It can be expressed
as a weighted average that is analogous to the duration formula for coupon bonds. It can be

used to resolve questions that are posed by but not solved in the current literature, such as

5By contrast, in the case of terminal wealth, the first term in the differential equation drops out. A solution
of the form (32) is therefore possible, even when markets are incomplete. Liu (1999) gives a clear account of this
result.
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the sign of hedging demand, the reason for inaccuracies in the log-linear solution, and whether
the solution converges at long horizons. It raises and resolves issues that have been incorrectly
ignored, such as how horizon results are to be interpreted in the most realistic case, i.e. when
the investor has utility over consumption.

This paper has chosen to focus on the case where investment returns are mean-reverting.
However, the methods in this paper are more general and can be applied to other portfolio
choice problems. Recent examples include Brennan and Xia (2000) and Chacko and Viceira
(2000).

The solution does require that markets be complete, unlike the solution for terminal wealth.
Though it generalizes the preferences, it requires more specific assumptions on the data-
generating process. It does give researchers seeking an analytical solution a choice: either
require terminal wealth, use log-linearized approximate solutions, or assume complete markets.
In the case of mean-reverting returns, assuming complete markets is realistic because the corre-
lation in the data is nearly perfect. Ultimately the choice of the least evil is up to the researcher,

but it is important to realize that there is a choice to be made.
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Appendix
Throughout the Appendix v is assumed to be greater than 1.

A Proof that solutions to (3) and (5) exist.

The proof has two steps. First, it is necessary to show that the Lagrange multipliers & and [ in

(10) and (11) exist and are finite. Substituting the optimal policies into the budget constraints

o (o))

T -1 1 v
1=w," (E/ b, ”e?ptdt> :
0

By Jensen’s inequality, it suffices to show that F¢; is finite and continuous for all ¢.

t
¢ < exp {—/ X dwy — rdt} .
0

Because f(f Xt dw, is Gaussian (see, e.g. Duffie, 1996, Appendix E), the right hand side is

lognormal, implying that the expectation exists and is a continuous function of time.

yields:

and

By definition,

The second step is that the optimal policies satisfy regularity conditions. In particular, it
is enough to show that
_pl
E[¢, p”] < o0

for some p > 1 (see Cox and Huang, 1989). Choose p < . Then

Elg, 7] <

Q|

t : t
(Eexp{qg (/ Xsdws—rt>}>q (Eexp{q']gl/ des}) ,
T \Jo 72 Jo
1

where % + 7 =1and q,q' > 1, by the Cauchy-Schwartz inequality. Choose ¢’ so that q'% <1
The first term on the right hand side is finite because of the lognormality described above. The

second term is finite because of Jensen’s inequality, and (7).
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B Properties of the solution
Existence and differentiability.

For G(Z;, Xy,t), it is sufficient that b2 — 4b1bg > 0. It follows from (22) - (24) that
2 2 l1—n 2
b2 - 4b1b3 = 4 ()\X - <T> (O'X - 20'X)\X)>
Y1, -1, (7 - 1) )
4| —Ax +—o0%x — | — ) 20xAx
( y ATy X 2

-1
= 4T(>\X —0x)?>0

Vv

For the differential equation (20) to describe the solution, (,,a;—gz, %, % and %—(5

must exist
and be continuous. From (21), it suffices that A;, As and A3 be continuously differentiable.
From (27) Aj is continuously differentiable as long as A; and Ao are. Therefore, from (25) and

(26), it suffices to show that
(47) 20 — (ba +60)(1—e7 ") >0

for 0 < 7 < T, where § = /b2 — 4b1b3. From (22) - (24), it follows that

9 Z 2 7—_1|Ax—dxl
V. v

-1
27" > (\x — ox)
v

-1
> 2<’Y—Ax—dx) = bo.
Y

>

(47) follows immmediately.

Proof that the functions A;(7), A2(7) and their derivatives have sign 1 — +.

Define a(1) = 20 — (by + 6)(1 — e~ 7). As shown above, a(7) > 0. The statement for A; and
Ay follows immediately from (25) and (26). Moreover,

dA; 1-v 20e=97a(1) +2(1 — e 97)(by + 0)0e 0"
dr v a(t)?
1—v [20% 07
v \a()3? )’
and
dd; _ 1- v xX [ (1 - 6_%)(6_%)961(7') +(1—e72)2(by +0)e 070
dr v 0 a(t)?

| yaagX [€ T F) (20 — (ba+0)(1 - ef%f))
70 P
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The same reasoning used to show (47), implies that 20 — (by + 0)(1 — eJTT) > 0.

Proof that the allocation converges at long horizons

It suffices to show that
fT_t H(X;,7)A1 (1) dr

fot H(Xy, ) dr’

and the same equation for As(7) converge to finite limits. First, A;(7) and Ay(7) are monotonic

in 7. Therefore, their averages over 7 are monotonic in 7. To prove convergence, it suffices to
show that these sequences are bounded above. Because A(7) is negative and increasing,
T—t
0 < Jo HXe,7)|Ai(7)| dr
Ty TH(Xym)

< [A(T)].

The corresponding inequality holds for |A2(T')|. It follows immediately from (26) and (25), that
A1(T) and Ag(T) are bounded above.

C The discrete-time process

The joint process for S; and X; can be rewritten in vector form as

o2

dlog S, 0 o log S, r—% o
S SR 2 dt + duw,
dXt 0 —Ax Xt Ax X —0Xx

As shown in Duffie (1999, Appendix E), this linear equation differential equation implies
that
log S} ms(t) Vss(t) Vsx(t)
X, mx(®) |\ Vsx(t) Vix(®)
where the means and the variances satisfy ordinary differential equations. The solutions for the
mean is given by:

mx(t) = X+e (X, - X)

2
ms(t) = So+ (UX—}—?"—%)t—I—%(l—e_)‘Xt) (X0 — X).

The solution for the variance-covariance matrix is given by:

2

Vxx(t) = ;\—XX (1 - e—”xt)
Vsx(t) = % (1 _ e—Axt>2 B % (1 B e—)\xt>

t
Ves(t) = 20 / Vio(s) ds + 0%
0
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When

IX
43 —~— <1
(48) e <L

Vsx(t) < 0 for all values of . Therefore, under (48), Vss(t) < o?t. That is, the variance of
stock returns grows less than linearly with the horizon. This implies that stock returns are
mean-reverting.

When Ax ~ 0,6

(49) mx(t) ~ X—f-(l—)\)(t)(X()—X)
(50) ms(t) So + (O’X() + T)t.
(51) Vxx(t) = Uggt
2
(52) Vex(t) =~ %# ~soxt
2 2
(53) Vss(t) = 2 ;X 3 — goxt? + o’t.

D Parameter values

The parameters are taken from Barberis (2000, Table 2) for the 1952-1995 sample. This section
describes how these parameters are translated into model parameters.

The discrete-time process for S; and X, is approximated by (49)-(53) above. The time
interval ¢ = 1 is taken to be a month. For ¢ = 1, the first term in (52), and the first two terms
in (53) are of second order (estimates of the volatilities o and ox are on the order of .01).

Therefore the approximate discrete-time process is given by:
1
(54) A(log Si11) = oXp+r— 502 + o€yt
(55) X1 = AxX + (1= Ax)Xe — oxerta,
where €41 ~ N(0,1).
Barberis (2000) computes a VAR for stock returns and the dividend-price ratio. He finds

that the correlation between these two series is -0.935. In what follows, this value is set to -1.
With this modification, the VAR can be rewritten as:

(56) A(log St+1) = a11 + a12Y; + owi

(57) Yiri = a2 +a22Y; —oyvwe.
Comparing (54) with (56), it follows that X; and Y; are related by

2
oXi+r—% —an
Y = 2 .

ai2

__—Axt
SFor Ax ~ 0, L e/\X ~t.
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Substituting into (57) produces

2

ai2a21 | ag — 1 o a120y

Xip1 = + <7“ -— = an) + agpX; — Wt 1-
o o 2 o

Comparing with (55) allows the underlying parameters to be written in terms of the regression
parameters:

Ax = l-—ap
a120y
agx =
o
= a12a21 1 o?
X = e o o).
0'(1—(122) +O’ (a11+ 2 T)

The riskfree rate is the average real return on the 3-month Treasury Bill over the sample
period 1952-1995, in monthly terms.

Barberis (2000) assumes utility over terminal wealth, so by definition, there is no rate of
time preference. Campbell and Viceira assume an annualized discount rate of 0.062, translating
into a montly rate of 0.0052. Table 1 describes the resulting parameter values.
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FIGURE 1

Hedging Demand for the Investor with Utility over Consumption
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Hedging demand as a function of the Sharpe ratio X; for risk aversion y = 10 (solid), v = 4
(dash), and v = 1 (dots), and for horizons 7' = 30, 7" = 10, and T" = 0 years. The vertical

lines indicate X + % Parameter values are derived from discrete-time counterparts
—\1TAX

in Appendix D and given in Table 1.
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FIGURE 2
The Consumption-Wealth Ratio
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The consumption-wealth ratio as a function of the Sharpe ratio X; for risk aversion v = 10
(solid), v = 4 (dash), and v = 1 (dots), and for horizons T' = 30, 10, and 0 years. The vertical
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lines indicate X + B s vars Parameter values are derived from discrete-time counterparts
in Appendix D and given in Table 1.
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FIGURE 3
Allocation as a Function of the Sharpe Ratio

P T=30
2, // -
s T=10
15 | - -~ 0 4T=30
e P -
e - /3
P - /'/ - o) T=lo
v ] -
S 1r ]
@]
=
@ T=0
@]
=
c 05 _
.
IS
(&)
ie}
< (O - f
b
b g =
i
05 F -~ i
&=

0 .01
State Variable X

Optimal allocation as a function of the Sharpe ratio X; for utility over consumption (circles) and
over terminal wealth, for horizons T' = 30, 10, and 0 years. Risk aversion v = 10. The vertical
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lines indicate X + T Parameter values are derived from discrete-time counterparts
in Appendix D and given in Table 1.
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FIGURE 4

Allocation as a Function of Horizon
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are derived from discrete-time counterparts in Appendix D and given in Table 1.
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Derivative of

The derivative of the optimal allocation with respect to X; (circles) compared to the derivative

ignoring the effects of X; on the value of future consumption (see Eq. 40), for horizons T' = 30,

FIGURE 5

Non-Linearities in the Optimal Allocation
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values are derived from discrete-time counterparts in Appendix D and given in Table 1.
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TABLE 1

Parameter Values

Rate of time preference p 0.0052
Riskfree rate r 0.0014
Volatility of stock prices o 0.0436
Volatility of X; ox 0.0189

Mean reversion parameter A\xy 0.0226

Unconditional mean of X; X  0.0788

Paramters are calculated based on those in Barberis (2000) and Campbell and Viceira (1999).
Appendix D describes the details of this calculation. All parameters are in monthly units.
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