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Abstract

We model demand-pressure effects on option prices. The model shows that
demand pressure in one option contract increases its price by an amount pro-
portional to the variance of the unhedgeable part of the option. Similarly, the
demand pressure increases the price of any other option by an amount propor-
tional to the covariance of their unhedgeable parts. Empirically, we identify
aggregate positions of dealers and end users using a unique dataset, and show
that demand-pressure effects contribute to well-known option-pricing puzzles. In-
deed, time-series tests show that demand helps explain the overall expensiveness
and skew patterns of both index options and single-stock options.
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One of the major achievements of financial economics is the no-arbitrage theory
that determines derivative prices independently of investor demand. Building on the
seminal contributions of Black and Scholes (1973) and Merton (1973), a large literature
develops various parametric implementations of the theory. This literature is surveyed
by Bates (2003) who emphasizes that it cannot fully capture — and much less explain
— the empirical properties of option prices, concluding that there is a need for a new
approach to pricing derivatives. He writes:

“To blithely attribute divergences between objective and risk-neutral prob-
ability measures to the free ‘risk premium’ parameters within an affine
model is to abdicate one’s responsibilities as a financial economist. ... a re-
newed focus on the explicit financial intermediation of the underlying risks
by option market makers is needed.”

We take on this challenge. Our model departs fundamentally from the no-arbitrage
framework by recognizing that option market makers cannot perfectly hedge their
inventories, and, consequently, option demand impacts option prices. We obtain ex-
plicit expressions for the effects of demand on option prices, provide empirical evidence
consistent with the demand-pressure model using a unique dataset, and show that
demand-pressure effects can help to resolve the main option-pricing puzzles.

The starting point of our analysis is that options are traded because they are useful
and, therefore, options cannot be redundant for all investors (Hakansson (1979)). We
denote the agents who have a fundamental need for option exposure as “end users.”

Intermediaries such as market makers and proprietary traders provide liquidity to
end users by taking the other side of the end-user net demand. If intermediaries can
hedge perfectly — as in a Black-Scholes-Merton economy — then option prices are
determined by no-arbitrage and demand pressure has no effect. In reality, however,
even intermediaries cannot hedge options perfectly because of the impossibility of trad-
ing continuously, stochastic volatility, jumps in the underlying, and transaction costs
(Figlewski (1989)). In addition, intermediaries are sensitive to risk, e.g., because of
capital constraints and agency problems (Shleifer and Vishny (1997)).

To capture this, we consider how options are priced by competitive risk-averse
dealers who cannot hedge perfectly. In our model, dealers trade an arbitrary number
of option contracts on the same underlying at discrete times. Since the dealers trade
many option contracts, certain risks net out, while others do not. The dealers can hedge
part of the remaining risk of their derivative positions by trading the underlying security
and risk-free bonds. We consider a general class of distributions for the underlying,
which can accommodate stochastic volatility and jumps. Dealers trade options with
end users. The model is agnostic about the end users’ reasons for trade.

We compute equilibrium prices as functions of demand pressure, that is, the prices
that make dealers optimally choose to supply the options that the end users demand.
We show explicitly how demand pressure enters into the pricing kernel. Intuitively,
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a positive demand pressure in an option increases the pricing kernel in the states of
nature in which an optimally hedged position has a positive payoff. This pricing-kernel
effect increases the price of the option, which entices the dealers to sell it. Specifically,
a marginal change in the demand pressure in an option contract increases its price by
an amount proportional to the variance of the unhedgeable part of the option, where
the variance is computed under a certain probability measure. Similarly, the demand
pressure increases the price of any other option by an amount proportional to the
covariance of their unhedgeable parts. Hence, while demand pressure in a particular
option raises its price, it also raises the prices of other options on the same underlying,
especially those of similar contracts.

Empirically, we use a unique dataset to identify aggregate daily positions of dealers
and end users. In particular, we define dealers as market makers and end users as
proprietary traders and customers of brokers.1 We are the first to document that end
users have a net long position in S&P500 index options with large net positions in
out-of-the-money puts. Since options are in zero net supply, this implies that dealers
are short index options.2 We estimate that these large short dealer positions lead to
daily delta-hedged profits and losses varying between $100 million and -$100 million,
and cumulative dealer profits of approximately $800 million over our 6 year sample.
Hence, consistent with our framework, dealers face significant unhedgeable risk and are
compensated for bearing it.

The end-user demand for index options can help explain the two puzzles that index
options appear to be expensive, and that low-moneyness options seem to be especially
expensive (Longstaff (1995), Bates (2000), Coval and Shumway (2001), Bondarenko
(2003), Amin, Coval, and Seyhun (2004)). In the time series, the model-based impact
of demand for index options is positively related to their expensiveness, measured by the
difference between their implied volatility and the volatility measure of Bates (2005).
This link between demand and prices is stronger following recent dealer losses, as would
be expected if dealers are more risk averse at such times. Likewise, the steepness of the
smirk, measured by the difference between the implied volatilities of low-moneyness
options and at-the-money options, is positively related to the skew of option demand.

Jackwerth (2000) finds that a representative investor’s option-implied utility func-
tion is inconsistent with standard assumptions in economic theory.3 Since options are
in zero net supply, a representative investor holds no options. We reconcile this finding
for dealers who have significant short index option positions. Intuitively, a dealer will

1The empirical results are robust to classifying proprietary traders as either dealers or end users.
2This fact and its relevance for pricing appear to be recognized by option traders. For instance,

Vanessa Gray, director of global equity derivatives, Dresdner Kleinwort Benson, states that option
implied volatility skew “is heavily influenced by supply and demand factors, ” and Amine Belhadj-
Soulami, head of equity derivatives trading for Europe, Paribas, remarks that the “number of players
in the skew market is limited. ... there’s a huge imbalance between what clients want and what
professionals can provide.”

3See also Driessen and Maenhout (2003).
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short index options, but only a finite number of options. Hence, while a standard-utility
investor may not be marginal on options given a zero position, he is marginal given a
certain negative position. We do not address why end users buy these options; their
motives might be related to portfolio insurance and agency problems (e.g. between
investors and fund managers) that are not well captured by standard utility theory.

Another option-pricing puzzle is the significant difference between index option
prices and the prices of single-stock options, despite the relative similarity of the under-
lying distributions (e.g., Bakshi, Kapadia, and Madan (2003) and Bollen and Whaley
(2004)). In particular, single-stock options appear cheaper and their smile is flatter.
Consistently, we find that the demand pattern for single-stock options is very different
from that of index options. For instance, end users are net short single-stock options
— not long, as in the case of index options.

Demand patterns further help explain the time-series and cross-sectional pricing of
single-stock options. Indeed, individual stock options are cheaper at times when end
users sell more options, and, in the cross section, stocks with more negative demand
for options, aggregated across contracts, tend to have relatively cheaper options.

The paper is related to several strands of literature. First, the literature on option
pricing in the context of trading frictions and incomplete markets derives bounds on
option prices. Arbitrage bounds are trivial with any transaction costs; for instance,
the price of a call option can be as high as the price of the underlying stock (Soner,
Shreve, and Cvitanic (1995)). This serious limitation of no-arbitrage pricing has led
Bernardo and Ledoit (2000) and Cochrane and Saa-Requejo (2000) to derive tighter
option-pricing bounds by restricting the Sharpe ratio or gain/loss ratio to be below an
arbitrary level, and stochastic dominance bounds for small option positions are derived
by Constantinides and Perrakis (2002) and extended and implemented empirically
by Constantinides, Jackwerth, and Perrakis (2005). Rather than deriving bounds,
we compute explicit prices based on the demand pressure by end users. We further
complement this literature by taking portfolio considerations into account, that is, the
effect of demand for one option on the prices of other options.

Second, the literature on utility-based option pricing (“indifference pricing”) de-
rives the option price that would make an agent (e.g., the representative agent) indif-
ferent between buying the option and not buying it. See Rubinstein (1976), Brennan
(1979), Stapleton and Subrahmanyam (1984), Hugonnier, Kramkov, and Schacher-
mayer (2005), and references therein. While this literature computes the price of the
first “marginal” option demanded, we show how option prices change when demand is
non-trivial.

Third, Stein (1989) and Poteshman (2001) provide evidence that option investors
misproject changes in the instantaneous volatility of underlying assets by examining
the price changes of shorter and longer maturity options. Our paper shows how cog-
nitive biases of option end users can translate (via their option demands) into option
prices even if market makers are not subject to any behavioral biases. By contrast,
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under standard models like Black-Scholes-Merton, market makers who can hedge their
positions perfectly will correct the mistakes of other option market participants before
they affect option prices.

Fourth, the general idea of demand-pressure effects goes back, at least, to Keynes
(1923) and Hicks (1939) who considered futures markets. Our model is the first to apply
this idea to option pricing and to incorporate the important features of option markets,
namely dynamic trading of many assets, hedging using the underlying and bonds,
stochastic volatility, and jumps. The generality of our model also makes it applicable
to other markets. Consistent with our model’s predictions, Wurgler and Zhuravskaya
(2002) extend Shleifer (1986) and find that stocks that are hard to hedge experience
larger price jumps when included into the S&P 500 index. Greenwood (2005) considers
a major redefinition of the Nikkei 225 index in Japan and finds that stocks that are
not affected by demand shocks, but that are correlated with securities facing demand
shocks, experience price changes. Similarly in the fixed income market, Newman and
Rierson (2004) find that non-informative issues of telecom bonds depress the price
of the issued bond as well as correlated telecom bonds, and Gabaix, Krishnamurthy,
and Vigneron (2004) find related evidence for mortgage-backed securities. Further,
de Roon, Nijman, and Veld (2000) find futures-market evidence consistent with the
model’s predictions.

The most closely related paper is Bollen and Whaley (2004), which demonstrates
that changes in implied volatility are correlated with signed option volume. These
empirical results set the stage for our analysis by showing that changes in option
demand lead to changes in option prices while leaving open the question of whether
the level of option demand impacts the overall level (i.e., expensiveness) of option
prices or the overall shape of implied-volatility curves.4 We complement Bollen and
Whaley (2004) by providing a theoretical model and by investigating empirically the
relationship between the level of end user demand for options and the level and overall
shape of implied volatility curves. In particular, we document that end users tend to
have a net long SPX option position and a short equity-option position, thus helping
to explain the relative expensiveness of index options. We also show that there is a
strong downward skew in the net demand of index but not equity options which helps
to explain the difference in the shapes of their overall implied volatility curves.

1 A Model of Demand Pressure

We consider a discrete-time infinite-horizon economy. There exists a risk-free asset
paying interest at the rate of Rf −1 per period, and a risky security that we refer to as
the “underlying” security. At time t, the underlying has an exogenous strictly positive

4Indeed, Bollen and Whaley (2004) find that a nontrivial part of the option price impact from day
t signed option volume dissipates by day t + 1.
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price5 of St, dividend Dt, and an excess return of Re
t = (St + Dt)/St−1 − Rf and the

distribution of future prices and returns is characterized by a stationary Markov state
variable Xt ∈ X ⊂ R

n, with X compact.6 (The state variable could include the current
level of volatility, the current jump intensity, etc.) The only condition we impose on
the transition function π : X × X → R+ of X is that it have the Feller property.

The economy further has a number of “derivative” securities, whose prices are to
be determined endogenously. A derivative security is characterized by its index i ∈ I,
where i collects the information that identifies the derivative and its payoffs. For a
European option, for instance, the strike price, maturity date, and whether the option
is a “call” or “put” suffice. The set of derivatives traded at time t is denoted by It,
and the vector of prices of traded securities is pt = (pi

t)i∈It
.

We assume that the payoffs of the derivatives depend on St and Xt. We note that
the theory is completely general and does not require that the “derivatives” have payoffs
that depend on the underlying. In principle, the derivatives could be any securities
whose prices are affected be demand pressure.

The economy is populated by two kinds of agents: “dealers” and “end users.” Deal-
ers are competitive and there exists a representative dealer who has constant absolute
risk aversion, that is, his utility for remaining life-time consumption is:

U(Ct, Ct+1, . . .) = Et

[

∞
∑

v=t

ρv−tu(Cv)

]

,

where u(c) = − 1
γ
e−γc and ρ < 1 is a discount factor. At any time t, the dealer

must choose the consumption Ct, the dollar investment in the underlying θt, and the
number of derivatives held qt = (qi

t)i∈It
, while satisfying the transversality condition

limt→∞ E
[

ρ−te−kWt
]

= 0, where the dealer’s wealth evolves as

Wt+1 = yt+1 + (Wt − Ct)Rf + qt(pt+1 − Rfpt) + θtR
e
t+1,

k = γ(Rf − 1)/Rf , and yt is the dealer’s time-t endowment. We assume that the
distribution of future endowments is characterized by Xt.

7

In the real world, end users trade options for a variety of reasons such as portfolio
insurance, agency reasons, behavioral reasons, institutional reasons etc. Rather than
trying to capture these various trading motives endogenously, we assume that end
users have an exogenous aggregate demand for derivatives of dt = (di

t)i∈It
at time t.

We assume that Re
t , Dt/St, and yt are continuous functions of Xt. The distribution of

5All random variables are defined on a probability space (Ω,F , P r) with an associated filtration
{Ft : t ≥ 0} of sub-σ-algebras representing the resolution over time of information commonly available
to agents.

6This condition can be relaxed at the expense of further technical complexity.
7More precisely, the distribution of (yt+1, yt+2, . . .) conditional on Ft is the same as the distribution

conditional on Xt, i.e., L(yt+1, yt+2, . . . | Ft) = L(yt+1, yt+2, . . . |Xt).
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future demand is characterized by Xt. Furthermore, for technical reasons, we assume
that, after some time T , demand pressure is zero, that is, dt = 0 for t > T .

Derivative prices are set through the interaction between dealers and end users in
a competitive equilibrium.

Definition 1 A price process pt = pt(dt, Xt) is a (competitive Markov) equilibrium if,
given p, the representative dealer optimally chooses a derivative holding q such that
derivative markets clear, i.e., q + d = 0.

Our asset-pricing approach relies on the insight that, by observing the aggregate
quantities held by dealers, we can determine the derivative prices consistent with the
dealers’ utility maximization. Our goal is to determine how derivative prices depend on
the demand pressure d coming from end users. We note that it is not crucial that end
users have inelastic demand. All that matters is that end users have demand curves
that result in dealers holding a position of q = −d.

To determine the representative dealer’s optimal behavior, we consider his value
function J(W ; t,X), which depends on his wealth W , the state of nature X, and time
t. Then, the dealer solves the following maximization problem:

max
Ct,qt,θt

−
1

γ
e−γCt + ρEt[J(Wt+1; t + 1, Xt+1)] (1)

s.t. Wt+1 = yt+1 + (Wt − Ct)Rf + qt(pt+1 − Rfpt) + θtR
e
t+1. (2)

The value function is characterized in the following proposition.

Lemma 1 If pt = pt(dt, Xt) is the equilibrium price process and k =
γ(Rf−1)

Rf
, then the

dealer’s value function and optimal consumption are given by

J(Wt; t,Xt) = −
1

k
e−k(Wt+Gt(dt,Xt)) (3)

Ct =
k

γ
(Wt + Gt(dt, Xt)) (4)

and the stock and derivative holdings are characterized by the first-order conditions

0 = Et

[

e−k(yt+1+θtRe
t+1+qt(pt+1−Rf pt)+Gt+1(dt+1,Xt+1))Re

t+1

]

(5)

0 = Et

[

e−k(yt+1+θtRe
t+1+qt(pt+1−Rf pt)+Gt+1(dt+1,Xt+1)) (pt+1 − Rfpt)

]

, (6)

where, for t ≤ T , the function Gt(dt, Xt) is derived recursively using (5), (6), and

e−krGt(dt,Xt) = RfρEt

[

e−k(yt+1+qt(pt+1−Rf pt)+θtRe
t+1+Gt+1(dt+1,Xt+1))

]

(7)
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and for t > T , the function Gt(dt, Xt) = Ḡ(Xt) where (Ḡ(Xt), θ̄(Xt)) solves

e−krḠ(Xt) = RfρEt

[

e−k(yt+1+θ̄tRe
t+1+Ḡ(Xt+1))

]

(8)

0 = Et

[

e−k(yt+1+θ̄tRe
t+1+Ḡ(Xt+1))Re

t+1

]

. (9)

The optimal consumption is unique and the optimal security holdings are unique pro-
vided their payoffs are linearly independent.

While dealers compute optimal positions given prices, we are interested in inverting
this mapping and compute the prices that make a given position optimal. The following
proposition ensures that this inversion is possible.

Proposition 1 Given any demand pressure process d for end users, there exists a
unique equilibrium p.

Before considering explicitly the effect of demand pressure, we make a couple of
simple “parity” observations that show how to treat derivatives that are linearly de-
pendent such as puts and calls with the same strike and maturity. For simplicity, we
do this only in the case of a non-dividend paying underlying, but the results can eas-
ily be extended. We consider two derivatives, i and j such that a non-trivial linear
combination of their payoffs lies in the span of exogenously-priced securities, i.e., the
underlying and the bond. In other words, suppose that at the common maturity date
T ,

pi
T = λpj

T + α + βST

for some constants α, β, and λ. Then it is easily seen that, if positions
(

qi
t, q

j
t , bt, θt

)

in
the two derivatives, the bond,8 and the underlying, respectively, are optimal given the

prices, then so are positions
(

qj
t + a, qj

t − λa, bt − aαR
−(T−t)
f , θt − aβS−1

t

)

. This has

the following implications for equilibrium prices:

Proposition 2 Suppose that Dt = 0 and pi
T = λpj

T + α + βST . Then:
(i) For any demand pressure, d, the equilibrium prices of the two derivatives are related
by

pi
t = λpj

t + αR
−(T−t)
f + βSt.

(ii) Changing the end user demand from
(

di
t, d

j
t

)

to
(

di
t + a, dj

t − λa
)

, for any a ∈ R,
has no effect on equilibrium prices.

The first part of the proposition is a general version of the well-known put-call parity.
It shows that if payoffs are linearly dependent then so are prices.

8This is a dollar amount; equivalently, we may assume that the price of the bond is always 1.
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The second part of the proposition shows that linearly dependent derivatives have
the same demand-pressure effects on prices. Hence, in our empirical exercise, we can
aggregate the demand of calls and puts with the same strike and maturity. That is, a
demand pressure of di calls and dj puts is the same as a demand pressure of di + dj

calls and 0 puts (or vice versa).

2 Price Effects of Demand Pressure

We now consider the main implication of the theory, namely the impact of demand
pressure on prices. Our goal is to compute security prices pi

t as functions of the current
demand pressure dj

t and the state variable Xt (which incorporates beliefs about future
demand pressure).

We think of the price p, the hedge position θt in the underlying, and the consumption
function G as functions of dj

t and Xt. Alternatively, we can think of the dependent
variables as functions of the dealer holding qj

t and Xt, keeping in mind the equilibrium
relation that q = −d. For now we use this latter notation.

At maturity date T , an option has a known price pT . At any prior date t, the price
pt can be found recursively by “inverting” (6) to get

pt =
Et

[

e−k(yt+1+θtRe
t+1+qtpt+1+Gt+1)pt+1

]

RfEt

[

e−k(yt+1+θtRe
t+1+qtpt+1+Gt+1)

] (10)

where the hedge position in the underlying, θt, solves

0 = Et

[

e−k(yt+1+θtRe
t+1+qtpt+1+Gt+1)Re

t+1

]

(11)

and where G is computed recursively as described in Lemma 1. Equations (10) and
(11) can be written in terms of a demand-based pricing kernel:

Theorem 1 Prices p and the hedge position θ satisfy

pt = Et(m
d
t+1pt+1) =

1

Rf

Ed
t (pt+1) (12)

0 = Et(m
d
t+1R

e
t+1) =

1

Rf

Ed
t (R

e
t+1) (13)

where the pricing kernel md is a function of demand pressure d:

md
t+1 =

e−k(yt+1+θtRe
t+1+qtpt+1+Gt+1)

RfEt

[

e−k(yt+1+θtRe
t+1+qtpt+1+Gt+1)

] (14)

=
e−k(yt+1+θtRe

t+1−dtpt+1+Gt+1)

RfEt

[

e−k(yt+1+θtRe
t+1−dtpt+1+Gt+1)

] , (15)
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and Ed
t is expected value with respect to the corresponding risk-neutral measure, i.e.

the measure with a Radon-Nykodim derivative of Rfm
d
t+1.

To understand this pricing kernel, suppose for instance that end users want to sell
derivative i such that di

t < 0, and that this is the only demand pressure. In equilibrium,
dealers take the other side of the trade, buying qi

t = −di
t > 0 units of this derivative,

while hedging their position using a position of θt in the underlying. The pricing
kernel is small whenever the “unhedgeable” part qtpt+1 + θtR

e
t+1 is large. Hence, the

pricing kernel assigns a low value to states of nature in which a hedged position in the
derivative pays off profitably, and it assigns a high value to states in which a hedged
position in the derivative has a negative payoff. This pricing kernel-effect decreases the
price of this derivative, which is what entices the dealers to buy it.

It is interesting to consider the first-order effect of demand pressure on prices.
Hence, we calculate explicitly the sensitivity of the prices of a derivative pi

t with respect
to the demand pressure of another derivative dj

t . We can initially differentiate with
respect to q rather than d since qi = −di

t.
For this, we first differentiate the pricing kernel9

∂md
t+1

∂qj
t

= −kmd
t+1

(

pj
t+1 − Rfp

j
t +

∂θt

∂qj
t

Re
t+1

)

(16)

using the facts that ∂G(t+1,Xt+1;q)

∂qj
t

= 0 and ∂pt+1

∂qj
t

= 0. With this result, it is straightfor-

ward to differentiate (13) to get

0 = Et

(

md
t+1

(

pj
t+1 − Rfp

j
t +

∂θt

∂qj
t

Re
t+1

)

Re
t+1

)

(17)

which implies that the marginal hedge position is

∂θt

∂qj
t

= −
Et

(

md
t+1

(

pj
t+1 − Rfp

j
t

)

Re
t+1

)

Et

(

md
t+1(R

e
t+1)

2
) = −

Covd
t (p

j
t+1, R

e
t+1)

Vard
t (R

e
t+1)

(18)

Similarly, we derive the price sensitivity by differentiating (12)

∂pi
t

∂qj
t

= −kEt

[

md
t+1

(

pj
t+1 − Rfp

j
t +

∂θt

∂qj
t

Re
t+1

)

pi
t+1

]

(19)

= −
k

Rf

Ed
t

[(

pj
t+1 − Rfp

j
t −

Covd
t (p

j
t+1, R

e
t+1)

Vard
t (R

e
t+1)

Re
t+1

)

pi
t+1

]

(20)

= −γ(Rf − 1)Ed
t

[

p̄j
t+1p̄

i
t+1

]

(21)

= −γ(Rf − 1)Covd
t

[

p̄j
t+1, p̄

i
t+1

]

(22)

where p̄i
t+1 and p̄j

t+1 are the unhedgeable parts of the price changes as defined in:

9We suppress the arguments of functions. We note that pt, θt, and Gt are functions of (dt,Xt, t),
and md

t+1 is a function of (dt,Xt, dt+1,Xt+1, yt+1, R
e
t+1, t).
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Definition 2 The unhedgeable price change of any security k is

p̄k
t+1 = R−1

f

(

pk
t+1 − Rfp

k
t −

Covd
t (p

k
t+1, R

e
t+1)

Vard
t (R

e
t+1)

Re
t+1

)

. (23)

Equation (22) can also be written in terms of the demand pressure, d, by using the
equilibrium relation d = −q:

Theorem 2 The price sensitivity to demand pressure is

∂pi
t

∂dj
t

= γ(Rf − 1)Ed
t

(

p̄i
t+1p̄

j
t+1

)

= γ(Rf − 1)Covd
t

(

p̄i
t+1, p̄

j
t+1

)

This result is intuitive: it says that the demand pressure in an option j increases
the option’s own price by an amount proportional to the variance of the unhedgeable
part of the option and the aggregate risk aversion of dealers. We note that since a
variance is always positive, the demand-pressure effect on the security itself is naturally
always positive. Further, this demand pressure affects another option i by an amount
proportional to the covariation of their unhedgeable parts. For European options, we
can show, under the condition stated below, that a demand pressure in one option also
increases the price of other options on the same underlying:

Proposition 3 Demand pressure in any security j:

(i) increases its own price, that is,
∂pj

t

∂dj
t

≥ 0.

(ii) increases the price of another security i, that is,
∂pi

t

∂dj
t

≥ 0, provided that Ed
t

[

pi
t+1|St+1

]

and Ed
t

[

pj
t+1|St+1

]

are convex functions of St+1 and Covd
t

(

pi
t+1, p

j
t+1|St+1

)

≥ 0.

The conditions imposed in part (ii) are natural. First, we require that prices inherit
the convexity property of the option payoffs in the underlying price. Second, we require
that Covd

t

(

pi
t+1, p

j
t+1|St+1

)

≥ 0, that is, changes in the other variables have a similar
impact on both option prices — for instance, both prices are increasing in the volatility
or demand level. Note that both conditions hold if both options mature after one
period. The second condition also holds if option prices are homogenous (of degree 1)
in (S,K), where K is the strike, and St is independent of Xt.

It is interesting to consider the total price that end users pay for their demand dt

at time t. Vectorizing the derivatives from Theorem 2, we can first-order approximate
the price around a zero demand as follows

pt ≈ pt(dt = 0) + γ(Rf − 1)Ed
t

(

p̄t+1p̄
′
t+1

)

dt (24)

Hence, the total price paid for the dt derivatives is

d′
tpt = d′

tpt(dt = 0) + γ(Rf − 1)d′
tE

d
t

(

p̄t+1p̄
′
t+1

)

dt (25)

= d′
tpt(0) + γ(Rf − 1)Vard

t (d′
tp̄t+1) (26)
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The first term d′
tpt(dt = 0) is the price that end users would pay if their demand

pressure did not affect prices. The second term is total variance of the unhedgeable
part of all of the end users’ positions.

While Proposition 3 shows that demand for an option increases the prices of all
options, the size of the price effect is, of course, not the same for all options. Nor is
the effect on implied volatilities the same. Under certain conditions, demand pressure
in low-strike options has a larger impact on the implied volatility of low-strike options,
and conversely for high strike options. The following proposition makes this intuitively
appealing result precise. For simplicity, the proposition relies on unnecessarily restric-
tive assumptions. We let p(p,K, d), respectively p(c,K, d), denote the price of a put,
respectively a call, with strike price K and 1 period to maturity, where d is the demand
pressure. It is natural to compare low-strike and high-strike options that are “equally
far out of the money.” We do this be considering an out-of-the-money put with the
same price as an out-of-the-money call.

Proposition 4 Assume that the one-period risk-neutral distribution of the underlying
return is symmetric and consider demand pressure d > 0 in an option with strike
K < RfSt that matures after one trading period. Then there exists a value K̄ such that,
for all K ′ ≤ K̄ and K ′′ such that p(p,K ′, 0) = p(c,K ′′, 0), it holds that p(p,K ′, d) >
p(c,K ′′, d). That is, the price of the out-of-the-money put p(p,K ′, · ) is more affected
by the demand pressure than the price of out-of-the-money call p(c,K ′′, · ). The reverse
conclusion applies if there is demand for a high-strike option.

Future demand pressure in a derivative j also affects the current price of derivative
i. As above, we consider the first-order price effect. This is slightly more complicated,
however, since we cannot differentiate with respect to the unknown future demand
pressure. Instead, we “scale down” the future demand pressure, that is, we consider
future demand pressures d̃j

s = ǫdj
s for fixed d (equivalently, q̃j

s = ǫqj
s) for some ǫ ∈ R,

∀s > t, and ∀j.

Theorem 3 Let pt(0) denote the equilibrium derivative prices with 0 demand pressure.
Fixing a process d with dt = 0 for all t > T and a given T , the equilibrium prices p
with a demand pressure of ǫd is

pt = pt(0) + γ(Rf − 1)

[

E0
t

(

p̄t+1p̄
′
t+1

)

dt +
∑

s>t

R
−(s−t)
f E0

t

(

p̄s+1p̄
′
s+1ds

)

]

ǫ + O(ǫ2)

This theorem shows that the impact of current demand pressure dt on the price of a
derivative i is given by the amount of hedging risk that a marginal position in security
i would add to the dealer’s portfolio, that is, it is the sum of the covariances of its
unhedgeable part with the unhedgeable part of all the other securities, multiplied by
their respective demand pressures. Further, the impact of future demand pressures ds

12



is given by the expected future hedging risks. Of course, the impact increases with the
dealers’ risk aversion.

Next, we discuss how demand is priced in connection with three specific sources of
unhedgeable risk for the dealers: discrete-time hedging, jumps in the underlying stock,
and stochastic volatility risk. We focus on small hedging periods ∆t and derive the
results informally while relegating a more rigorous treatment to the appendix. The
continuously compounded riskfree interest rate is denoted r, i.e. the riskfree return
over one ∆t time period is Rf = er∆t . We assume throughout that S is an bounded
semi-martingale with smooth transition density.

2.1 Price Effect of Risk due to Discrete-Time Hedging

To focus on the specific risk due discrete-time trading (rather than continuous trading),
we consider a stock price that is a diffusion process driven by a Brownian motion with
no other state variables. In this case, markets would be complete with continuous
trading, and, hence, the dealer’s hedging risk arises solely from his trading only at
discrete times, spaced ∆t time units apart.

We are interested in the price of option i as a function of the stock price St and
demand pressure dt, pi

t = pi
t(St, dt). We denote the price without demand pressure by

f , that is, f i(t, St) := pi
t(St, d = 0) and assume throughout that f is smooth for t < T .

The change in the option price evolves approximately according to

pi
t+1

∼= f i + f i
S∆S +

1

2
f i

SS(∆S)2 + f i
t∆t (27)

where f i = f i(t, St), f i
t = ∂

∂t
f i(t, St), f i

S = ∂
∂S

f i(t, St), f i
SS = ∂2

∂S2 f
i(t, St), and ∆S =

St+1 − St. The unhedgeable option price change is

er∆t p̄i
t+1 = pi

t+1 − er∆tpi
t − f i

S(St+1 − er∆tSt) (28)

∼= −r∆tf
i + f i

t∆t + r∆tf
i
SSt +

1

2
f i

SS(∆S)2 (29)

where we expand pt+1 and use er∆t ∼= 1 + r∆t. To consider the impact of demand dj
t

in option j on the price of option i, we need the covariance of their unhedgeable parts:

Covt(e
r∆t p̄i

t+1 , er∆t p̄j
t+1)

∼=
1

4
f i

SSf j
SSV art((∆S)2)

Hence, by Theorem 2, we get the following result. (Details of the proof are in the
appendix.)

Proposition 5 If the underlying asset price follows a Markov diffusion and the period
length is ∆t, the effect on the price of demand at d = 0 is

∂pi
t

∂dj
t

=
γrV art((∆S)2)

4
f i

SSf j
SS + o(∆2

t ) (30)
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and the effect on the Black-Scholes implied volatility σ̂i
t is:

∂σ̂i
t

∂dj
t

=
γrV art((∆S)2)

4

f i
SS

νi
f j

SS + o(∆2
t ), (31)

where νi is the Black-Scholes vega.

Interestingly, the Black-Scholes gamma over vega, f i
SS/νi, does not depend on money-

ness so the first-order effect of demand with discrete trading risk is to change the level,
but not the slope, of the implied-volatility curves.

Intuitively, the impact of the demand for options of type j depends on the gamma
of these options, f j

SS, since the dealers cannot hedge the non-linearity of the payoff.
The effect of discrete-time trading is small if hedging is frequent. More precisely, the

effect is of the order of V art((∆S)2), namely ∆2
t . Hence, if we add up T/∆t terms of this

maginitude — corresponding to demand in each period between time 0 and maturity
T — then the total effect is order ∆t, which approaches zero as the ∆t approaches
zero. This is consistent with the Black-Scholes-Merton result of perfect hedging in
continuous time. As we show next, the risks of jumps and stochastic volatility do not
vanish for small ∆t (specifically, they are of order ∆t).

2.2 Jumps in the Underlying

To study the effect of jumps in the underlying, we suppose next that S is a discretely
traded jump diffusion with iid. bounded jump size, independent of the state variables,
and jump intensity π (i.e. jump probability over a period of π∆t).

The unhedgeable price change is

er∆t p̄i
t+1

∼= −r∆tf
i + f i

t∆t + r∆tf
i
SSt + (f i

SSt − θi)∆S1(no jump) + κi1(jump)

where

κi = f i(St + ∆S) − f i − θi∆S. (32)

is the unhedgeable risk in case of a jump of size ∆S.

Proposition 6 If the underlying asset price can jump, the effect on the price of de-
mand at d = 0 is

∂pi
t

∂dj
t

= γr
[

(f i
SSt − θi)(f j

SSt − θj)Vart(∆S) + π∆tEt

(

κiκj
)]

+ o(∆t) (33)

and the effect on the Black-Scholes implied volatility σ̂i
t is:

∂σ̂i
t

∂dj
t

=
γr
[

(f i
SSt − θi)(f j

SSt − θj)Vart(∆S) + π∆tEt (κiκj)
]

νi
+ o(∆t), (34)

where νi is the Black-Scholes vega.
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The terms of the form f i
SSt − θi arise because the optimal hedge θ differs from the

optimal hedge without jumps, f i
SSt, which means that some of the local noise is being

hedged imperfectly. If the jump probability is small, however, then this effect is small
(i.e., it is second order in π). In this case, the main effect comes from the jump risk κ.
We note that while conventional wisdom holds that Black-Scholes gamma is a measure
of “jump risk,” this is true only for the small local jumps considered in Section 2.1.
Large jumps have qualitatively different implications captured by κ. For instance, a
far-out-of-the-money put may have little gamma risk, but, if a large jump can bring the
option in the money, the option may have κ risk. It can be shown that this jump-risk
effect (34) means that demand can affect the slope of the implied-volatility curve to
the first order and generate a smile.10

2.3 Stochastic-Volatility Risk

To consider stochastic volatility, we let the the state variable be Xt = (St, σt), where the
stock price S is a diffusion with volatility σt, which is diffusion driven by an independent
Brownian motion. The option price pi

t = f i(t, St, σt) has unhedgeable risk given by

er∆t p̄i
t+1 = pi

t+1 − er∆tpi
t − θiRe

t+1

∼= −r∆tf
i + f i

t∆t + f i
SStr∆t + f i

σ∆σt+1

Proposition 7 With stochastic volatility, the effect on the price of demand at d = 0
is

∂pi
t

∂dj
t

= γrVar(∆σ)f i
σf

j
σ + o(∆t) (35)

and the effect on the Black-Scholes implied volatility σ̂i
t is:

∂σ̂i
t

∂dj
t

= γrVar(∆σ)
f i

σ

νi
f j

σ + o(∆t), (36)

where νi is the Black-Scholes vega.

Intuitively, volatility risk is captured to the first order by fσ. This derivative is
not exactly the same as Black-Scholes vega, since vega is the price sensitivity to a
permanent volatility change whereas fσ measures the price sensitivity to a volatility
change that mean reverts at the rate of φ. For an option with maturity at time t + T ,
we have

f i
σ

∼= νi ∂

∂σt

E

(

∫ t+T

t
σsds

T

∣

∣

∣
σ0

)

∼= νi 1 − e−φT

φT
. (37)

10Of course, the jump risk also generates smiles without demand-pressure effects; the result is that
demand can exacerbate these.
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Hence, if we combine (37) with (36), we see that stochastic volatility risk affects the
level, but not the slope, of the implied volatility curves to the first order.

3 Descriptive Statistics

The main focus of this paper is the impact of net end-user option demand on option
prices. We explore this impact both for S&P 500 index options and for equity (i.e.,
individual stock) options. Consequently, we employ data on SPX and equity option
demand and prices.11 Our data period extends from the beginning of 1996 through
the end of 2001.12 For the equity options, we limit the underlying stocks to those with
strictly positive option volume on at least 80% of the trade days over the 1996 to 2001
period. This restriction yields 303 underlying stocks.

We acquire the data from two different sources. Data for computing net option
demand were obtained directly from the Chicago Board Options Exchange (CBOE).
These data consist of a daily record of closing short and long open interest on all
SPX and equity options for public customers and firm proprietary traders.13 The SPX
options trade only at the CBOE while the equity options sometimes are cross-listed
at other option markets. Our open interest data, however, include activity from all
markets at which CBOE listed options trade. The entire option market is comprised of
public customers, firm proprietary traders, and market makers. Hence, our data cover
all non-market-maker option open interest.

Firm proprietary traders sometimes are end users of options and sometimes are
liquidity suppliers. Consequently, we compute net end-user demand for an option in
two different ways. First, we assume that firm proprietary traders are end users and
compute the net demand for an option as the sum of the public customer and firm
proprietary trader long open interest minus the sum of the public customer and firm
proprietary trader short open interest. We refer to net demand computed in this way
as non-market-maker net demand. Second, we assume that the firm proprietary traders
are liquidity suppliers and compute the net demand for an option as the public customer
long open interest minus the public customer short open interest. We refer to net
demand computed in this second way as public customer net demand. The results are
similar for non-market-maker net demand and public customer net demand. Therefore,

11Options on the S&P 500 index have many different option symbols. In this paper, SPX options

always refers to all options that have SPX as their underlying asset, not only to those with option
symbol SPX.

12During our data period, SPX options are cash-settled based on the SPX opening price on Friday
of expiration week. Consequently, for purposes of measuring their time to maturity, we assume that
they expire at the close of trading on the Thursday of expiration week.

13The total long open interest for any option always equals the total short open interest. For a
given investor type (e.g., public customers), however, the long open interest is not equal to the short
open interest in general.
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for brevity, most results are reported only for non-market-maker net demand.
Even though the SPX and individual equity option market have been the subject

of extensive empirical research, there is no systematic information on end-user demand
in these markets. Consequently, we provide a somewhat detailed description of net
demand for SPX and equity options. Over the 1996-2001 period the average daily non-
market-maker net demand for SPX options is 103,254 contracts, and the average daily
public customer net demand is 136,239 contracts. In other words, the typical end-user
demand for SPX options during our data period is on the order of 125,000 SPX option
contracts. For puts (calls), the average daily net demand from non-market makers
is 124,345 (−21, 091) contracts, while from public customers it is 182,205 (−45, 966)
contracts. These numbers indicate that most net option demand comes from puts.
Indeed, end users tend to be net suppliers of on the order of 30,000 call contracts.

For the equity options, the average daily non-market-maker net demand per under-
lying stock is −2717 contracts, and the average daily public customer net demand is
−4873 contracts. Hence, in the equity option market, unlike the index-option market,
end users are net suppliers of options. This fact suggests that if demand for options
has a first order impact on option prices, index options should on average be more
expensive than individual equity options. Another interesting contrast with the index
option market is that in the equity option market the net end-user demand for puts
and calls is similar. For puts (calls), the average daily non-market-maker net demand is
−1103 (−1614) contracts, while from public customers it is −2331 (−2543) contracts.

Panel A of Table 1 reports the average daily non-market-maker net demand for SPX
options broken down by option maturity and moneyness (defined as the strike price
divided by the underlying index level.) Panel A indicates that 39 percent of the net
demand comes from contracts with fewer than 30 calendar days to expiration. Consis-
tent with conventional wisdom, the good majority of this net demand is concentrated
at moneyness where puts are out-of-the-money (OTM) (i.e., moneyness < 1.) Panel B
of Table 1 reports the average option net demand per underlying stock for individual
equity options from non-market makers. With the exception of some long maturity
option categories (i.e, those with more than one year to expiration and in one case
with more than six months to expiration), the non-market-maker net demand for all
of the moneyness/maturity categories is negative. That is, non-market makers are net
suppliers of options in all of these categories. This stands in stark contrast to the index
option market in Panel A where non-market makers are net demanders of options in
almost every moneyness/maturity category.

The other main source of data for this paper is the Ivy DB data set from Op-
tionMetrics LLC. The OptionMetrics data include end-of-day volatilities implied from
option prices, and we use the volatilities implied from SPX and CBOE listed equity
options from the beginning of 1996 through the end of 2001. SPX options have Euro-
pean style exercise, and OptionMetrics computes implied volatilities by inverting the
Black-Scholes formula. When performing this inversion, the option price is set to the
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Table 1: Average non-market-maker net demand for put and call option contracts for
SPX and individual equity options by moneyness and maturity, 1996-2001. Equity-
option demand is per underlying stock.

Moneyness Range (K/S)
0–0.85 0.85–0.90 0.90–0.95 0.95–1.00 1.00–1.05 1.05–1.10 1.10–1.15 1.15–2.00 All

Maturity Range
(Calendar Days)

Panel A: SPX Option Non-Market Maker Net Demand
1–9 6,014 1,780 1,841 2,357 2,255 1,638 524 367 16,776
10–29 7,953 1,300 1,115 6,427 2,883 2,055 946 676 23,356
30–59 5,792 745 2,679 7,296 1,619 -136 1,038 1,092 20,127
60–89 2,536 1,108 2,287 2,420 1,569 -56 118 464 10,447
90–179 7,011 2,813 2,689 2,083 201 1,015 4 2,406 18,223
180–364 2,630 3,096 2,335 -1,393 386 1,125 -117 437 8,501
365–999 583 942 1,673 1,340 1,074 816 560 -1,158 5,831
All 32,519 11,785 14,621 20,530 9,987 6,457 3,074 4,286 103,260

Panel B: Equity Option Non-Market Maker Net Demand
1-9 -51 -25 -40 -45 -47 -31 -23 -34 -295
10-29 -64 -35 -57 -79 -102 -80 -55 -103 -576
30-59 -55 -31 -39 -55 -88 -90 -72 -144 -574
60-89 -47 -29 -37 -47 -60 -60 -55 -133 -469
90-179 -85 -60 -73 -84 -105 -111 -101 -321 -941
180-364 53 -19 -23 -24 -36 -35 -33 -109 -225
365-999 319 33 25 14 12 7 9 -56 363
All 70 -168 -244 -320 -426 -400 -331 -899 -2717

midpoint of the best closing bid and offer prices, the interest rate is interpolated from
available LIBOR rates so that its maturity is equal to the expiration of the option, and
the index dividend yield is determined from put-call parity. The equity options have
American style exercise, and OptionMetrics computes their implied volatilities using
binomial trees that account for the early exercise feature and the timing and amount of
the dividends expected to be paid by the underlying stock over the life of the options.

One of the central questions we are investigating is whether net demand pressure
pushes option implied volatilities away from the volatilities that are expected to be
realized over the remainder of the options’ lives. We refer to the difference between
implied volatility and a reference volatility estimated from the underlying security as
excess implied volatility.

The reference volatility that we use for SPX options is the filtered volatility from the
state-of-the-art model by Bates (2005), which accounts for jumps, stochastic volatility,
and the risk premium implied by the equity market, but does not add extra risk premia
to (over-)fit option prices.14

The reference volatility that we use for equity options is the predicted volatility over
their lives from a GARCH(1,1) model estimated from five years of daily underlying
stock returns leading up to the day of option observations. (Alternative measures
using historical or realized volatility lead to similar results.) The daily returns on the

14We are grateful to David Bates for providing this measure.
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Figure 1: The bars show the average daily net demand for puts and calls from non-
market makers for SPX options in the different moneyness categories (left axis). The
top part of the leftmost (rightmost) bar shows the net demand for all options with
moneyness less than 0.8 (greater than 1.2). The line is the average SPX excess implied
volatility, that is, implied volatility minus the volatility from the underlying security,
for each moneyness category (right axis). The data covers 1996-2001.

underlying index or stocks are obtained from the Center for Research in Security Prices
(CRSP).

The daily average excess implied volatility for SPX options is 8.7%. To compute this
number, on each trade day we average the implied volatilities on all SPX options that
have at least 25 contracts of trading volume and then subtract the proxy for expected
volatility. Consistent with previous research, on average the SPX options in our sample
are expensive. For the equity options, the daily average excess implied volatility per
underlying stock is -0.3%, which suggests that on average individual equity options are
just slightly inexpensive. We required that an option trade at least 5 contracts and
have a closing bid price of at least 37.5 cents in order to includes its implied volatility
in the calculation.
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Figure 1 compares SPX option expensiveness to net demands across moneyness
categories. The line in the figure plots the average SPX excess implied volatility for
eight moneyness intervals over the 1996-2001 period. In particular, on each trade date
the average excess implied volatility is computed for all puts and calls in a money-
ness interval. The line depicts the means of these daily averages. The excess implied
volatility inherits the familiar downward sloping smirk in SPX option implied volatil-
ities. The bars in Figure 1 represent the average daily net demand from non-market
maker for SPX options in the moneyness categories, where the top part of the leftmost
(rightmost) bar shows the net demand for all options with moneyness less than 0.8
(greater than 1.2).

The first main feature of Figure 1 is that index options are expensive (i.e. have a
large risk premium), consistent with what is found in the literature, and that end users
are net buyers of index options. This is consistent with our main hypothesis: end users
buy index options and market makers require a premium to deliver them.

The second main feature of Figure 1 is that the net demand for low-strike options is
greater than the demand for high-strike options. This can potentially help explain the
fact that low-strike options are more expensive than high-strike options (Proposition 4).
The shape of the demand across moneyness is clearly different from the shape of the
expensiveness curve. We note, however, that our theory implies that demand pressure
in one moneyness category impacts the implied volatility of options in other categories,
thus “smoothing” the implied volatility curve and changing its shape. In fact, these
average demands can give rise to a pattern of expensiveness similar to the one observed
empirically using a version of the model with jump risk.

We also constructed a figure like Figure 1 except that both the excess implied
volatilities and the net demands were computed only from put data. Unsurprisingly,
the plot looked much like Figure 1, because (as was shown above) SPX option net
demands are dominated by put net demands and put-call parity ensures that (up to
market frictions) put and call options with the same strike price and maturity have the
same implied volatilities. For brevity, we omit this figure from the paper. Figure 2 is
constructed like Figure 1 except that only calls are used to compute the excess implied
volatilities and the net demands. For calls, there appears to be a negative relationship
between excess implied volatilities and net demand. This relationship suggests that
call net demand cannot explain the call excess implied volatilities. Proposition 2(ii)
predicts, however, that it is the total demand pressure of calls and puts that matters
as depicted in Figure 1. Intuitively, the large demand for puts increases the prices of
puts, and, by put-call parity, this also increases the prices of calls. The relatively small
negative demand for calls cannot overturn this effect.

Figure 3 compares equity option expensiveness to net demands across moneyness
categories. The line in the figure plots the average equity option excess implied volatil-
ity (with respect to the GARCH(1,1) volatility forecast) per underlying stock for eight
moneyness intervals over the 1996-2001 period. In particular, on each trade date for
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Figure 2: The bars show the average daily net demand for calls from non-market makers
for SPX options in the different moneyness categories (left axis). The top part of the
leftmost (rightmost) bar shows the net demand for all options with moneyness less
than 0.8 (greater than 1.2). The line is the average SPX excess call implied volatility,
that is, implied volatility minus the volatility from the underlying security, for each
moneyness category (right axis). The data covers 1996-2001.

each underlying stock the average excess implied volatility is computed for all puts
and calls in a moneyness interval. These excess implied volatilities are averaged across
underlying stocks on each trade day for each moneyness interval. The line depicts the
means of these daily averages. The excess implied volatility line is downward sloping
but only varies by about 5% across the moneyness categories. By contrast, for the
SPX options the excess implied volatility line varies by 15% across the corresponding
moneyness categories. The bars in the figure represent the average daily net demand
per underlying stock from non-market makers for equity options in the moneyness cat-
egories. The figure shows that non-market makers are net sellers of equity options
on average, consistent with these options being cheap. Further, the figure shows that
non-market makers sell mostly high-strike options, consistent with these options being
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Figure 3: The bars show the average daily net demand per underlying stock from
non-market makers for equity options in the different moneyness categories (left axis).
The top part of the leftmost (rightmost) bar shows the net demand for all options
with moneyness less than 0.8 (greater than 1.2). The line is the average equity option
excess implied volatility, that is, implied volatility minus the GARCH(1,1) expected
volatility, for each moneyness category (right axis). The data covers 1996-2001.

especially cheap. If the figure is constructed from only calls or only puts, it looks
roughly the same (although the magnitudes of the bars are about half as large.)

Figure 4 plots the daily net positions (i.e., net demands) for SPX options aggregated
across moneyness and maturity for public customers, firm proprietary traders, and
market makers. The daily public customer net positions range from -1065 contracts to
+385, 750 contracts, and it tends to be larger over the first year or so of the sample.
Although the public customer net position shows a good deal of variability, it is nearly
always positive and never far from zero when negative. To a large extent, the market
maker net option position is close to the public customer net position reflected across
the horizontal axis. This is not surprising, because on each trade date the net positions
of the three groups must sum to zero and the public customers constitute a much larger
share of the market than the firm proprietary traders. The firm proprietary and market
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Figure 4: Time series of the daily net positions for SPX options aggregated across
moneyness and maturity for public customers, firm proprietary traders, and market
makers.

maker net positions roughly move with one another. In fact, the correlation between
the two time-series is 0.44. This positive co-movement suggests that a non-trivial part
of the firm proprietary option trading may be associated with supplying liquidity to
the SPX option market. The correlations between the public customer time-series
and those for firm proprietary traders and market makers on the other hand are,
respectively, −0.78 and −0.90.

To illustrate the magnitude of the net demands, we compute approximate daily
profits and losses (P&Ls) for the market makers’ hedged positions assuming daily delta-
hedging. The daily and cumulative P&Ls are illustrated in Figure 5, which shows that
the group of market makers faces substantial risk that cannot be delta-hedged, with
daily P&L varying between ca. $100M and $-100M. Further, the market makers make
cumulative profits of ca. $800M over the 6-year period on their position taking.15 With
just over a hundred SPX market makers on the CBOE, this corresponds to a profit of
approxiamtely $1M per year per market maker. Hence, consistent with the premise of

15This number does not take into account the costs of market making or the profits from the bid-ask
spread on round-trip trades. A substantial part of market makers’ profit may come from the latter.
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Figure 5: The top panel shows the market makers’ daily profits and losses (P&L)
assuming they delta-hedge their option positions once per day. The bottom panel
shows the corresponding cumulative P&Ls.

our model, market makers face substantial risk and are compensated on average for
the risk that they take.

4 Empirical Results

Proposition 3 states that positive (negative) demand pressure on one option increases
(decreases) the price of all options on the same underlying asset, while Proposition 4
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states that demand pressure on low (high) strike options has a greater price impact
on low (high) strike options. The empirical work in this section of the paper examines
these two predictions of the model by investigating whether overall excess implied
volatility is higher on trade dates where net demand for options is higher and whether
the excess implied volatility skew is steeper on trade dates where the skew in the net
demand for options is steeper.

4.1 Excess Implied Volatility and Net Demand

We investigate first the time-series evidence for Proposition 3 by regressing a measure
of excess implied volatility on one of various demand-based explanatory variables:

ExcessImplVol t = a + bDemandVar t + ǫt (38)

SPX:

We consider first this time-series relationship for SPX options, for which we define
ExcessImplV ol as the average implied volatility of 1-month at-the-money SPX options
minus the corresponding volatility of Bates (2005). When computing this variable, the
SPX options included are those that have at least 25 contracts of trading volume,
between 15 and 45 calendar days to expiration, and moneyness between 0.99 and 1.01.
(We compute the excess implied volatility variable only from reasonably liquid options
in order to make it less noisy in light of the fact that it is computed using only one
trade date.)16 By subtracting the volatility from the Bates (2005) model, we account
for the direct effects of jumps, stochastic volatility, and the risk premium implied by
the equity market.

The independent variable, DemandV ar, is based on the aggregate net non-market-
maker demand for SPX options that have 10–180 calendar days to expiration and
moneyness between 0.8 and 1.20. (Similar, in fact stronger, results obtain when public-
customer demand is used instead.) We employ, separately, four different independent
variables. The first is simply the sum of all net demands. The other three indepen-
dent variables correspond to “weighting” the net demands using the models based on
the market maker risks associated with, respectively, discrete trading, jumps in the
underlying, and stochastic volatility (Sections 2.1–2.3). Specifically, the net demands
are weighted by the Black-Scholes gamma in the discrete-hedging model, by kappa
computed using equally likely up and down moves of relative sizes 0.05 and 0.2 in the
jump model, and by maturity-adjusted Black-Scholes vega in the stochastic volatility
model.

16By contrast, in the previous section of the paper, when implied volatility statistics were computed
from less liquid options or options with more extreme moneyness or maturity, they were averaged over
the entire sample period.
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Table 2: The relationship between the SPX Excess Implied Volatility (i.e. observed
implied volatility minus volatility from the Bates (2005) model) and the SPX non-
market-maker demand pressure weighted using either: (i) equal weights, (ii) weights
based on discrete-time trading risk, (iii) weights based on jump risk, or (iv) weights
based on stochastic-volatility risk. T-statistics computed using Newey-West are in
parentheses.

Before Structural Changes After Structural Changes
1996/01–1996/10 1997/10–2001/12

Constant 0.0001 0.0065 0.005 0.020 0.04 0.033 0.032 0.038
(0.004) (0.30) (0.17) (0.93) (7.28) (4.67) (7.7) (7.4)

#Contracts 2.1E-7 3.8E-7
(0.87) (1.55)

Disc. Trade 6.9E-10 2.8E-9
(0.91) (3.85)

Jump Risk 6.4E-8 3.2E-5
(0.79) (3.68)

Stoch. Vol. 8.7E-7 1.1E-5
(0.27) (2.74)

Adj. R2 0.10 0.06 0.08 0.01 0.07 0.19 0.26 0.16

N 10 10 10 10 50 50 50 50

We run the regression on a monthly basis by averaging demand and expensiveness
over each month. We do this because there are certain day-of-the-month effects for
SPX options. (Our results are similar in a daily regression, not reported.)

The results are shown in Table 2. We report the results over two subsamples
because, as seen in Figure 4, there appears to be a structural change in 1997. A
structural change also happens around this time in the time series of open interest (not
shown). These changes may be related to several events that changed the market for
index options in the period from late 1996 to October 1997, such as the introduction
of S&P500 e-mini futures and futures options on the competing Chicago Mercantile
Exchange (CME), the introduction of Dow Jones options on the CBOE, and changes in
margin requirements. Some of our results hold over the full sample, but their robustness
and the explanatory power are smaller. Of course, we must entertain the possibility
that the model’s limited ability to jointly explain the full sample is due to problems
with the theory.

26



0 10 20 30 40 50 60 70 80
−0.02

0

0.02

0.04

0.06

0.08

0.1

E
xp

en
si

ve
ne

ss

Month Number

Expensiveness
Fitted values, early sample
Fitted values, late sample

Figure 6: The solid line shows the expensiveness of SPX options, that is, implied
volatility of 1-month at-the-money options minus the volatility measure of Bates (2005)
which takes into account jumps, stochastic volatility, and the risk premium from the
equity market. The dashed lines are, respectively, the fitted values of demand-based
expensiveness using a model with underlying jumps, before and after certain structural
changes (1996/01–1996/10 and 1997/10–2001/12).

We see that the estimate of the demand effect b is positive but insignificant over
the first subsample, and positive and statistically significant over the second longer
subsample for all three model-based explanatory variables.17

The expensiveness and the fitted values from the jump model are plotted in Fig-
ure 6, which clearly shows their comovement over the later sample. The fact that the
b coefficient is positive indicates that, on average, when SPX net demand is higher
(lower), excess SPX implied volatilities are also higher (lower). For the most successful
model, the one based on jumps, changing the dependent variable from its lowest to its
highest values over the late sub-sample would change the excess implied volatility by
about 5.6 percentage points. A one-standard-deviation change in the jump variable

17The model-based explanatory variables work better than just adding all contracts (#Contracts),
because they give higher weight to near-the-money options. If we just count contracts using a more
narrow band of moneyness, then the #Contracts variable also becomes significant.
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results in a one-half standard deviation change of excess implied volatility (the corre-
sponding R2 is 26%). The model is also successful in explaining a significant proportion
of the level of the excess implied volatility. Over the late subsample, the average level
is 4.9%, of which approximately one third – specifically, 1.7% – corresponds to the
average level of demand, given the regression coefficient.

Further support for the hypothesis that the supply for options is upwardly sloping
comes from the comparison between the estimated supply-curve slopes following market
maker losses, respectively gains. If market maker risk aversion plays an important role
in pricing options, then one would expect prices to be less sensitive to demand when
market makers are well funded – in particular, following profitable periods – than
not. This is exactly what we find. Breaking the daily sample18 in two subsamples
depending on whether the hedged market maker profits over the previous 20 trading
days is positive or negative,19 we estimate the regression (38) for each subsample and
find that, following losses, the b coefficient is approximately twice as large as the
coefficient obtained in the other subsample. For instance, in the jump model, the
regression coefficient following losses is 2.6E-05 with a t-statistic 3.7 (330 observations),
compared to a value of 1.1E-5 with t-statistic 6.1 in the complementary subsample (646
observations).

Equity Options:

We consider next the time-series relationship between demand and expensiveness for
equity options. In particular, we run the time-series regression (38) for each stock, and
average the coefficients across stocks. The results are shown in Table 3. We consider
separately the subsample before and after the summer of 1999. This is because most
options were listed only on one exchange before the summer of 1999, but many were
listed on multiple exchanges after this summer. Hence, there was potentially a larger
total capacity for risk taking by market makers after the cross listing. See for instance
De Fontnouvelle, Fishe, and Harris (2003) for a detailed discussion of this well-known
structural break.

We run the time-series regression separately for the 303 underlying stocks with
strictly positive option volume on at least 80% of the trade days from the beginning
of 1996 through the end of 2001. We compute the excess implied volatility as the
average implied volatility of selected options,20 minus the GARCH(1,1) volatility, and
net demand as the total net non-market-maker demand for options with moneyness
between 0.8 and 1.2 and maturity between 10 and 180 calendar days. We run the
regression using monthly data on underlying stocks that have at least 12 months of

18Because of the structural changes discussed above, we restrict our attention to the period starting
on October 1, 1997.

19Similar results obtain if the breaking point is the mean or median daily profit.
20That is, options with moneyness between 0.95 and 1.05, maturity between 15 and 45 calendar

days, at least 5 contracts of trading volume, and implied volatilities available on OptionMetrics.
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Table 3: The relationship between option expensiveness — i.e. implied volatility mi-
nus GARCH volatility — and non-market-maker net demand for equity options on
303 different underlying stock (Equation 38). We run time-series regressions for each
underlying and report the average coefficients. The number p-val is the p-value of the
binomial test that the coefficients are equally likely to be positive and negative.

Before Cross-Listing of Options After Cross-Listing of Options
04/1996–06/1999 10/1999–12/2001

Constant -0.01 0.02

NetDemand 12E-6 8.5E-6

Average Adj. R2 0.06 0.05

# positive 227 213

# negative 76 86

p-val 0.00 0.00

data available. (Daily regressions give stronger results.)
The average coefficient b measuring the effect of demand on expensiveness is positive

and significant in both subsamples. This means that when the demand for equity
options is larger their implied volatility is higher. The results are illustrated in Figure 7,
which shows the expensiveness and fitted values of the demand effect on a monthly
basis. The positive correlation is apparent. We note that the relation between average
demand and average expensiveness is more striking if we do a single, pooled regression
for these variables. It is comforting, however, that the relation also holds when we
consider each stock separately.

Finally, we investigate the cross-sectional relationship between excess implied volatil-
ity and net demand in the equity option market. We multiply the net demand variable
by the price volatility of the underlying stock (defined as the sample return volatility
just described multiplied by the day’s closing price of the stock.) We scale the net
demand in this way, because market makers are likely to be more concerned about
holding net demand in their inventory when the underlying stock’s price volatility is
greater.

We run the cross-sectional regression on each day and then employ the Fama-
MacBeth method to compute point estimates and standard errors. We also use the
Newey-West procedure to control for serial-correlation in the slope estimates. The
slope coefficient is 5.9E-8 with a t-statistic of 6.44.
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Figure 7: The solid line is the expensiveness of equity options, averaged across stocks.
The dashed lines are, respectively, the fitted values of demand-based expensiveness
before and after the cross-listing of options (1996/04–1999/05 and 1999/10–2001/12)
using the average regression coefficients from stock-specific regressions and the average
demand.

4.2 Implied Volatility Skew and Net Demand Skew

In order to investigate Proposition 4, we regress a measure of the steepness of the
excess implied volatility skew on one of two demand-based explanatory variables:

ExcessImplVolSkew t = a + bDemandVarSkew t + ǫt. (39)

SPX:

For the SPX analysis, ExcessImplVolSkew t is the date-t implied volatility skew over
and above the skew predicted by the jumps and stochastic volatility of the underlying
index. The implied volatility skew is defined as the average implied volatility of options
with moneyness between 0.93 and 0.95 that trade at least 25 contracts on trade date
t and have more than 15 and fewer than 45 calendar days to expiration, minus the
average implied volatility of options with moneyness between 0.99 and 1.01 that meet
the same volume and maturity criteria. In order to eliminate the skew that is due
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Table 4: The relationships between SPX implied-volatility skew and two potential
explanatory variables: (i) the SPX non-market-maker demand skew and (ii) the jump-
risk-model demand-based implied-volatility skew. T-statistics computed using Newey-
West are in parentheses.

Before Structural Changes After Structural Changes
1996/01–1996/10 1997/10–2001/12

Constant 0.032 0.04 0.04 0.032
(57) (6.4) (20) (13.2)

#Contracts -1.2E-7 5.4E-7
(-0.9) (3.4)

Jump Risk -3.0E-6 1.8E-5
(-1.0) (3.0)

Adj. R2 0.08 0.14 0.22 0.28

N 10 10 50 50

to jumps and stochastic volatility of the underlying, we consider the implied volatility
skew net of the similarly defined volatility skew implied by the objective distribution of
Broadie, Chernov, and Johannes (2005) where the underlying volatility is that filtered
from the Bates (2005) model.21

As explanatory variable, we use two measures. The first is the skew in net option
demand, defined as the net non-market-maker demand for options with moneyness
between 0.93 and 0.95 minus the net non-market-maker demand for options with mon-
eyness between 0.99 and 1.01, using options with maturity between 10 and 180 calendar
days. The second measure is the excess implied-volatility skew from the model with un-
derlying jumps described in Section 2.2. (We do not consider the models with discrete
trading and stochastic volatility since they do not have first-order skew implications as
described in Sections 2.1 and 2.3.)

Table 4 reports the monthly OLS estimates of the skewness regression and Figure 8
illustrates the effects. As discussed in Section 4.1, we divide the sample into two sub-
samples because of structural changes. The slope coefficient is significantly positive in
the late subsample using both the simple demand variable and the variable based on
jump-risk.22 Using the jump-risk model, variation between the minimum and maxi-
mum levels of the independent variable results in a skew change of about 3 percentage

21The model-implied skew is evaluated for one-month options with moneyness of, respectively, 0.94
and 1. We thank Mikhail Chernov for providing this time series.

22The slope coefficient is also significant over the full sample; the demand skewness is less non-
stationary than the level of demand over the full sample.
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Figure 8: The solid line shows the implied volatility skew for SPX options. The dashed
lines are, respectively, the fitted values from the skew in demand before and after
certain structural changes (1996/01–1996/10 and 1997/10–2001/12).

points. Further, a one standard deviation move in the independent variable results in
a change in the dependent variable of 0.53 standard deviations.

Equity Options:

We consider next the time-series relationship for equity options between skew in
demand and skew in implied volatility. In particular, we run the time-series regression
(39) for each stock, and average the coefficients across stocks.23 Once again, we con-
sider separately the subsample before and after the summer of 1999, because of the
widespread move toward cross-listing in the summer of 1999.

The results are shown in Table 5. The time-series regression is run separately for
the same 303 underlying stocks as above. We compute the implied volatility skew as
the average implied volatility of selected low moneyness minus that of near-the-money
options.24 The skew in demand is the total net non-market-maker demand for options

23Now the dependent variable is simply the time t implied volatility from low moneyness minus
near-the-money options.

24That is, the average implied volatility from options with moneyness between 0.85 and 0.95 minus
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Table 5: The relationship between implied volatility skew (i.e., implied volatility of low
moneyness minus near-the-money options) and non-market-maker net demand skew
(i.e., non-market-maker net demand for low moneyness minus high moneyness options)
on 303 different underlying stocks (Equation 39). We run time-series regressions for
each underlying and report the average coefficients. The number p-val is the p-value
from the binomial test that the coefficients are equally likely to be positive and negative.

Before Cross-Listing of Options After Cross-Listing of Options
04/1996–06/1999 10/1999–12/2001

Constant 0.03 0.03

NetDemand 4.0E-6 4.2E-6

Average Adj. R2 0.03 0.08

# positive 200 163

# negative 70 61

p-val 0.00 0.00

with moneyness between 0.80 and 1.00 minus that for options with moneyness between
1.00 and 1.20.25 We run the regression using monthly data on underlying stocks that
have at least 12 months of data available.

The average coefficient b measuring the effect of skew in demand on skew in expen-
siveness is positive and significant in both subsamples. This results implies that when
the demand for equity options is more skewed their implied volatility is more skewed.

5 Conclusion

Relative to the Black-Scholes-Merton benchmark, index and equity options display a
number of robust pricing anomalies. A great deal of research has attempted to address
these anomalies, in large part by generalizing the Black-Scholes-Merton assumptions
about the dynamics of the underlying asset. While these efforts have met with some
success, non-trivial pricing puzzles remain. Further, it is not clear that this approach
can yield a satisfactory description of option prices. For example, index and equity op-
tion prices display very different properties, although the dynamics of their underlying
assets are quite similar.

the average implied volatility from option with moneyness between 0.97 and 1.03. These options must
have maturity between 15 and 45 calendar days, at least 1 contract of trading volume, and implied
volatilities available on OptionMetrics.

25Options with maturity of 10 to 180 calendar day are included. The results are robust to variation
in the definition in these demand categories.
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This paper takes a different approach to option pricing. We recognize that, in
contrast to the Black-Scholes-Merton framework, in the real world options cannot be
hedged perfectly. Consequently, if intermediaries who take the other side of end-user
option demand are risk-averse, end-user demand for options will impact option prices.

The theoretical part of the paper develops a model of competitive risk-averse inter-
mediaries who cannot perfectly hedge their option positions. We compute equilibrium
prices as a function of net end-user demand and show that demand for an option in-
creases its price by an amount proportional to the variance of the unhedgeable part of
the option and that it changes the prices of other options on the same underlying asset
by an amount proportional to the covariance of their unhedgeable parts.

The empirical part of the paper measures the expensiveness of an option as its
Black-Scholes implied volatility minus a proxy for the expected volatility over the life
of the option. We show that on average index options are quite expensive by this
measure, and that they have high positive end-user demand. Equity options, on the
other hand, are on average slightly inexpensive and have a small negative end-user
demand. In accordance with the predictions of our theory, we find that options are
overall more expensive when there is more end-user demand for options and that the
expensiveness skew across moneyness is positively related to skew in end-user demand
across moneyness. Finally, demand effects are stronger following recent market maker
losses compared to times of recent market maker gains.
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A Proofs

Proof of Lemma 1:

Note first that the boundedness of all the random variables considered (with the ex-
ception of S) ensures that all expectations are finite.

The Bellman equation is

J(Wt; t,Xt) = −
1

k
e−k(Wt+Gt(dt,Xt))

= max
Ct,qt,θt

{

−
1

γ
e−γCt + ρEt [J(Wt+1; t + 1, Xt+1)]

}

(40)

Given the strict concavity of the utility function, the maximum is characterized by
the first-order conditions (FOC’s). Using the proposed functional form for the value
function, the FOC for Ct is

0 = e−γCt + kRfρEt [J(Wt+1; t + 1, Xt+1)] (41)

which together with (40) yields

0 = e−γCt + kRf

[

J(Wt; t,Xt) +
1

γ
e−γCt

]

(42)

that is,

e−γCt = e−k(Wt+Gt(dt,Xt)) (43)

implying (4). The FOC’s for θt and qt are (5) and (6). We derive G recursively as
follows. First, we let G(t + 1, · ) be given. Then, θt and qt are given as the unique
solutions to Equations (5) and (6). Clearly, θt and qt do not depend on the wealth Wt.
Further, (42) implies that

0 = e−γCt − RfρEt

[

e−k(yt+1+(Wt−Ct)Rf+qt(pt+1−Rf pt)+θtRe
t+1+Gt+1(dt+1,Xt+1))

]

, (44)

that is,

e−γCt−krCt+krWt = RfρEt

[

e−k(yt+1+qt(pt+1−Rf pt)+θtRe
t+1+Gt+1(dt+1,Xt+1))

]

, (45)

which, using (4), yields the equation that defines Gt(dt, Xt) (since Xt is Markov):

e−krGt(dt,Xt) = RfρEt

[

e−k(yt+1+qt(pt+1−Rf pt)+θtRe
t+1+Gt+1(dt+1,Xt+1))

]

(46)
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At t = T , we want to show the existence of a stationary solution. First note that
the operator A defined by

AF (w; x) = max
C,θ

{

−
1

γ
e−γC + ρEt [F (Wt+1, Xt+1)|Wt = w,Xt = x]

}

subject to
Wt+1 = yt+1 + (Wt − C)Rf + θRe

t+1,

satisfies the conditions of Blackwell’s Theorem,26 and is therefore a contraction.
Furthermore, A maps any function of the type

F (w; x) = −
1

k
e−kwg(x)

into a function of the same type, implying that the restriction of A to g, denoted also
by A, is a contraction as well.

We now show that there exists m > 0 such that A maps the set

Gm = {g : X → R : g is continuous, g ≥ m}

into itself.
Continuity holds by assumption (the Feller property). Let us look for m > 0. Since

Ag ≥ inf
x

inf
θ

RfρE
[

e−k(yt+1+θRe
t+1)g(Xt+1)

1

Rf |Xt = x
]

≥ inf
x

inf
θ

RfρE
[

e−k(yt+1+θRe
t+1)|Xt = x

] (

min
z

g(z)
)

1

Rf

≥ B
(

min
z

g(z)
)

1

Rf

for a constant B > 0 (the inner infimum is a strictly positive, continuous function of

x ∈ X compact), showing that the assertion for any m not bigger than B
Rf

Rf−1 .
Since Gm is complete, we conclude that A has a (unique) fixed point in Gm (which,

therefore, is not 0).
It remains to prove that, given our candidate consumption and investment policy,

lim
t→∞

E
[

ρ−te−kWt
]

= 0.

Start by noting that, for t > T ,

Wt+1 = Wt − (Rf − 1)G(Xt) + yt+1 + θtR
e
t+1,

26See, for instance, Stokey, Lucas, and Prescott (1989).
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implying, by a repeated application of the iterated expectations, that

ET

[

e−k(Wt+G(Xt))
]

= e−k(WT +G(XT )),

which is bounded. Since G(Xt) is bounded, it follows that limt→∞ E
[

ρ−te−kWt
]

= 0.
The verification argument is standard, and particularly easy in this case given the

boundedness of g.
�

Proof of Proposition 1:

Given a position process from date t onwards and a price process from date t + 1
onward, the price at time t is determined by (6). It is immediate that pt is measurable
with respect to time-t information.

�

Proof of Proposition 2:

Part (i) is immediate, since prices are linear. Part (ii) follows because, for any a ∈ R,
the pricing kernel is kept exactly the same by the offsetting change in (q, θ).

�

Proof of Proposition 3:

Part a) is immediately since a variance is always positive. The proof of b) is based on
the following result.

Lemma 2 Given h1 and h2 convex functions on R, ∀β < 0, α, γ ∈ R, ∃α′, γ′ ∈ R such
that

|h1(x) − α′x − γ′| ≤ |h1(x) − αx − βh2(x) − γ|

∀x ∈ R. Consequently, under any distribution, regressing h1 on h2 and the identity
function results in a positive coefficient on h2.

Letting p̃t+1 = pt+1 − Ed
t [pt+1] and suppressing subscripts, consider the expression

Ψ = Ed
[

p̃ip̃j
]

Var(Re) − Ed
[

p̃iRe
]

Ed
[

p̃jRe
]

,

which we want to show to be positive. Letting p̂i = Ed[p̃i|S] and p̂j = Ed[p̃j|S], we
write

Ψ = Ed
[

Cov
(

p̃i, p̃j|S
)

Var(Re) + p̂ip̂jVar(Re) − Ed
[

p̂iRe
]

Ed
[

p̂jRe
]]

= Ed
[

Cov
(

p̃i, p̃j|S
)

Var(Re)
]

+ Ed
[

p̂ip̂jVar(Re) − Ed
[

p̂iRe
]

Ed
[

p̂jRe
]]

.

The first term is positive by assumption, while the second is positive because p̂i and
p̂j are convex and then using Lemma 2 .
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�

Proof of Lemma 2: We consider three cases: (i) the intersection of the graphs of
h1 and g ≡ γ + αId + βh2 is empty; (ii) their intersection is a singleton; (iii) their
intersection contains more than one point.

(i) Since the graphs do not intersect, there exists a hyperplane that separates the
convex sets {(x, y) : h1(x) ≤ y} and {(x, y) : g(x) ≥ y}.

(ii) The same is true if the two graphs have a tangency point. If they intersect
in one point, x̂, and are not tangent, then assume that, for x < x̂, h1(x) > g(x)
(a similar argument settles the complementary case). The convex set generated by
{(x̂, h1(x̂)} ∨ {(x, (h1(x)) : x < x̂} ∨ {(x, g(x)) : x > x̂)} and the one generated by
{(x̂, h1(x̂)} ∨ {(x, (h1(x)) : x > x̂} ∨ {(x, g(x)) : x < x̂)} have only one point in
common, and therefore can be separated with a hyperplane.

(iii) Consider the line generated by the intersection. If there existed a point x at
which the ordinate of the line was higher than h1(x) and than g(x), then it would follow
that at least one of the intersection points is actually interior to {(x, y) : h1(x) ≤ y},
which would be a contradiction. Similarly if the line was too low.

�

Proof of Theorem 3:

We compute the sensitivity of current prices to a deviation in future positions from 0
in the direction of demand d̃s = ǫsds at time s by differentiating with respect to ǫs = ǫ
(evaluated at ǫ = 0). We then aggregate the demands at all times to compute the total
effect:

∂pt

∂ǫ
=

∑

s≥0

∂pt

∂ǫs

∂ǫs

∂ǫ
=
∑

s≥0

∂pt

∂ǫs

To compute the price effect of expected demand at any time s, we note that it follows
from the dealer’s problem that

pt = Et

[

ρs−te−γ(Cs−Ct)ps

]

which implies

∂pt

∂ǫs

= Et

[

ρs−te−γ(Cs−Ct)
∂ps

∂ǫs

]

= R
−(s−t)
f E∗

t

[

∂ps

∂ǫs

]

= R
−(s−t)
f E∗

t

[

∂ps

∂q̃j
s

qj
s

]

.
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where we use that ∂Ct

∂ǫs
= ∂Cs

∂ǫs
= 0 at q = 0. The equality ∂Cs

∂ǫs
= 0 follows from

∂Cs

∂qj
s

=
k

γ

∂G(s,Xs; q)

∂qj
s

= −
k2Rfρ

γ
E∗

s

[

pj
s+1 − Rfp

j
s +

∂θs

∂qj
s

Re
s+1

]

= 0 (47)

and the other equality follows from differentiating the condition that marginal rates of
substitution are equal

e−γCt = e−ρ(s−t)Et

[

e−γCs
]

,

which gives that

e−γCt
∂Ct

∂ǫs

= e−ρ(s−t)Eu

[

e−γCs
∂Cs

∂ǫs

]

= 0

It remains to show that the price is a smooth (C∞) function of ǫ. Consider a
process dt characterized by dt = 0 for all t > T , and let the demand process be given
by d̃t = ǫtdt = −qt. At time t, the following optimality conditions must hold:

e−γCt = (Rfρ)T+1−t Et

[

e−k(WT+1+GT+1)
]

(48)

0 = Et

[

e−k(WT+1+GT+1)Re
t+1

]

(49)

0 = Et

[

e−k(WT+1+GT+1)
(

pT+1 − RT+1−t
f pt

)]

, (50)

with

WT+1 = (Wt−Ct)R
T+1−t
f +

T
∑

s=t

(

ys+1 − Cs+1 + θsR
e
s+1 − ǫsds (ps+1 − Rfps)

)

RT+1−s
f +yT+1.

We use the notation pT+1 for the time T+1-money value of the payoff of options expired
by T + 1.

We show by induction that, given Xs, (ps, θs, Cs) is a smooth function of (ǫs, . . . , ǫs+1).
Note that the statement holds trivially for s > T .

Assume therefore the statement for all s > t. There are nt+2 equations in (48)–(50),
with nt+1 being the number of derivatives priced at time t. Note that the equations
do not depend on ǫs for s < t and that they are smooth in ǫs for all s , as well as in
θt, Ct, and pt. In order to prove the claim, we have to show that the derivative of the
functions giving (48)–(50) with respect to (pt, θt, Ct) is invertible (at ǫ = 0 suffices), i.e.,
it has non-zero determinant. The implicit function theorem, then, proves the induction
statement for s = t.
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The non-zero determinant is shown as follows. If we let FC , Fθ, respectively Fq

denote the functions implicit in equations (48)–(50), it follows easily that

DCFC 6= 0

DCFθ = 0

DCFq = 0

DθFθ 6= 0

DpFθ = 0

det(DpFq) 6= 0,

implying that D(Ct,θt,pt)F has non-zero determinant. �

Proof of Proposition 4:

Consider an optimally hedged short put position with strike price K < RfSt. With
x = St+1 − RfSt, the payoff from this position is

Π(x) = −d(K − RfSt − x)+ + θx.

The optimality of the hedge means that, under the risk-neutral measure,

Ed
[

e−kΠ(x)x
]

= 0.

Note that, since K < RfSt, Π(x) < 0 for x > 0 and Π(x) > 0 for K−RfSt < x < 0.
Consequently, given the symmetry of x around 0 and the zero-expectation condition
above, with ξ denoting the density of x,

∫ ∞

K

(

e−kΠ(x)x − e−kΠ(−x)x
)

ξ(x) dx = −

∫ K

0

(

e−kΠ(x)x − e−kΠ(−x)x
)

ξ(x) dx < 0.

It immediately follows that it cannot be true that Π(−x) ≥ Π(x) for all x > |K−RfSt|.
In other words, for some value x > |K − RfSt|, Π(−x) < Π(x), which then gives
d + θ > −θ, or |θ| < 1

2
|d|: the payoff is more sensitive to large downward movements

in the underlying than to large upward movements. Thus, there exists K̄ such that,
for all St+1 < K̄,

Π(St+1 − RfSt) < Π(−(St+1 − RfSt)),

implying that, whenever K ′ < K̄ and K ′′ = 2RfSt − K ′,

p(p,K ′, d) > p(c,K ′′, d)

p(p,K ′, 0) = p(c,K ′′, 0),

the second relation being the result of symmetry.
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�

Arbitrary Number of Time Units ∆t between Hedging Dates:

Most of our analysis relies on the assumption that there is 1 time unit per period
(which simplifies notation). For the results on frequent hedging (i.e. ∆t → 0) in
Propositions 5 -7, it is useful to see how to adapt the results for an arbitrary ∆t.

For simplicity, let the stock price be S = X1, with no dividends, and let X follow
a jump-diffusion with time-independent coefficient functions:

dXt = (µ(Xt) dt + v(Xt) dBt + η(Xt)dNt) , (51)

where Nt is a counting process with arrival intensity λ(Xt) and where the jumps size
is drawn from a uniformly bounded distribution also depending on Xt.

Let ∆t be arbitrary, provided that all derivatives mature at times that are integral
multiples of ∆t. The dealer’s problem is to maximize

U(Ct, Ct+∆t
, . . .) = Et

[

∞
∑

l=0

ρl∆tu (Ct+l∆t
) ∆t

]

,

with u(c) = − 1
γ
e−γc. At any time t, the dealer must choose the consumption level

Ct, the dollar investment θt in the underlying, and the number of derivatives held
qt = (qi

t)i∈It
, while satisfying the transversality condition limt→∞ E

[

ρ−te−kWt
]

= 0,
where the dealer’s wealth evolves as

Wt+∆t
= (Yt+∆t

− Yt) + (Wt − Ct∆t)Rf + qt(pt+∆t
− rpt) + θtR

e
t+∆t

. (52)

Here, Yt =
∫ t

0
ysds represents the cumulative endowment, and C is the annualized

consumption.
The results of Lemma 1 become

J(Wt; t,Xt) = −
1

k
e−k(Wt+Gt(dt,Xt)) (53)

Ct =
k

γ
(Wt + Gt(dt, Xt)) , (54)

with k =
Rf−1

Rf∆t
γ = er∆t−1

er∆t∆t
γ. The stock and derivative holdings are characterized by the

first-order conditions

0 = Et

[

e−k(Yt+∆t
+θtRe

t+∆t
+qt(pt+∆t

−rpt)+Gt+∆t
(dt+∆t

,Xt+∆t
))Re

t+∆t

]

(55)

0 = Et

[

e−k(yt+∆t
+θtRe

t+∆t
+qt(pt+∆t

−rpt)+Gt+∆t
(dt+∆t

,Xt+∆t
)) (pt+∆t

− rpt)
]

, (56)

where, for t ≤ T , the function Gt(dt, Xt) is derived recursively using (55), (56), and

e−kRf Gt(dt,Xt) = RfρEt

[

e−k(yt+∆t
+qt(pt+∆t

−rpt)+θtRe
t+∆t

+Gt+∆t
(dt+∆t

,Xt+∆t
))
]

, (57)
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and, for t > T , the function Gt(dt, Xt) = Ḡ(Xt) where (Ḡ(Xt), θ̄(Xt)) solves

e−kRf Ḡ(Xt) = RfρEt

[

e−k(yt+∆t
+θ̄tRe

t+∆t
+Ḡ(Xt+∆t

))
]

(58)

0 = Et

[

e−k(yt+∆t
+θ̄tRe

t+∆t
+Ḡ(Xt+∆t

))Re
t+∆t

]

. (59)

Replicating calculations in the body of the paper, with the obvious modification,
the statement of Theorem 3 is generalized to

pt = pt(0) + γ
Rf − 1

∆t

[

E0
t

(

p̄t+∆t
p̄′t+∆t

)

dt +
∑

l>0

e−rl∆tE0
t

(

p̄t+(l+1)∆t
p̄′t+(l+1)∆t

dt+l∆t

)

]

ǫ

+ O(ǫ2).

Proofs of Propositions 5 -7:

In order to prove Propositions 5 -7, we proceed with a few technical preliminaries. We
assume that under the risk-neutral pricing measure given by d = 0 the process Xt

is a jump-diffusion of the same functional form as given by Equation (51). For zero
demand, an option price is defined by

p(St, t; X
(1)
t ) = e−r(T−t)E0

[

(ST − K)+ |Xt

]

,

regardless of the frequency of trading, where X(1) = (X2, . . . , Xn).
For the computation of the covariances necessary, we shall be relying on applications

of the following result. For sufficiently smooth functions g, h : R
n → R,

d(g(Xt, t)h(Xt, t)) = mgh
t dt + dM gh

t ,

where M gh is a martingale and

mgh
t =

(

gXµ + gt +
1

2
tr
(

gXXvv⊤
)

)

h +

(

hXµ + ht +
1

2
tr
(

hXXvv⊤
)

)

g +

gXvv⊤h⊤
X − λ

(

E0
t [g(Xt + η)h(Xt + η)] − g(Xt)h(Xt)

)

.

It follows that

E0
t [g(Xt+∆t

, t + ∆t)h(Xt+∆t
, t + ∆t)] = g(Xt, t)h(Xt, t) + mgh

t ∆t + O(∆2
t ). (60)

We now apply this approximation result to compute the unhedgeable price covari-
ances. We start with the hedge ratio θ, which requires estimating

E0
t

[

pt+∆t
Re

t+∆t

]

=
1

St

(

v1.v⊤p⊤X + λpE0
t [η] − λ

(

E0
t [p(Xt + η)η]

))

∆t + O(∆2
t )

=
1

St

(

v1.v⊤p⊤X − λ
(

E0
t [(p(Xt + η) − p(Xt)) η]

))

∆t + O(∆2
t )
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and

E0
t

[

(

Re
t+∆t

)2
]

=
1

S2
t

(

v1.(v1.)⊤ − λE0
[

η2
])

∆t + O(∆2
t ),

where v1. denotes the first row of the matrix v. This gives θ up to order O(∆t).
Finally, compute the un-hedged payoff covariance using θ and applying (60) with

appropriate choices for g and h:

Cov0
t

[

p̄i
t+∆t

, p̄j
t+∆t

]

=
(

mpipj

t − θi
tm

pjRe

t − θj
tm

piRe

t + θi
tθ

j
tm

(Re)2

t

)

∆t + O(∆2
t ),

where the only quantity not computed above is

mpipj

t = 2rpipj + pj
Xv(pi

Xv)⊤ − λE0
t

[(

pi(Xt + η) − pi(Xt)
) (

pj(Xt + η) − pj(Xt)
)]

Here we used the fact that, since e−rsp(Xs, s) is a martingale, the fundamental pricing
PDE holds, i.e., the drift of p(Xs, s) equals rp(Xs, s).

We now specialize the model to three choices, corresponding to each of Sections 2.1–
2.3:

Proof of Proposition 5:

In the first model S = X1 is a Markov diffusion, i.e., the jump component is 0. We
obtain immediately that θt = StpS(St, t) + O(∆t) = StfS(St, t) + O(∆t), and therefore
Cov0

t

[

p̄i
t+∆t

p̄j
t+∆t

]

= 0 up to terms in O(∆2
t ).

To obtain a more nuanced answer we work directly with an exact third-order Taylor
expansion of the function p(St+∆t

, t + ∆t) around the point (St, t). It follows that

Cov0
t

[

p̄i
t+∆t

, p̄j
t+∆t

]

= Cov0
t

[

1

2
f i

SS∆S2 + ∆S O(∆t) + O(∆2
t ),

1

2
f j

SS∆S2 + ∆S O(∆t) + O(∆2
t )

]

=
1

4
f i

SSf j
SSVar0

t

[

∆S2
]

+ O
(

∆
5

2

t

)

=
1

2
f i

SSf j
SSv4∆2

t + O
(

∆
5

2

t

)

.

�

Proof of Proposition 6:

In this model, S is a Markov jump-diffusion. Let η̄ = S−1η be the relative jump size
and σ = S−1v be the relative volatility, giving

θt =
σ2fSSt − λE0

t [(p(St(1 + η̄)) − p(St)) η̄]

σ2 − λE0[η̄2]
+ O(∆t)
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and

Cov0
t

[

p̄i
t+∆t

, p̄j
t+∆t

]

=
(

(f i
SSt − θi)(f j

SSt − θj)σ2 + λE0
t

(

κiκj
))

∆t + O(∆2
t ),

with κi = f i(St(1 + η̄)) − f i − θiη̄.

�

Proof of Proposition 7:

Here we let X = (S, σ)⊤ with

dSt = rSt dt + σtSt dB1,t

dσt = φ(σ̄ − σt) dt + σσ(St, σt) dB2,t.

Since the Brownian motion driving the volatility, B2,t is independent from the one
driving the underlying return, B1,t, the hedge ratio is the same as in the 1-dimensional
Markov-diffusion case,

θt = fSSt + O(∆t),

and

Cov0
t

[

p̄i
t+∆t

, p̄j
t+∆t

]

= f i
σf

j
σσ2

σ∆t + O(∆2
t ),

where fσ is the derivative of f with respect to the second argument. �

Empirical Implementation:

For the empirical implementation of the model, we do as follows. We weight the
demand of the included options according to the model-implied covariances of un-
hedgeable parts, using the models of Sections 2.1–2.3. Specifically, for the diffusive
risk we compute an option’s Black-Scholes-Merton gamma (i.e. the second derivative
with respect to the price of the underlying) evaluated at the option’s moneyness and
maturity, 20% volatility, S = 1, an interest rate of r = 5%, dividend rate q = 1.5%,
∆t = 0.01. The results are robust the choices of these parameters. We keep S, r, q,
and σ constant throughout the sample to avoid biases arising from changes of these
variables. Hence, changes in the model-implied demand effect is solely due to changes
in demand patterns.

Similarly, we compute the demand effect with stochastic volatility risk by comput-
ing the Black-Scholes-Merton vega (i.e. the derivative with respect to the volatility)
evaluated at the same parameters as above and adjusting for maturity. We use the
maturity adjustment described in Equation 37, where the volatility mean-reversion
parameter φ is set to 6 based on the estimate of Pan (2002).

We compute the covariance jump risk E(κiκj) by computing for each option its
unhedged profit/loss in the case of equally likely jumps of 5% and -20%, jump arrival
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rate of 5% per year, and the parameters above. For this, we compute a jump-adjusted
option price function f without demand effects and without jump risk premia using a
straightforward adaptation of Merton (1976) We use the delta hedging given by θ = fS.
Finally, we compute the variables κ and their covariance using the definitions (32) and
(34).
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