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Abstract

Time varying corrdations are often estimated with Multivariate Garch modds
that are linear in squares and cross products of returns. A new class of
multivariate modds caled dynamic conditiona corrdation (DCC) modelsis
proposed. These have the flexibility of univariate GARCH models coupled® with
parsmonious parametric models for the correlations. They are not linear but can
often be estimated very smply with univariate or two step methods based on the
likelihood function. It is shown thet they perform well in avariety of Stuations
and give sengble empirical results.

! This research has been supported by NSF grant SBR-9730062 and NBER.



l. INTRODUCTION

The quest for reliable estimates of correlations between financid variables has
been the motivation for countless academic articles, practitioner conferences and back
room Wall Street research. These correlations are needed for derivative pricing, portfolio
optimization, risk management and hedging. Simple methods such asrolling hitorica
correlations and exponentid smoothing have been widely used because of the complexity
and potentia unreliability of methods such as multivariate GARCH or Stochastic
Volaility and the unavalability of implied corrdations for most markets.

In this paper Dynamic Conditional Correlation (DCC) estimators are proposed
which have the flexibility of univariste GARCH but not the complexity of multivariate
GARCH. These models, which parameterize the conditiona correlations directly, are
naturaly estimated in two steps — the firgt is a series of univariate GARCH estimates and
the second the correlation estimate.

The next section of the paper will give an overview of various models for
esimating corrdations. Section 3 will introduce the new method and compareit with
some of the other cited approaches. Section 4 will investigate some properties of the
method including correlation forecasting in Section 5. Section 6 carries out a series of
Monte Carlo experiments. Section 7 presents empirica resultsfor severd pairs of daly

time series and Section 8 concludes.
[l. CORRELATION MODELS

The correlation between two random variables r1 and r2 that each have mean zero, is
defined to be:

(1) - E(rer)

Smilarly, the conditiond corrdetion is defined as:
g = Et-'l(r‘l,tr?_,t)' ‘
el B2

In this definition, the conditiona correation is based on information known the previous
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period, however multi- period forecasts of the correlation can be defined in the same way.
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By the laws of probability, dl corrdations defined in thisway mugt lie within the interva
[-1,1]. The conditiond correlation satisfies this condraint for al possible redizations of
the past information.

To darify the relaion between conditiona correlations and conditional variances,
it is convenient to write the returns as the conditional sandard deviation timesthe
Standardized disturbance:

(©) hy= Et-l(rii)’ fit :«/rT,tQ 1 =12
Epsilon is a standardized disturbance which has mean zero and variance one for each
series. Subdtituting into (2) gives
Fi2p = Eiloyey) =g 1(9_L,t@,t)-
YERCH SN

Thus, the conditiona corrdation is dso the conditiona covariance between the
standardized disturbances.

(4)

Many estimators have been proposed for conditiona corrdations. The ever
popular ralling correlation estimator is defined for returns with a zero mean as.
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Subdtituting from (3) it is clear that thisis only an aitractive estimator in very specid
circumgtances. In particular, it gives equa weight to al observations less than n periods
in the past and zero weight on older obsarvations. The estimator will dways liein the
[-1,1] intervd, but it is unclear under what assumptions it consstently estimates the
conditiona correlations.

The exponentia smoother used by RiskMetrics™ uses declining weights based on
aparameter | , which emphasizes current data but has no fixed termination point in the
past where data becomes uninformative.
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It dso will surdly liein[-1,1]; however there is no guidance from the data on how to

t-j-1
I s

choose lambda and it is necessary that the same lambda be used for dl assets. Defining

the conditiona covariance matrix of returns as.

(7) Era(rer')° Hy,

these estimators can be expressed in matrix notation repectively as.

n
é.(rt jf- j) and  Hy =1 (re 1)+ (@- 1 )Heq
=1

©) Ho =2t
n
A smple gpproach to estimating multivariate modds with somewha more
flexibility than these methods is the Orthogond GARCH method or principle component
GARCH method. This has recently been advocated by Alexander(1999). The procedure
issmply to congtruct unconditionaly uncorrelated linear combinations of the seriesr.
Then univariate GARCH models are estimated for some or dl of these and the full
covariance matrix is constructed by assuming the conditiona correlations are dl zero.
More precisdly, let y, = Ar;, E(y;y;')° V isdiagond. Univariate GARCH modds are
estimated for the dements of y and combined into the diagona matrix Vi. Assumingin

additionthet E,_;(y; y;') =V, isdiagond (astrong assumption), then

© H =AlvAl

In the bivariate case, the matrix A can be chosen to be triangular and estimated by least

sguares where r; is one component and the resduas from aregresson of r1 onr, arethe

second. In this smple Stuetion, adightly better approach isto run thisregresson asa

GARCH regression, thereby obtaining resduas which are orthogond in a GLS metric.
Multivariste GARCH modds are naturd generdizations of this problem. Many

specifications have been considered, however most have been formulated so that the

covariances and variances are linear functions of the squares and cross products of the



data. The most generd expression of thistypeis called the vec modd and is described in
Engle and Kroner(1995). Thevec moded parameterizes the vector of al covariances and

variances expressed as vec(H;). Inthefirgt order casethisis given by

(10)  vec(H;)=vec(W)+ Avedr,. 1r;.1')+ Bvec(Hy. ;)

where A and B are rxi? matrices with much structure following from the symmetry of
H. Without further regtrictions, this mode will not guarantee positive definiteness of the
meatrix H.

Useful regtrictions are derived from the BEKK representation, also introduced by
Engle and Kroner(1995), which in the first order case can be written as:

(11)  H; =W+A(rqr.1')A+BH_4B'

Various specid cases have been discussed in the literature starting from models
where the A and B matrices are Smply ascalar or diagonal rather than awhole matrix,
and continuing to very complex highly parameterized modes which gill ensure positive
definiteness. See for example Engle and Kroner(1995), Bollerdev, Engle and
Nelson(1994) and Engle and Mezrich(1996) for examples. Inthis study the scaar
BEKK and the diagona BEKK will be estimated.

As discussed in Engle and Mezrich(1996), these model s can be estimated subject
to the congraint that the long run variance covariance matrix is the sample covariance
matrix. This congrant differs from MLE only in finite samples but reduces the number
of parameters and often givesimproved performance. In the generd vec modd of
equation (9), this can be expressed as

| —

(12)  vecW) =(I - A- B)vedS), where S= = a (rr)
t

This expresson smplifiesin the scdar and diagona BEKK cases. For example for the
scdar BEKK theintercept is Smply
(13) Ww=(1-a- b)s



[1. DYNAMIC CONDITIONAL CORRELATIONS
This paper introduces anew class of multivariate GARCH estimators which can
best be viewed as a generdization of Bollerdev(1990)’s constant conditional correlaion
esimator. In Bollerdev's modd,

(14) H =DRD,, where Dy =diag}/h |

where R is a correlation matrix containing the conditiona correlations as can directly be

seen from rewriting this equation as.

(15 E.i(eg)=Di'HD'=R,snce g =D;'r,
The expressonsfor h are typicdly thought of as univariate GARCH models, however,
these modd's could certainly include functions of the other variables in the system as
predetermined variables.

This paper proposes an estimator caled dynamic conditional correlation modd or
DCC. Thedynamic corrdlaion modd differsonly in dlowing Rto betime varying
giving amodd:
(16)  H¢=D{RDx
Parameterizations of R have the same requirements that H did except that the conditional
variances mugt be unity.

Probably the smplest and one of the most successful is the exponential smoother
which can be expressed as.
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ageometricaly weighted average of Sandardized resduas. Clearly these equationswill
produce a corrdation matrix at each point intime. A smple way to congruct this
corrdlation is through exponentia smoothing.

Gijt

(18) g j; =(1- |)(Q,t-1ej,t-1)+| (qi,j,t-l)’ Vit ZW
Gt 9jj ¢

A naturd dternative is suggested by the GARCH(1,1) moddl.



(19 gt =T +a(Q,t-1ej,t-1' r_i,j)*' b(qi,j,t-l' r_i,j)
Rewriting gives,
_ &-a- bo

(20)  qjjy :ri,jmg-l'a él¥bse|1_ €jt-s
s=1,

The unconditiond expectation of the cross product is I while for the variances

(21) I’_i i =1.
The corrdation estimator
(22) Qijt

hite it

will be positive definite as the covariance matrix, Q; = [qi i ,tJ, isaweighted average of a
positive definite and a positive semidefinite matrix. The unconditiona expectation of the
numerator of (22) is T and each term in the denominator has expected vdue one. This
modd is mean reverting aslong as a + b <1 and when the sumisequd to oneitisjust
the modd in (18). Matrix versions of these estimators can be written as.

23) Q =(1-1)e.181)+1Q.q, ad

(24 Q =91-a-b)+alg.1g.1)+bQ.1

where S isthe unconditiona correlation matrix of the epsilons.

Clearly more complex positive definite multivariate GARCH models could be

used for the correlation parameterization as long as the unconditional moments are st to

the sample correlation matrix. The goa however isto keegp thissmple.

V. ESTIMATION

Thelog likelihood for this estimator can be expressed as
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which can smply be maximized over the parameters of the modd. However one of the
objectives of thisformulation isto alow the modd to be estimated more easily even
when the covariance matrix isvery large. In the next few paragraphs severa estimation
methods will be presented which give ample consstent but inefficient estimates of the
parameters of the model. There will be no attempt to develop the properties of such
estimators athough they will beillusrated on both red and artificid data.

Let the parametersin D be denoted g and the additiona parametersin Rbe
denoted f . Suppose for amoment that g is known, then the rlevant part of the log

likelihood becomes
1, .
(26) Le(f)=-Z&(oglR|+&' R lg),
t

which can be maximized directly. If congstent estimates of g can be found, then the two
step estimation srategy will be consgtent but not fully efficient. In the two dimensiond
case, this can be written quite smply as:

(912t +e, - 2r (e 8y, )9

(27) Lc(f)=-%§§og(1- 2)e & s
t

@
where r isgiven ether by (18) or (22).

An even smpler gpproach isavailable. Rewrite (19) as
(28) §j1=T(-a- b)+@a+b)g r1- blg jr1- G 1)+ & e i)
where g j+ =§€j. Thisequationisan ARMA(L,1) since the errors are aMartingale
difference by condruction. The autoregressive coefficient is dightly bigger than the

negative of the moving averageif a ispodtive. This equation can therefore be estimated
with convertiond time series software to recover consstent estimates of the parameters.



The drawback to this method isthat ARMA with nearly equa roots are numericaly
unstable and tricky to estimate. These parameters would then be used to construct the
correlation estimatesin (22). The problem is even easier if the mode is (18) since then
the autoregressve root is assumed to be one. The modd issmply an integrated moving
average or IMA with no intercept.

(29) Dg,j¢=-blg j1- G jea)+lE - aje),

which is smply an exponentia smoather with parameter | = (1- b).

In amultivariate context each of these gpproaches remains feasible athough
dightly more complicated. The regressonsin (24) would necessarily have tofit dl the
covariance equations to the same parameters. This could be done by stacking the off
diagona dements and estimating one modd possibly with breaks between each series.
Possibly, estimating each covariance equation separately and then averaging the
coefficients could even do it. One would hope that the results would not be very
sengtive to these choices.

To complete the discussion it is necessary to propose how to consistently estimate
the parameters q that appear in the individual GARCH modes. The origind likelihood
in (25) can be viewed asa GL S estimator for D''r.  Aninefficient but consistent
estimator can be found by replacing R by the identity matrix. In this case the univariate
quas-likelihood function becomes:

e 00
gnlog(2|o)+a‘?log(h.t )+ L
g |—1g hlt %

that isthe sum of the QLy for each of the individual assets. Since the parameters for
each asset can be different, these can dl be estimated as univariate models and the
standard QMLE properties will hold. Thus consistent estimates of al the parameters can
be obtained by estimating the univariate modds and then using these models to define the
standardized resduds and findly using one of the listed methods to estimate the

(30) QLy(q)=-

N

a
t

parameters of the correlation process.

The sum of the likdihood in (26) plus (30) plusthe total sum of squared
dandardized resduds, which is given dmost exactly by NT/2, equds the log likdihood
in (25). Thusitispossbleto compare thelog likelihood of this method with other



methods and smilarly to determine the likelihood sacrificed by the two step estimation

procedure.
(31) L(af)=Lc(f.a)+Qy(a)+ae'e /2
t

V. FORECASTING CORRELATIONS

Indl of the models for dynamic conditiona correlations, the correaion
coefficient is expressed as aratio with a square root in the denominator. Thus unbiased
forecasts cannot easily be computed. In fact, for al multivariate GARCH modds, the
correlaion coefficient is not itsdlf forecas, it istheratio of the forecast of the covariance
to the square root of the product of the forecasts of the variances. To develop a
forecasting expression for the DCC models, it will be necessary to gpproximate the
correlation coefficient by itsfirst order Taylor series expanson.

Consider the mean reverting model in (19) that specidizes to the integrated model
in(18)ifa+b=1.

(32) E (Qi,j,t+k) =r(1-a- b)+bE (Qi,j ,t+k-1) +ak, (Q,t+k-1ej ,t+k-l)

The last expectation is by congtruction equa to 1 for i=j since these are standardized

resduds.
Forit j, Ele lejk,t+k-1): Et(ri,j,t+k-l)'
Findly, by expanding the corrdation coefficient about the point {q ,j} , the correlation

function can be expressed
(33)

i 1 _ o G Btk Ti L ik - T 9
Tii T +\/aii a;; (qi'j“k - qi’j)- ° \/ﬁé Gi ' a9 3
By successvely solving forward equations (31)-(33), forecasts of correlations can be
built up.

To determine the whether these are satisfactory gpproximations, data are
generated following the DCC modd. Intheintegrated case the RiskMetrics parameters

Fijik @

(.94,.06) are chosen while in the mean reverting case, (.90,.06) are used with an
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unconditional corrdation of .5. The gtarting point for the forecast is taken to be
{915.011.92} ={11,2} so theinitid correlation is.707. In the integrated case, the
correlaion coefficient is expanded in (33) around the starting point of the forecast. Inthe
mean reverting case, this option is computed as well as the expansion around the
unconditiond valuesof {.5,1,1}. With 1000 replications of the forecast period, the
average rho is plotted againgt the forecast calculated as above.

From these pictures, this gpproximation is reasonably close to giving accurate
correlaion forecasts. The forecasts incorporate mean reversion when the modd has
mean reversion. They incorporate some predictability aso in the integrated modd that
arises from deviations of the smoothed standardized residuas from the unconditiona
vaue of one. Probably, better gpproximations can be found that give yet more accurate
forecasts.
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VI. COMPARISON OF ESTIMATORS

In this section, severd corrdation estimators will be compared in a setting where the true
correation sructure isknown. A bivariate GARCH mode will be smulated 200 times
for 1000 observations or gpproximately 8 years of daily data for each correlation process.
Alternative correlation estimators will be compared in terms of Smple goodness of fit
datigtics, multivariate GARCH diagnogtic tests and Vaue at Risk tests.

The data generating process consgsts of two gaussan GARCH modds, oneis
highly persstent and the other is not.

hl,t =.01+ 05r12t_ 1 + 94h1,t- 1 h2,t =5+ .2r22’t_ 1 + '5h2,t- 1

(34)
e = /Meerr, rap =+/horer, e = Eriepreyy

The corrdations follow severa processes that are labeled as follows:

Constant r{ =.9

Sne r =.5+.4cos(2pt/200)
Fast Sne r =.5+.4cos(2pt/40)
Step r, =.9- .5t >500)
Ramp r = mod(t/ 200)

These processes were chosen because they exhibit rapid changes, gradua changes and
periods of congtancy. Various other experiments are done with different error

digtributions and different data generating parameters but the results are quite smilar.

13



1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6 4

0.4 4

0.2 4

0.0

CORRELATION EXPERIMENTS

1.0

0.9
) 08 4
J 07 J
4 06
05
1 04
A AN YA YR SRR

0.3

e MMAMLAARZ VAL Aalns s hann anan Las s A
1.0
0.8
0.6 -
0.4
02
LRI BLELELPUY LU BLEILPUY SLELELELE LU WALBLELE B UY UL BRI 00 4
400 600 800 1000 2 1000
Figure3

Eight different methods are used to estimate the correlations — two multivariate

GARCH modes, Orthogond GARCH, two integrated DCC modes and one mean
reverting DCC plus the exponentid smoother from RISKMETRICS and the familiar 100

day

moving average. The methods and their descriptions are:

SCALAR BEKK — scdar verson of (10) with variance targeting asin (12)
DIAG BEKK- diagond version of (10) with variance targeting asin (11)
DCC IMA — Dynamic Conditiond Correlation with integrated moving average
edimation asin (26)

DCC INT —Dynamic Conditiona Correation by Log Likelihood for integrated
process

DCCLL MR — Dynamic Conditiond Corrdation by Log Likdihood with mean
reverting modd asin (24)

MA100- Moving Average of 100 days

EX .06 —Exponentid smoothing with parameter=.06

OGARCH- orthogona GARCH or principle components GARCH asin (9).
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Three performance measures are used. Thefirst is Smply the comparison of the
estimated correlations with the true correlations by mean absolute error. Thisis defined
as.

(35) MAEz%ém- ryl

and of coursethe smadlest values are the best. A second measureis atest for
autocorrelation of the squared standardized resduds. For a multivariate problem, the
standardized resduds are defined as

(36) ne = Hi ¥
whichin this bivariate case is implemented with a triangular square root defined as:

My =rpe /o [Hpg

_ 1 't
N2t =2 —3 "t —
HootlL- 1§ \/Hll,t(i' Iy )

Thetest is computed as an F test from the regression of nft and n%lt on 5 lags of the

(37)

sguares and cross products of the standardized resduals plus an intercept. The number of
rgections using a 5% critica value isameasure of the performance of the estimator
since the more rgjections, the more evidence that the sandardized residuals have
remaning time varying volatilities. Thistest can obvioudy be used for redl data

The third performance measure is an evauation of the estimator for calculating
vaueat risk. For aportfolio with w invested in the first asset and (1-w) in the second, the
vaue a risk, assuming normdlity, is

(38) VaR :1-65\/(W2H11,t +(1- W)PH ¢ +2* £ [Hy (Hooy )

and a dichotomous variable called hit should be unpredictable based on the past where hit
isdefined as:

(39) hity = 1(w* ry +(1- W)*rp <-VaR )- .05

The Dynamic Quantile Test introduced by Engle and Mangandi(1999) is an F test of the
hypothesisthat al coefficients aswdll asthe intercept are zero in aregresson of this

15



variable on its pagt, on current VaR, and any other variables. Inthiscase 5 lags are used
and the number of days since the last hit (lagged one day) are used. The number of
rgections usng a 5% critica vaue is a measure of modd performance. The reported
results are for w =.5, but Smilar results were obtained for a hedge portfolio with weights
1,-1. Asthesetests are both done “in sample” it is not surprisng to find that often they

have less than a 5% rejection rate.

V.RESULTS

Table| presents the results for the Mean Absolute Error for the eight etimators
for 6 experiments with 200 replications. In four of the Six cases the DCC mean reverting
mode has the smdlest MAE. When these errors are summed over al cases, thismodd is
the best. Very close second and third place models are DCC integrated with log
likelihood estimation, and scalar BEKK.

In Table 11 the second standardized residud istested for remaining
autocorrdationinitssquare.  Thisisthe more reveding test snce it depends upon the
correlations; thetest for thefirst residua does not. For five out of six cases, the DCC
mean reverting mode! isthe best. When summed over al casesitisaclear winner. The
test for autocorrelaion in the first squared standardized residud is less uniform across
experimentsas seen in Table V. Overdl the best modd gppears to be the diagonal
BEKK.

The VaR based Dynamic Quantile Test is presented in Table V for aportfolio that
ishdf invested in each assst. The number of rgections for many of the moddsiswell
below the 5% nomind level. The minimum is somewhat spread out over models
athough the worst cases are dramatic. The MA100 is so much worse than other models
that it is not included in the graph of Figure 4. Overdl, the best method isfound to be
DCC integrated by log likelihood.

From dl of these performance measures, the Dynamic Conditiond Correlation
methods are either the best or very near the best method. Choosing among these models,
the mean reverting modd is the generad winner athough the integrated versons are close
behind.

16



TABLE |

MEAN ABSOLUTE ERROR OF CORRELATION ESTIMATES
‘ MODEL SCAL DIAG DCC LL DCC LL DCC EX.06 MA 100 O-GARCH ‘

BEKK BEKK MR INT IMA

FAST SINE 0.2292 0.2307 0.2260 0.2555 0.2581 0.2737 0.2599 0.2474
SINE 0.1422 0.1451 0.1381 0.1455 0.1678 0.1541 0.3038 0.2245
STEP 0.0859 0.0931 0.0709 0.0686 0.0672 0.0810 0.0652 0.1566
RAMP 0.1610 0.1631 0.1546 0.1596 0.1768 0.1601 0.2828 0.2277
CONST 0.0273 0.0276 0.0070 0.0067 0.0105 0.0276 0.0185 0.0449
T(4) SINE  0.1595 0.1668 0.1478 0.1583 0.2199 0.1599 0.3016 0.2423

SUM OF MEAN ABSOLUTE ERROR ESTIMATES OF CORRELATIONS

B T(4) SINE
B CONST

W RAMP

[ STEP
[JSINE

B FAST SINE

9N O Q.
Y A C‘o 0 ¢, N %\, Gy
62(\ 62(\ @ 00 '?O
% % ”
Figure4
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TABLE I

FRACTION OF 5% TESTSFINDING AUTOCORRELATION IN SQUARED

STANDARDIZED SECOND RESIDUAL

’ MODEL SCAL DIAG DCCLL DCCLL DCCIMA EX.06 MA 100 O-GARCH

BEKK BEKK MR INT

FAST SINE  0.1750 0.0550 0.0450 0.2400 0.2350 0.5750 0.9700

0.0500

SINE 0.3769 0.1313 0.0500 0.0800 0.1850 0.5750 1.0000

0.1200

STEP 0.7638  0.4650 0.1616 0.1900 0.4900 0.7500 0.9900

0.6000

RAMP 0.3550 0.1350 0.1150 0.4400 0.6350 0.6450 0.9950

0.1200

CONST 0.9600 0.2050 0.0182 0.0200 0.0250 0.9400 0.9950

0.8550

T(4) SINE 0.2000 0.1300 0.1500 0.1950 0.1050 0.2450 0.8450

0.1300

SUM OF REJECTIONS OF AUTOCORRELATION TEST2

Figure5
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TABLE 111
FRACTION OF 5% TESTSFINDING AUTOCORRELATION IN SQUARED
STANDARDIZED FIRST RESIDUAL

0.25+

‘ MODEL SCAL DIAG DCC LL DCCLL DCCIMA EX .06 MA 100 O-GARCH
BEKK BEKK MR INT
FAST SINE 0.0900 0.0100 0.0050 0.0150 0.5150
SINE 0.0151 0.0051 0.0100 0.0100 0.0050 0.0200 0.4850 0.0050
STEP 0.0151 0.0100 0.0051 0.0050 0.0200 0.0150 0.5350 0.0100
RAMP 0.0150 0.0050 0.0200 0.0200 0.0150 0.0250 0.6050 0.0100
CONST 0.0150 0.0100 0.0121 0.0150 0.0100 0.0100 0.5050 0.0100
T(4) SINE 0.0500 0.0450 0.0550 0.0600 0.0500 0.0600 0.3950 0.0650
SUM OF REJECTIONS OF AUTOCORRELATION TEST1
B T(4) SINE
B CONST
I RAMP
CISTEP
B SINE
EFAST SINE

Figure 6
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FRACTION OF 5% DYNAMIC QUANTILE TESTSREJECTING
VALUE AT RISK

TABLE IV

’ MODEL SCAL DIAG DCC LL DCCLL DCCIMA EX .06 MA 100 O-GARCH
BEKK BEKK MR INT
FAST SINE 0.0050 0.0100 0.0000 0.0000 0.0050 0.0400 0.3000 0.0100
SINE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0100 0.2000 0.0650
STEP 0.0352 0.0150 0.0253 0.0200 0.0250 0.0600 0.2350 0.2850
RAMP 0.0100 0.0100 0.0000 0.0000 0.0000 0.0300 0.3300 0.0450
CONST 0.0250 0.0200 0.0000 0.0000 0.0000 0.0900 0.2650 0.0500
T(4) SINE 0.0300 0.0300 0.0200 0.0100 0.0150 0.0300 0.2100 0.0400
SUM OF REJECTIONSVALUE AT RISK
B T(4) SINE
B CONST
I RAMP
CISTEP
B SINE
W FAST SINE

Figure7

20




VIl. EMPIRICAL RESULTS

Empirica examples of these correlation estimates are presented for severa
interesting series. First we examine the correlation between the Dow Jones Industria
Average and the NASDAQ composite for the ten years ending in March 2000. Then we
look at correlations between stocks and bonds, a central feature of asset alocation
models. Findly we examine the correlation between returns on severd currencies around
mgor higorica eventsincluding the launch of the Euro.

The dramatic risein the NASDAQ over the last part of the 90’ s perplexed many
portfolio managers and ddighted the new internet start-ups and day traders. A plot of the
GARCH volatilities of these series reved s that the NASDAQ has dways been more
volatile than the Dow but that this gap widens a the end of the sample.

Ten Years of Volatilities

60

50 -

40 -

304 |

204 M 4 "L% ; L

10 -# AT AN TRy

O IIII|IIII|IIII|IIII|IIII|I\II|I\II|II\I|IIII|IIII|II

3/23/90 2/21/92 1/21/94 12/22/95 11/21/97 10/22/99

— VOL_DJ_GARCH --—-- VOL_NQ_GARCH
Figure8.
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The corrdation between the Dow and NASDAQ was estimated with the DCC

integrated method using the volatilitiesin the figure above. Theresults are quite
interesting.

Correlation Between Dow and Nasdaq
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Figure9
While for most of the decade the correlations were between .6 and .9, there were two
notable drops. 1n 1993 the correlations averaged .5 and dropped below .4, and in March
of 2000 they again dropped below .4. The episode in 2000 is associated with sector
rotation between “new economy” stocks and “brick and mortar” stocks. The drop at the
end of the sample period is more pronounced for some estimators than for others.
Looking at just the last year in Figure 10, it can be seen that only the Orthogond GARCH

corrdations fail to decline and that the BEKK corrdations are most voldtile.
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Correlation for one Year
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The second empirica example isthe corrdation between domestic stocks and
bonds. Taking bond returns to be minus the change in the 30 year benchmark yield to
maturity, the correlation between the Dow and the Nasdaq are shown in Figure 11 for the
integrated DCC for thelast ten years.  The correlations are generdly positive in the
range of .4 except for the summer of 1998 when they become highly negative, and the
end of the sample when they are about zero. Whileit iswidely reported in the press that
the Nasdag does not seem to be sensitive to interest rates, the data suggests thet thisis
aso true for the Dow. Throughout the decade it appears that the Dow is more highly
correlated with bond prices than is the Nasdag.
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Ten Years of Stock and Bond Correlations
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Figure 11

Currency correlations show dramatic evidence of non-dationarity. That is, there

are very pronounced apparent structural changesin the correlation process. In

1.0
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Figure 12
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Figure 12, the breskdown of the corrdations between the Deutschmark and the Pound
and Lirain August of 1992 is very apparent. For the Pound this was areturn to amore
norma correlation while for the Lira it was a dramatic uncoupling.

Figure 13 shows currency correlaions leading up to the launch of the Euroin
January 1999. The Lira haslower correlations with the Franc and Deutschmark from 93
to 96 but then they gradually approach one. Asthe Euro islaunched the estimated
correlation has moved essentidly to one. Inthe last year it drops below .95 only once for

the Franc/Liraand not a dl for the other two pairs.

CURRENCY CORRELATIONS
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VIl.  CONCLUSIONS

In this paper anew family of multivariste GARCH models has been proposed
which can be smply estimated in two steps from univariate GARCH estimates of each
equation. A Maximum Likelihood estimator has been proposed and severd different
specifications suggested. The god of this proposd isto find specifications thet
potentialy can estimate large covariance matrices. In this paper, only bivariate sysems
have been estimated to establish the accuracy of this modd for smpler structures.
However, the procedure has been carefully defined and should also work for large
systems. A desirable practicd feature of the DCC modds, is that multivariate and
univariate volatility forecasts are consstent with each other. When new varigbles are
added to the system, the volatility forecasts of the origind assets will be unchanged and
correations may even remain unchanged depending upon how the modd isrevised.

The main finding in this paper isthat the bivariate verson of this modd provides
avery good gpproximation to a variety of time varying correation processes. The
comparison of DCC with smple multivariate GARCH and severd other estimators
shows that the DCC is often the most accurate. Thisis true whether the criterion ismean
absolute error, diagnostic tests or tests based on value at risk caculgions

Empirica examples from typicd financid gpplications are quite encouraging as
they reved important time varying features which might otherwise be difficult to
quantify.
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