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The Role of Liquidity in Volatility Smiles 

 

 

ABSTRACT 

 

We investigate the interaction of volatility smiles and liquidity in the 
euro (€) interest rate option markets, using daily bid and ask prices of 
interest rate caps/floors. We find that liquidity variables have significant 
explanatory power for both curvature and asymmetry of the implied 
volatility smiles. This effect is generally stronger on the ask side, 
indicating that ask-prices are more relevant for these markets. In 
addition, the shape of the implied volatility smile has some information 
about future levels and volatility of the term structure. Our results have 
important implications for the modeling and risk management of fixed 
income derivatives. 
 
JEL Classification: G10, G12, G13, G15 
Keywords: Volatility smiles; liquidity; interest rate options; euro interest 
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Over-the-counter interest rate options such as caps/floors and swaptions are among the most 
liquid options that trade in the global financial markets, with about $20 trillion of notional 
principal outstanding, as of December 2003.1  Given the large size of these markets, significant 
effort has been devoted, both in academia and in industry, to the development and testing of 
valuation models to accurately price and hedge these claims.2 However, most of the models 
developed and, consequently, the empirical tests of these models, have assumed a competitive, 
frictionless framework, where there are no liquidity costs. The problems in assuming away 
liquidity costs are exacerbated for options that are away-from-the-money, especially if there are 
volatility smiles/skews across strike rates in interest rate option markets.3  It is likely that 
differential liquidity effects across strike rates confound the commonly observed volatility 
smile/skew, at least partly.  Specifically, it is well known that at-the-money options are typically 
much more liquid than those that are away-from-the-money.  Therefore, it is possible that at least 
part of the volatility smile pattern can be ascribed to differential liquidity effects across strike 
rates. The question is how much.  A further question is whether changes in liquidity affect the 
smile.  By the same token, a related issue is whether the smile has a feedback effect on the 
liquidity of these options.   To our knowledge, there is no study that has examined these, or other 
related issues in the interest rate option markets. 
 
Although there has been some work in the existing literature that examines some of these issues, 
virtually all the analysis and evidence so far has been in the context of equity options.4 The 
conclusions from equity option markets cannot be extended to interest rate option markets since 
these markets differ significantly from each other for several reasons. In contrast to equity 
options, interest rate option markets are almost entirely institutional, with hardly any retail 
presence. Most interest rate options, particularly the long-dated ones such as caps, floors and 
swaptions, are sold over-the-counter (OTC) by large market makers, typically international 
banks. The customers are usually on one side of the market (the ask-side), and the size of 
individual trades is relatively large. Many popular interest rate option products, such as caps, 
floors and collars are portfolios of options, from relatively short-dated to extremely long-dated 
ones. These features lead to significant issues relating to supply/demand and asymmetric 
information about the order flow, potentially resulting in larger bid-ask spreads than those for 
exchange traded equity options. Since interest rate options are traded in an OTC market, there 
are also important credit risk issues that may influence the pricing of these options, especially 
during periods of crisis. Therefore, inferences drawn from studies in the equity option markets 

                                                           
1 BIS Quarterly Review, September 2004, Bank for International Settlements, Basel, Switzerland. 
2 These include the studies by Driessen, Klaasen and Melenberg (2003), Fan, Gupta and Ritchken (2003), 
Gupta and Subrahmanyam (2004), Longstaff, Santa-Clara and Schwartz (2001), Peterson, Stapleton and 
Subrahmanyam (2003), Jarrow, Li and Zhao (2003), and others. 
3 Using the Black model, the volatilities implied from option prices are different across different strike rates.  
In particular, the pattern is typically U-shaped, and skewed to one side; it is, therefore, referred to as the 
volatility smile or skew. 
4 See Ederington and Guan (2002), Mayhew (2002), and Pena, Rubio and Serna (1999, 2001), and Bollen and 
Whaley (2004), for example. 
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are not directly relevant for interest rate option markets, although there may be some broad 
similarities.  Unlike exchange traded option markets, in the OTC interest rate option markets, the 
only metric of liquidity available is the bid-ask spread – there are no volume, depth, or open 
interest data available. Therefore, in spite of its potential shortcomings, we are constrained to rely 
on the bid-ask spread alone for all our liquidity analyses, which still lead to interesting findings. 
 
In the interest rate option markets, an important question that is unanswered, as yet, relates to 
the economic determinants of volatility smiles, and their relationship to liquidity factors. In this 
paper, we investigate the determinants of these volatility smiles in the cap/floor markets, 
specifically including transaction costs, for which the bid-ask spread may serve as a proxy, as one 
of the explanatory variables. The bid-ask spreads in these markets may be indicators of the 
liquidity risk premium built into option prices. This liquidity risk premium may itself be 
dependent on various factors such as the depth-in-the-money or "moneyness," market volatility, 
lagged trends in interest rates, the slope of the term structure, supply-demand factors and 
asymmetric information about the order flow. Thus, we examine the interaction of liquidity 
effects and other economic variables with the implied volatility smiles in the euro interest rate 
option market. 
 
We contribute to the literature in three distinct ways. First, we present an extensive 
documentation of the volatility smile patterns in the interest rate option markets for different 
maturities, in the presence of bid-ask spreads. Second, we explore the determinants of volatility 
smiles in these markets, in terms of macro-economic and liquidity variables. We control for the 
level of volatility and the level and the slope of the yield curve in an effort to separate the effect of 
liquidity from the effects arising out of an alternate model for the interest rate process. Typically, 
in  models such as those based on stochastic volatility, which are able to generate some volatility 
smile/skew patterns across strike prices or rates, the current level of volatility and interest rates 
are determinants of the future distribution of the interest rates. Third, we examine the 
bidirectional Granger-causality relationships between volatility smiles and the various liquidity 
and economic variables, to understand whether any of these variables have power in predicting 
smile patterns, or whether the volatility smiles have any information about the future values of 
these variables. 
 
We find that there are clearly perceptible volatility smiles in caps and floors, across all maturities. 
The pattern of these volatility smiles, however, varies depending on the maturity of the option. 
Short-term caps and floors exhibit smiles that are significantly steeper than those for longer-term 
caps and floors. Long-term floors display more of a “smirk” than a smile. A principal 
components analysis of changes in the cap and floor volatility surface indicates that more than 
one dominant factor explains the variations in this surface. The number of primary principal 
components is different on the ask side (four) from the bid side (two), suggesting that there may 
be significant differences in the information content of the volatility smile curve on the ask- 
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versus the bid-side. We estimate parametric functional forms for the volatility smiles for caps and 
floors separately, as well as for caps and floors pooled together, and find that they display 
significant curvature, as well as an asymmetry in the slope of the smile. When we analyze these 
smile patterns separately for the ask-side and the bid-side for these options, we find that the 
smiles are much steeper on the ask-side than on the bid-side.  
 
We also find that liquidity variables, as proxied by bid-ask spreads, affect the implied volatility 
smile patterns in this market. Interestingly, these results are somewhat stronger on the ask side. 
indicating that the ask-side is  adjusted more frequently than the bid side in these markets. This is 
consistent with the reality, since most of the corporate/institutional investor customers for these 
options are buyers of caps, floors and collars. Our results also show that, in general, the economic 
variables have more explanatory power on the ask-side than on the bid-side. Thus, there is reason 
to believe that the ask side has more relevant information in these markets.  
 
The bivariate Granger-causality tests are used to see if lagged values of any of the explanatory 
variables can predict the curvature and asymmetry of the volatility smile and vice-versa. We find 
that the curvature of the volatility smile Granger-causes the at-the-money volatility in the interest 
rate options market and the slope of the term structure at the long end, while there is no feedback 
effect in the other direction. There is evidence that the asymmetry of the smile for long maturity 
options predicts the slope of the yield curve at the short end and the long end. Thus, it appears 
that the shape of the smile has some information about the future levels of uncertainty in the 
market and the medium and long-term interest rates.  
 
The results of our paper have three major implications for the modeling and risk management of 
interest rate derivatives, especially options. First, it is important to incorporate liquidity effects in 
the valuation model in order to explain the volatility smile across strike rates more completely. 
Second, interest rate option models should be calibrated using option prices across a range of 
strike rates, not just using ATM options, since, as we show in this paper, the shape of the 
volatility smile curve has important information about the future term structures and their 
volatility. Third, using the mid-price (the average of the bid- and the ask-price) of options, 
especially OTC options, may significantly distort the estimation of the models, since the shape of 
the volatility smile, and the information contained therein, are significantly different on the ask-
side from those on the bid-side. In particular, the prices from the ask-side of the price curve 
should be given more weight since they seem to contain more information than the bid-side.  
While it is common practice to calibrate interest rate option models using data across strike rates, 
it is not often that the ask- and bid-sides are dealt with separately. Our research suggests that 
taking the mid-prices to calibrate models may lead to losing important information about the 
dynamic evolution of market prices in response to liquidity effects. 
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The structure of our paper is as follows. Section 1 presents an overview of prior research that has 
tried to explain the patterns of volatility smiles, mainly in equity option markets. Section 2 
describes the data set and presents summary statistics. Section 3 presents the empirical patterns 
of the volatility smile that we observe in the data. Section 4 relates the patterns of volatility smiles 
to economic and liquidity variables. Section 5 presents the results of the bivariate Granger-
causality tests. Section 6 concludes with a summary of the main results and directions for future 
research. 
 
1. Related Literature 
 
Early empirical work on the pricing of equity options concluded that the standard Black-Scholes 
model fitted to the data gives rise to volatility smiles/skews.5 Several approaches have been 
proposed for explaining these volatility smile patterns, many of them being ad hoc in nature. The 
formal approaches to modeling this empirical phenomenon rely on specifying alternative 
dynamics for the underlying asset price process, such that the process exhibits skewness and 
excess kurtosis in the underlying asset return distributions. These approaches implicitly assume 
that skewness and excess kurtosis in the underlying asset returns distributions are the only 
source of volatility smiles/skews in option prices. Excess kurtosis makes extreme observations 
more likely than in the Black-Scholes case, thereby increasing the value of away-from-the-money 
options relative to the at-the-money options, creating the smile. The presence of skewness has the 
effect of accentuating just one side of the smile.  
 
Within the broad array of modeling approaches, three classes of models have been proposed in 
the area of equity options. The first consists of models where the volatility of the underlying 
security returns is assumed to evolve deterministically through time.6 However, Dumas, Fleming 
and Whaley (1998) show that these models have highly unstable parameters, and cannot explain 
the shape of the implied volatility functions, even compared to the naïve Black-Scholes model. 
The second class of models consists of stochastic volatility models that allow the volatility of the 
return process to evolve randomly over time. In these models, the correlation between the 
Brownian motions associated with the underlying asset and the volatility affects the skewness of 
returns, while the “volatility of volatility” determines the kurtosis. However, this modification 
only provides, at best, a partial explanation of the shape of the implied volatility function.7 The 
third class of models includes jump-diffusion models, where the underlying asset return process 

                                                           
5 See, for example, Macbeth and Merville (1979), Heynen (1993), Duque and Paxson (1993), and Heynen, 
Kemna and Vorst (1994). 
6 These include the constant elasticity of variance (CEV) models (see, for example, Emanuel and MacBeth 
(1982)), and the implied tree models of Dupire (1994), Derman and Kani (1994), and Rubinstein (1994), 
where volatility is a deterministic function of asset price and time. 
7 This is documented by Hull and White (1987), Wiggins (1987), Amin and Ng (1993) and Heston (1993). 
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is augmented by a Poisson-driven jump process.8 However, these models, by themselves, are also 
unable to explain volatility smiles. For instance, Heynen (1993) finds that the observed smile 
pattern is inconsistent with various stochastic volatility models. Jorion (1988) concludes that jump 
processes cannot explain the smile, while Bates (1996) concludes the same for stochastic volatility 
models. Das and Sundaram (1999) find that the implied volatility smiles implied by stochastic 
volatility models are too shallow and that jump-diffusion models imply a smile only at short 
maturities. For these reasons, Bakshi, Cao, and Chen (1997) advocate the use of a stochastic 
volatility model with jumps for valuing S&P 500 index options, with somewhat mixed results. 
Similarly, Bates (2000) finds that the inclusion of a jump process in stochastic volatility models 
improves the model’s ability to generate implied volatility functions consistent with market 
prices, but in order to do so, the parameters of the process must be set to unreasonable values. In 
a similar spirit, Jackwerth (2000) concludes that the risk aversion functions implied by S&P 500 
index option prices (across strike rates) are irreconcilable with reasonable preferences for the 
representative investor. 
 
All these studies show that even these broad classes of models have been unsuccessful in 
accurately describing the behavior of the observed volatility smiles in the equity options markets 
– the empirically observed volatility smiles are typically much larger than those predicted by the 
theory. Clearly, some other economic phenomenon is missing from the models so far, particularly 
since, with frictions in the market, option-pricing models may not satisfy the martingale 
restriction (i.e., the price of the underlying asset implied by the option pricing model must equal 
its actual market value).9 In such a situation, the no-arbitrage framework can only place bounds 
on option prices and hence, cannot explain the observed patterns in option prices either across 
strike rates or across maturities. This discussion points towards liquidity being one of the factors 
that might cause, or at least influence, the volatility smiles across strike rates. In this context, 
Constantinides (1997) concurs that, with transaction costs, the concept of the no-arbitrage price of 
a derivative is replaced by a range of prices, which may differ across strike rates for options. 
However, he distinguishes between plain-vanilla, exchange-traded derivatives (such as equity 
options) and customized, over-the-counter derivatives - many interest rate options fall in the 
latter category. From a theoretical standpoint, he argues that transaction costs are more likely to 
play an important role in the pricing of the customized, over-the-counter derivatives, as opposed 
to plain-vanilla exchange-traded contracts, since the seller has to incur higher hedging costs to 
cover short positions, if they are customized contracts. This issue clearly needs empirical 
verification and amplification.  
 

                                                           
8 This type of model was proposed by Merton (1976), Ball and Torous (1985), Jarrow and Rosenfeld (1984), 
Amin (1993) and Bates (1996), where the basic Black and Scholes (1973) model is augmented by a Poisson-
driven jump process. 
9 See, for example, Longstaff (1995), Brenner and Eom (1997) and others. 
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Another way to think about liquidity effects is to focus on the feasibility of arbitrage trades if 
option prices deviate from their theoretical values. In theory, the demand for an option should 
not affect its price (or implied volatility), since derivatives are redundant assets. However, in 
reality, there may be limits to arbitrage. Liu and Longstaff (2004) show that investors may 
underinvest in a profitable arbitrage opportunity than what may be allowed by collateral 
constraints, partly due to the possibility of interim losses. In such a situation, potential mispricing 
could persist or even become wider, and theoretical valuation arguments based on the absence of 
arbitrage may not always hold.10 In effect, the no-arbitrage band within which prices can 
fluctuate can be quite wide, allowing prices to be affected by supply and demand considerations. 
If the market demand is more on one side – the ask-side – than the other, this can lead to different 
shapes for the implied volatility functions, and different shapes of this function on the ask-side 
compared to its shape on the bid-side. This is another way in which the slope and curvature of 
the implied volatility functions can be affected by the liquidity in the option markets. 
 
Overall, the focus of the literature in equity options has been to document systematic strike price 
biases in the standard Black-Scholes framework, extend the Black-Scholes framework to 
incorporate stochastic volatility, jumps, etc., and test whether these extended models can remove 
the strike price biases. Most studies have confirmed that significant biases remain, even after 
modeling stochastic volatility and jumps into the underlying asset price process. Based on this 
motivation, Pena, Rubio and Serna (1999), examine the impact of liquidity factors on the volatility 
smiles in the Spanish index options market. They find that liquidity variables have a significant 
impact on the shape of the smile. In another related paper, Bollen and Whaley (2004) examine the 
effect of a liquidity variable, defined by net buying pressure, on the shape of the implied 
volatility function, also known as the volatility smile.11 They define the net buying pressure as the 
difference between the number of buyer-motivated contracts and seller-motivated contracts, 
scaled by trading volume. Their results show that net buying pressure influences the shape of the 
volatility smile, particularly for index options, but these effects are transitory. They also show 
that these effects yield profitable trading opportunities by dynamically hedging out-of-the-
money index options. 
 
In the area of interest rate options, Jarrow, Li and Zhao (2003) find that smiles exist in the US 
interest rate cap markets, but the models of the term structure cannot capture them. In particular, 
they report that even the most sophisticated LIBOR market models, with stochastic volatility and 
jumps, cannot capture the volatility smile in interest rate options. Similarly, Gupta and 
Subrahmanyam (2004) find that several alternative one-factor and two-factor term structure 

                                                           
10 These limits to arbitrage may also explain the empirical results in Ofek, Richardson and Whitelaw (2004). 
11 Bollen and Whaley analyze the (very different) market for equity options, both on the S&P 500 index and 
certain individual stocks.  In addition, since their data are for exchange-traded options, they are able to use 
data on trading volume. 

6 



 

models (spot rate, forward rate, as well as market models) are unable to capture the volatility 
smile in caps and floors. 
 
It is important to note that so far, there has been no work on exploring the impact of liquidity 
factors on interest rate option prices, and on volatility smiles. The evidence in the equity option 
markets suggests that liquidity effects are likely to be stronger for interest rate options due to the 
over-the-counter nature of the markets and the asymmetry in the demand for these options. The 
evidence in the interest rate option pricing literature also supports this motivation since just 
modeling the term structure of interest rates does not seem to capture the smiles. Ultimately, it 
would be important to include liquidity effects in the modeling of the term structure of interest 
rates and the pricing and hedging of interest rate derivatives. However, this effort must await the 
establishment of stylized facts based on detailed empirical research. Our work can, therefore, be 
seen in this context. In particular, we begin by documenting volatility smile effects in the Euro 
interest rate option markets, separately for the ask-side and the bid-side for different maturities. 
Then, we concentrate on analyzing the influence of liquidity and other economic factors on the 
shape of the smile. We use the Black model to obtain the implied volatilities from the option 
prices. We then control for the level of volatility and interest rates in our subsequent analysis. 
Thus, we can control for the effects arising out of a model of interest rates with skewness and 
excess kurtosis without tying ourselves to any particular model. Our evidence suggests that in 
the interest rate option markets, there are liquidity effects in the volatility smiles that are separate 
from the effects that could be broadly attributed to an alternate stochastic process for interest 
rates. 
 
2. Data 
 
The data for this study consist of an extensive collection of euro (€) cap and floor prices over the 
29-month period, January 1999 to May 2001, obtained from WestLB (Westdeutsche Landesbank 
Girozentrale) Global Derivatives and Fixed Income Group. These are daily bid and offer quotes 
for nine maturities (2 years to 10 years, in annual increments) across twelve different strike rates 
ranging from 2% to 8% (prices are not available for all of the maturity-strike combinations each 
day.)12 These caps and floors are portfolios of European interest rate options on the 6-month 
Euribor with a 6 monthly reset frequency.13 Therefore, this dataset allows us to examine strike 
price biases as well as liquidity effects in caps and floors. Along with the options data, we also 
collected data on € swap rates and the daily term structure of euro interest rates curve from the 

                                                           
12 It is important to note that these quotes may only be indicative in the sense that the market-maker is not 
obliged to transact at these prices at any significant volume.  However, there is no bias in the quotes from an 
econometric perspective.  Also, this being an OTC market, it is very hard to obtain transaction prices and 
volume. In other words, the quotes are the best indicator of liquidity in the market, but may be observed 
with an error.  In what follows, we adjust for this potential error-in-variables problem. 
13 In Appendix A.1, we provide details of the contract structure for these options as well as the Black (1976) 
model for converting cap and floor prices into implied volatilities.  
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same source. These are key inputs necessary for checking cap-floor parity, as well as for 
conducting the subsequent empirical tests.  
 
Table 1 provides descriptive statistics on the midpoint of the bid and ask prices for caps and 
floors over our sample period. The prices of these options can be almost three orders of 
magnitude apart, depending on the strike rate and maturity of the option. For example, a deep 
out-of-the-money two-year cap may have a market price of just a few basis points, while a deep 
in-the-money ten-year cap may be priced above 1500 basis points. Since interest rates have varied 
substantially during our sample period, the data have to be reclassified in terms of moneyness 
(“depth in-the-money”) to be meaningfully compared over time. In Table 1, the prices of options 
are grouped together into “moneyness buckets,” by estimating the Log Moneyness Ratio (LMR) 
for each cap/floor. The LMR is defined as the logarithm of the ratio of the par swap rate (for a 
non-standard swap as discussed in Appendix A.2) to the strike rate of the option. Since the 
relevant swap rate changes every day, the moneyness of the same strike rate, same maturity, 
option, measured by the LMR, also changes each day. The average price, as well as the standard 
deviation of these prices, in basis points, is reported in the table. It is clear from the table that 
cap/floor prices display a fair amount of variability over time. Since these prices are grouped 
together by moneyness, a large part of this variability in prices over time can be attributed to 
changes in volatilities over time, since term structure effects are largely taken into account by our 
adjustment.  
 
We also document the magnitude and behavior of the liquidity costs in these markets over time, 
for caps and floors across strike rates. We use the bid-ask spreads for the caps and floors as a 
proxy for the illiquidity of the market. It is important to note that these are measures of the 
liquidity costs in the interest rate options market and not in the underlying market for swaps. 
Although the liquidity costs in the two markets may be related, the bid-ask spreads for caps and 
floors directly capture the effect of various frictions in the interest rate options market, in 
addition to the transaction costs in the underlying market, as well as the imperfections in hedging 
between the option market and the underlying swap market. Thus, the liquidity costs in the 
option market are more relevant for this study since they are a comprehensive measure of all the 
costs that matter.14 In Table 2, we present the bid-ask spreads scaled by the average of the bid and 
ask price of the option, grouped together into moneyness buckets by the LMR. Close-to-the-
money caps and floors have proportional bid-ask spreads of about 8% - 9%, except for some of 
the shorter-term caps and floors that have higher bid-ask spreads. Since deep in-the-money 

                                                           
14 The objective of this paper is to analyze liquidity effects directly in the interest rate options market, not in 
the market for underlying swaps or bonds. The liquidity in the underlying swap markets may have its own 
effect on the options market. However, the underlying “assets” for all the interest rate options analyzed in 
this paper are the same (since they are all options on the same yield curve), unlike equity options, where 
different options have different underlying assets. Therefore, the effects of liquidity in the underlying swap 
markets are likely to be more homogeneous across all interest rate options analyzed in this paper; hence 
they are less likely to affect the cross-sectional comparisons that we make in this paper.  
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options (low strike rate caps and high strike rate floors) have higher prices, they have lower 
proportional bid-ask spreads (3% - 4%). Some of the deep out-of-the-money options have large 
proportional bid-ask spreads - for example, the two year deep out-of-the-money caps, with an 
average price of just a couple of basis points, have bid-ask spreads almost as large as the price 
itself, on average about 80.9% of the price. Part of the reason for this behavior of bid-ask spreads 
is that some of the costs of the market makers (transactions costs on hedges, administrative costs 
of trading, etc.) are absolute costs that must be incurred whatever may be the value of the option 
sold. However, some of the other costs of the market maker (inventory holding costs, hedging 
costs, etc.) would be dependent on the value of the option bought or sold. It is also important to 
note that, in general, these bid-ask spreads, are much larger than those for most exchange traded 
options. 
 
Next, we examine the no-arbitrage relation between caps and floors. Details of the put-call parity 
relationship between caps and floors are provided in Appendix A.2. If put-call parity holds due 
to arbitrage restrictions, the implied volatility of a cap and a floor at the same strike rate and 
maturity must be identical. However, the implied volatilities of caps and floors at different strike 
rates or maturities need not be the same. Indeed, the pattern of these volatilities across strike 
rates is the subject of investigation in this paper. 
 
We examine the efficiency of the euro interest rate cap/floor market in exploiting profit 
opportunities, using the bid and ask prices for caps and floors and the values of the relevant 
swaps calculated using the method explained in Appendix A.2. We calculate the difference on the 
left hand side of inequalities (A.5) and (A.6), average them, and check if the average difference is 
significantly less than 0. The tests are conducted in a manner such that the actual feasibility of 
implementing the arbitrage, in case of any violations, can be examined. If the net price of these 
portfolios is negative, it is potentially a violation of put-call parity in these options, since it 
implies that the cost of setting up this completely hedged portfolio is negative. The results are 
presented in Table 3. In 3 out of 18 cases, the mean difference is negative and significant. Also, if 
we look at the last column, it can be seen that, in several cases, the difference is less than 0. 
 
However, in these calculations, we have not accounted for the bid-ask spreads for the off-market 
swaps used in the tests since this information is not available. Typically, the bid-ask spread for 
“plain vanilla” market (par) Euro swaps is about 4-5 basis points. As pointed out above, the 
swaps that would be needed for these arbitrage transactions would, in general, be off-market, 
non-standard swaps (not par swaps), which are likely to have bid-ask spreads significantly 
greater than 4-5 basis points. From Table 3, it can be seen that, the maximum average violation is 
about 5 basis points. Therefore, from a practical perspective, many of the potential violations 
(defined as cases where the net cost of these portfolios is negative) are not arbitrageable, and are 
unlikely to be true violations.15 Without precise information on the bid-ask spreads for off-market 
                                                           
15 Furthermore, since these are the quotes posted by a particular dealer, it is unlikely that the dealer would 

9 



 

swaps, it is not possible to determine how many of these potential violations are actually 
arbitrageable.  
 
Since the average difference is well within potential bid-ask spreads for off-market non-standard 
swaps, we argue that the cap floor parity holds on average; hence, pooling the data for caps and 
floors is appropriate for further analysis. Pooling the data from caps and floors allows us to 
obtain data for a wider range of strike rates, covering rates that are both in-the-money and out-of-
the-money for both caps and floors. The parity computations are also a consistency check, which 
assures us about the integrity of the dataset.16

 
Even if the no-arbitrage relation holds on average, the fact that it does not hold for several 
individual observations indicates that these prices might be measured with error. In our 
subsequent analysis, the implied volatilities calculated from the prices of these options are the 
dependent variables. We are not concerned about the errors-in-variables problem in the 
dependent variables, since they do not bias the coefficients in the regressions. However, we also 
use the bid-ask spread scaled by mid-price as one of the explanatory variables. Thus, the scaled 
bid-ask spreads are contaminated by the errors-in-variable problem. We observe in the data that 
the bid and ask prices of the options move together.  So there is strong reason to believe that even 
though individual bid and ask prices are measured with error, the unscaled bid-ask spread is not 
affected. However, dividing by the mid-price, which may be measured with error, introduces a 
potential error in the scaled bid-ask spreads. To account for this problem, we use the 
instrumental variable approach, where unscaled bid-ask spreads are used as instruments for the 
scaled bid-ask spreads.  
 
3. Volatility Smiles in Interest Rate Option Markets 
 
We use implied volatilities from the Black-BGM model throughout the analysis from here on. 
Although there may be a complex model that explains at least part of the smile/skew or the term 
structure of volatility, it is necessary to first obtain a sense of the empirical regularities using the 
standard model. In other words, we need to first document the characteristics of the smile before 
attempting to model it formally.17 Furthermore, the evidence in the equity option markets 
suggests that even such complex models may not explain the volatility smile adequately, without 
considering other effects such as liquidity. 
 
                                                                                                                                                                             
allow a potential customer to create an arbitrage position based on his quotes. In our discussions with 
dealers in this market, we were told that these quotes are likely to reflect the best information available with 
the dealer at the time of posting these quotes, and any error in prices is likely to be unbiased. 
16 Since caps and floors are traded in the market and not caplets and floorlets, it makes sense to conduct the 
arbitrage test for caps and floors. However, we also conducted the tests for individual caplets and floorlets, 
whose prices were calculated by bootstrapping. The results were similar. 
17 This is in line with the approach of Bollen and Whaley (2004), who also use the implied volatilities from 
the Black-Scholes model. 
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We document volatility smiles/skews in euro interest rate caps and floors across a range of 
maturities over the sample period. Figure 1 presents scatter plots of the implied flat volatilities of 
caps and floors over our sample period. The vertical axis in the plots corresponds to the implied 
volatility of the mid-price (average of bid and ask price) of the option, scaled by the at-the-money 
volatility for the option of the same maturity (Scaled IV). We divide by the implied volatility of 
at-the-money option to account for the effect of changes in the level of implied volatilities over 
time. The horizontal axis in the plots corresponds to the log moneyness ratio (LMR), our measure of 
the moneyness of the option. 
 
We first examine the overall shape of the implied volatility smile. The plots are presented for 
three representative maturities - 2-year, 5-year, and 10-year, for the pooled cap and floor data.18 
These plots clearly show that there is a significant smile curve in interest rate options in this 
market, across strike rates. The smile curve is steeper for shorter-term options, while for longer- 
term options, it is flatter and not symmetric around the at-the-money strike rate.  
 
In addition, we analyze the principal components of the changes in the Black volatility surface 
(across strike rates and maturities) for caps and floors. If there is information in away-from-the-
money option prices that is different from that in ATM option prices, then we should not observe 
a very high proportion of the variation in these implied volatilities being explained by just one 
principal component. Indeed, we find that for caps, on the ask-side, there are four significant 
principal components that together explain 91.7% of the daily variation in the volatility surface 
(the first four components explaining 31.7%, 29.2%, 17.1%, and 13.9% respectively). However, on 
the bid-side, we find only two significant principal components that explain 80.5% of the daily 
variation – the first four principal components together explain 89.9% of the daily variation in the 
volatility surface (42.8%, 37.7%, 5.1%, and 4.3% respectively). The structure of the principal 
components is similar for floors. In addition, when we analyze the principal components using 
weekly changes in implied volatilities, we find an even stronger effect in terms of four primary 
components on the ask-side but only two primary components on the bid-side. Prima facie, this 
indicates that there are four types of primary shocks that affect the volatility surface on the ask-
side, while only two types of shocks appear to impact the bid-side. This empirical finding may be 
related to the institutional nature of the market, where most of the customers of caps/floors are 
on the ask-side of the market.19 Therefore, potentially, there may be more information in the 
shape of the volatility smile curve on the ask-side than on the bid-side. 
 
Next, we estimate various functional forms for volatility smiles using pooled time-series cross-
sectional regressions, in order to understand the overall form of the volatility smile over our 
                                                           
18 The separate plots for caps and floors, and the plots for other maturities, show similar characteristics; 
hence, they have not been presented in the paper. 
19 Our conversations with dealers in this market confirmed that the demand is usually on one side – while 
corporate and institutional investors are buyers of these options, banks are on the other side as sellers of 
these options. Hedge funds step in when they perceive the bid-ask spreads to be too wide.  
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entire sample period.20 The most common functional forms for the volatility smile are quadratic 
functions of either moneyness or the logarithm of moneyness. The scatter plots in Figure 1 also 
support a quadratic form. In order to account for the asymmetry, if any, in the smile curve, we 
allow the slope to differ for in-the-money and out-of-the-money options. We also estimate the 
linear and quadratic functional forms without the asymmetry term. In addition, we present the 
volatility smiles on the bid-side and the ask-side separately. Using the mid-point of the bid-ask 
prices may not accurately display the true smile in the implied volatility functions, given that 
bid-ask spreads differ across strike rates. We avoid this pitfall and separately report the smiles for 
the bid-side and the ask-side. 
 
The specific models that we estimate, using ordinary least squares estimation in the pooled time 
series and cross sectional regression, are as follows: 
 

2

2
0

 1 2 *
 1 2 * 3*
 1 2 * 3* 4 *1 *LMR

Scaled IV c c LMR
Scaled IV c c LMR c LMR
Scaled IV c c LMR c LMR c LMR<
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 (1) 

 (2) 
 (3) 

 
In Table 4, we report the results for caps and floors separately only for (3), the quadratic 
functional form with the asymmetric slope term, since it fits the observed volatility smiles the 
best.21 The regression coefficients in all the specifications are highly significant. In addition, the 
quadratic functional form with asymmetric slope term explains a fairly high proportion of the 
variability in the scaled implied volatilities. For example, for 5 year caps, this specification 
explains about 96% of the variability in the scaled IV on the ask-side and 67% on the bid-side. In 
most specifications, the asymmetry term for the slope of the smile is significant, indicating that 
the shape of the volatility function is different for in-the-money options, as compared to that for 
out-of-the-money options.22 In addition, for most maturities, the explanatory power of the model 
is greater for caps than for floors, and within caps, it is greater on the ask side than on the bid 
side. This relates to the nature of the institutional market for these options – since most dealers 
are net sellers of these options, the ask side of the price curve is likely to be more sensitive to the 
moneyness of the option than the bid side. Also, there is typically more demand from customers 

                                                           
20 Unfortunately, we do not have enough observations each day to estimate these relationships cross-
sectionally, since caps and floors tend to be traded at strike rates that are either ATM or out-of-the-money. 
Hence, the observations for each contract – caps and floors - tend to be for strike rates that are on one side of 
the ATM strike rate. 
21 We also tested a specification with an asymmetric term for the curvature of the smile, but it did not add 
any significant explanatory power over the specification with the asymmetric term for just the slope of the 
smile.  We got similar results when we tested a polynomial specification with higher order terms, which 
turned out to be statistically unimportant. 
22 We also conducted the same exercise with spot volatilities i.e. using inferred prices of caplets and 
floorlets, obtained after “bootstrapping” the data as described in Appendix A.1. Model (3) fits well there 
also. Those results are not presented here to save space. 
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for caps rather than floors, since most of them tend to hedge floating rate borrowing, rather than 
lending. 
 
Figure 2 presents the plots of these fitted functions for caps and floors for different maturities. 
These plots clearly show the shape of the smile curve for these specific options. These implied 
volatility smiles display some interesting patterns. Caps always display a smile, for all maturities, 
although the smile flattens as the maturity of the cap increases. In-the-money caps (caps with 
LMR>0) have a significantly steeper smile than out-of-the-money caps, which is indicative of the 
asymmetric slope of the smile on either side of the at-the-money strike. More interestingly, the 
ask-side of the smile is steeper than the bid-side, the difference being significantly larger for in-
the-money caps. Floors display somewhat similar patterns. The smile gets flatter as the maturity 
of the floor increases. In-the-money floors (floors with LMR<0) exhibit a significantly steeper 
smile, especially for short-term floors. Long-term floors display almost a “smirk”, instead of a 
smile. As with caps, the smile curve for floors is steeper on the ask-side, as compared to that on 
the bid-side.  
 
Next, we pool the data for caps and floors to fit the functional form in equation (3). As discussed 
earlier, the advantage of using pooled data is that we have observations across a wider range of 
strike rates (moneyness). This allows us to estimate the true functional form for the smile more 
accurately. Table 5 presents the results for this functional form for pooled data on caps and floors 
for all maturities. The results are broadly similar to those in the separate regressions for caps and 
floors, although the explanatory power (adjusted R2) is somewhat lower, perhaps due to the 
additional measurement errors resulting from pooling of data. In addition, for shorter term caps 
and floors (2, 3, and 4 year maturity), the asymmetric slope functional form explains the observed 
smile patterns better on the ask side than on the bid side. The fitted smiles for these specifications 
using the pooled data are presented in Figure 3. These results show that there is a significant 
volatility smile for short-term caps and floors, which is quite asymmetric across both sides of the 
strike rates (i.e., for out-of-the-money and in-the-money options). In addition, the smile curve is 
significantly steeper on the ask-side than on the bid-side. However, as the maturity of these 
options increases, the smile flattens, and eventually converts into a “smirk” when we reach the 
10-year maturity. 
 
4. The Determinants of Volatility Smiles 
 
In the previous section, we document the smile patterns for euro interest rate caps and floors. 
However, the implied volatility smile patterns observed in this market may be significantly 
related to the liquidity of these interest rate options, as well as to other economic variables. A 
clear understanding of the determinants of these smile patterns can help in developing models 
that eventually explain the entire smile. We explore these issues in this section. 
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4.1 The impact of liquidity on volatility smiles 
 
We use the bid-ask spread as a proxy for liquidity in the market for those options. It can be 
questioned whether the bid-ask spread is an appropriate proxy for liquidity. However, given the 
nature of the OTC market for caps and floors, it is extremely difficult to obtain other measures of 
liquidity, common in exchange-traded markets, such as volume, depth, market impact etc. The 
data on even the bid-ask spreads is not widely available for the market as a whole. In our sample, 
we do observe the bid-ask spread for a particular dealer for each option every day. Therefore, we 
settle for using this metric as a meaningful, although potentially imperfect, proxy of liquidity. As 
a first cut, before more elaborate analysis of the dependence of the shape of the smile on the 
liquidity factors over time, we consider the original model (3).  We then compare the same 
specification with another specification where the bid-ask spread of each option (scaled by its 
mid-price) is added as an explanatory variable: 
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This approach allows us to examine the incremental effect of the bid-ask spreads in explaining the 
observed volatility smile patterns, after controlling for the dependence of the implied volatilities 
on functional forms of moneyness. 
 
We did consider the possibility of including other option “Greeks” in the above specifications.23 
We did not do so for two reasons. First, the squared term for the LMR included above is an 
approximate proxy for the convexity term.  Second, introducing other option Greeks explicitly 
may introduce potential collinearity, since, to a first order approximation, these risk parameters 
can be modeled as linear functions of volatility and the square root of the time to expiration.24

 
We use unscaled bid-ask spreads as instruments to address the errors-in-variable problem in 
scaled bid-ask spreads as discussed in section 2. We estimate this system of equations using the 
technique of two-stage least squares. In the first stage, we regress each of the explanatory 
variables on the unscaled bid-ask spreads and on the independent variables, other than the scaled 
bid-ask spreads. Then, in the second stage, we use the fitted values from the first stage as 
regressors. Scaling by the mid-price presents another problem. For in-the-money options, the 
large prices result in very small bid-ask spreads in percentage terms. For out-of-the money 
options, the small prices result in large scaled bid-ask spreads. This denominator effect seems to 

                                                           
23 In equity markets, Jameson and Wilhelm (1992) show that the bid-ask spreads for options are explained 
by option Greeks. 
24 See, for example, Brenner and Subrahmanyam (1994), who provide, in the context of the Black-Scholes 
model, approximate values for the risk parameters of options that are close to being at-the-money on a 
forward basis.  
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contaminate the regression results. We get around this problem by running the regressions 
separately for in-the-money and out-of-the money options. The results are presented in Table 6.  
 
We find that the coefficient for the scaled bid-ask spread (d5) is significant 17 out of 18 times on 
the ask-side. On the bid-side, the coefficient is significant 15 out of 18 times. Thus, bid-ask 
spreads are useful in explaining the level of implied volatilities across strike rates. We test the 
joint hypothesis that the smile coefficients are the same across the two models (c2=d2, c3=d3, 
c4=d4). The p-values for this joint hypothesis are presented in the last but one column of Table 6. 
Equality of these smile coefficients is rejected at the 1% level for almost all the maturities on the 
ask-side but only 50% of the times on the bid-side. Therefore, there is strong evidence that the 
smile, after correcting for bid-ask spreads, is different from the uncorrected smile on the ask–side, 
but not as much on the bid-side. In addition, the coefficient for the scaled bid-ask spread is 
positive and significant for almost all maturities on the ask-side, implying that higher implied 
volatilities of these options are associated with higher scaled bid-ask spreads. This is intuitive as 
the market-maker tries to pass on the higher liquidity costs of away-from-the-money options by 
increasing the ask-price. The more interesting part of the table is the comparison of the results on 
the ask-side with the results on the bid-side. The results for rejecting the hypothesis that the smile 
coefficients with and without the scaled bid-ask spreads are equal are much weaker on the bid-
side. Also, while the sign of the coefficient for the liquidity proxy is consistently positive on the 
ask-side, this is not the case on the bid-side. Thus, there is a strong reason to believe that the 
market-maker adjusts the ask-side much more in response to the changes in the liquidity of 
options in this market. The bid-side, in contrast, is left pretty much unaffected by changes in 
option market liquidity. This would be a natural course of action for by the market makers if the 
demand in this market were mainly on the ask-side. 
 
4.2 Time-series analysis of volatility smiles 
 
In the previous sub-section, we demonstrate that in a pooled time-series and cross-sectional 
setting, liquidity affects the volatility smiles in interest rate option markets. In this sub-section, 
we explore the time-series behavior of the volatility smile, since there is considerable time-
variation in term structures, implied volatilities, and the factors that affect them. 
 
In figure 4A, we present the surface plots for the implied volatilities over time, by moneyness 
represented by LMR.25 The shapes of these surface plots show similar trends – the 2-year 
maturity options display a large curvature in the volatility smile, while the smile flattens out and 
turns into more of a skew as we move towards the longer maturity options, especially at the 10-

                                                           
25 These plots are presented for representative maturities of 2-, 5-, and 10-years, since the plots for the other 
maturities are similar. In addition, since 3-D plots require the data to be complete over the entire grid, we 
present the volatility smiles over the LMR range from -0.3 to +0.3, which is the subset of strikes over which 
complete data are  available over a substantial number of days in our dataset.  

15 



 

year maturity. More importantly, both the curvature and the slope of the volatility smile show 
significant time-variation, sometimes even on a daily basis. The changes in the curvature and 
slope over time are more pronounced for the 2-year maturity options, although they are also 
perceptible for the longer maturity options.   
 
Figure 4B presents the surface plot of the Euro spot rates from one to ten years maturity over our 
sample period. Similar to the volatility surfaces, the Euro term structure surface also shows 
significant time variation. It is clear that there is an increase in spot rates in the early part of our 
sample, followed by a flattening of the term structure due to an increase, primarily in the rates at 
the shorter end of the term structure, during the latter part of our sample period. Therefore, both 
the level of interest rates and the slope of the term structure exhibit significant time variation over 
our sample period. 
 
The natural question is whether on a time-series basis, certain economic variables exhibit a 
significant relationship with the implied volatility smile patterns. We examine this issue in this 
sub-section. In order to do that, we first need appropriate measures of the asymmetry and 
curvature of the smile curves each day. There are two ways of estimating these measures. The 
first method is to posit a functional form for the volatility smile, and estimate the parameters of 
that functional form every day (cross-sectionally), using implied volatilities across strike rates. 
Unfortunately, we do not have enough observations across strike rates each day to reliably 
estimate four parameters of the functional form in (3). So we adopt an alternative method, which 
is to explicitly define empirical proxies for these attributes and estimate them using the volatility 
smile curves. For example, a measure of the asymmetry of the implied volatility curve, widely 
used by practitioners is the “risk reversal,” which is the difference in the implied volatility of the 
in-the-money and out-of-the-money options (roughly equally above and below the at-the-money 
volatility). A measure of the curvature is the “butterfly spread,” which is the difference between 
the average of the implied volatilities of two away-from-the-money volatilities and the at-the-
money volatility.26 The advantage of using these empirical measures is that they do not require 
the estimation of any specific model; hence, they can be used when there are fewer observations 
across strike rates.  
 
We construct the two variables explained above, the butterfly spread and the risk reversal, to 
proxy for the curvature and asymmetry of the daily smile in the interest rate options. Figure 5 
explains the calculation of the butterfly spread and the risk reversal. Each day, for each maturity, 
we consider the scaled implied volatilities of caps and floors against the LMR. We obtain scaled 
implied volatilities at +0.25 and -0.25 LMR by linearly interpolating between the closest options 
on the either side of these points. When cap as well as floor data are available at the same level of 

                                                           
26 These structures involve option-spread positions and are traded in the OTC interest rate and currency 
markets as explicit contracts.  These prices are often used in the industry for calibrating interest rate option 
models. See, for example, Wystup (2003). 
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moneyness, the average of the two scaled implied volatilities is used. The butterfly spread and 
risk reversal are calculated as follows 
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The butterfly spread captures the average curvature of the implied volatility smile at 0.25 LMR 
away-from-the-money on either side of 0. It is, therefore, a proxy for the curvature of the smile. 
The risk reversal represents the difference between the implied volatility of in-the-money options 
and out-of-the-money options. Thus, it is a proxy for the asymmetry of the smile. Naturally, since 
the estimation of these two measures of the shape of the volatility smile requires data across the 
entire spectrum of available strikes, all of the time-series analysis from this point onwards is 
combined analysis including in-the-money, at-the-money, and out-of-the-money options on each 
day. 
 
We explore the relationship between the slope and curvature of the daily smiles and liquidity 
and economic variables. We consider the following economic variables: the level of volatility of 
at-the-money interest rate options, the slope of the term structure at the short end (6 months to 5 
years) and at the long end (5 years to 10 years), the spot 6-month Euribor, the 6-month Treasury-
Euribor spread, the scaled ATM bid-ask spread, the average, scaled away-from-the-money bid-
ask spread and the difference between in-the-money and out-of-the-money bid-ask spreads. 
These are time-series regressions of curvature and asymmetry measures calculated using data 
across all the strikes each day. The regression specifications are as follows:27
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The intuition for examining these variables is as follows. First, the volatility variable is added to 
examine whether the patterns of the smile vary significantly with the level of uncertainty in the 
market. During uncertain times, information asymmetry issues are likely to be more important 
than during periods of lower volatility. If there is significantly greater information asymmetry, 
market makers may charge higher than normal prices for away-from-the-money options, since 

                                                           
27 This time series regression is estimated by including AR(2) error terms to correct for serial correlation. We 
check the residual plots to see if the correction for serial correlation is appropriate, and find no patterns or 
trends in those plots. In addition, for all maturities, the Durbin-Watson statistic is insignificantly different 
from 2. Therefore, the inclusion of the AR(2) error terms, indeed, takes care of any serial correlation in the 
regression model. 
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they may be more averse to taking short position at these strike rates. This will lead to a steeper 
smile, especially on the ask side of the smile curve. Also, during times of greater uncertainty, a 
risk-averse market maker may demand higher compensation for providing liquidity to the 
market, which would affect the shape of the smile. Since we have divided the volatility of each 
option by the volatility of the corresponding ATM cap to obtain the scaled IV, we use the ATM 
swaption volatility as an explanatory variable here, in order to avoid having the same variable on 
both sides of the regression equation. The ATM swaption volatility can be interpreted as a 
general measure of the future interest rate volatility.28  Second, we include the spot 6-month 
Euribor as another explanatory variable. The absolute level of interest rates is also indicative of 
general economic conditions, as well as the direction of interest rate changes in the future - for 
example, if interest rates are mean-reverting, very low interest rates are likely to be followed by 
rate increases. This would manifest itself in a higher demand for out-of-the-money caps in the 
market, thus affecting the prices of these options, and possibly the shape of the implied volatility 
smile itself. Third, the slope of the yield curve is added as an explanatory variable, as it is widely 
believed to proxy for general economic conditions, in particular the stage of the business cycle. 
The slope of the yield curve is also an indicator of future interest rates, which affects the demand 
for away-from-the-money options: if interest rates are expected to increase steeply, there will be a 
high demand for out-of-the-money caps, resulting in a steepening of the smile curve. We use the 
difference between the 10 year spot rate and the 5 year spot rate as a proxy for the slope of the 
yield curve at the long end, and the difference between the 5 year spot rate and the 6 month spot 
rate as the proxy for the slope of the yield curve at the short end.  
 
The ATM volatility and the term structure variables act as approximate controls for a model of 
interest rates displaying skewness and excess kurtosis. Typically, in such models the future 
distribution of interest rates depends on today’s volatility and the level of interest rates. Thus, by 
including the contemporaneous volatility and interest rate variables in the regression, we try to 
ensure that the relationship of the shape of the smile to liquidity is separate from the effect 
arising out of a more sophisticated model for the interest rates.  
 
Fourth, we examine the relationship of the volatility smile to the 6-month Treasury-Euribor 
spread. This variable is often used as a measure of aggregate liquidity as well as the default risk 
of the constituent banks in the Euribor fixing. A wider spread should indicate a higher liquidity 
risk premium, which could affect the prices of away-from-the-money options more than the 
prices of ATM options, thus affecting the shape of the smile. Fifth, we include two measures of 
the relative bid-ask spreads of these options – ATM and away-from-the-money. The objective of 
including these two variables is to directly control for the explicit liquidity of these options, while 

                                                           
28 Although swaption implied volatilities are not exactly the same as the cap/floor implied volatility, they 
both tend to move together. Hence, swaption implied volatilities are a valid proxy for the perceived 
uncertainty in the future interest rates. The data on the ATM swaption volatility in the Euro market was 
obtained from DataStream. 
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examining the relationship of the other economic variables to the volatility smile. The relative 
bid-ask spreads of ATM options capture the general level of liquidity in the market. The relative 
bid-ask spreads for away-from-the-money options, which are averages of the relative bid-ask 
spreads of options with +0.25 and –0.25 LMR, capture the average liquidity of the options away-
from-the-money. The difference between ITM and OTM scaled bid-ask spreads capture the 
asymmetry in the liquidity. 
 
Since scaled bid-ask spreads are measured with error, we use a two-stage least square approach 
for estimating these regressions. The ATM and away-from-the-money unscaled bid-ask spreads 
are used as instruments for the corresponding measures of the scaled bid-ask spreads. As the 
other economic variables are measured correctly, they are used as instruments for themselves. In 
the first stage, we regress all the explanatory variables on unscaled bid-ask spread measures and 
variables other than scaled bid-ask spread measures. Then, we use the fitted values from the first 
stage as regressors in the second stage. The standard errors correctly account for the fact that the 
explanatory variables in the second stage regression are fitted values from a previous regression. 
 
The results for this regression analysis are presented in Table 7. We find that, except for very 
short maturities, the away-from-the-money spread has a positive impact on the curvature of the 
smile, i.e., when the away-from-the-money spread is large, the curvature of the volatility smile is 
also greater. This implies that at least some of the increase in the curvature of the smile is 
attributable to an increase in the bid-ask spreads for away-from-the-money options in this 
market. Therefore, in modeling option prices across strike rates, it is important to account for 
liquidity effects, in addition to the other factors that may contribute to the smile. In addition, the 
only other variable that is significant is the slope of the term structure at the short end. However, 
it appears that the curvature of the volatility smile increases when the slope of the term structure 
decreases, i.e., when the yield curve is flatter. This is opposite to the expected effect. We expected 
that a higher slope of the term structure would result in a higher curvature of the smile. One 
possible explanation is that a higher slope of the term structure captures the expectation that 
interest rates will rise in future. This increases the demand for out-of-the-money caps, but 
reduces the demand for in-the-money caps. Since curvature is the average implied volatility of in-
the-money and out-of-the-money options, it is the net effect that matters. Possibly, the effect of a 
reduction in the implied volatility of in-the-money caps in greater than the effect on out-of-the-
money caps, resulting in the reduction of the curvature. However, this also implies that the 
asymmetry of the smile (the difference between implied volatility positive LMR options and 
negative LMR options) should decrease with a rise in the slope of the yield curve. This is exactly 
what we observe in Table 7. The risk reversal has a negative relationship with the slope of the 
yield curve at the short end.29 It is important to note that these effects are more consistent on the 
ask-side than on the bid-side, in line with our earlier results. 

                                                           
29 In addition to aggregate tests over our entire sample, we split our sample into two parts (Jan 01, 1999 - 
May 14, 2000, and May 15, 2000 – May 31, 2001), in order to examine whether our findings hold within sub-
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Our results are similar in spirit to what Bollen and Whaley (2004) find in the equity index options 
market. They find that the net buying pressure in this market affects the implied volatility smile. 
We find that the liquidity variables that would depend on the capacity of the market maker to 
absorb the demand pressure in the market have significant explanatory power for the shape of 
the smile. We also find that other economic variables that can potentially influence the demand 
for interest rate options also affect the curvature and asymmetry of the smile. Since it is extremely 
difficult to get volume data for OTC interest rate option markets, we have to rely on the indirect 
ways to explore the potential effect of demand pressure on the shape of the volatility smile in 
these markets. 
 
5. Granger Causality Tests and the Volatility Smile 
 
In the previous section, we show that liquidity variables are significantly related to the shape of 
the contemporaneous smile. In this section, we examine the relationship between the lagged values 
of liquidity variables and the shape of the smile, and vice-versa. We use Granger causality tests, 
which can provide useful information on whether knowledge of the past values of a variable 
improves the short-run forecasts of the current and future values of another variable. Although 
this analysis may not explain causality per se, it may throw light on the linkages between liquidity 
and the volatility smile in a dynamic predictive sense. 
 
The general formulation of the Granger (1969) causality tests for the case of two scalar-valued, 
stationary and ergodic time series Xt and Yt is defined as follows. Let F(Xt│It-1) be the conditional 
probability distribution of Xt, given the bivariate information set It-1, consisting of a Lx-length 
lagged vector of Xt and a Ly-length vector of Yt. Given lags Lx and Ly, the time series Yt does not 
strictly Granger-cause Xt if: 
 

( ) ( )( ) ,...2,1         ,11 =−= −−− tYIXFIXF Ly
Lyttttt     (7) 

 
If this equality does not hold, then knowledge of past values of Y helps to predict current and 
future values of X, and Y is said to strictly Granger-cause X.  
 
The linear Granger causality test is estimated as a reduced-form, bivariate, vector auto regression 
(VAR) model as follows, 
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samples. We find that, in some cases, the results are weaker in the sub-samples. We attribute this to the 
shorter time series in the sub-samples. 
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where A(L), B(L), C(L), and D(L) are lagged polynomials of the same order in the lag operator L. 
The error terms are assumed to be mutually independent and individually i.i.d. processes with 
zero mean and constant variance. The test of whether Y strictly Granger-causes X is a standard F-
test of the joint restriction that all the coefficients contained in the lagged polynomial B(L) are 
zero. Similarly, the null hypothesis that X does not Granger-cause Y is rejected, if the coefficients 
of C(L) are jointly significantly different from zero. Bidirectional feedback, or causality running in 
both directions, exists if the elements in both the lag polynomials B(L) and C(L) are jointly 
significantly different from zero. 
 
We estimate bivariate VARs for the butterfly spread and the two liquidity variables – ATM scaled 
bid-ask spreads and average away-from-the-money scaled bid-ask spread. We repeat this for the 
risk reversal and ATM spreads and difference in the ITM and OTM scaled bid-ask spreads. Since 
the butterfly spread, risk reversal and the scaled bid-ask spreads are measured with error, we use 
the two stage least squares approach to estimate each equation in the bivariate VAR.30 We use all 
the other economic variables and unscaled bid-ask spreads with appropriate lags as the 
instruments. The appropriate number of lags in each case is determined using the Akaike 
information criterion.  
 
Table 8 presents the results of the linear, bivariate, Granger-causality tests. There is no evidence, 
consistent across maturities, of the liquidity variables predicting the shape of the smile or vice-
versa. However, as we saw in section 4, the ask-side and the bid-side do not exhibit similar 
relationships to the economic variables examined in this paper. Therefore, it is possible that some 
of the effects of liquidity variables on the shape of the volatility smile are manifested through 
these economic variables. To analyze this, we estimate bivariate VARs separately for the bid and 
the ask sides, for the butterfly spread and each of the economic variables. The economic variables 
are the same as those in the previous section – ATM volatility, term structure variables and 
default spread. We repeat the same analysis for risk reversal as well. The results of these analyses 
are presented in Table 9. 
 
We find that the shape of the volatility smile plays a role in predicting some of the economic 
variables. In particular, the butterfly spread Granger-causes the ATM volatility and the slope of 
the yield curve (at the long end), but the causality does not flow in the other direction, i.e., these 
variables do not Granger-cause the butterfly spread. This indicates that these two variables (ATM 
volatility and slope of the term structure at the long end) are influenced by the curvature of 
volatility smiles in interest rate option markets, but there is no feedback effect in the other 
direction. The one-way Granger causality from butterfly spreads to the slope of the yield curve 
and the volatility of interest rates indicates the information content of the volatility smiles.  
 
                                                           
30 We thank Rob Engle for insightful discussions on the econometric procedure used in this section. 
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The risk reversal for options at longer maturities appears to Granger-cause the slope of the yield 
curve at the short- as well as the long-end. Thus, the asymmetry in the volatility smile curves for 
long-maturity options is useful for predicting medium term as well as long term interest rates. 
There is no evidence of causality in the other direction. This is intuitive since the option prices are 
forward looking. The shape of the smile incorporates information about the market’s perception 
about the future distribution of the interest rates. 
 
Based on this analysis, the curvature and asymmetry of the implied volatility smiles appear to 
have information that is useful in predicting future slopes of the term structure. This implies that 
information from the interest rate option markets can be useful in estimating future yield curves. 
This also points to the need for calibrating interest rate option pricing models to option prices 
across strike rates, not just to ATM options. In addition, one-way Granger causality from the 
butterfly spread to the ATM volatility indicates that there may be an underlying stochastic 
volatility process, about which there is some information in the curvature of the volatility smile. 
Again, it appears that future volatility can be predicted, to some extent, by analyzing the 
curvature of the volatility smile in interest rate option markets. At a minimum, predictions of 
future volatility may be improved by analyzing the entire volatility smile curve in interest rate 
options, rather than just analyzing ATM options. Both these effects point to the need for 
calibrating interest rate option models, especially stochastic volatility models, to option price data 
across strike rates, not just to ATM option prices. 
 
One problem with linear causality testing is that such tests may have low power in detecting 
certain kinds of nonlinear predictive relationships. In addition, even after removal of the linear 
predictive power using a linear VAR model, there may be significant incremental predictive 
power of one time series to another. We test for nonlinear Granger causality as well, using 
logarithmic and quadratic terms in the lagged time series of each variable. These results are 
similar to the results reported for linear causality and are not reported here to conserve space. 
 
6. Conclusions 
 
We examine the patterns of implied volatility in the euro interest rate option markets, using data 
on bid and ask prices of interest rate caps and floors across strike rates. We document the pattern 
of implied volatility across strike rates for these options, separately on the bid-side and the ask-
side, and find that the volatility smile curve is clearly evident in the euro interest rate cap and 
floor market. Furthermore, the smile curve on the ask-side appears to be steeper than the bid-side 
smile.  
 
We further examine the impact of bid-ask spreads along with other economic variables on the 
volatility smile curves. We include the level of volatility and interest rates to control for the 
effects arising out of a more elaborate model of interest rates. We find a significant relationship 
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between liquidity and the shape of the smile. Away-from-the-money bid-ask spreads have a 
significant influence on the curvature and asymmetry of the smile, especially on the ask-side. The 
effect on the bid-side is less significant. The slope of the yield curve, especially at the short end, 
also has explanatory power for the curvature and asymmetry of the volatility smile, with a 
stronger impact on the ask side. Thus, the ask side is generally more responsive to the changes in 
the economic variables. The evidence on the difference in the responsiveness of the ask-side vis-à-
vis the bid-side points towards the institutional structure of the market, where most of the 
customers are on the ask-side; hence, the dealers who set prices are more likely to adjust the ask-
side of the price curve than the bid-side in response to new information. Therefore, the ask-prices 
appear to be more relevant for calibrating interest rate models to caps and floors.31  
 
In Granger causality tests, we find that the curvature of the volatility smile in these markets has 
power in predicting the ATM volatility as well as the slope of the term structure at the long-end. 
The asymmetry in the smiles for long maturity options has some predictive power for the slope 
of the yield curve at the short- and the long-end. This has important implications for developing 
and calibrating interest rate models – it is critical that these models be calibrated to option prices 
across strike rates, not just to ATM options.  
 
To summarize, liquidity effects are important in explaining the shape of the implied volatility 
smiles in the interest rate option markets. These effects are present even after controlling for the 
effects arising out of an alternate model of interest rates. Ask-prices are more relevant in these 
markets, given the evidence that they move more in response to various economic variables. The 
shape of the volatility smile has predictive power for the future slope of the yield curve and the 
future level of uncertainty in the interest rate option markets. All of these issues are critical to the 
appropriate modeling and risk management of an array of interest rate derivatives.  
 
In future research, we intend to explore seasonal patterns in the smile curves, to see if there are 
day-of-the week effects in the market that affect the volatility smile curve.32 Also, the term 
structure of implied volatility of interest rate options will have implications for interest rate 
modeling, since this dimension is also of considerable interest to researchers and practitioners. In 
addition, the shape of implied volatility smile in the swaption market and its relation to the smile 
in the caps and floors market would throw further light on the volatility dynamics in the interest 
rate option markets. This line of research could eventually lead to the development of interest 
rate option pricing and hedging models that incorporate such liquidity effects. 
 

                                                           
31 We would also conclude that the bid-curve can then be computed relative to this curve, after taking into 
account market liquidity and the existing positions of the dealer. 
32 Return seasonality has been explored in the equities markets. It has been observed that in equity markets, 
bid-ask spreads are the highest on Mondays, implying higher trading costs. This, coupled with the reduced 
demand from liquidity traders who fear increased adverse selection on Mondays, results in lower trading 
volumes on Mondays.  
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What are the implications of these results for the modeling of interest rate derivatives?  First, it is 
necessary to use data from options at different strike rates for calibration of the models, since 
there is a lot of information in the volatility smile itself. Second, it may be somewhat misleading 
to take the mid-point of the bid and ask quotes as inputs.  Rather, it may be better to fit the bid- 
and the ask-side of the volatility smiles separately, since the bid-ask spread is informative and 
varies over time. Third, although factors such as jumps and fat-tails may be important in 
determining the supply and demand for interest rate options, it may be fruitful to model the 
liquidity aspect by fitting the bid- and ask- sides with relatively simple models before 
introducing complexities into the model formulation. 
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Appendix A 
 

A.1. Implied Volatility in the Black Model and the Pricing of Caps and Floors 

The standard model used for dealer quotations for interest rate caps and floors is the Black (1976) 
model of pricing of options on futures/forward contracts. The model is a variant of the basic 
Black and Scholes (1973) option-pricing model. Applied to the interest rate option context, the 
model assumes that interest rates are lognormally distributed and relates the price of a European 
call option (C) and a put option (P), at time 0, on an interest rate forward rate agreement (FRA) to 
the underlying variables as follows:33
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where 
f = forward interest rate for the period t  to t+m, 
σ = annualized volatility of the forward interest rate t on the maturity date, 
m= the maturity period of the underlying loan, 
t = maturity date of the option, 
k =  strike rate of the option, 
B0,t+m= the zero bond price at time 0, for the bond maturing at date t+m. 
 
Of course, the key variable in the above equations, which is not observable, but about which 
market participants may have differing views, is the volatility. The quotations of interest rate 
options are usually for the implied volatility that reflects the market price, rather than the price 
directly. 
 
An interest rate cap (floor) is a collection of caplets (floorlets). A caplet (floorlet), in turn, is a 
single European call (put) option on a reference interest rate, expiring on a specific date. Hence, a 
cap (floor) can be regarded as a portfolio of European call (put) options on interest rates, or 
equivalently, put (call) options on discount bonds. Typically, an interest rate cap is an agreement 

                                                           
33 This formula is also consistent with the model proposed by Brace, Gatarek and Musiela (1997) [BGM] and 
Miltersen, Sandmann and Sondermann (1997), which is popular among practitioners. BGM derive the 
processes followed by market quoted rates within the HJM framework, and deduce the restrictions 
necessary to ensure that the distribution of market quoted rates of a given tenor under the risk-neutral 
forward measure is lognormal. With these restrictions, caplets of that tenor satisfy the Black (1976) formula 
for options on forward/futures contracts. 
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between a cap writer and a buyer (for example, a borrower) to limit the latter’s floating interest 
payments to a specific level for a given period of time. The cap is structured on a specific 
reference rate (usually the 3- or the 6- month Libor (London Interbank Offer Rate) or Euribor 
(Euro Interbank Offer Rate)) at a predetermined strike level. The reference rate is reset at periodic 
intervals (usually 3- or 6- months). In a similar manner, an interest rate floor contract sets a 
minimum interest rate level for a floating rate lender. The cap and floor contracts are defined on a 
pre-specified principal amount.34

 
A caplet with maturity ti and strike rate k, pays at date ti, an amount based on the difference 
between the rate (ri) at time ti and the strike rate, if this difference is positive, and zero otherwise. 
The amount paid is based on the notional amount and the reset period of the caplet and is paid 
on a discounted basis at time ti. The payoff of this caplet at date ti, on a notional principal of €A, is 
given by  
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The payoff from a floorlet can be described in a similar manner.  
 
Since the interest rate over the first period is known, there is no caplet corresponding to the first 
period of the cap. For example, a 2-year cap on the 6-month Euribor rate, with 4 semiannual 
periods over its life, would consist of 3 caplets, the first one expiring in 6 months, and the last one 
in 1 year and 6 months. Thus, the underlying interest rate for the first period is the 6-month 
Euribor rate on the date 6 months from initiating the cap contract. 
 
Each caplet or floorlet has to be valued separately, using a valuation model such as the Black or 
BGM model in equation (1),  (the same model that is generally used by the market for quotation 
purposes), with the price of the cap or floor being the sum of these prices. The volatilities used for 
each caplet or floorlet, which are generally different, across strike rates and maturities, are 
sometimes called spot volatilities. The market quotation for interest rate caps and floors, however, 
is based on the same volatility for all the caplets in a particular cap (or the floorlets in a particular 
floor). In other words, the market price of a cap (or floor) can be derived by plugging in this 
constant volatility for all the component caplets (or floorlets) in the contract. This constant 
volatility is referred to as the flat volatility for the particular cap (or floor) and varies with the 
maturity of the contract. Since caps are portfolios of caplets, the implied flat volatilities of caps 
reflect some average of the implied spot volatilities of individual caplets. In this paper, one of our 

                                                           
34 Interest rate caps and floors for various maturities and reference rates in all the major currencies are 
traded in the over-the-counter (OTC) markets. The most common reference rate in the case of U.S. dollar 
caps/floors is the 3-month Libor. In the euro markets, the most common reference rate is the 6-month 
Euribor. 
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primary objectives is to examine liquidity effects in interest rate options. For doing that, we need 
to focus on traded assets, which are caps and floors. Therefore, we use the flat volatilities of caps 
and floors, since spot volatilities would correspond to caplets and floorlets, which are, untraded 
assets. We also checked the prices of the individual caplets/floorlets, which are obtained by 
“bootstrapping” and found that the smile patterns are broadly similar. 
 

A.2. Put-Call Parity in Caps and Floors 

The put call parity condition for interest rate caps and floors is: 
 

Price of a Cap  = Price of a Floor + Value of the Swap (Pay fixed receive floating)  (A.3) 
 
If the cap and floor have a strike rate of k, the swap, in this case, is an agreement to make fixed 
payments at a rate k and receive floating payments in exchange, with no exchange of payments 
on the first reset date. This is a non-standard swap that is defined to ensure conformity with caps 
and floors, which are structured so that there is no payment resulting from the first period of the 
contract. The other, more important, reason the swap is non-standard is that it is an “off-market” 
swap, since the fixed payment at a rate k is related to the strike rates of the cap and floor rather 
than to the market swap rate. Thus, the swap in equation (A.3) has a non-zero value unlike the 
standard market swap. 
 
By definition, the relevant ATM swap rate is strike rate k such that the value of the non-standard 
swap is 0. Hence, the ATM non-standard swap rate (sw) is given by following formula: 
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where 
ft,t+m = the forward rate, at time 0, for the period t to t+m, 
m = underlying period of the loan, 
B0,t+m = the zero bond price, at time 0, for the bond maturing at time t+m. 
 
The summation is for the all the maturity dates of individual caplets/floorlets. This formula takes 
care of the fact that there is no exchange of payments at the first reset date of the swap, to be 
consistent with the definition of the caps/floors. The number of cash flows exactly matches the 
number of individual options in the cap/floor contracts.  
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However, in the presence of the bid-ask spread, the parity relationship in (A.3) has to be 
modified as a pair of inequalities. For the same strike price and maturity,35  
 

Ask Price of a Cap– Bid Price of a Floor – Bid Price of non-standard Swap ≥ 0  (A.5) 
Ask Price of a Floor– Bid Price of a Cap + Ask Price of non-standard Swap ≥ 0  (A.6) 

 
where the swap contract is defined as a “pay-fixed, receive-floating” contract at the same strike 
rate as the cap and the floor. We have bid and ask prices for caps and floors. But we do not have 
prices for the relevant swaps because they are non-standard, off-market contracts. So instead, we 
compute the value of the off-market swap (pay-fixed, receive -floating) as follows: 
  

, 0,  t t m t m t mValue of swap f m B k m B0,+ += × × − × ×∑ ∑ +

                                                          

   (A.7) 

where 
ft,t+m = the forward rate, at time 0, for the period t to t+m, 
m = underlying period of the loan, 
B0,t+m = the zero bond price, at time 0, for the bond maturing at time t+m. 
k = fixed rate on the swap. 

 
35 These are the conditions for an arbitrageur who has no existing position.  The bounds may be somewhat 
tighter for agents who already have an existing position in one or more of the contracts in the arbitrage trade 
implied by the inequalities. 
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Table 1 
 

Descriptive statistics for cap and floor prices 
 

This table presents descriptive statistics on euro interest rate cap and floor prices across maturities and 
strike rates, over the sample period Jan 99 - May 01, obtained from WestLB Global Derivatives and Fixed 
Income Group. The caps and floors are grouped together by moneyness into five categories. The 
moneyness for these options is expressed in terms of the Log Moneyness Ratio (LMR), defined as the log 
of the ratio of the par swap rate to the strike rate of the cap/floor. All prices are averages, reported in 
basis points, with the standard deviations of these prices in parenthesis.  
 

 
Maturity  

   
Caps 

      
Floors 

  

            
 Deep 

OTM 
OTM ATM ITM Deep 

ITM 
 Deep 

ITM 
ITM ATM OTM Deep 

OTM 
 LMR 

< -0.3 
-0.3 < 
LMR 
< -0.1 

-0.1 < 
LMR 
< 0.1 

0.1 < 
LMR 
< 0.3 

LMR 
> 0.3 

 LMR 
< -0.3 

-0.3 < 
LMR 
< -0.1 

-0.1 < 
LMR 
< 0.1 

0.1 < 
LMR 
< 0.3 

LMR 
> 0.3 

            
2-year 2.1 11.1 43.2  107.7 250.5  250.5 153.7 55.5 13.6 3.6 

 (0.5)   (5.8) (19.8)  (30.9)   (58.8)   (48.1)  (50.7)  (25.4)  (7.9 ) (2.0) 
            

3-year 10.7  37.7  91.9  209.6 481.3   529.1  285.3  111.3  32.7  6.9  
 (10.0)  (20.0)  (33.8)  (52.3)  (133.4)  (114.2)  (74.7)  (44.6)  (18.0)  (4.6) 

4-year 22.3  72.6  152.7 311.3  674.4   728.3  406.4  176.1  62.1  12.0  
  (12.5) (32.2)  (49.7)  (78.3)  (193.1)  (138.7)  (98.9)  (64.8)  (27.8)  (7.9) 

5-year 42.7  119.4  221.7  409.1  872.3   910.8  519.5  244.7  94.3  19.2  
 (16.3) (48.6)  (67.2)  (95.4)  (252.2)  (161.2)  (122.5)  (84.5)  (35.2)  (13.9) 

6-year 66.9  163.7 286.6  507.9  1,006.6  1,093.1  663.8  323.7  128.6  27.2  
 (20.2)  (64.4)  (84.6)  (109.5)  (257.4)  (173.2)  (133.1)  (101.9)  (43.5)  (18.7) 

7-year 93.7 210.9  355.8  610.8  1206.4  1,239.0  809.3  393.3  164.1  36.9  
 (25.4)  (82.2)  (99.3)  (125.3)  (275.5)  (147.0)  (127.5)  (115.2)  (51.9)  (33.0) 

8-year 123.9  264.2  433.2  706.8  1,248.2  1,284.7  924.7  425.2  199.2  46.8  
 (31.4)  (98.1)  (115.9)  (162.8)  (253.4)  (120.8)  (139.3)  (108.3)  (59.6)  (32.8) 

9-year  152.1  309.6  509.9  811.8  1,310.3  NA     997.1  482.3  235.0  58.9  
  (35.6)  (103.2)  (128.7)  (172.2)  (205.3)       (150.2)  (120.9)  (69.6)  (41.5) 

10-year  179.6  347.8  598.0  881.3  1,493.4  NA 815.5  541.7 242.9  71.3  
 (39.8) (106.7)  (140.0)  (153.4)  (275.3)       (31.1) (139.6)  (61.9) (50.1) 
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Table 2 
 

Scaled bid-ask spreads for caps and floors 
 

This table presents summary statistics on the bid-ask spreads for euro interest rate caps and floors, scaled 
by the average of the bid and ask prices for the options, across strike rates, for different maturities. The 
statistics are presented for the entire sample period, Jan 99 - May 01, based on data obtained from WestLB 
Global Derivatives and Fixed Income Group. The caps and floors are grouped together by moneyness 
into five categories. The moneyness for these options is expressed in terms of the Log Moneyness Ratio 
(LMR), defined as the log of the ratio of the par swap rate to the strike rate of the cap/floor. All the 
spreads are averages, reported as percentages, with the standard deviations of the scaled spreads in 
parenthesis.  
 
 

Maturity 
   

Caps 
      

Floors 
  

            
 Deep 

OTM 
OTM ATM ITM Deep 

ITM 
 Deep 

ITM 
ITM ATM OTM Deep 

OTM 
 LMR 

< -0.3 
-0.3 < 
LMR 
< -0.1 

-0.1 < 
LMR 
< 0.1 

0.1 < 
LMR 
< 0.3 

LMR 
> 0.3 

 LMR 
< -0.3 

-0.3 < 
LMR 
< -0.1 

-0.1 < 
LMR 
< 0.1 

0.1 < 
LMR 
< 0.3 

LMR 
> 0.3 

            
2-year 80.9% 32.4% 14.7% 7.1% 3.8%  2.5% 4.5% 13.3% 30.8% 77.2% 

 (21.2%) (14.3%) (4.8%) (2.4%) (0.5%)  (1.3%) (1.3%) (7.9%) (11.7%) (24.1%) 

3-year 44.2% 19.0% 11.4% 7.0% 3.8%  2.9% 4.7% 11.2% 31.6% 72.0% 
 (22.9%) (5.7%) (3.2%) (2.5%) (0.6%)  (1.1%) (1.1%) (6.1%) (18.1%) (25.2%) 

4-year 26.1% 14.4% 9.1% 6.2% 4.1%  2.9% 4.5% 8.4% 22.2% 59.9% 
 (9.4%) (4.7%) (2.5%) (2.2%) (1.0%)  (1.0%) (1.0%) (2.5%) (14.5%) (28.7%) 

5-year 20.0% 12.6% 8.6% 6.1% 4.1%  3.1% 4.7% 8.2% 19.8% 59.5% 
 (5.5%) (3.9%) (2.3%) (2.1%) (0.9%)  (1.0%) (1.1%) (2.3%) (13.2%) (27.4%) 

6-year 18.3% 12.1% 8.5% 5.7% 4.1%  3.3% 4.7% 7.9% 15.8% 50.2% 
 (4.8%) (3.6%) (2.2%) (1.4%) (0.9%)  (0.9%) (1.2%) (2.0%) (7.5%) (24.6%) 

7-year 17.6% 11.5% 8.4% 5.5% 4.1%  3.4% 4.6% 7.8% 14.0% 45.3% 
 (4.4%) (3.4%) (2.1%) (1.3%) (3.9%)  (0.9%) (1.1%) (1.9%) (5.0%) (24.6%) 

8-year 17.1% 11.1% 8.3% 5.6% 4.0%  3.2% 4.5% 8.1% 14.0% 42.3% 
 (3.8%) (3.3%) (2.0%) (1.1%) (0.3%)  (1.0%) (1.1%) (2.0%) (5.1%) (21.9%) 

9-year 17.1% 11.0% 8.3% 6.0% 4.2%  NA 4.8% 8.3% 14.0% 40.0% 
 (3.4%) (3.1%) (1.9%) (0.7%) (0.3%)   (1.0%) (2.0%) (5.2%) (20.8%) 

10-year 17.1% 11.2% 7.9% 6.2% 4.1%  NA 4.7% 8.1% 14.9% 38.6% 
 (2.9%) (3.0%) (1.8%) (0.6%) (0.3%)   (1.2%) (2.2%) (5.5%) (20.6%) 
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Table 3 
 

Put-call parity tests for caps and floors 
 
This table presents the results for put-call parity tests for euro interest rate caps and floors, for various 
strike rates and maturities. The statistics are presented for the entire sample period, Jan 99 - May 01, 
based on data obtained from WestLB Global Derivatives and Fixed Income Group. The test results are 
presented as follows: 
  

Panel A:  Cap (ask) - Floor (bid) - swap 
 Panel B:  Floor (ask) - Cap (bid) + swap 
 
For each panel, we report the mean price, in basis points, for constructing the portfolio, for each maturity. 
A negative value indicates a potential arbitrage opportunity, since it implies that the hedged portfolio can 
be constructed at a negative cost, but only by ignoring the bid-offer spread of an off-market swap. 
 

Maturity Mean Difference 
(basis points) 

Total Number 
of observations 

Number of observations where the difference is 

   < 0 < -5 bp < -10 bp 

Panel A      

2-year -4.5 1360 1023 659 257 

3-year -4.9 2968 1977 1,548 1,078 

4-year -1.3 3095 1725 1,477 1,087 

5-year 10.7 3509 1486 1,180 854 

6-year 14.3 3248 1079 737 520 

7-year 25.8 2681 443 310 198 

8-year 35.6 1837 169 112 77 

9-year 46.6 1490 101 70 23 

10-year 62.7 641 0 0 0 

 
Panel B

     

2-year 13.9 1468 16 0 0 

3-year 24.2 3098 41 2 0 

4-year 29.4 3099 97 21 1 

5-year 34.5 3509 283 135 38 

6-year 34.3 3248 378 222 110 

7-year 33.3 2681 469 368 233 

8-year 30.3 1837 339 278 232 

9-year 30.8 1490 322 253 195 

10-year 17.9 641 222 197 179 
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Table 4 
 

Functional forms for implied volatility smiles (Caps and floors separately) 
 
This table presents regression results when the scaled implied flat volatility for euro interest rate caps and 
floors, for various maturities, is regressed on a quadratic function of the Log Moneyness Ratio (LMR) 
with an asymmetric slope term, as follows: 

LMRcLMRcLMRccIVScaled LMR *1*4*3*21 0
2

<+++=  
The statistics are presented for the entire sample period, Jan 99 - May 01, based on data obtained from 
WestLB Global Derivatives and Fixed Income Group. The coefficient and regression statistics are 
presented for caps and floors, separately for bid and ask quotes, for all maturities. Asterisk implies 
significance at the 5% level. 
 

Panel A: Caps 
 

 
Maturity 

 
c1 
 

 
c2 

 
c3 

 
c4 

 
Adj R2

 
Ask

     

2-year 0.98* -0.36* 3.70* 1.07* 0.91 

3-year 1.03* 0.00 1.97* 0.63* 0.93 

4-year 1.04* 0.14* 1.55* 0.40* 0.95 

5-year 1.05* 0.21* 1.31* 0.24* 0.96 

6-year 1.04* 0.33* 0.96* -0.01 0.93 

7-year 1.06* 0.43* 0.98* -0.13 0.60 

8-year 1.04* 0.31* 0.74* -0.02 0.92 

9-year 1.04* 0.36* 0.59* -0.11* 0.88 

10-year 1.11* 0.51* 0.79* -0.16 0.81 

 
Bid

     

2-year 0.84* -0.80* 2.73* 1.25* 0.35 

3-year 0.90* -0.35* 1.09* 0.57* 0.50 

4-year 0.95* -0.55* 1.29* 1.00* 0.68 

5-year 0.97* -0.48* 1.14* 0.85* 0.67 

6-year 0.97* -0.29* 1.01* 0.65* 0.81 

7-year 0.98* 0.13* 0.68* 0.07 0.85 

8-year 0.95* 0.19* 0.47* -0.03 0.88 

9-year 0.95* 0.19* 0.50* -0.02 0.81 

10-year 1.01* 0.33* 0.66* -0.07 0.71 
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Panel B: Floors 

 
 

Maturity 
 

 
c1 

 
c2 

 
c3 

 
c4 

 
Adj R2

 
Ask

     

2-year 1.27* -1.33* 3.38* 0.69* 0.81 

3-year 1.19* -0.34* 0.92* -0.73* 0.68 

4-year 1.14* -0.05 0.45* -0.79* 0.57 

5-year 1.12* 0.19* 0.17* -0.94* 0.51 

6-year 1.10* 0.18* 0.12* -0.76* 0.38 

7-year 1.09* 0.33* 0.00 -0.81* 0.17 

8-year 1.06* 0.20* 0.07* -0.31* 0.41 

9-year 1.04* 0.26* 0.05* -0.65* 0.49 

10-year 1.09* 0.30* 0.05* -0.46* 0.60 

 
Bid

     

2-year 1.13* -1.17* 2.61* 0.59* 0.82 

3-year 1.07* -0.36* 0.67* -0.43* 0.68 

4-year 1.05* -0.06* 0.27* -0.51* 0.54 

5-year 1.04* 0.06* 0.15* -0.50* 0.47 

6-year 1.01* 0.11* 0.07* -0.43* 0.32 

7-year 1.01* 0.21* 0.02 -0.40* 0.55 

8-year 0.98* 0.17* 0.03 -0.13* 0.47 

9-year 0.95* 0.22* 0.01 -0.41* 0.56 

10-year 1.00* 0.25* 0.01 -0.31* 0.71 
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Table 5 
 

Functional forms for implied volatility smiles (Caps and floors pooled) 
 
This table presents regression results when the scaled implied flat volatility for euro interest rate caps and 
floors, for various maturities, is regressed on a quadratic function of the Log Moneyness Ratio (LMR) 
with an asymmetric slope term, as follows: 

LMRcLMRcLMRccIVScaled LMR *1*4*3*21 0
2

<+++=  
The statistics are presented for the entire sample period, Jan 99 - May 01, based on data obtained from 
WestLB Global Derivatives and Fixed Income Group. The coefficient and regression statistics are 
presented for caps and floors pooled together, separately for bid and ask prices, for all maturities. 
Asterisk implies significance at the 5% level. 
 

 
Maturity 

 

 
c1 

 
c2 

 
c3 

 
c4 

 
Adj R2

 
Ask

     

2-year 1.15* -1.43* 4.92* 1.55* 0.65 

3-year 1.15* -0.67* 2.45* 0.98* 0.59 

4-year 1.13* -0.41* 1.78* 0.67* 0.63 

5-year 1.08* 0.25* 0.68* -0.64* 0.33 

6-year 1.04* 0.62* -0.06* -1.05* 0.46 

7-year 1.05* 0.73* -0.19* -1.10* 0.27 

8-year 1.04* 0.44* -0.14* -0.53* 0.49 

9-year 1.04* 0.36* -0.07* -0.40* 0.53 

10-year 1.11* 0.37* -0.04 -0.26* 0.59 

 
Bid

     

2-year 1.00* -1.32* 3.55* 1.18* 0.53 

3-year 0.99* -0.35* 0.92* 0.08 0.30 

4-year 1.01* -0.42* 0.98* 0.47* 0.34 

5-year 1.00* -0.18* 0.61* 0.13* 0.40 

6-year 0.97* 0.12* 0.21* -0.27* 0.40 

7-year 0.98* 0.38* -0.04* -0.55* 0.55 

8-year 0.96* 0.31* -0.09* -0.35* 0.56 

9-year 0.95* 0.28* -0.06* -0.33* 0.61 

10-year 1.01* 0.31* -0.05* -0.27* 0.66 
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Table 6 
 

Effects of bid-ask spread on volatility smiles 
 
This table presents regression results for two models - first when the scaled implied flat volatility for euro 
interest rate caps and floors is regressed on a quadratic function of the Log Moneyness Ratio (LMR) with 
an asymmetric slope term, and second when the scaled bid-ask spread is added to the first model, as 
follows: 

ScaledBAdLMRdLMRdLMRddIVScaled

LMRcLMRcLMRccIVScaled

LMR

LMR

*5*1*4*3*21 

*1*4*3*21 

0
2

0
2

++++=

+++=

<

<  

The statistics are presented for the entire sample period, Jan 99 - May 01, for various maturities, based on 
data obtained from WestLB Global Derivatives and Fixed Income Group. The coefficient and regression 
statistics are presented for the pooled sample of caps and floors, separately for bid and ask prices, for all 
maturities. Asterisk implies significance at the 5% level. The system of equations is estimated using two-
stage least squares. The p-values presented are for the joint hypothesis that c2=d2, c3=d3, c4=d4 . 

Panel A: In the money caps and floors 
 

Maturity c1 c2 c3 c4 d1 d2 d3 d4 d5 p-value 
           
Ask                     

2-year 1.14* -1.13* 4.42* 0.46* 0.77* -0.02 3.24* -1.94* 3.2* 0.000 
3-year 1.12* -0.41* 2.36* -0.26* 0.58* 0.64* 1.59* -2.61* 5.71* 0.000 
4-year 1.1* -0.13* 1.79* -0.35* 0.54* 0.57* 1.39* -2.1* 7.23* 0.000 
5-year 1.09* 0.03 1.46* -0.44* 0.67* 0.54* 1.18* -1.74* 5.59* 0.000 
6-year 1.07* 0.2* 1.09* -0.58* 0.59* 0.88* 0.65* -2.18* 6.33* 0.000 
7-year 1.08* 0.3* 1.04* -0.51* 0.84* 0.71* 0.73* -1.43* 3.19* 0.000 
8-year 1.06* 0.25* 0.77* -0.2* 0.81* 0.71* 0.36* -1.23* 3.26* 0.000 
9-year 1.04* 0.32* 0.68* -0.55* 0.7* 0.89* 0.24* -1.88* 4.51* 0.000 

10-year 1.11* 0.52* 0.81* -0.46* 1.15* 0.46* 0.87* -0.28 -0.52 0.610 
Bid           

2-year 0.99* -1.47* 3.08* 0.6* 1.16* -2.06* 3.86* 1.87* -1.39* 0.000 
3-year 1* -0.94* 1.69* 0.37* 0.92* -0.77* 1.55* 0 0.8* 0.170 
4-year 1.02* -0.86* 1.57* 0.69* 0.87* -0.64* 1.42* 0.17 1.95* 0.000 
5-year 1.01* -0.67* 1.3* 0.55* 1.07* -0.74* 1.34* 0.73* -0.76* 0.120 
6-year 1* -0.43* 1.14* 0.41* 0.96* -0.37* 1.1* 0.27* 0.58* 0.140 
7-year 0.99* 0.05* 0.75* -0.11* 0.99* 0.06 0.75* -0.12 0.02 1.000 
8-year 0.97* 0.13* 0.51* 0 0.89* 0.27* 0.38* -0.31* 0.99* 0.000 
9-year 0.96* 0.12* 0.64* -0.17* 0.75* 0.47* 0.37* -0.99* 2.74* 0.000 

10-year 1.01* 0.34* 0.69* -0.28* 1.11* 0.18* 0.82* 0.15 -1.24* 0.000 
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Panel B: Out of the money caps and floors 
 

Maturity c1 c2 c3 c4 d1 d2 d3 d4 d5 p-value 
           
Ask                     

2-year 1.1* 0.19* 0.7* 0.21 0.98* -0.03 -2.25* 0.92* 0.88* 0.000 
3-year 1.08* 0.31* 0.1* -0.31* 0.98* -0.4* -0.9* 0.7* 0.95* 0.000 
4-year 1.07* 0.34* 0.05 -0.25* 1.02* 0.14* -0.37* -0.04 0.49* 0.000 
5-year 1.08* 0.37* 0.02 -0.26* 1.04* 0.02 -0.11* 0.18* 0.49* 0.000 
6-year 1.07* 0.28* 0.03 -0.14* 1.03* 0.02 -0.13* 0.2* 0.54* 0.000 
7-year 1.09* 0.3* 0.03 -0.19* 1.05* 0.14* -0.09* 0.03 0.41* 0.000 
8-year 1.05* 0.27* 0.02 -0.18* 1.01* 0.07* -0.09* 0.1* 0.49* 0.000 
9-year 1.03* 0.27* 0.04* -0.2* 1* 0.06* -0.04* 0.1* 0.51* 0.000 

10-year 1.1* 0.28* 0.06* -0.19* 1.05* 0.02 -0.01 0.21* 0.64* 0.000 
Bid           

2-year 0.96* 0.42* -0.33* -0.29* 0.94* 0.38* -0.86* -0.17 0.16* 0.180 
3-year 0.97* 0.29* -0.15* -0.4* 0.95* 0.16* -0.33* -0.22* 0.17* 0.000 
4-year 0.98* 0.3* -0.1* -0.31* 0.98* 0.3* -0.11* -0.3* 0.01 0.950 
5-year 0.99* 0.24* 0 -0.19* 0.99* 0.22* -0.01 -0.16* 0.03* 0.220 
6-year 0.99* 0.23* -0.02 -0.15* 0.98* 0.17* -0.05* -0.07* 0.12* 0.000 
7-year 1* 0.27* -0.04* -0.23* 1* 0.27* -0.04* -0.22* 0.01 0.920 
8-year 0.96* 0.24* -0.03* -0.2* 0.95* 0.2* -0.05* -0.14* 0.1* 0.000 
9-year 0.95* 0.24* -0.01 -0.22* 0.94* 0.19* -0.02* -0.16* 0.11* 0.000 

10-year 1.01* 0.24* 0.02 -0.19* 1.01* 0.26* 0.02* -0.21* -0.03* 0.340 
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Table 7 
 

Effects of economic variables on volatility smiles 
 

This table presents regression results for the impact of economic and liquidity variables on the curvature 
of the volatility smile (as proxied by the butterfly spread - BS) and asymmetry in the volatility smile (as 
proxies by risk reversal - RR): 

adawayBAspreinDifferenceddatmBAspreadDefSpreadd
yrslopeyrdMslopeyrdMratedATMVolddversalRisk

adawayBAspreAveragecdatmBAspreacDefSpreadc
yrslopeyrcMslopeyrcMratecATMVolccSpreadButterfly

*8*7*6                               
510*565*46*3*21Re

*8*7*6                               
510*565*46*3*21 

+++
++++=

+++
++++=

 

The statistics are presented for the entire sample period, Jan 99 - May 01, for various maturities, based on 
data obtained from WestLB Global Derivatives and Fixed Income Group. The coefficients and regression 
statistics are presented for the pooled sample of caps and floors, separately for bid and ask prices, for all 
maturities. Lagged error terms are included in the regression equation to correct for serial correlation. For 
bid-ask spread variables, we use the fitted values using 2-stage least square to correct for the errors-in-
variables problem in these two variables. Asterisk indicates statistical significance at the 5% level.  
 

Panel A: Ask Side 
 

BS c1 c2 c3 c4 c5 c6 c7 c8 Adj R2

          

2-year 1.52* 0.01 -13.14* -28.47* -30.23* 0.00 2.48* -1.40* 0.79 
3-year 1.05* 0.00 0.77 -11.29* -8.14 0.00 -0.30 -0.59 0.88 
4-year 0.66* 0.01 -4.13* -5.90* -2.57 0.00 -0.30 1.38* 0.81 
5-year 0.94* 0.00 -3.37 -8.72* -14.05 0.00 -0.48 0.22* 0.79 
6-year 0.56* 0.00 1.41 -3.39* 4.11* 0.00 -0.54 0.96* 0.98 
7-year 1.21* 0.00 -0.30 -8.31* -5.62 0.00 -5.99* 0.93* 0.73 
8-year 0.53* 0.00 0.74 0.30 0.25 0.00 -0.12 0.68* 0.94 
9-year 0.68* -0.01* 2.07 -0.20 -3.09 0.00 -1.21 0.43* 0.91 
10-year 0.66* 0.01 -2.79* -4.66* 15.79* 0.00 -0.92 0.62* 0.87 
          

RR d1 d2 d3 d4 d5 d6 d7 d8 Adj R2

          

2-year 0.60* 0.01 -17.66* -33.10* -27.08* 0.00 -0.23 0.33 0.54 
3-year -0.09 0.02* -11.12* -1.21 -3.98 0.00* -0.52 1.29* 0.82 
4-year 0.12 0.01 -5.14 -17.41* -14.96* 0.00 0.26 0.58 0.84 
5-year -0.10 0.01 -5.63* 0.59 5.76 0.00 0.22 1.23* 0.70 
6-year 0.28 0.01 -13.45* -7.51 -17.44* 0.00 3.36 0.60* 0.84 
7-year 0.25 0.00 -5.52* -10.49* 9.74* 0.00 0.77 -0.69* 0.96 
8-year 0.14 0.00 -1.50 -2.00 -0.17 0.00* -0.25 -0.41* 0.93 
9-year 0.34* 0.00 -3.94* -9.88* -0.11 0.00* 0.71 -1.01* 0.97 
10-year 1.01* -0.01 -13.80* -13.12* -5.76 0.00 0.00 -1.70* 0.96 
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Panel B: Bid Side 

 

BS c1 c2 c3 c4 c5 c6 c7 c8 Adj R2

          

2-year 1.94* -0.02 -7.87 -14.61 -14.52 0.00 -0.03 -1.42* 0.87 
3-year 0.87* -0.01 1.08 -9.01* -7.31 0.00 -0.87 -0.22 0.86 
4-year 0.56 -0.01 6.17 0.16 6.31 0.00 2.84 -3.17* 0.63 
5-year 0.55* 0.00 -1.74 0.66 -5.73 0.00 0.06 -0.10 0.55 
6-year 0.52* 0.00 1.16 -2.24* 4.88 0.00 -0.18 -0.02 0.88 
7-year 0.99* 0.00 1.24 -5.70* -3.32 0.00 -5.74* 0.53* 0.54 
8-year 0.41* 0.00 2.44* 1.79 0.87 0.00 -0.63 0.55* 0.93 
9-year 0.50* 0.00 2.49* 1.31 -2.39 0.00 -1.14* 0.41* 0.90 
10-year 0.40* 0.01 -2.03* -1.50 16.79* 0.00 -0.49 0.69* 0.83 
          

RR d1 d2 d3 d4 d5 d6 d7 d8 Adj R2

          

2-year 2.49 0.00 -67.74 -37.06* -27.90 0.00 -2.00* 1.16* 0.52 
3-year -0.36* 0.01 4.03 8.32* 10.40* 0.00* -1.34* -0.09 0.89 
4-year -0.32* 0.00 2.43 7.38* 11.78* 0.00 0.61 -0.56 0.66 
5-year 0.17 -0.01 -6.52* 3.31 5.08 0.00 0.34 0.00 0.88 
6-year 0.03 0.01 -1.38 1.10 10.17* 0.00* -2.97* 0.72* 0.94 
7-year 0.19 0.01 -5.55* -6.32* 3.87 0.00 0.13 0.08 0.95 
8-year 0.10 0.01* -1.86 -2.18 -1.60 0.00 -0.59 -0.10 0.92 
9-year 0.58* 0.00 -8.72* -11.83* -3.68 0.00* 0.52 -0.90* 0.97 
10-year 0.77* 0.00 -9.67* -9.27* -6.27 0.00 -0.23 -1.31* 0.95 
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Table 8 
 

Linear Bivariate Granger Causality Tests – Smile and Liquidity 
 

This table presents results for linear, bivariate, Granger-causality tests, for various maturities. The p-
values for rejecting the null hypothesis of “No Granger Causality” are given below. Asterisk represents p-
value less than or equal to 5%. Three bid-ask spread variables are used as proxy for liquidity – ATM, 
Average of ITM & OTM and Difference between ITM & OTM. We use the fitted values using 2-stage least 
square to correct for the errors-in-variables problem in these variables. 
 
Null Hypothesis 1 – the liquidity variables do not individually Granger cause the butterfly spread (BS) / 

risk reversal (RR) on the ask / bid  side 
Null Hypothesis 2 – Butterfly spread (BS) / risk reversal (RR) on the ask / bid side does not Granger 

cause each of the liquidity variables 
 

 Liquidity to Smile (Null Hypothesis 1) Smile to Liquidity (Null Hypothesis 2) 
 Ask Bid Ask Bid 

BS ATM 

Average of 
ITM & 
OTM ATM 

Average of 
ITM & OTM ATM 

Average of 
ITM & 
OTM ATM 

Average of 
ITM & 
OTM 

         
2-year 0.37 0.87 0.99 0.83 0.16 0.45 0.29 0.92 
3-year 0.00* 0.01* 0.01* 0.01* 0.41 0.36 0.24 0.37 
4-year 0.09 0.06 0.20 0.63 0.01* 0.34 0.00* 0.13 
5-year 0.16 0.00* 0.22 0.00* 0.14 0.00* 0.66 0.02* 
6-year 0.15 0.14 0.12 0.06 0.00* 0.18 0.01* 0.09 
7-year 0.01* 0.07 0.04* 0.20 0.43 0.56 0.65 0.54 
8-year 0.56 0.76 0.67 0.92 0.35 0.45 0.57 0.48 
9-year 0.51 0.24 0.62 0.38 0.02* 0.46 0.46 0.57 

10-year 0.00* 0.10 0.01* 0.14 0.23 0.28 0.23 0.20 
         

RR ATM 

Difference 
between 
ITM & 
OTM ATM 

Difference 
between ITM 

& OTM ATM 

Difference 
between 
ITM & 
OTM ATM 

Difference 
between 
ITM & 
OTM 

         
2-year 0.45 0.13 0.96 0.49 0.30 0.43 0.81 0.37 
3-year 0.45 0.84 0.36 0.54 0.89 0.72 1.00 0.47 
4-year 0.13 0.15 0.38 0.09 0.00* 0.40 0.74 0.10 
5-year 0.17 0.04* 0.91 1.00 0.05* 0.03* 0.10 0.01* 
6-year 0.00* 0.78 0.00* 0.78 0.90 0.32 0.87 0.35 
7-year 0.66 0.44 0.98 0.69 0.12 0.00* 0.00* 0.14 
8-year 0.22 0.55 0.55 0.64 0.03* 0.00* 0.06 0.41 
9-year 0.00* 0.06 0.00* 0.01* 0.01* 0.39 0.00* 0.01* 

10-year 0.00* 0.07 0.10 0.03* 0.00* 0.89 0.01* 0.48 
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Table 9 
 

Linear Bivariate Granger Causality Tests – Smile and other variables 
 

This table presents results for linear, bivariate, Granger-causality tests, for various maturities. The p-
values for rejecting the null hypothesis of “No Granger Causality” are given below. Asterisk represents p-
value less than or equal to 5%. 
 

Panel A: Null Hypothesis – presented variables do not individually Granger cause the butterfly spread 
(BS) / risk reversal (RR) on the ask / bid side 

 
 Ask Bid 

BS 
ATM 
Vol. 

6 m 
Rate 

5 yr rate 
– 6 m 
Rate 

10yr rate - 
5yr rate 

Default 
Spread 
(6m) 

ATM 
Vol. 

6 m 
Rate 

5 yr rate 
– 6 m 
Rate 

10yr 
rate - 

5yr rate 

Default 
Spread 
(6m) 

           
2-year 0.10 0.38 0.16 0.86 0.61 0.10 0.21 0.18 0.78 0.79 
3-year 0.02* 0.39 0.31 0.18 0.66 0.19 0.56 0.28 0.38 0.54 
4-year 0.00* 0.50 0.01* 0.07 1.00 0.11 0.87 0.95 0.35 0.53 
5-year 0.00* 0.87 0.09 0.02* 0.88 0.22 0.69 0.57 0.22 0.74 
6-year 0.83 0.04* 0.00* 0.00* 0.73 0.93 0.15 0.32 0.00* 0.33 
7-year 0.03* 0.77 0.78 0.01* 0.49 0.05* 0.86 0.89 0.00* 0.07 
8-year 0.21 0.65 0.58 0.96 0.88 0.14 0.08 0.38 0.94 0.97 
9-year 0.31 0.83 0.92 0.57 0.76 0.57 0.52 0.94 0.92 0.55 

10-year 0.05* 0.90 0.17 0.14 0.14 0.10 0.90 0.24 0.13 0.14 
           

RR 
ATM 
Vol. 

6 m 
Rate 

5 yr rate 
– 6 m 
Rate 

10yr rate - 
5yr rate 

Default 
Spread 
(6m) 

ATM 
Vol. 

6 m 
Rate 

5 yr 
rate– 6 
m Rate 

10yr 
rate - 

5yr rate 

Default 
Spread 
(6m) 

           
2-year 0.94 0.56 0.76 0.42 0.39 0.75 0.09 0.13 0.03* 0.21 
3-year 0.63 0.31 0.16 0.72 0.29 0.70 0.08 0.04* 0.23 0.31 
4-year 0.02* 0.16 0.08 0.02* 0.11 0.76 0.39 0.63 0.37 0.86 
5-year 0.35 0.18 0.34 0.04* 0.69 0.87 0.66 0.98 0.97 0.26 
6-year 0.15 0.19 0.51 0.00* 0.34 0.18 0.16 0.28 0.00* 0.29 
7-year 0.75 0.75 0.95 0.55 0.12 0.97 0.01* 0.39 0.31 0.05* 
8-year 0.02* 0.01* 0.70 0.24 0.21 0.03* 0.06 0.93 0.96 0.18 
9-year 0.41 0.00* 0.05 0.01* 0.25 0.12 0.31 0.13 0.18 0.20 

10-year 0.52 0.00* 0.87 0.86 0.01* 0.24 0.00* 0.39 0.38 0.02* 
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 Panel B: Null Hypothesis – Butterfly spread (BS) / risk reversal (RR) on the ask / bid side does not 
Granger cause each of the presented variables  

 

 Ask Bid 

BS 
ATM 
Vol. 

6 m 
Rate 

5 yr rate 
– 6 m 
Rate 

10yr rate - 
5yr rate 

Default 
Spread 
(6m) 

ATM 
Vol. 

6 m 
Rate 

5 yr rate 
– 6 m 
Rate 

10yr rate - 
5yr rate 

Default 
Spread 
(6m) 

           
2-year 0.90 0.27 0.01* 0.33 0.39 0.42 0.07 0.00* 0.03* 0.45 
3-year 0.00* 0.14 0.93 0.48 0.54 0.03* 0.09 0.29 0.32 0.87 
4-year 0.00* 0.32 0.52 0.00* 0.04* 0.16 0.03* 0.01* 0.04* 0.42 
5-year 0.01* 0.54 0.13 0.00* 02 0.03* 0.30 0.11 0.00* 0.64 
6-year 0.00* 0.48 0.08 0.00* 0.55 0.00* 0.74 0.70 0.00* 0.97 
7-year 0.00* 0.36 0.49 0.02* 0.09 0.01* 0.64 0.56 0.01* 0.06 
8-year 0.02* 0.11 0.01* 0.00* 1.00 0.00* 0.18 0.06 0.00* 0.45 
9-year 0.50 0.26 0.06 0.00* 0.78 0.57 0.60 0.07 0.00* 0.59 

10-year 0.00* 0.64 0.80 0.01* 0.11 0.00* 0.59 0.68 0.00* 0.25 
           

RR 
ATM 
Vol. 

6 m 
Rate 

5 yr rate 
– 6 m 
Rate 

10yr rate - 
5yr rate 

Default 
Spread 
(6m) 

ATM 
Vol. 

6 m 
Rate 

5 yr rate 
– 6 m 
Rate 

10yr rate - 
5yr rate 

Default 
Spread 
(6m) 

           
2-year 0.17 0.39 0.22 0.82 0.13 0.76 0.56 0.49 0.79 0.34 
3-year 0.31 0.20 0.17 0.18 0.04* 0.59 0.46 0.14 0.09 0.44 
4-year 0.09 0.70 0.53 0.29 0.23 0.00* 0.39 0.41 0.01* 0.16 
5-year 0.82 0.88 0.65 0.86 0.02* 0.12 0.24 0.28 0.01* 0.17 
6-year 0.52 0.44 0.08 0.62 0.58 0.52 0.96 0.22 0.77 0.33 
7-year 0.02* 0.02* 0.01* 0.00* 0.07 0.39 0.13 0.03* 0.00* 0.18 
8-year 0.09 0.10 0.00* 0.01* 0.32 0.03* 0.00* 0.00* 0.00* 0.83 
9-year 0.19 0.26 0.01* 0.00* 0.76 0.12 0.01* 0.01* 0.00* 0.61 

10-year 0.33 0.29 0.05 0.00* 0.42 0.18 0.10 0.01* 0.00* 0.81 
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 Figure 1 

Implied volatility smiles in interest rate caps and floors 
 

This figure presents scatter plots of the implied flat volatilities of euro interest rate caps and floors over 
our sample period. The vertical axis in the plots corresponds to the implied volatility of the mid-price 
(average of bid and ask price) of the option, scaled by the at-the-money volatility for the option of similar 
maturity. The horizontal axis in the plots corresponds to the logarithm of the moneyness ratio, defined as 
the ratio of the par swap rate to the strike rate of the option. The plots are for three representative 
maturities - 2-year, 5-year, and 10-year for the entire sample period, Jan 99 - May 01, based on data 
obtained from WestLB Global Derivatives and Fixed Income Group. 
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Figure 2 

Functional forms of implied volatility smiles in interest rate caps and floors 
 

This figure presents the fitted smile functions for the bid and ask implied flat volatilities of euro interest 
rate caps and floors separately, across different maturities. The vertical axis in the plots corresponds to 
the implied flat volatility of the bid and ask prices of the option, scaled by the at-the-money volatility for 
the option of similar maturity (Scaled IV) calculated using the regression model in Table VI. The 
horizontal axis in the plots corresponds to the logarithm of the moneyness ratio (LMR), defined as the 
ratio of the par swap rate to the strike rate of the option. The plots are three representative maturities - 2-
year, 5-year, and 10-year for the entire sample period, Jan 99 - May 01, based on data obtained from 
WestLB Global Derivatives and Fixed Income Group. 
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 Figure 3 

Functional forms of implied volatility smiles using pooled data from interest rate 
caps and floors 

 
This figure presents the fitted smile functions for the bid and ask implied flat volatilities of euro interest 
rate caps and floors pooled, for different maturities. The vertical axis corresponds to the implied flat 
volatility of the bid and ask prices of the option, scaled by the at-the-money volatility for the option of 
similar maturity (Scaled IV) calculated using the regression model in Table VII. The horizontal axis in the 
plots corresponds to the logarithm of the moneyness ratio (LMR), defined as the ratio of the par swap rate 
to the strike rate of the option. The plots are for three representative maturities - 2-year, 5-year, and 10-
year for the entire sample period, Jan 99 - May 01, based on data obtained from WestLB Global 
Derivatives and Fixed Income Group. 
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Figure 4 
 

Time variation in volatility smiles and the Euro term structure 
 

This figure presents surface plots showing the time variation in the implied flat volatilities of euro 
interest rate caps and floors as well as the Euro term structure over our sample period (Jan 99 - May 01), 
using data obtained from WestLB Global Derivatives and Fixed Income Group. In figure 4A, the first 
three plots (for three representative maturities - 2-year, 5-year, and 10-year), the vertical axis corresponds 
to the implied volatility of the mid-price (average of bid and ask price) of the option, scaled by the at-the-
money volatility for the option of similar maturity. The horizontal axes in these plots correspond to the 
logarithm of the moneyness ratio (defined as the ratio of the par swap rate to the strike rate of the option), 
and time. In figure 4B, the fourth plot depicts the Euro spot rate surface by maturity (in years) over time 
(daily).  
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Figure 4B 
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Figure 5 

Calculation of the butterfly spread and risk reversal 
 

This figure explains the calculation of the “butterfly spread” and the “risk reversal” for each day for each 
maturity. The points marked “Cap” and “Floor” are the observed scaled implied volatilities from cap and 
floor prices for that day. They are plotted against their LMR. The scaled IV at -0.25 LMR is calculated by 
linearly interpolating scaled IVs at two adjacent points. Similarly, the scaled IV at +0.25 LMR is 
calculated. The risk reversal is the difference between scaled IV at +0.25 LMR and -0.25 LMR. The 
butterfly spread is the difference between the average of these two away-from-the-money volatilities and 
the at-the-money volatility 
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